prompt
stringlengths
1.74k
34.3k
ref
stringlengths
4
432
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: sherwinbahmani/4dfy # Path: threestudio/models/background/base.py class BaseBackground(BaseModule): @dataclass class Config(BaseModule.Config): pass cfg: Config def configure(self): pass def forward(self, dirs: Float[Tensor, "*B 3"]) -> Float[Tensor, "*B 3"]: raise NotImplementedError # Path: threestudio/models/geometry/base.py class BaseImplicitGeometry(BaseGeometry): @dataclass class Config(BaseGeometry.Config): radius: float = 1.0 isosurface: bool = True isosurface_method: str = "mt" isosurface_resolution: int = 128 isosurface_threshold: Union[float, str] = 0.0 isosurface_chunk: int = 0 isosurface_coarse_to_fine: bool = True isosurface_deformable_grid: bool = False isosurface_remove_outliers: bool = True isosurface_outlier_n_faces_threshold: Union[int, float] = 0.01 cfg: Config def configure(self) -> None: self.bbox: Float[Tensor, "2 3"] self.register_buffer( "bbox", torch.as_tensor( [ [-self.cfg.radius, -self.cfg.radius, -self.cfg.radius], [self.cfg.radius, self.cfg.radius, self.cfg.radius], ], dtype=torch.float32, ), ) self.isosurface_helper: Optional[IsosurfaceHelper] = None self.unbounded: bool = False def _initilize_isosurface_helper(self): if self.cfg.isosurface and self.isosurface_helper is None: if self.cfg.isosurface_method == "mc-cpu": self.isosurface_helper = MarchingCubeCPUHelper( self.cfg.isosurface_resolution ).to(self.device) elif self.cfg.isosurface_method == "mt": self.isosurface_helper = MarchingTetrahedraHelper( self.cfg.isosurface_resolution, f"load/tets/{self.cfg.isosurface_resolution}_tets.npz", ).to(self.device) else: raise AttributeError( "Unknown isosurface method {self.cfg.isosurface_method}" ) def forward( self, points: Float[Tensor, "*N Di"], output_normal: bool = False ) -> Dict[str, Float[Tensor, "..."]]: raise NotImplementedError def forward_field( self, points: Float[Tensor, "*N Di"] ) -> Tuple[Float[Tensor, "*N 1"], Optional[Float[Tensor, "*N 3"]]]: # return the value of the implicit field, could be density / signed distance # also return a deformation field if the grid vertices can be optimized raise NotImplementedError def forward_level( self, field: Float[Tensor, "*N 1"], threshold: float ) -> Float[Tensor, "*N 1"]: # return the value of the implicit field, where the zero level set represents the surface raise NotImplementedError def _isosurface(self, bbox: Float[Tensor, "2 3"], fine_stage: bool = False) -> Mesh: def batch_func(x): # scale to bbox as the input vertices are in [0, 1] field, deformation = self.forward_field( scale_tensor( x.to(bbox.device), self.isosurface_helper.points_range, bbox ), ) field = field.to( x.device ) # move to the same device as the input (could be CPU) if deformation is not None: deformation = deformation.to(x.device) return field, deformation assert self.isosurface_helper is not None field, deformation = chunk_batch( batch_func, self.cfg.isosurface_chunk, self.isosurface_helper.grid_vertices, ) threshold: float if isinstance(self.cfg.isosurface_threshold, float): threshold = self.cfg.isosurface_threshold elif self.cfg.isosurface_threshold == "auto": eps = 1.0e-5 threshold = field[field > eps].mean().item() threestudio.info( f"Automatically determined isosurface threshold: {threshold}" ) else: raise TypeError( f"Unknown isosurface_threshold {self.cfg.isosurface_threshold}" ) level = self.forward_level(field, threshold) mesh: Mesh = self.isosurface_helper(level, deformation=deformation) mesh.v_pos = scale_tensor( mesh.v_pos, self.isosurface_helper.points_range, bbox ) # scale to bbox as the grid vertices are in [0, 1] mesh.add_extra("bbox", bbox) if self.cfg.isosurface_remove_outliers: # remove outliers components with small number of faces # only enabled when the mesh is not differentiable mesh = mesh.remove_outlier(self.cfg.isosurface_outlier_n_faces_threshold) return mesh def isosurface(self) -> Mesh: if not self.cfg.isosurface: raise NotImplementedError( "Isosurface is not enabled in the current configuration" ) self._initilize_isosurface_helper() if self.cfg.isosurface_coarse_to_fine: threestudio.debug("First run isosurface to get a tight bounding box ...") with torch.no_grad(): mesh_coarse = self._isosurface(self.bbox) vmin, vmax = mesh_coarse.v_pos.amin(dim=0), mesh_coarse.v_pos.amax(dim=0) vmin_ = (vmin - (vmax - vmin) * 0.1).max(self.bbox[0]) vmax_ = (vmax + (vmax - vmin) * 0.1).min(self.bbox[1]) threestudio.debug("Run isosurface again with the tight bounding box ...") mesh = self._isosurface(torch.stack([vmin_, vmax_], dim=0), fine_stage=True) else: mesh = self._isosurface(self.bbox) return mesh # Path: threestudio/models/materials/base.py class BaseMaterial(BaseModule): @dataclass class Config(BaseModule.Config): pass cfg: Config requires_normal: bool = False def configure(self): pass def forward(self, *args, **kwargs) -> Float[Tensor, "*B 3"]: raise NotImplementedError def export(self, *args, **kwargs) -> Dict[str, Any]: return {} # Path: threestudio/models/renderers/base.py class VolumeRenderer(Renderer): pass # Path: threestudio/utils/ops.py def chunk_batch(func: Callable, chunk_size: int, *args, **kwargs) -> Any: if chunk_size <= 0: return func(*args, **kwargs) B = None for arg in list(args) + list(kwargs.values()): if isinstance(arg, torch.Tensor): B = arg.shape[0] break assert ( B is not None ), "No tensor found in args or kwargs, cannot determine batch size." out = defaultdict(list) out_type = None for i in range(0, B, chunk_size): out_chunk = func( *[ arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg for arg in args ], **{ k: arg[i : i + chunk_size] if isinstance(arg, torch.Tensor) else arg for k, arg in kwargs.items() }, ) if out_chunk is None: continue out_type = type(out_chunk) if isinstance(out_chunk, torch.Tensor): out_chunk = {0: out_chunk} elif isinstance(out_chunk, tuple) or isinstance(out_chunk, list): chunk_length = len(out_chunk) out_chunk = {i: chunk for i, chunk in enumerate(out_chunk)} elif isinstance(out_chunk, dict): pass else: print( f"Return value of func must be in type [torch.Tensor, list, tuple, dict], get {type(out_chunk)}." ) exit(1) for k, v in out_chunk.items(): v = v if torch.is_grad_enabled() else v.detach() out[k].append(v) if out_type is None: return None out_merged: Dict[Any, Optional[torch.Tensor]] = {} for k, v in out.items(): if all([vv is None for vv in v]): # allow None in return value out_merged[k] = None elif all([isinstance(vv, torch.Tensor) for vv in v]): out_merged[k] = torch.cat(v, dim=0) else: raise TypeError( f"Unsupported types in return value of func: {[type(vv) for vv in v if not isinstance(vv, torch.Tensor)]}" ) if out_type is torch.Tensor: return out_merged[0] elif out_type in [tuple, list]: return out_type([out_merged[i] for i in range(chunk_length)]) elif out_type is dict: return out_merged # Path: threestudio/models/renderers/nerf_volume_renderer.py from dataclasses import dataclass from threestudio.models.background.base import BaseBackground from threestudio.models.geometry.base import BaseImplicitGeometry from threestudio.models.materials.base import BaseMaterial from threestudio.models.renderers.base import VolumeRenderer from threestudio.utils.ops import chunk_batch from threestudio.utils.typing import * import nerfacc import torch import torch.nn.functional as F import threestudio weights_, _, _ = nerfacc.render_weight_from_density( t_starts[..., 0], t_ends[..., 0], geo_out["density"][..., 0], ray_indices=ray_indices, n_rays=n_rays, ) weights = weights_[..., None] opacity: Float[Tensor, "Nr 1"] = nerfacc.accumulate_along_rays( weights[..., 0], values=None, ray_indices=ray_indices, n_rays=n_rays ) depth: Float[Tensor, "Nr 1"] = nerfacc.accumulate_along_rays( weights[..., 0], values=t_positions, ray_indices=ray_indices, n_rays=n_rays ) comp_rgb_fg: Float[Tensor, "Nr Nc"] = nerfacc.accumulate_along_rays( weights[..., 0], values=rgb_fg_all, ray_indices=ray_indices, n_rays=n_rays ) # populate depth and opacity to each point t_depth = depth[ray_indices] z_variance = nerfacc.accumulate_along_rays( weights[..., 0], values=(t_positions - t_depth) ** 2, ray_indices=ray_indices, n_rays=n_rays, ) comp_rgb = comp_rgb_fg + comp_rgb_bg * (1.0 - opacity) out = { "comp_rgb": comp_rgb.view(batch_size, height, width, -1), "comp_rgb_fg": comp_rgb_fg.view(batch_size, height, width, -1), "comp_rgb_bg": comp_rgb_bg.view(batch_size, height, width, -1), "opacity": opacity.view(batch_size, height, width, 1), "depth": depth.view(batch_size, height, width, 1), "z_variance": z_variance.view(batch_size, height, width, 1), } if self.training: out.update( { "weights": weights, "t_points": t_positions, "t_intervals": t_intervals, "t_dirs": t_dirs, "ray_indices": ray_indices, "points": positions, **geo_out, } ) if "normal" in geo_out: if self.cfg.return_comp_normal: comp_normal: Float[Tensor, "Nr 3"] = nerfacc.accumulate_along_rays( weights[..., 0], values=geo_out["normal"], ray_indices=ray_indices, n_rays=n_rays, ) comp_normal = F.normalize(comp_normal, dim=-1) comp_normal = ( (comp_normal + 1.0) / 2.0 * opacity ) # for visualization out.update( { "comp_normal": comp_normal.view( batch_size, height, width, 3 ), } ) if self.cfg.return_normal_perturb: normal_perturb = self.geometry( positions + torch.randn_like(positions) * 1e-2, output_normal=self.material.requires_normal, )["normal"] out.update({"normal_perturb": normal_perturb}) else: if "normal" in geo_out: comp_normal = nerfacc.accumulate_along_rays( weights[..., 0], values=geo_out["normal"], ray_indices=ray_indices, n_rays=n_rays, ) comp_normal = F.normalize(comp_normal, dim=-1) comp_normal = (comp_normal + 1.0) / 2.0 * opacity # for visualization out.update( { "comp_normal": comp_normal.view(batch_size, height, width, 3), } ) return out def update_step( self, epoch: int, global_step: int, on_load_weights: bool = False ) -> None: def occ_eval_fn(x): # Query random time for encoding encoding = self.geometry.encoding.encoding dynamic = not encoding.static if dynamic: frame_time = encoding.frame_time encoding.frame_time = torch.rand(1).item() encoding.update_occ_grid = True density = self.geometry.forward_density(x) if dynamic: encoding.frame_time = frame_time encoding.update_occ_grid = False # approximate for 1 - torch.exp(-density * self.render_step_size) based on taylor series return density * self.render_step_size if self.training and not on_load_weights: self.estimator.update_every_n_steps( step=global_step, occ_eval_fn=occ_eval_fn ) def train(self, mode=True): self.randomized = mode and self.cfg.randomized return super().train(mode=mode) def eval(self): self.randomized = False
return super().eval()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: rlawjdghek/StableVITON # Path: ldm/modules/diffusionmodules/model.py class Encoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", **ignore_kwargs): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions-1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, 2*z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): # timestep embedding temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions-1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h # Path: ldm/modules/diffusionmodules/model.py class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, attn_type="vanilla", **ignorekwargs): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end self.tanh_out = tanh_out # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,)+tuple(ch_mult) block_in = ch*ch_mult[self.num_resolutions-1] curr_res = resolution // 2**(self.num_resolutions-1) self.z_shape = (1,z_channels,curr_res,curr_res) print("Working with z of shape {} = {} dimensions.".format( self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) if self.tanh_out: h = torch.tanh(h) return h # Path: ldm/modules/distributions/distributions.py class DiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) def sample(self): x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device) return x def kl(self, other=None): if self.deterministic: return torch.Tensor([0.]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3]) def nll(self, sample, dims=[1,2,3]): if self.deterministic: return torch.Tensor([0.]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum( logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean # Path: ldm/util.py def instantiate_from_config(config): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) # Path: ldm/modules/ema.py class LitEma(nn.Module): def __init__(self, model, decay=0.9999, use_num_upates=True): super().__init__() if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.m_name2s_name = {} self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32)) self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates else torch.tensor(-1, dtype=torch.int)) for name, p in model.named_parameters(): if p.requires_grad: # remove as '.'