|
--- |
|
license: cc-by-3.0 |
|
tags: |
|
- medical |
|
viewer: false |
|
--- |
|
|
|
# The Cancer Genome Atlas Ovarian Cancer (NSCLC-Radiomics) |
|
|
|
The models featured in this repository uses images from the publicly available [NSCLC-Radiomics](https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics) Dataset. |
|
|
|
Download the data from TCIA with **Descriptive Directory Name** download option. |
|
|
|
## Converting Format |
|
|
|
Convert DICOM images and segmentation to NIFTI format using [pydicom](https://pydicom.github.io/) and [pydicom-seg](https://razorx89.github.io/pydicom-seg/guides/read.html). Run: |
|
|
|
```shell |
|
user@machine:~/NSCLC-Radiomics-NIFTI$ python convert.py |
|
``` |
|
|
|
## Segmentations |
|
|
|
Images will have one of the following segmentation files: |
|
|
|
``` |
|
β seg-Esophagus.nii.gz |
|
β seg-GTV-1.nii.gz |
|
β seg-Heart.nii.gz |
|
β seg-Lung-Left.nii.gz |
|
β seg-Lung-Right.nii.gz |
|
β seg-Spinal-Cord.nii.gz |
|
``` |
|
|
|
## Requirements |
|
|
|
``` |
|
dicom2nifti==2.4.6 |
|
pandas==1.5.0 |
|
pydicom==2.3.1 |
|
pydicom-seg==0.4.1 |
|
SimpleITK==2.2.0 |
|
tqdm==4.64.1 |
|
``` |
|
|
|
## Citation |
|
|
|
If using this repository, please cite the following works: |
|
|
|
``` |
|
Data Citation |
|
|
|
Aerts, H. J. W. L., Wee, L., Rios Velazquez, E., Leijenaar, R. T. H., Parmar, C., Grossmann, P., |
|
Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., |
|
Rietbergen, M. M., Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., Lambin, P. (2019). |
|
Data From NSCLC-Radiomics (version 4) [Data set]. |
|
The Cancer Imaging Archive. |
|
https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI |
|
|
|
Publication Citation |
|
|
|
Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Carvalho, S., |
|
Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M. M., |
|
Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., Lambin, P. (2014, June 3). |
|
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. |
|
Nature Communications. Nature Publishing Group. |
|
https://doi.org/10.1038/ncomms5006 (link) |
|
|
|
TCIA Citation |
|
|
|
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, |
|
Tarbox L, Prior F. |
|
The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository, |
|
Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057. |
|
https://doi.org/10.1007/s10278-013-9622-7 |
|
``` |