-character is not allowed in buffers s_name = name.replace('.', '') self.m_name2s_name.update({name: s_name}) self.register_buffer(s_name, p.clone().detach().data) self.collected_params = [] def reset_num_updates(self): del self.num_updates self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int)) def forward(self, model): decay = self.decay if self.num_updates >= 0: self.num_updates += 1 decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates)) one_minus_decay = 1.0 - decay with torch.no_grad(): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: sname = self.m_name2s_name[key] shadow_params[sname] = shadow_params[sname].type_as(m_param[key]) shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key])) else: assert not key in self.m_name2s_name def copy_to(self, model): m_param = dict(model.named_parameters()) shadow_params = dict(self.named_buffers()) for key in m_param: if m_param[key].requires_grad: m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data) else: assert not key in self.m_name2s_name def store(self, parameters): """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters] def restore(self, parameters): """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): param.data.copy_(c_param.data) # Path: ldm/models/autoencoder.py import torch import pytorch_lightning as pl import torch.nn.functional as F from contextlib import contextmanager from ldm.modules.diffusionmodules.model import Encoder, Decoder from ldm.modules.distributions.distributions import DiagonalGaussianDistribution from ldm.util import instantiate_from_config from ldm.modules.ema import LitEma class AutoencoderKL(pl.LightningModule): def __init__(self, ddconfig, lossconfig, embed_dim, ckpt_path=None, ignore_keys=[], image_key="image", colorize_nlabels=None, monitor=None, ema_decay=None, learn_logvar=False ): super().__init__() self.lossconfig = lossconfig self.learn_logvar = learn_logvar self.image_key = image_key self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) self.loss = torch.nn.Identity() assert ddconfig["double_z"] self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) self.embed_dim = embed_dim if colorize_nlabels is not None: assert type(colorize_nlabels)==int self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) if monitor is not None: self.monitor = monitor self.use_ema = ema_decay is not None if self.use_ema: self.ema_decay = ema_decay assert 0. < ema_decay < 1. self.model_ema = LitEma(self, decay=ema_decay) print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) def init_loss(self): self.loss = instantiate_from_config(self.lossconfig) def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location="cpu")["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] self.load_state_dict(sd, strict=False) print(f"Restored from {path}") @contextmanager def ema_scope(self, context=None): if self.use_ema: self.model_ema.store(self.parameters()) self.model_ema.copy_to(self) if context is not None: print(f"{context}: Switched to EMA weights") try: yield None finally: if self.use_ema: self.model_ema.restore(self.parameters()) if context is not None: print(f"{context}: Restored training weights") def on_train_batch_end(self, *args, **kwargs): if self.use_ema: self.model_ema(self) def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z)
dec = self.decoder(z)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: AIFSH/NativeSpeaker # Path: src/third_part/facelib/detection/align_trans.py def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False): """ Function: ---------- get reference 5 key points according to crop settings: 0. Set default crop_size: if default_square: crop_size = (112, 112) else: crop_size = (96, 112) 1. Pad the crop_size by inner_padding_factor in each side; 2. Resize crop_size into (output_size - outer_padding*2), pad into output_size with outer_padding; 3. Output reference_5point; Parameters: ---------- @output_size: (w, h) or None size of aligned face image @inner_padding_factor: (w_factor, h_factor) padding factor for inner (w, h) @outer_padding: (w_pad, h_pad) each row is a pair of coordinates (x, y) @default_square: True or False if True: default crop_size = (112, 112) else: default crop_size = (96, 112); !!! make sure, if output_size is not None: (output_size - outer_padding) = some_scale * (default crop_size * (1.0 + inner_padding_factor)) Returns: ---------- @reference_5point: 5x2 np.array each row is a pair of transformed coordinates (x, y) """ tmp_5pts = np.array(REFERENCE_FACIAL_POINTS) tmp_crop_size = np.array(DEFAULT_CROP_SIZE) # 0) make the inner region a square if default_square: size_diff = max(tmp_crop_size) - tmp_crop_size tmp_5pts += size_diff / 2 tmp_crop_size += size_diff if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]): return tmp_5pts if (inner_padding_factor == 0 and outer_padding == (0, 0)): if output_size is None: return tmp_5pts else: raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size)) # check output size if not (0 <= inner_padding_factor <= 1.0): raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)') if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None): output_size = tmp_crop_size * \ (1 + inner_padding_factor * 2).astype(np.int32) output_size += np.array(outer_padding) if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]): raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])') # 1) pad the inner region according inner_padding_factor if inner_padding_factor > 0: size_diff = tmp_crop_size * inner_padding_factor * 2 tmp_5pts += size_diff / 2 tmp_crop_size += np.round(size_diff).astype(np.int32) # 2) resize the padded inner region size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2 if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]: raise FaceWarpException('Must have (output_size - outer_padding)' '= some_scale * (crop_size * (1.0 + inner_padding_factor)') scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0] tmp_5pts = tmp_5pts * scale_factor # size_diff = tmp_crop_size * (scale_factor - min(scale_factor)) # tmp_5pts = tmp_5pts + size_diff / 2 tmp_crop_size = size_bf_outer_pad # 3) add outer_padding to make output_size reference_5point = tmp_5pts + np.array(outer_padding) tmp_crop_size = output_size return reference_5point # Path: src/third_part/facelib/detection/align_trans.py def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'): """ Function: ---------- apply affine transform 'trans' to uv Parameters: ---------- @src_img: 3x3 np.array input image @facial_pts: could be 1)a list of K coordinates (x,y) or 2) Kx2 or 2xK np.array each row or col is a pair of coordinates (x, y) @reference_pts: could be 1) a list of K coordinates (x,y) or 2) Kx2 or 2xK np.array each row or col is a pair of coordinates (x, y) or 3) None if None, use default reference facial points @crop_size: (w, h) output face image size @align_type: transform type, could be one of 1) 'similarity': use similarity transform 2) 'cv2_affine': use the first 3 points to do affine transform, by calling cv2.getAffineTransform() 3) 'affine': use all points to do affine transform Returns: ---------- @face_img: output face image with size (w, h) = @crop_size """ if reference_pts is None: if crop_size[0] == 96 and crop_size[1] == 112: reference_pts = REFERENCE_FACIAL_POINTS else: default_square = False inner_padding_factor = 0 outer_padding = (0, 0) output_size = crop_size reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding, default_square) ref_pts = np.float32(reference_pts) ref_pts_shp = ref_pts.shape if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2: raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2') if ref_pts_shp[0] == 2: ref_pts = ref_pts.T src_pts = np.float32(facial_pts) src_pts_shp = src_pts.shape if max(src_pts_shp) < 3 or min(src_pts_shp) != 2: raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2') if src_pts_shp[0] == 2: src_pts = src_pts.T if src_pts.shape != ref_pts.shape: raise FaceWarpException('facial_pts and reference_pts must have the same shape') if align_type == 'cv2_affine': tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3]) elif align_type == 'affine': tfm = get_affine_transform_matrix(src_pts, ref_pts) else: tfm = get_similarity_transform_for_cv2(src_pts, ref_pts) face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1])) return face_img # Path: src/third_part/facelib/detection/retinaface/retinaface_net.py class FPN(nn.Module): def __init__(self, in_channels_list, out_channels): super(FPN, self).__init__() leaky = 0 if (out_channels <= 64): leaky = 0.1 self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky) self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky) self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky) self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky) self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky) def forward(self, input): # names = list(input.keys()) # input = list(input.values()) output1 = self.output1(input[0]) output2 = self.output2(input[1]) output3 = self.output3(input[2]) up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest') output2 = output2 + up3 output2 = self.merge2(output2) up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest') output1 = output1 + up2 output1 = self.merge1(output1) out = [output1, output2, output3] return out # Path: src/third_part/facelib/detection/retinaface/retinaface_net.py class SSH(nn.Module): def __init__(self, in_channel, out_channel): super(SSH, self).__init__() assert out_channel % 4 == 0 leaky = 0 if (out_channel <= 64): leaky = 0.1 self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1) self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky) self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky) self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1) def forward(self, input): conv3X3 = self.conv3X3(input) conv5X5_1 = self.conv5X5_1(input) conv5X5 = self.conv5X5_2(conv5X5_1) conv7X7_2 = self.conv7X7_2(conv5X5_1) conv7X7 = self.conv7x7_3(conv7X7_2) out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1) out = F.relu(out) return out # Path: src/third_part/facelib/detection/retinaface/retinaface_net.py class MobileNetV1(nn.Module): def __init__(self): super(MobileNetV1, self).__init__() self.stage1 = nn.Sequential( conv_bn(3, 8, 2, leaky=0.1), # 3 conv_dw(8, 16, 1), # 7 conv_dw(16, 32, 2), # 11 conv_dw(32, 32, 1), # 19 conv_dw(32, 64, 2), # 27 conv_dw(64, 64, 1), # 43 ) self.stage2 = nn.Sequential( conv_dw(64, 128, 2), # 43 + 16 = 59 conv_dw(128, 128, 1), # 59 + 32 = 91 conv_dw(128, 128, 1), # 91 + 32 = 123 conv_dw(128, 128, 1), # 123 + 32 = 155 conv_dw(128, 128, 1), # 155 + 32 = 187 conv_dw(128, 128, 1), # 187 + 32 = 219 ) self.stage3 = nn.Sequential( conv_dw(128, 256, 2), # 219 +3 2 = 241 conv_dw(256, 256, 1), # 241 + 64 = 301 ) self.avg = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(256, 1000) def forward(self, x): x = self.stage1(x) x = self.stage2(x) x = self.stage3(x) x = self.avg(x) # x = self.model(x) x = x.view(-1, 256) x = self.fc(x) return x # Path: src/third_part/facelib/detection/retinaface/retinaface_net.py def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2): bboxhead = nn.ModuleList() for i in range(fpn_num): bboxhead.append(BboxHead(inchannels, anchor_num)) return bboxhead # Path: src/third_part/facelib/detection/retinaface/retinaface_net.py def make_class_head(fpn_num=3, inchannels=64, anchor_num=2): classhead = nn.ModuleList() for i in range(fpn_num): classhead.append(ClassHead(inchannels, anchor_num)) return classhead # Path: src/third_part/facelib/detection/retinaface/retinaface_net.py def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2): landmarkhead = nn.ModuleList() for i in range(fpn_num): landmarkhead.append(LandmarkHead(inchannels, anchor_num)) return landmarkhead # Path: src/third_part/facelib/detection/retinaface/retinaface_utils.py class PriorBox(object): def __init__(self, cfg, image_size=None, phase='train'): super(PriorBox, self).__init__() self.min_sizes = cfg['min_sizes'] self.steps = cfg['steps'] self.clip = cfg['clip'] self.image_size = image_size self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps] self.name = 's' def forward(self): anchors = [] for k, f in enumerate(self.feature_maps): min_sizes = self.min_sizes[k] for i, j in product(range(f[0]), range(f[1])): for min_size in min_sizes: s_kx = min_size / self.image_size[1] s_ky = min_size / self.image_size[0] dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]] dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]] for cy, cx in product(dense_cy, dense_cx): anchors += [cx, cy, s_kx, s_ky] # back to torch land output = torch.Tensor(anchors).view(-1, 4) if self.clip: output.clamp_(max=1, min=0) return output # Path: src/third_part/facelib/detection/retinaface/retinaface_utils.py def batched_decode(b_loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: b_loc (tensor): location predictions for loc layers, Shape: [num_batches,num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [1,num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = ( priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:], priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]), ) boxes = torch.cat(boxes, dim=2) boxes[:, :, :2] -= boxes[:, :, 2:] / 2 boxes[:, :, 2:] += boxes[:, :, :2] return boxes # Path: src/third_part/facelib/detection/retinaface/retinaface_utils.py def batched_decode_landm(pre, priors, variances): """Decode landm from predictions using priors to undo the encoding we did for offset regression at train time. Args: pre (tensor): landm predictions for loc layers, Shape: [num_batches,num_priors,10] priors (tensor): Prior boxes in center-offset form. Shape: [1,num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded landm predictions """ landms = ( priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:], priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:], priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:], priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:], priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:], ) landms = torch.cat(landms, dim=2) return landms # Path: src/third_part/facelib/detection/retinaface/retinaface_utils.py def decode(loc, priors, variances): """Decode locations from predictions using priors to undo the encoding we did for offset regression at train time. Args: loc (tensor): location predictions for loc layers, Shape: [num_priors,4] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded bounding box predictions """ boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1) boxes[:, :2] -= boxes[:, 2:] / 2 boxes[:, 2:] += boxes[:, :2] return boxes # Path: src/third_part/facelib/detection/retinaface/retinaface_utils.py def decode_landm(pre, priors, variances): """Decode landm from predictions using priors to undo the encoding we did for offset regression at train time. Args: pre (tensor): landm predictions for loc layers, Shape: [num_priors,10] priors (tensor): Prior boxes in center-offset form. Shape: [num_priors,4]. variances: (list[float]) Variances of priorboxes Return: decoded landm predictions """ tmp = ( priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:], priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:], ) landms = torch.cat(tmp, dim=1) return landms # Path: src/third_part/facelib/detection/retinaface/retinaface_utils.py def py_cpu_nms(dets, thresh): """Pure Python NMS baseline.""" keep = torchvision.ops.nms( boxes=torch.Tensor(dets[:, :4]), scores=torch.Tensor(dets[:, 4]), iou_threshold=thresh, ) return list(keep) # Path: src/third_part/facelib/detection/retinaface/retinaface.py import cv2 import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torchvision.models as models from PIL import Image from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter from ..align_trans import get_reference_facial_points, warp_and_crop_face from .retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head from .retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm, py_cpu_nms) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def generate_config(network_name): cfg_mnet = { 'name': 'mobilenet0.25', 'min_sizes': [[16, 32], [64, 128], [256, 512]], 'steps': [8, 16, 32], 'variance': [0.1, 0.2], 'clip': False, 'loc_weight': 2.0, 'gpu_train': True, 'batch_size': 32, 'ngpu': 1, 'epoch': 250, 'decay1': 190, 'decay2': 220, 'image_size': 640, 'return_layers': { 'stage1': 1, 'stage2': 2, 'stage3': 3 }, 'in_channel': 32, 'out_channel': 64 } cfg_re50 = { 'name': 'Resnet50', 'min_sizes': [[16, 32], [64, 128], [256, 512]], 'steps': [8, 16, 32], 'variance': [0.1, 0.2], 'clip': False, 'loc_weight': 2.0, 'gpu_train': True, 'batch_size': 24, 'ngpu': 4, 'epoch': 100, 'decay1': 70, 'decay2': 90, 'image_size': 840, 'return_layers': { 'layer2': 1, 'layer3': 2, 'layer4': 3 }, 'in_channel': 256, 'out_channel': 256 } if network_name == 'mobile0.25': return cfg_mnet elif network_name == 'resnet50': return cfg_re50 else: raise NotImplementedError(f'network_name={network_name}') class RetinaFace(nn.Module): def __init__(self, network_name='resnet50', half=False, phase='test'): super(RetinaFace, self).__init__() self.half_inference = half cfg = generate_config(network_name) self.backbone = cfg['name'] self.model_name = f'retinaface_{network_name}' self.cfg = cfg self.phase = phase self.target_size, self.max_size = 1600, 2150 self.resize, self.scale, self.scale1 = 1., None, None self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]]).to(device) self.reference = get_reference_facial_points(default_square=True) # Build network. backbone = None if cfg['name'] == 'mobilenet0.25': backbone = MobileNetV1() self.body = IntermediateLayerGetter(backbone, cfg['return_layers']) elif cfg['name'] == 'Resnet50': backbone = models.resnet50(pretrained=False) self.body = IntermediateLayerGetter(backbone, cfg['return_layers']) in_channels_stage2 = cfg['in_channel'] in_channels_list = [
in_channels_stage2 * 2,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: orhir/PoseAnything # Path: models/models/backbones/swin_transformer.py class SwinTransformer(nn.Module): r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False fused_window_process (bool, optional): If True, use one kernel to fused window shift & window partition for acceleration, similar for the reversed part. Default: False """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, fused_window_process=False, **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, fused_window_process=fused_window_process) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {'relative_position_bias_table'} def forward_features(self, x): x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops # Path: models/models/backbones/swin_transformer_v2.py class SwinTransformerV2(nn.Module): r""" Swin Transformer A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False pretrained_window_sizes (tuple(int)): Pretrained window sizes of each layer. """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, ape=False, patch_norm=True, use_checkpoint=False, pretrained_window_sizes=[0, 0, 0, 0], multi_scale=False, upsample='deconv', **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) trunc_normal_(self.absolute_pos_embed, std=.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint, pretrained_window_size=pretrained_window_sizes[i_layer]) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.multi_scale = multi_scale if self.multi_scale: self.scales = [1, 2, 4, 4] self.upsample = nn.ModuleList() features = [int(embed_dim * 2 ** i) for i in range(1, self.num_layers)] + [self.num_features] self.multi_scale_fuse = nn.Conv2d(sum(features), self.num_features, 1) for i in range(self.num_layers): self.upsample.append(nn.Upsample(scale_factor=self.scales[i])) else: if upsample == 'deconv': self.upsample = nn.ConvTranspose2d(self.num_features, self.num_features, 2, stride=2) elif upsample == 'new_deconv': self.upsample = nn.Sequential(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False), nn.Conv2d(self.num_features, self.num_features, 3, stride=1, padding=1), nn.BatchNorm2d(self.num_features), nn.ReLU(inplace=True) ) elif upsample == 'new_deconv2': self.upsample = nn.Sequential(nn.Upsample(scale_factor=2), nn.Conv2d(self.num_features, self.num_features, 3, stride=1, padding=1), nn.BatchNorm2d(self.num_features), nn.ReLU(inplace=True) ) elif upsample == 'bilinear': self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) else: self.upsample = nn.Identity() self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) for bly in self.layers: bly._init_respostnorm() def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'absolute_pos_embed'} @torch.jit.ignore def no_weight_decay_keywords(self): return {"cpb_mlp", "logit_scale", 'relative_position_bias_table'} def forward_features(self, x): B, C, H, W = x.shape x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) if self.multi_scale: # x_2d = x.view(B, H // 4, W // 4, -1).permute(0, 3, 1, 2) # B C H W # features = [self.upsample[0](x_2d)] features = [] for i, layer in enumerate(self.layers): x = layer(x) x_2d = x.view(B, H // (8 * self.scales[i]), W // (8 * self.scales[i]), -1).permute(0, 3, 1, 2) # B C H W features.append(self.upsample[i](x_2d)) x = torch.cat(features, dim=1) x = self.multi_scale_fuse(x) x = x.view(B, self.num_features, -1).permute(0, 2, 1) x = self.norm(x) # B L C x = x.view(B, H // 8, W // 8, self.num_features).permute(0, 3, 1, 2) # B C H W else: for layer in self.layers: x = layer(x) x = self.norm(x) # B L C x = x.view(B, H // 32, W // 32, self.num_features).permute(0, 3, 1, 2) # B C H W x = self.upsample(x) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops # Path: models/models/backbones/simmim.py import torch import torch.nn as nn import torch.nn.functional as F from timm.models.layers import trunc_normal_ from .swin_transformer import SwinTransformer from .swin_transformer_v2 import SwinTransformerV2 # -------------------------------------------------------- # SimMIM # Copyright (c) 2021 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Zhenda Xie # -------------------------------------------------------- def norm_targets(targets, patch_size): assert patch_size % 2 == 1 targets_ = targets targets_count = torch.ones_like(targets) targets_square = targets ** 2. targets_mean = F.avg_pool2d(targets, kernel_size=patch_size, stride=1, padding=patch_size // 2, count_include_pad=False) targets_square_mean = F.avg_pool2d(targets_square, kernel_size=patch_size, stride=1, padding=patch_size // 2, count_include_pad=False) targets_count = F.avg_pool2d(targets_count, kernel_size=patch_size, stride=1, padding=patch_size // 2, count_include_pad=True) * (patch_size ** 2) targets_var = (targets_square_mean - targets_mean ** 2.) * (targets_count / (targets_count - 1)) targets_var = torch.clamp(targets_var, min=0.) targets_ = (targets_ - targets_mean) / (targets_var + 1.e-6) ** 0.5 return targets_ class SwinTransformerForSimMIM(SwinTransformer): def __init__(self, **kwargs): super().__init__(**kwargs) assert self.num_classes == 0 self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) trunc_normal_(self.mask_token, mean=0., std=.02) def forward(self, x, mask): x = self.patch_embed(x) assert mask is not None B, L, _ = x.shape mask_tokens = self.mask_token.expand(B, L, -1) w = mask.flatten(1).unsqueeze(-1).type_as(mask_tokens) x = x * (1. - w) + mask_tokens * w if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) x = x.transpose(1, 2) B, C, L = x.shape H = W = int(L ** 0.5) x = x.reshape(B, C, H, W) return x @torch.jit.ignore def no_weight_decay(self): return super().no_weight_decay() | {'mask_token'} class SwinTransformerV2ForSimMIM(SwinTransformerV2): def __init__(self, **kwargs): super().__init__(**kwargs) assert self.num_classes == 0 self.mask_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) trunc_normal_(self.mask_token, mean=0., std=.02) def forward(self, x, mask): x = self.patch_embed(x) assert mask is not None B, L, _ = x.shape mask_tokens = self.mask_token.expand(B, L, -1) w = mask.flatten(1).unsqueeze(-1).type_as(mask_tokens) x = x * (1. - w) + mask_tokens * w if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x) x = self.norm(x) x = x.transpose(1, 2) B, C, L = x.shape H = W = int(L ** 0.5) x = x.reshape(B, C, H, W) return x @torch.jit.ignore def no_weight_decay(self): return super().no_weight_decay() | {'mask_token'} class SimMIM(nn.Module): def __init__(self, config, encoder, encoder_stride, in_chans, patch_size): super().__init__() self.config = config self.encoder = encoder
self.encoder_stride = encoder_stride
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: VITA-Group/FSGS # Path: scene/colmap_loader.py def read_extrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ images = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() image_id = int(elems[0]) qvec = np.array(tuple(map(float, elems[1:5]))) tvec = np.array(tuple(map(float, elems[5:8]))) camera_id = int(elems[8]) image_name = elems[9] elems = fid.readline().split() xys = np.column_stack([tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]) point3D_ids = np.array(tuple(map(int, elems[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ cameras = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() camera_id = int(elems[0]) model = elems[1] assert model == "PINHOLE", "While the loader support other types, the rest of the code assumes PINHOLE" width = int(elems[2]) height = int(elems[3]) params = np.array(tuple(map(float, elems[4:]))) cameras[camera_id] = Camera(id=camera_id, model=model, width=width, height=height, params=params) return cameras # Path: scene/colmap_loader.py def qvec2rotmat(qvec): return np.array([ [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2, 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3], 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]], [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3], 1 - 2 * qvec[1]**2 - 2 * qvec[3]**2, 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]], [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2], 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1], 1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]]) # Path: scene/colmap_loader.py def rotmat2qvec(R): Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat K = np.array([ [Rxx - Ryy - Rzz, 0, 0, 0], [Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0], [Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0], [Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz]]) / 3.0 eigvals, eigvecs = np.linalg.eigh(K) qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)] if qvec[0] < 0: qvec *= -1 return qvec # Path: scene/colmap_loader.py def read_extrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadImagesBinary(const std::string& path) void Reconstruction::WriteImagesBinary(const std::string& path) """ images = {} with open(path_to_model_file, "rb") as fid: num_reg_images = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_reg_images): binary_image_properties = read_next_bytes( fid, num_bytes=64, format_char_sequence="idddddddi") image_id = binary_image_properties[0] qvec = np.array(binary_image_properties[1:5]) tvec = np.array(binary_image_properties[5:8]) camera_id = binary_image_properties[8] image_name = "" current_char = read_next_bytes(fid, 1, "c")[0] while current_char != b"\x00": # look for the ASCII 0 entry image_name += current_char.decode("utf-8") current_char = read_next_bytes(fid, 1, "c")[0] num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[0] x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D, format_char_sequence="ddq"*num_points2D) xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]) point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::WriteCamerasBinary(const std::string& path) void Reconstruction::ReadCamerasBinary(const std::string& path) """ cameras = {} with open(path_to_model_file, "rb") as fid: num_cameras = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_cameras): camera_properties = read_next_bytes( fid, num_bytes=24, format_char_sequence="iiQQ") camera_id = camera_properties[0] model_id = camera_properties[1] model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name width = camera_properties[2] height = camera_properties[3] num_params = CAMERA_MODEL_IDS[model_id].num_params params = read_next_bytes(fid, num_bytes=8*num_params, format_char_sequence="d"*num_params) cameras[camera_id] = Camera(id=camera_id, model=model_name, width=width, height=height, params=np.array(params)) assert len(cameras) == num_cameras return cameras # Path: scene/colmap_loader.py def read_points3D_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DBinary(const std::string& path) void Reconstruction::WritePoints3DBinary(const std::string& path) """ with open(path_to_model_file, "rb") as fid: num_points = read_next_bytes(fid, 8, "Q")[0] xyzs = np.empty((num_points, 3)) rgbs = np.empty((num_points, 3)) errors = np.empty((num_points, 1)) for p_id in range(num_points): binary_point_line_properties = read_next_bytes( fid, num_bytes=43, format_char_sequence="QdddBBBd") xyz = np.array(binary_point_line_properties[1:4]) rgb = np.array(binary_point_line_properties[4:7]) error = np.array(binary_point_line_properties[7]) track_length = read_next_bytes( fid, num_bytes=8, format_char_sequence="Q")[0] track_elems = read_next_bytes( fid, num_bytes=8*track_length, format_char_sequence="ii"*track_length) xyzs[p_id] = xyz rgbs[p_id] = rgb errors[p_id] = error return xyzs, rgbs, errors # Path: scene/colmap_loader.py def read_points3D_text(path): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DText(const std::string& path) void Reconstruction::WritePoints3DText(const std::string& path) """ xyzs = None rgbs = None errors = None with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() xyz = np.array(tuple(map(float, elems[1:4]))) rgb = np.array(tuple(map(int, elems[4:7]))) error = np.array(float(elems[7])) if xyzs is None: xyzs = xyz[None, ...] rgbs = rgb[None, ...] errors = error[None, ...] else: xyzs = np.append(xyzs, xyz[None, ...], axis=0) rgbs = np.append(rgbs, rgb[None, ...], axis=0) errors = np.append(errors, error[None, ...], axis=0) return xyzs, rgbs, errors # Path: utils/graphics_utils.py def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0): Rt = np.zeros((4, 4)) Rt[:3, :3] = R.transpose() Rt[:3, 3] = t Rt[3, 3] = 1.0 C2W = np.linalg.inv(Rt) cam_center = C2W[:3, 3] cam_center = (cam_center + translate) * scale C2W[:3, 3] = cam_center Rt = np.linalg.inv(C2W) return np.float32(Rt) # Path: utils/graphics_utils.py def focal2fov(focal, pixels): return 2*math.atan(pixels/(2*focal)) # Path: utils/graphics_utils.py def fov2focal(fov, pixels): return pixels / (2 * math.tan(fov / 2)) # Path: utils/general_utils.py def chamfer_dist(array1, array2): dist = torch.norm(array1[None] - array2[:, None], 2, dim=-1) return dist.min(1)[0] # Path: utils/sh_utils.py def SH2RGB(sh): return sh * C0 + 0.5 # Path: scene/gaussian_model.py class GaussianModel: def setup_functions(self): def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): def __init__(self, args): def capture(self): def restore(self, model_args, training_args): def get_scaling(self): def get_rotation(self): def get_xyz(self): def get_features(self): def get_opacity(self): def get_covariance(self, scaling_modifier=1): def oneupSHdegree(self): def create_from_pcd(self, pcd: BasicPointCloud, spatial_lr_scale: float): def training_setup(self, training_args): def update_learning_rate(self, iteration): def construct_list_of_attributes(self): def save_ply(self, path): def reset_opacity(self): def load_ply(self, path): def replace_tensor_to_optimizer(self, tensor, name): def _prune_optimizer(self, mask): def dist_prune(self): def prune_points(self, mask, iter): def cat_tensors_to_optimizer(self, tensors_dict): def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation): def proximity(self, scene_extent, N = 3): def densify_and_split(self, grads, grad_threshold, scene_extent, iter, N=2): def densify_and_clone(self, grads, grad_threshold, scene_extent): def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size, iter): def add_densification_stats(self, viewspace_point_tensor, update_filter): L = build_scaling_rotation(scaling_modifier * scaling, rotation) # Path: scene/dataset_readers.py import glob import os import sys import matplotlib.pyplot as plt import imageio import numpy as np import json import cv2 import math import torch import open3d as o3d from PIL import Image from typing import NamedTuple from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, rotmat2qvec, \ read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal from utils.general_utils import chamfer_dist from tqdm import tqdm from pathlib import Path from plyfile import PlyData, PlyElement from utils.sh_utils import SH2RGB from scene.gaussian_model import BasicPointCloud # # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # class CameraInfo(NamedTuple): uid: int R: np.array T: np.array FovY: np.array FovX: np.array image: np.array image_path: str image_name: str width: int height: int mask: np.array bounds: np.array class SceneInfo(NamedTuple): point_cloud: BasicPointCloud train_cameras: list test_cameras: list nerf_normalization: dict ply_path: str def getNerfppNorm(cam_info): def get_center_and_diag(cam_centers): cam_centers = np.hstack(cam_centers) avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True) center = avg_cam_center dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True) diagonal = np.max(dist) return center.flatten(), diagonal cam_centers = [] for cam in cam_info: W2C = getWorld2View2(cam.R, cam.T) C2W = np.linalg.inv(W2C) cam_centers.append(C2W[:3, 3:4]) center, diagonal = get_center_and_diag(cam_centers) radius = diagonal * 1.1 translate = -center return {"translate": translate, "radius": radius} def readColmapCameras2(cam_extrinsics, cam_intrinsics, images_folder): cam_infos = [] for idx, key in enumerate(cam_extrinsics): sys.stdout.write('\r') # the exact output you're looking for: sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics))) sys.stdout.flush() extr = cam_extrinsics[key] intr = cam_intrinsics[extr.camera_id] height = intr.height width = intr.width uid = intr.id R = np.transpose(qvec2rotmat(extr.qvec)) T = np.array(extr.tvec) if intr.model=="SIMPLE_PINHOLE": focal_length_x = intr.params[0] FovY = focal2fov(focal_length_x, height) FovX = focal2fov(focal_length_x, width) elif intr.model=="PINHOLE": focal_length_x = intr.params[0] focal_length_y = intr.params[1] FovY = focal2fov(focal_length_y, height) FovX = focal2fov(focal_length_x, width) else: assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" image_path = os.path.join(images_folder, os.path.basename(extr.name)) image_name = os.path.basename(image_path).split(".")[0] image = Image.open(image_path) cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image, image_path=image_path, image_name=image_name, width=width, height=height) cam_infos.append(cam_info) break def normalize(x):
return x / np.linalg.norm(x)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: JiahuiLei/GART # Path: lib_gart/smplx/smplx/lbs.py def lbs( betas: Tensor, pose: Tensor, v_template: Tensor, shapedirs: Tensor, posedirs: Tensor, J_regressor: Tensor, parents: Tensor, lbs_weights: Tensor, pose2rot: bool = True, return_T: bool = False, # ! JH 2023.9 modified here return_posed_v: bool = False, # ! JH 2023.9 modified here return_A = False, # ! JH 2023.10 modified here return_J = False, # ! JH 2023.10 modified here ) -> Tuple[Tensor, Tensor]: ''' Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model ''' batch_size = max(betas.shape[0], pose.shape[0]) device, dtype = betas.device, betas.dtype # Add shape contribution v_shaped = v_template + blend_shapes(betas, shapedirs) # Get the joints # NxJx3 array J = vertices2joints(J_regressor, v_shaped) # 3. Add pose blend shapes # N x J x 3 x 3 ident = torch.eye(3, dtype=dtype, device=device) if pose2rot: rot_mats = batch_rodrigues(pose.view(-1, 3)).view( [batch_size, -1, 3, 3]) pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) # (N x P) x (P, V * 3) -> N x V x 3 pose_offsets = torch.matmul( pose_feature, posedirs).view(batch_size, -1, 3) else: pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident rot_mats = pose.view(batch_size, -1, 3, 3) pose_offsets = torch.matmul(pose_feature.view(batch_size, -1), posedirs).view(batch_size, -1, 3) v_posed = pose_offsets + v_shaped # 4. Get the global joint location J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype) # 5. Do skinning: # W is N x V x (J + 1) W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) # (N x V x (J + 1)) x (N x (J + 1) x 16) num_joints = J_regressor.shape[0] T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ .view(batch_size, -1, 4, 4) homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], dtype=dtype, device=device) v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) verts = v_homo[:, :, :3, 0] ret_list = [verts, J_transformed] if return_T: ret_list.append(T) if return_posed_v: ret_list.append(v_posed) if return_A: ret_list.append(A) if return_J: ret_list.append(J) return ret_list # Path: lib_gart/smplx/smplx/lbs.py def vertices2landmarks( vertices: Tensor, faces: Tensor, lmk_faces_idx: Tensor, lmk_bary_coords: Tensor ) -> Tensor: ''' Calculates landmarks by barycentric interpolation Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices faces: torch.tensor Fx3, dtype = torch.long The faces of the mesh lmk_faces_idx: torch.tensor L, dtype = torch.long The tensor with the indices of the faces used to calculate the landmarks. lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 The tensor of barycentric coordinates that are used to interpolate the landmarks Returns ------- landmarks: torch.tensor BxLx3, dtype = torch.float32 The coordinates of the landmarks for each mesh in the batch ''' # Extract the indices of the vertices for each face # BxLx3 batch_size, num_verts = vertices.shape[:2] device = vertices.device lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1).to(torch.long)).view( batch_size, -1, 3) #The '.to(torch.long)'. # added to make the trace work in c++, # otherwise you get a runtime error in c++: # 'index_select(): Expected dtype int32 or int64 for index' lmk_faces += torch.arange( batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts lmk_vertices = vertices.view(-1, 3)[lmk_faces].view( batch_size, -1, 3, 3) landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords]) return landmarks # Path: lib_gart/smplx/smplx/lbs.py def find_dynamic_lmk_idx_and_bcoords( vertices: Tensor, pose: Tensor, dynamic_lmk_faces_idx: Tensor, dynamic_lmk_b_coords: Tensor, neck_kin_chain: List[int], pose2rot: bool = True, ) -> Tuple[Tensor, Tensor]: ''' Compute the faces, barycentric coordinates for the dynamic landmarks To do so, we first compute the rotation of the neck around the y-axis and then use a pre-computed look-up table to find the faces and the barycentric coordinates that will be used. Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de) for providing the original TensorFlow implementation and for the LUT. Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices pose: torch.tensor Bx(Jx3), dtype = torch.float32 The current pose of the body model dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long The look-up table from neck rotation to faces dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 The look-up table from neck rotation to barycentric coordinates neck_kin_chain: list A python list that contains the indices of the joints that form the kinematic chain of the neck. dtype: torch.dtype, optional Returns ------- dyn_lmk_faces_idx: torch.tensor, dtype = torch.long A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. ''' dtype = vertices.dtype batch_size = vertices.shape[0] if pose2rot: aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1, neck_kin_chain) rot_mats = batch_rodrigues( aa_pose.view(-1, 3)).view(batch_size, -1, 3, 3) else: rot_mats = torch.index_select( pose.view(batch_size, -1, 3, 3), 1, neck_kin_chain) rel_rot_mat = torch.eye( 3, device=vertices.device, dtype=dtype).unsqueeze_(dim=0).repeat( batch_size, 1, 1) for idx in range(len(neck_kin_chain)): rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat) y_rot_angle = torch.round( torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi, max=39)).to(dtype=torch.long) neg_mask = y_rot_angle.lt(0).to(dtype=torch.long) mask = y_rot_angle.lt(-39).to(dtype=torch.long) neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle) y_rot_angle = (neg_mask * neg_vals + (1 - neg_mask) * y_rot_angle) dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx, 0, y_rot_angle) dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords, 0, y_rot_angle) return dyn_lmk_faces_idx, dyn_lmk_b_coords # Path: lib_gart/smplx/smplx/lbs.py def blend_shapes(betas: Tensor, shape_disps: Tensor) -> Tensor: ''' Calculates the per vertex displacement due to the blend shapes Parameters ---------- betas : torch.tensor Bx(num_betas) Blend shape coefficients shape_disps: torch.tensor Vx3x(num_betas) Blend shapes Returns ------- torch.tensor BxVx3 The per-vertex displacement due to shape deformation ''' # Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l] # i.e. Multiply each shape displacement by its corresponding beta and # then sum them. blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps]) return blend_shape # Path: lib_gart/smplx/smplx/vertex_ids.py # Path: lib_gart/smplx/smplx/utils.py class ModelOutput: class SMPLOutput(ModelOutput): class SMPLHOutput(SMPLOutput): class SMPLXOutput(SMPLHOutput): class MANOOutput(ModelOutput): class FLAMEOutput(ModelOutput): class Struct(object): def __getitem__(self, key): def get(self, key, default=None): def __iter__(self): def keys(self): def values(self): def items(self): def find_joint_kin_chain(joint_id, kinematic_tree): def to_tensor( array: Union[Array, Tensor], dtype=torch.float32 ) -> Tensor: def __init__(self, **kwargs): def to_np(array, dtype=np.float32): def rot_mat_to_euler(rot_mats): T: Optional[Tensor] = None A: Optional[Tensor] = None J: Optional[Tensor] = None # Path: lib_gart/smplx/smplx/vertex_joint_selector.py class VertexJointSelector(nn.Module): def __init__(self, vertex_ids=None, use_hands=True, use_feet_keypoints=True, **kwargs): super(VertexJointSelector, self).__init__() extra_joints_idxs = [] face_keyp_idxs = np.array([ vertex_ids['nose'], vertex_ids['reye'], vertex_ids['leye'], vertex_ids['rear'], vertex_ids['lear']], dtype=np.int64) extra_joints_idxs = np.concatenate([extra_joints_idxs, face_keyp_idxs]) if use_feet_keypoints: feet_keyp_idxs = np.array([vertex_ids['LBigToe'], vertex_ids['LSmallToe'], vertex_ids['LHeel'], vertex_ids['RBigToe'], vertex_ids['RSmallToe'], vertex_ids['RHeel']], dtype=np.int32) extra_joints_idxs = np.concatenate( [extra_joints_idxs, feet_keyp_idxs]) if use_hands: self.tip_names = ['thumb', 'index', 'middle', 'ring', 'pinky'] tips_idxs = [] for hand_id in ['l', 'r']: for tip_name in self.tip_names: tips_idxs.append(vertex_ids[hand_id + tip_name]) extra_joints_idxs = np.concatenate( [extra_joints_idxs, tips_idxs]) self.register_buffer('extra_joints_idxs', to_tensor(extra_joints_idxs, dtype=torch.long)) def forward(self, vertices, joints): extra_joints = torch.index_select(vertices, 1, self.extra_joints_idxs.to(torch.long)) #The '.to(torch.long)'. # added to make the trace work in c++, # otherwise you get a runtime error in c++: # 'index_select(): Expected dtype int32 or int64 for index' joints = torch.cat([joints, extra_joints], dim=1) return joints # Path: lib_gart/smplx/smplx/body_models.py from typing import Optional, Dict, Union from .lbs import lbs, vertices2landmarks, find_dynamic_lmk_idx_and_bcoords, blend_shapes from .vertex_ids import vertex_ids as VERTEX_IDS from .utils import ( Struct, to_np, to_tensor, Tensor, Array, SMPLOutput, SMPLHOutput, SMPLXOutput, MANOOutput, FLAMEOutput, find_joint_kin_chain, ) from .vertex_joint_selector import VertexJointSelector from collections import namedtuple import os import os.path as osp import pickle import numpy as np import torch import torch.nn as nn # -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de TensorOutput = namedtuple( "TensorOutput", [ "vertices", "joints", "betas", "expression", "global_orient", "body_pose", "left_hand_pose", "right_hand_pose", "jaw_pose", "transl", "full_pose", ], ) class SMPL(nn.Module): NUM_JOINTS = 23 NUM_BODY_JOINTS = 23 SHAPE_SPACE_DIM = 300 def __init__( self, model_path: str, kid_template_path: str = "", data_struct: Optional[Struct] = None, create_betas: bool = True, betas: Optional[Tensor] = None, num_betas: int = 10, create_global_orient: bool = True, global_orient: Optional[Tensor] = None, create_body_pose: bool = True, body_pose: Optional[Tensor] = None, create_transl: bool = True, transl: Optional[Tensor] = None, dtype=torch.float32,
batch_size: int = 1,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: GongyeLiu/StyleCrafter # Path: lvdm/modules/networks/ae_modules.py class Encoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", **ignore_kwargs): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.in_ch_mult = in_ch_mult self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions-1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, 2*z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): # timestep embedding temb = None # print(f'encoder-input={x.shape}') # downsampling hs = [self.conv_in(x)] # print(f'encoder-conv in feat={hs[0].shape}') for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) # print(f'encoder-down feat={h.shape}') if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions-1: # print(f'encoder-downsample (input)={hs[-1].shape}') hs.append(self.down[i_level].downsample(hs[-1])) # print(f'encoder-downsample (output)={hs[-1].shape}') # middle h = hs[-1] h = self.mid.block_1(h, temb) # print(f'encoder-mid1 feat={h.shape}') h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # print(f'encoder-mid2 feat={h.shape}') # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) # print(f'end feat={h.shape}') return h # Path: lvdm/modules/networks/ae_modules.py class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, attn_type="vanilla", **ignorekwargs): super().__init__() if use_linear_attn: attn_type = "linear" self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end self.tanh_out = tanh_out # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,)+tuple(ch_mult) block_in = ch*ch_mult[self.num_resolutions-1] curr_res = resolution // 2**(self.num_resolutions-1) self.z_shape = (1,z_channels,curr_res,curr_res) print("AE working on z of shape {} = {} dimensions.".format( self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(make_attn(block_in, attn_type=attn_type)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # print(f'decoder-input={z.shape}') # timestep embedding temb = None # z to block_in h = self.conv_in(z) # print(f'decoder-conv in feat={h.shape}') # middle h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # print(f'decoder-mid feat={h.shape}') # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) # print(f'decoder-up feat={h.shape}') if i_level != 0: h = self.up[i_level].upsample(h) # print(f'decoder-upsample feat={h.shape}') # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) # print(f'decoder-conv_out feat={h.shape}') if self.tanh_out: h = torch.tanh(h) return h # Path: lvdm/distributions.py class DiagonalGaussianDistribution(object): def __init__(self, parameters, deterministic=False): self.parameters = parameters self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) self.logvar = torch.clamp(self.logvar, -30.0, 20.0) self.deterministic = deterministic self.std = torch.exp(0.5 * self.logvar) self.var = torch.exp(self.logvar) if self.deterministic: self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device) def sample(self, noise=None): if noise is None: noise = torch.randn(self.mean.shape) x = self.mean + self.std * noise.to(device=self.parameters.device) return x def kl(self, other=None): if self.deterministic: return torch.Tensor([0.]) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, dim=[1, 2, 3]) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, dim=[1, 2, 3]) def nll(self, sample, dims=[1,2,3]): if self.deterministic: return torch.Tensor([0.]) logtwopi = np.log(2.0 * np.pi) return 0.5 * torch.sum( logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, dim=dims) def mode(self): return self.mean # Path: utils/utils.py def instantiate_from_config(config): if not "target" in config: if config == '__is_first_stage__': return None elif config == "__is_unconditional__": return None raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) # Path: lvdm/models/autoencoder.py import os import torch import numpy as np import torch.nn.functional as F import pytorch_lightning as pl from contextlib import contextmanager from einops import rearrange from lvdm.modules.networks.ae_modules import Encoder, Decoder from lvdm.distributions import DiagonalGaussianDistribution from utils.utils import instantiate_from_config def encode(self, x, **kwargs): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z, **kwargs): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior def get_input(self, batch, k): x = batch[k] if x.dim() == 5 and self.input_dim == 4: b,c,t,h,w = x.shape self.b = b self.t = t x = rearrange(x, 'b c t h w -> (b t) c h w') return x def training_step(self, batch, batch_idx, optimizer_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) if optimizer_idx == 0: # train encoder+decoder+logvar aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) return aeloss if optimizer_idx == 1: # train the discriminator discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step, last_layer=self.get_last_layer(), split="train") self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) return discloss def validation_step(self, batch, batch_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, last_layer=self.get_last_layer(), split="val") discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, last_layer=self.get_last_layer(), split="val") self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) self.log_dict(log_dict_ae) self.log_dict(log_dict_disc) return self.log_dict def configure_optimizers(self): lr = self.learning_rate opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ list(self.decoder.parameters())+ list(self.quant_conv.parameters())+ list(self.post_quant_conv.parameters()), lr=lr, betas=(0.5, 0.9)) opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)) return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight @torch.no_grad() def log_images(self, batch, only_inputs=False, **kwargs): log = dict() x = self.get_input(batch, self.image_key) x = x.to(self.device) if not only_inputs: xrec, posterior = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec.shape[1] > 3 x = self.to_rgb(x) xrec = self.to_rgb(xrec) log["samples"] = self.decode(torch.randn_like(posterior.sample())) log["reconstructions"] = xrec log["inputs"] = x return log def to_rgb(self, x): assert self.image_key == "segmentation" if not hasattr(self, "colorize"): self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) x = F.conv2d(x, weight=self.colorize) x = 2.*(x-x.min())/(x.max()-x.min()) - 1. return x class IdentityFirstStage(torch.nn.Module): def __init__(self, *args, vq_interface=False, **kwargs): self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff super().__init__() def encode(self, x, *args, **kwargs): return x def decode(self, x, *args, **kwargs): return x def quantize(self, x, *args, **kwargs): if self.vq_interface: return x, None, [None, None, None]
return x
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: skhu101/GauHuman # Path: smplx/lbs.py def lbs( betas: Tensor, pose: Tensor, v_template: Tensor, shapedirs: Tensor, posedirs: Tensor, J_regressor: Tensor, parents: Tensor, lbs_weights: Tensor, pose2rot: bool = True, ) -> Tuple[Tensor, Tensor]: ''' Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model ''' batch_size = max(betas.shape[0], pose.shape[0]) device, dtype = betas.device, betas.dtype # Add shape contribution v_shaped = v_template + blend_shapes(betas, shapedirs) # Get the joints # NxJx3 array J = vertices2joints(J_regressor, v_shaped) # 3. Add pose blend shapes # N x J x 3 x 3 ident = torch.eye(3, dtype=dtype, device=device) if pose2rot: rot_mats = batch_rodrigues(pose.view(-1, 3)).view( [batch_size, -1, 3, 3]) pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) # (N x P) x (P, V * 3) -> N x V x 3 pose_offsets = torch.matmul( pose_feature, posedirs).view(batch_size, -1, 3) else: pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident rot_mats = pose.view(batch_size, -1, 3, 3) pose_offsets = torch.matmul(pose_feature.view(batch_size, -1), posedirs).view(batch_size, -1, 3) v_posed = pose_offsets + v_shaped # 4. Get the global joint location J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype) # 5. Do skinning: # W is N x V x (J + 1) W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) # (N x V x (J + 1)) x (N x (J + 1) x 16) num_joints = J_regressor.shape[0] T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ .view(batch_size, -1, 4, 4) homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], dtype=dtype, device=device) v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) verts = v_homo[:, :, :3, 0] return verts, J_transformed, A, T # Path: smplx/lbs.py def vertices2landmarks( vertices: Tensor, faces: Tensor, lmk_faces_idx: Tensor, lmk_bary_coords: Tensor ) -> Tensor: ''' Calculates landmarks by barycentric interpolation Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices faces: torch.tensor Fx3, dtype = torch.long The faces of the mesh lmk_faces_idx: torch.tensor L, dtype = torch.long The tensor with the indices of the faces used to calculate the landmarks. lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 The tensor of barycentric coordinates that are used to interpolate the landmarks Returns ------- landmarks: torch.tensor BxLx3, dtype = torch.float32 The coordinates of the landmarks for each mesh in the batch ''' # Extract the indices of the vertices for each face # BxLx3 batch_size, num_verts = vertices.shape[:2] device = vertices.device lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1).to(torch.long)).view( batch_size, -1, 3) #The '.to(torch.long)'. # added to make the trace work in c++, # otherwise you get a runtime error in c++: # 'index_select(): Expected dtype int32 or int64 for index' lmk_faces += torch.arange( batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts lmk_vertices = vertices.view(-1, 3)[lmk_faces].view( batch_size, -1, 3, 3) landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords]) return landmarks # Path: smplx/lbs.py def find_dynamic_lmk_idx_and_bcoords( vertices: Tensor, pose: Tensor, dynamic_lmk_faces_idx: Tensor, dynamic_lmk_b_coords: Tensor, neck_kin_chain: List[int], pose2rot: bool = True, ) -> Tuple[Tensor, Tensor]: ''' Compute the faces, barycentric coordinates for the dynamic landmarks To do so, we first compute the rotation of the neck around the y-axis and then use a pre-computed look-up table to find the faces and the barycentric coordinates that will be used. Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de) for providing the original TensorFlow implementation and for the LUT. Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices pose: torch.tensor Bx(Jx3), dtype = torch.float32 The current pose of the body model dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long The look-up table from neck rotation to faces dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 The look-up table from neck rotation to barycentric coordinates neck_kin_chain: list A python list that contains the indices of the joints that form the kinematic chain of the neck. dtype: torch.dtype, optional Returns ------- dyn_lmk_faces_idx: torch.tensor, dtype = torch.long A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. ''' dtype = vertices.dtype batch_size = vertices.shape[0] if pose2rot: aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1, neck_kin_chain) rot_mats = batch_rodrigues( aa_pose.view(-1, 3)).view(batch_size, -1, 3, 3) else: rot_mats = torch.index_select( pose.view(batch_size, -1, 3, 3), 1, neck_kin_chain) rel_rot_mat = torch.eye( 3, device=vertices.device, dtype=dtype).unsqueeze_(dim=0).repeat( batch_size, 1, 1) for idx in range(len(neck_kin_chain)): rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat) y_rot_angle = torch.round( torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi, max=39)).to(dtype=torch.long) neg_mask = y_rot_angle.lt(0).to(dtype=torch.long) mask = y_rot_angle.lt(-39).to(dtype=torch.long) neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle) y_rot_angle = (neg_mask * neg_vals + (1 - neg_mask) * y_rot_angle) dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx, 0, y_rot_angle) dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords, 0, y_rot_angle) return dyn_lmk_faces_idx, dyn_lmk_b_coords # Path: smplx/lbs.py def blend_shapes(betas: Tensor, shape_disps: Tensor) -> Tensor: ''' Calculates the per vertex displacement due to the blend shapes Parameters ---------- betas : torch.tensor Bx(num_betas) Blend shape coefficients shape_disps: torch.tensor Vx3x(num_betas) Blend shapes Returns ------- torch.tensor BxVx3 The per-vertex displacement due to shape deformation ''' # Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l] # i.e. Multiply each shape displacement by its corresponding beta and # then sum them. blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps]) return blend_shape # Path: smplx/vertex_ids.py # Path: smplx/utils.py class ModelOutput: class SMPLOutput(ModelOutput): class SMPLHOutput(SMPLOutput): class SMPLXOutput(SMPLHOutput): class MANOOutput(ModelOutput): class FLAMEOutput(ModelOutput): class Struct(object): def __getitem__(self, key): def get(self, key, default=None): def __iter__(self): def keys(self): def values(self): def items(self): def find_joint_kin_chain(joint_id, kinematic_tree): def to_tensor( array: Union[Array, Tensor], dtype=torch.float32 ) -> Tensor: def __init__(self, **kwargs): def to_np(array, dtype=np.float32): def rot_mat_to_euler(rot_mats): # Path: smplx/vertex_joint_selector.py class VertexJointSelector(nn.Module): def __init__(self, vertex_ids=None, use_hands=True, use_feet_keypoints=True, **kwargs): super(VertexJointSelector, self).__init__() extra_joints_idxs = [] face_keyp_idxs = np.array([ vertex_ids['nose'], vertex_ids['reye'], vertex_ids['leye'], vertex_ids['rear'], vertex_ids['lear']], dtype=np.int64) extra_joints_idxs = np.concatenate([extra_joints_idxs, face_keyp_idxs]) if use_feet_keypoints: feet_keyp_idxs = np.array([vertex_ids['LBigToe'], vertex_ids['LSmallToe'], vertex_ids['LHeel'], vertex_ids['RBigToe'], vertex_ids['RSmallToe'], vertex_ids['RHeel']], dtype=np.int32) extra_joints_idxs = np.concatenate( [extra_joints_idxs, feet_keyp_idxs]) if use_hands: self.tip_names = ['thumb', 'index', 'middle', 'ring', 'pinky'] tips_idxs = [] for hand_id in ['l', 'r']: for tip_name in self.tip_names: tips_idxs.append(vertex_ids[hand_id + tip_name]) extra_joints_idxs = np.concatenate( [extra_joints_idxs, tips_idxs]) self.register_buffer('extra_joints_idxs', to_tensor(extra_joints_idxs, dtype=torch.long)) def forward(self, vertices, joints): extra_joints = torch.index_select(vertices, 1, self.extra_joints_idxs.to(torch.long)) #The '.to(torch.long)'. # added to make the trace work in c++, # otherwise you get a runtime error in c++: # 'index_select(): Expected dtype int32 or int64 for index' joints = torch.cat([joints, extra_joints], dim=1) return joints # Path: smplx/body_models.py from typing import Optional, Dict, Union from .lbs import ( lbs, vertices2landmarks, find_dynamic_lmk_idx_and_bcoords, blend_shapes) from .vertex_ids import vertex_ids as VERTEX_IDS from .utils import ( Struct, to_np, to_tensor, Tensor, Array, SMPLOutput, SMPLHOutput, SMPLXOutput, MANOOutput, FLAMEOutput, find_joint_kin_chain) from .vertex_joint_selector import VertexJointSelector from collections import namedtuple import os import os.path as osp import pickle import numpy as np import torch import torch.nn as nn # -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de TensorOutput = namedtuple('TensorOutput', ['vertices', 'joints', 'betas', 'expression', 'global_orient', 'body_pose', 'left_hand_pose', 'right_hand_pose', 'jaw_pose', 'v_shaped', 'full_pose', 'A', 'T', 'f']) class SMPL(nn.Module): NUM_JOINTS = 23 NUM_BODY_JOINTS = 23 SHAPE_SPACE_DIM = 300 def __init__( self, model_path: str, kid_template_path: str = '', data_struct: Optional[Struct] = None, create_betas: bool = True, betas: Optional[Tensor] = None, num_betas: int = 10, create_global_orient: bool = True, global_orient: Optional[Tensor] = None, create_body_pose: bool = True, body_pose: Optional[Tensor] = None, create_transl: bool = True, transl: Optional[Tensor] = None, dtype=torch.float32, batch_size: int = 1, joint_mapper=None, gender: str = 'neutral',
age: str = 'adult',
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: emdgroup/baybe # Path: baybe/exceptions.py class NotEnoughPointsLeftError(Exception): """ More recommendations are requested than there are viable parameter configurations left in the search space. """ # Path: baybe/searchspace/core.py class SearchSpace(SerialMixin): """Class for managing the overall search space. The search space might be purely discrete, purely continuous, or hybrid. Note that created objects related to the computational representations of parameters (e.g., parameter bounds, computational dataframes, etc.) may use a different parameter order than what is specified through the constructor: While the passed parameter list can contain parameters in arbitrary order, the aforementioned objects (by convention) list discrete parameters first, followed by continuous ones. """ discrete: SubspaceDiscrete = field(factory=SubspaceDiscrete.empty) """The (potentially empty) discrete subspace of the overall search space.""" continuous: SubspaceContinuous = field(factory=SubspaceContinuous.empty) """The (potentially empty) continuous subspace of the overall search space.""" def __attrs_post_init__(self): """Perform validation and record telemetry values.""" validate_parameters(self.parameters) validate_constraints(self.constraints, self.parameters) # Telemetry telemetry_record_value(TELEM_LABELS["COUNT_SEARCHSPACE_CREATION"], 1) telemetry_record_value(TELEM_LABELS["NUM_PARAMETERS"], len(self.parameters)) telemetry_record_value( TELEM_LABELS["NUM_CONSTRAINTS"], len(self.constraints) if self.constraints else 0, ) @classmethod def from_product( cls, parameters: List[Parameter], constraints: Optional[List[Constraint]] = None, empty_encoding: bool = False, ) -> SearchSpace: """Create a search space from a cartesian product. In the search space, optional subsequent constraints are applied. That is, the discrete subspace becomes the (filtered) cartesian product containing all discrete parameter combinations while, analogously, the continuous subspace represents the (filtered) cartesian product of all continuous parameters. Args: parameters: The parameters spanning the search space. constraints: An optional set of constraints restricting the valid parameter space. empty_encoding: If ``True``, uses an "empty" encoding for all parameters. This is useful, for instance, in combination with random search strategies that do not read the actual parameter values, since it avoids the (potentially costly) transformation of the parameter values to their computational representation. Returns: The constructed search space. """ # IMPROVE: The arguments get pre-validated here to avoid the potentially costly # creation of the subspaces. Perhaps there is an elegant way to bypass the # default validation in the initializer (which is required for other # ways of object creation) in this particular case. validate_parameters(parameters) if constraints: validate_constraints(constraints, parameters) else: constraints = [] discrete: SubspaceDiscrete = SubspaceDiscrete.from_product( parameters=[ cast(DiscreteParameter, p) for p in parameters if p.is_discrete ], constraints=[ cast(DiscreteConstraint, c) for c in constraints if c.is_discrete ], empty_encoding=empty_encoding, ) continuous: SubspaceContinuous = SubspaceContinuous( parameters=[ cast(NumericalContinuousParameter, p) for p in parameters if not p.is_discrete ], constraints_lin_eq=[ cast(ContinuousLinearEqualityConstraint, c) for c in constraints if isinstance(c, ContinuousLinearEqualityConstraint) ], constraints_lin_ineq=[ cast(ContinuousLinearInequalityConstraint, c) for c in constraints if isinstance(c, ContinuousLinearInequalityConstraint) ], ) return SearchSpace(discrete=discrete, continuous=continuous) @property def parameters(self) -> List[Parameter]: """Return the list of parameters of the search space.""" return self.discrete.parameters + self.continuous.parameters @property def constraints(self) -> List[Constraint]: """Return the constraints of the search space.""" return ( self.discrete.constraints + self.continuous.constraints_lin_eq + self.continuous.constraints_lin_ineq ) @property def type(self) -> SearchSpaceType: """Return the type of the search space.""" if self.discrete.is_empty and not self.continuous.is_empty: return SearchSpaceType.CONTINUOUS if not self.discrete.is_empty and self.continuous.is_empty: return SearchSpaceType.DISCRETE if not self.discrete.is_empty and not self.continuous.is_empty: return SearchSpaceType.HYBRID raise RuntimeError("This line should be impossible to reach.") @property def contains_mordred(self) -> bool: """Indicates if any of the discrete parameters uses ``MORDRED`` encoding.""" return any( p.encoding is SubstanceEncoding.MORDRED for p in self.discrete.parameters ) @property def contains_rdkit(self) -> bool: """Indicates if any of the discrete parameters uses ``RDKIT`` encoding.""" return any( p.encoding is SubstanceEncoding.RDKIT for p in self.discrete.parameters ) @property def param_bounds_comp(self) -> torch.Tensor: """Return bounds as tensor.""" return torch.hstack( [self.discrete.param_bounds_comp, self.continuous.param_bounds_comp] ) @property def task_idx(self) -> Optional[int]: """The column index of the task parameter in computational representation.""" try: # TODO [16932]: Redesign metadata handling task_param = next( p for p in self.parameters if isinstance(p, TaskParameter) ) except StopIteration: return None # TODO[11611]: The current approach has two limitations: # 1. It matches by column name and thus assumes that the parameter name # is used as the column name. # 2. It relies on the current implementation detail that discrete parameters # appear first in the computational dataframe. # --> Fix this when refactoring the data return self.discrete.comp_rep.columns.get_loc(task_param.name) @property def n_tasks(self) -> int: """The number of tasks encoded in the search space.""" # TODO [16932]: This approach only works for a single task parameter. For # multiple task parameters, we need to align what the output should even # represent (e.g. number of combinatorial task combinations, number of # tasks per task parameter, etc). try: task_param = next( p for p in self.parameters if isinstance(p, TaskParameter) ) return len(task_param.values) # When there are no task parameters, we effectively have a single task except StopIteration: return 1 def transform( self, data: pd.DataFrame, ) -> pd.DataFrame: """Transform data from experimental to computational representation. This function can e.g. be used to transform data obtained from measurements. Continuous parameters are not transformed but included. Args: data: The data to be transformed. Must contain all specified parameters, can contain more columns. Returns: A dataframe with the parameters in computational representation. """ # Transform subspaces separately df_discrete = self.discrete.transform(data) df_continuous = self.continuous.transform(data) # Combine Subspaces comp_rep = pd.concat([df_discrete, df_continuous], axis=1) return comp_rep # Path: baybe/searchspace/core.py class SearchSpaceType(Enum): """Enum class for different types of search spaces and respective compatibility.""" DISCRETE = "DISCRETE" """Flag for discrete search spaces resp. compatibility with discrete search spaces.""" CONTINUOUS = "CONTINUOUS" """Flag for continuous search spaces resp. compatibility with continuous search spaces.""" EITHER = "EITHER" """Flag compatibility with either discrete or continuous, but not hybrid search spaces.""" HYBRID = "HYBRID" """Flag for hybrid search spaces resp. compatibility with hybrid search spaces.""" # Path: baybe/utils/serialization.py _T = TypeVar("_T") class SerialMixin: def to_dict(self) -> dict: def from_dict(cls: Type[_T], dictionary: dict) -> _T: def to_json(self) -> str: def from_json(cls: Type[_T], string: str) -> _T: def unstructure_base(base: Any, overrides: Optional[dict] = None) -> dict: def get_base_structure_hook( base: Type[_T], overrides: Optional[dict] = None, ) -> Callable[[dict, Type[_T]], _T]: def structure_base(val: dict, _: Type[_T]) -> _T: def _structure_dataframe_hook(string: str, _) -> pd.DataFrame: def _unstructure_dataframe_hook(df: pd.DataFrame) -> str: def block_serialization_hook(obj: Any) -> None: # noqa: DOC101, DOC103 def block_deserialization_hook(_: Any, cls: type) -> None: # noqa: DOC101, DOC103 # Path: baybe/recommenders/base.py from abc import ABC, abstractmethod from typing import Callable, ClassVar, Optional from attrs import define from baybe.exceptions import NotEnoughPointsLeftError from baybe.searchspace import SearchSpace, SearchSpaceType from baybe.utils.serialization import ( converter, get_base_structure_hook, unstructure_base, ) import pandas as pd Args: searchspace: The search space in which experiments are being conducted. batch_quantity: The number of points that should be recommended. train_x: The training data used to train the model. train_y: The training labels used to train the model. allow_repeated_recommendations: Allow to make recommendations that were already recommended earlier. This only has an influence in discrete search spaces. allow_recommending_already_measured: Allow to output recommendations that were measured previously. This only has an influence in discrete search spaces. Returns: A DataFrame containing the recommendations as individual rows. """ @define class NonPredictiveRecommender(Recommender, ABC): """Abstract base class for recommenders that are non-predictive.""" def recommend( # noqa: D102 self, searchspace: SearchSpace, batch_quantity: int = 1, train_x: Optional[pd.DataFrame] = None, train_y: Optional[pd.DataFrame] = None, allow_repeated_recommendations: bool = False, allow_recommending_already_measured: bool = True, ) -> pd.DataFrame: # See base class. if searchspace.type == SearchSpaceType.DISCRETE: return _select_candidates_and_recommend( searchspace, self._recommend_discrete, batch_quantity, allow_repeated_recommendations, allow_recommending_already_measured, ) if searchspace.type == SearchSpaceType.CONTINUOUS: return self._recommend_continuous( searchspace=searchspace, batch_quantity=batch_quantity ) return self._recommend_hybrid( searchspace=searchspace, batch_quantity=batch_quantity ) def _recommend_discrete( self, searchspace: SearchSpace, candidates_comp: pd.DataFrame, batch_quantity: int, ) -> pd.Index: """Calculate recommendations in a discrete search space. Args: searchspace: The discrete search space in which the recommendations should be made. candidates_comp: The computational representation of all possible candidates batch_quantity: The size of the calculated batch. Raises: NotImplementedError: If the function is not implemented by the child class. Returns: The indices of the recommended points with respect to the computational representation. """ try: return self._recommend_hybrid( searchspace=searchspace, batch_quantity=batch_quantity, candidates_comp=candidates_comp, ).index except NotImplementedError as exc: raise NotImplementedError( """Hybrid recommender could not be used as fallback when trying to optimize a discrete space. This is probably due to your search space and recommender not being compatible. Please verify that your search space is purely discrete and that you are either using a discrete or hybrid recommender.""" ) from exc def _recommend_continuous( self, searchspace: SearchSpace, batch_quantity: int ) -> pd.DataFrame: """Calculate recommendations in a continuous search space. Args: searchspace: The continuous search space in which the recommendations should be made. batch_quantity: The size of the calculated batch. Raises: NotImplementedError: If the function is not implemented by the child class. Returns: The recommended points. """ # If this method is not implemented by a children class, try to call # _recommend_hybrid instead. try: return self._recommend_hybrid( searchspace=searchspace, batch_quantity=batch_quantity ) except NotImplementedError as exc: raise NotImplementedError( """Hybrid recommender could not be used as fallback when trying to optimize a continuous space. This is probably due to your search space and recommender not being compatible. Please verify that your search space is purely continuous and that you are either using a continuous or hybrid recommender.""" ) from exc def _recommend_hybrid( self, searchspace: SearchSpace, batch_quantity: int, candidates_comp: Optional[pd.DataFrame] = None,
) -> pd.DataFrame:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: NJU-3DV/Relightable3DGaussian # Path: scene/colmap_loader.py def read_extrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ images = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() image_id = int(elems[0]) qvec = np.array(tuple(map(float, elems[1:5]))) tvec = np.array(tuple(map(float, elems[5:8]))) camera_id = int(elems[8]) image_name = elems[9] elems = fid.readline().split() xys = np.column_stack([tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]) point3D_ids = np.array(tuple(map(int, elems[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ cameras = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() camera_id = int(elems[0]) model = elems[1] assert model == "PINHOLE", "While the loader support other types, the rest of the code assumes PINHOLE" width = int(elems[2]) height = int(elems[3]) params = np.array(tuple(map(float, elems[4:]))) cameras[camera_id] = Camera(id=camera_id, model=model, width=width, height=height, params=params) return cameras # Path: scene/colmap_loader.py def qvec2rotmat(qvec): return np.array([ [1 - 2 * qvec[2] ** 2 - 2 * qvec[3] ** 2, 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3], 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]], [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3], 1 - 2 * qvec[1] ** 2 - 2 * qvec[3] ** 2, 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]], [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2], 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1], 1 - 2 * qvec[1] ** 2 - 2 * qvec[2] ** 2]]) # Path: scene/colmap_loader.py def read_extrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadImagesBinary(const std::string& path) void Reconstruction::WriteImagesBinary(const std::string& path) """ images = {} with open(path_to_model_file, "rb") as fid: num_reg_images = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_reg_images): binary_image_properties = read_next_bytes( fid, num_bytes=64, format_char_sequence="idddddddi") image_id = binary_image_properties[0] qvec = np.array(binary_image_properties[1:5]) tvec = np.array(binary_image_properties[5:8]) camera_id = binary_image_properties[8] image_name = "" current_char = read_next_bytes(fid, 1, "c")[0] while current_char != b"\x00": # look for the ASCII 0 entry image_name += current_char.decode("utf-8") current_char = read_next_bytes(fid, 1, "c")[0] num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[0] x_y_id_s = read_next_bytes(fid, num_bytes=24 * num_points2D, format_char_sequence="ddq" * num_points2D) xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]) point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::WriteCamerasBinary(const std::string& path) void Reconstruction::ReadCamerasBinary(const std::string& path) """ cameras = {} with open(path_to_model_file, "rb") as fid: num_cameras = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_cameras): camera_properties = read_next_bytes( fid, num_bytes=24, format_char_sequence="iiQQ") camera_id = camera_properties[0] model_id = camera_properties[1] model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name width = camera_properties[2] height = camera_properties[3] num_params = CAMERA_MODEL_IDS[model_id].num_params params = read_next_bytes(fid, num_bytes=8 * num_params, format_char_sequence="d" * num_params) cameras[camera_id] = Camera(id=camera_id, model=model_name, width=width, height=height, params=np.array(params)) assert len(cameras) == num_cameras return cameras # Path: scene/colmap_loader.py def read_points3D_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DBinary(const std::string& path) void Reconstruction::WritePoints3DBinary(const std::string& path) """ with open(path_to_model_file, "rb") as fid: num_points = read_next_bytes(fid, 8, "Q")[0] xyzs = np.empty((num_points, 3)) rgbs = np.empty((num_points, 3)) errors = np.empty((num_points, 1)) for p_id in range(num_points): binary_point_line_properties = read_next_bytes( fid, num_bytes=43, format_char_sequence="QdddBBBd") xyz = np.array(binary_point_line_properties[1:4]) rgb = np.array(binary_point_line_properties[4:7]) error = np.array(binary_point_line_properties[7]) track_length = read_next_bytes( fid, num_bytes=8, format_char_sequence="Q")[0] track_elems = read_next_bytes( fid, num_bytes=8 * track_length, format_char_sequence="ii" * track_length) xyzs[p_id] = xyz rgbs[p_id] = rgb errors[p_id] = error return xyzs, rgbs, errors # Path: scene/colmap_loader.py def read_points3D_text(path): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DText(const std::string& path) void Reconstruction::WritePoints3DText(const std::string& path) """ xyzs = None rgbs = None errors = None with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() xyz = np.array(tuple(map(float, elems[1:4]))) rgb = np.array(tuple(map(int, elems[4:7]))) error = np.array(float(elems[7])) if xyzs is None: xyzs = xyz[None, ...] rgbs = rgb[None, ...] errors = error[None, ...] else: xyzs = np.append(xyzs, xyz[None, ...], axis=0) rgbs = np.append(rgbs, rgb[None, ...], axis=0) errors = np.append(errors, error[None, ...], axis=0) return xyzs, rgbs, errors # Path: utils/graphics_utils.py def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0): Rt = getWorld2View(R, t) C2W = np.linalg.inv(Rt) cam_center = C2W[:3, 3] cam_center = (cam_center + translate) * scale C2W[:3, 3] = cam_center Rt = np.linalg.inv(C2W) return np.float32(Rt) # Path: utils/graphics_utils.py def focal2fov(focal, pixels): return 2 * math.atan(pixels / (2 * focal)) # Path: utils/graphics_utils.py def fov2focal(fov, pixels): return pixels / (2 * math.tan(fov / 2)) # Path: utils/sh_utils.py def SH2RGB(sh): return sh * C0 + 0.5 # Path: scene/gaussian_model.py class GaussianModel: def setup_functions(self): def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): def __init__(self, sh_degree: int, render_type='render'): def set_transform(self, rotation=None, center=None, scale=None, offset=None, transform=None): def capture(self): def restore(self, model_args, training_args, is_training=False, restore_optimizer=True): def get_scaling(self): def get_rotation(self): def get_xyz(self): def get_normal(self): def get_shs(self): def get_incidents(self): def get_visibility(self): def get_opacity(self): def get_base_color(self): def get_roughness(self): def get_metallic(self): def get_brdf(self): def get_by_names(self, names): def split_by_names(self, features, names): def get_covariance(self, scaling_modifier=1): def get_inverse_covariance(self, scaling_modifier=1): def oneupSHdegree(self): def attribute_names(self): def finetune_visibility(self, iterations=1000): def create_from_gaussians(cls, gaussians_list, dataset): def create_from_ckpt(self, checkpoint_path, restore_optimizer=False): def create_from_pcd(self, pcd: BasicPointCloud, spatial_lr_scale: float): def training_setup(self, training_args: OptimizationParams): def step(self): def update_learning_rate(self, iteration): def construct_list_of_attributes(self): def save_ply(self, path): def reset_opacity(self): def load_ply(self, path): def replace_tensor_to_optimizer(self, tensor, name): def _prune_optimizer(self, mask): def prune_points(self, mask): def cat_tensors_to_optimizer(self, tensors_dict): def densification_postfix(self, new_xyz, new_normal, new_shs_dc, new_shs_rest, new_opacities, new_scaling, new_rotation, new_base_color=None, new_roughness=None, new_metallic=None, new_incidents_dc=None, new_incidents_rest=None, new_visibility_dc=None, new_visibility_rest=None): def densify_and_split(self, grads, grad_threshold, scene_extent, grads_normal, grad_normal_threshold, N=2): def densify_and_clone(self, grads, grad_threshold, scene_extent, grads_normal, grad_normal_threshold): def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size, max_grad_normal): def prune(self, min_opacity, extent, max_screen_size): def add_densification_stats(self, viewspace_point_tensor, update_filter): L = build_scaling_rotation(scaling_modifier * scaling, rotation) # Path: scene/dataset_readers.py import re import os import sys import glob import json import numpy as np import imageio.v2 as imageio import pyexr import pdb; from PIL import Image from typing import NamedTuple from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \ read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal from pathlib import Path from plyfile import PlyData, PlyElement from utils.sh_utils import SH2RGB from scene.gaussian_model import BasicPointCloud from tqdm import tqdm nerf_normalization=nerf_normalization, ply_path=ply_path) return scene_info def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png", debug=False): cam_infos = [] read_mvs = False mvs_dir = f"{path}/extra" if os.path.exists(mvs_dir) and "train" not in transformsfile: print("Loading mvs as geometry constraint.") read_mvs = True with open(os.path.join(path, transformsfile)) as json_file: contents = json.load(json_file) fovx = contents["camera_angle_x"] frames = contents["frames"] for idx, frame in enumerate(tqdm(frames, leave=False)): image_path = os.path.join(path, frame["file_path"] + extension) image_name = Path(image_path).stem # NeRF 'transform_matrix' is a camera-to-world transform c2w = np.array(frame["transform_matrix"]) # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) c2w[:3, 1:3] *= -1 # get the world-to-camera transform and set R, T w2c = np.linalg.inv(c2w) R = np.transpose(w2c[:3, :3]) # R is stored transposed due to 'glm' in CUDA code T = w2c[:3, 3] image, is_hdr = load_img(image_path) bg = np.array([1, 1, 1]) if white_background else np.array([0, 0, 0]) image_mask = np.ones_like(image[..., 0]) if image.shape[-1] == 4: image_mask = image[:, :, 3] image = image[:, :, :3] * image[:, :, 3:4] + bg * (1 - image[:, :, 3:4]) # read depth and mask depth = None normal = None if read_mvs: depth_path = os.path.join(mvs_dir + "/depths/", os.path.basename(frame["file_path"]) + ".tiff") normal_path = os.path.join(mvs_dir + "/normals/", os.path.basename(frame["file_path"]) + ".pfm") depth = load_depth(depth_path) normal = load_pfm(normal_path) depth = depth * image_mask normal = normal * image_mask[..., np.newaxis] fovy = focal2fov(fov2focal(fovx, image.shape[0]), image.shape[1]) cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=fovy, FovX=fovx, image=image, image_mask=image_mask, image_path=image_path, depth=depth, normal=normal, image_name=image_name, width=image.shape[1], height=image.shape[0], hdr=is_hdr)) if debug and idx >= 5: break return cam_infos def readNerfSyntheticInfo(path, white_background, eval, extension=".png", debug=False): print("Reading Training Transforms") train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension, debug=debug) if eval: print("Reading Test Transforms") test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension, debug=debug) else: test_cam_infos = [] nerf_normalization = getNerfppNorm(train_cam_infos) ply_path = os.path.join(path, "points3d.ply") if not os.path.exists(ply_path): # Since this data set has no colmap data, we start with random points num_pts = 100_000 print(f"Generating random point cloud ({num_pts})...") # We create random points inside the bounds of the synthetic Blender scenes xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 shs = np.random.random((num_pts, 3)) / 255.0 normals = np.random.randn(*xyz.shape) normals /= np.linalg.norm(normals, axis=-1, keepdims=True) storePly(ply_path, xyz, SH2RGB(shs) * 255, normals) try: pcd = fetchPly(ply_path) except: pcd = None scene_info = SceneInfo(point_cloud=pcd, train_cameras=train_cam_infos, test_cameras=test_cam_infos, nerf_normalization=nerf_normalization, ply_path=ply_path) return scene_info def loadCamsFromScene(path, valid_list, white_background, debug): with open(f'{path}/sfm_scene.json') as f: sfm_scene = json.load(f) # load bbox transform bbox_transform = np.array(sfm_scene['bbox']['transform']).reshape(4, 4) bbox_transform = bbox_transform.copy() bbox_transform[[0, 1, 2], [0, 1, 2]] = bbox_transform[[0, 1, 2], [0, 1, 2]].max() / 2 bbox_inv = np.linalg.inv(bbox_transform) # meta info image_list = sfm_scene['image_path']['file_paths'] # camera parameters
train_cam_infos = []
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: UX-Decoder/LLaVA-Grounding # Path: llava/conversation.py class SeparatorStyle(Enum): class Conversation: SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge def get_prompt(self): def append_message(self, role, message): def get_images(self, return_pil=False): def expand2square(pil_img, background_color=(122, 116, 104)): def to_gradio_chatbot(self): def copy(self): def dict(self): # Path: llava/mm_utils.py def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids # Path: llava/constants.py IGNORE_INDEX = -100 # Path: llava/constants.py DEFAULT_IMAGE_TOKEN = "<image>" # Path: llava/eval/llava_mapper.py class COCOInstanceNewBaselineDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by MaskFormer. This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ @configurable def __init__( self, is_train=True, *, tfm_gens, image_format, tokenizer, image_processor, preprocess, ): """ NOTE: this interface is experimental. Args: is_train: for training or inference augmentations: a list of augmentations or deterministic transforms to apply tfm_gens: data augmentation image_format: an image format supported by :func:`detection_utils.read_image`. """ self.tfm_gens = tfm_gens logging.getLogger(__name__).info( "[COCOInstanceNewBaselineDatasetMapper] Full TransformGens used in training: {}".format(str(self.tfm_gens)) ) self.img_format = image_format self.is_train = is_train self.tokenizer = tokenizer self.processor = image_processor self.preprocess = preprocess @classmethod def from_config(cls, cfg, is_train=True,tokenizer=None,image_processor=None,preprocess=None): # Build augmentation tfm_gens = build_transform_gen(cfg, is_train) ret = { "is_train": is_train, "tfm_gens": tfm_gens, "image_format": cfg['INPUT']['FORMAT'], "tokenizer": tokenizer, "image_processor": image_processor, "preprocess": preprocess, } return ret def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) utils.check_image_size(dataset_dict, image) #########llava image processing image_clip = self.processor.preprocess(image, return_tensors='pt')['pixel_values'][0] dataset_dict["image_clip"] = image_clip ################## # TODO: get padding mask # by feeding a "segmentation mask" to the same transforms padding_mask = np.ones(image.shape[:2]) image, transforms = T.apply_transform_gens(self.tfm_gens, image) dataset_dict["image_ori"]=image # the crop transformation has default padding value 0 for segmentation padding_mask = transforms.apply_segmentation(padding_mask) padding_mask = ~ padding_mask.astype(bool) image_shape = image.shape[:2] # h, w dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) dataset_dict["padding_mask"] = torch.as_tensor(np.ascontiguousarray(padding_mask)) num_conversations = len(dataset_dict['conversations']) rd = np.random.choice(num_conversations) # selected_conversation, grounding_list = dataset_dict['conversations'][rd] # dataset_dict['conversation'] = [selected_conversation] selected_conversation = [aa[0] for aa in dataset_dict['conversations']] dataset_dict['conversation'] = selected_conversation sources = preprocess_multimodal( copy.deepcopy(dataset_dict['conversation']), True) #! Debug here # sources = copy.deepcopy(dataset_dict['conversation']) data_dict_conversation = self.preprocess( sources, self.tokenizer, has_image=True) data_dict_conversation = dict(input_ids=data_dict_conversation["input_ids"][0], labels=data_dict_conversation["labels"][0]) dataset_dict.update(data_dict_conversation) dataset_dict['tokenizer'] = self.tokenizer num_segs = 1 # sum([conv['value'].count('<seg>') for conv in selected_conversation]) # grounding_list= if "grounding_info" in dataset_dict and len(dataset_dict['grounding_info'])>0: anno_id2id=dict() for id,obj in enumerate(dataset_dict['grounding_info']): obj["bbox_mode"] = BoxMode.XYWH_ABS anno_id2id[obj['id']]=id id2class=[[] for _ in range(len(dataset_dict['grounding_info']))] annos = [ utils.transform_instance_annotations(obj, transforms, image_shape) for obj in dataset_dict["grounding_info"] ] # assert "segmentation" in annos[0] instances = utils.annotations_to_instances(annos, image_shape,mask_format="bitmask") h, w = instances.image_size # image_size_xyxy = torch.as_tensor([w, h, w, h], dtype=torch.float) if hasattr(instances, 'gt_masks'): gt_masks = instances.gt_masks # gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w) instances.gt_masks = gt_masks.tensor if grounding_list is None: dataset_dict['grounding']=False grounding_mask=[False for _ in range(num_segs)] dataset_dict['grounding_mask']=grounding_mask else: grounding_mask=[True if g is not None else False for g in grounding_list] dataset_dict['grounding_mask']=grounding_mask new_grounding_list=[g for g in grounding_list if g is not None] if sum(grounding_mask)==0: dataset_dict['grounding']=False else: dataset_dict['grounding']=True if dataset_dict['grounding']: # assert num_segs == len(grounding_list) for grounding_id,grounding in enumerate(new_grounding_list): if grounding is not None: for annid in grounding: id2class[anno_id2id[annid]].append(grounding_id) instances.gt_classes=id2class dataset_dict["instances"] = instances else: dataset_dict['grounding'] = False grounding_mask = [False for _ in range(num_segs)] dataset_dict['grounding_mask'] = grounding_mask return [dataset_dict] # Path: llava/eval/LLaVA_G_Eval.py import os import cv2 import json import torch import collections import transformers import numpy as np import jsonlines import jsonlines import os import shutil import os import shutil import re import re import cv2 import argparse from llava.model import * from typing import Dict from llava import conversation as conversation_lib from tqdm import tqdm from detectron2.utils.file_io import PathManager from llava.mm_utils import tokenizer_image_token from llava.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN from llava.eval.llava_mapper import COCOInstanceNewBaselineDatasetMapper as LLAVAInstanceNewBaselineDatasetMapper from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from huggingface_hub import hf_hub_download from peft import PeftModel from peft import PeftModel from detectron2.config import LazyConfig from llava.model.openseed import build_model from llava.model.openseed.BaseModel import BaseModel from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from huggingface_hub import hf_hub_download from peft import PeftModel from peft import PeftModel from detectron2.config import LazyConfig from llava.model.openseed import build_model from llava.model.openseed.BaseModel import BaseModel tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) print('Loading LLaVA from base model...') model = LlavaLlamaForCausalLM_gd.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features if model.lm_head.weight.shape[0] != token_num: model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) print('Loading additional LLaVA weights...') if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') else: # this is probably from HF Hub def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location='cpu') non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} if any(k.startswith('model.model.') for k in non_lora_trainables): non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} model.load_state_dict(non_lora_trainables, strict=False) print('Loading LoRA weights...') model = PeftModel.from_pretrained(model, model_path) print('Merging LoRA weights...') model = model.merge_and_unload() print('Model is loaded...') elif model_base is not None: # this may be mm projector only print('Loading LLaVA from base model...') if 'mpt' in model_name.lower(): if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py')) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) model = LlavaLlamaForCausalLM_gd.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) model = LlavaLlamaForCausalLM_gd.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} model.load_state_dict(mm_projector_weights, strict=False) else: if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = LlavaLlamaForCausalLM_gd.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = LlavaLlamaForCausalLM_gd.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: # Load language model if model_base is not None: # PEFT model tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") print(f"Loading LoRA weights from {model_path}") model = PeftModel.from_pretrained(model, model_path) print(f"Merging weights") model = model.merge_and_unload() print('Convert to FP16...') model.to(torch.float16) else: use_fast = False if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) image_processor = None if 'llava' in model_name.lower(): mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model() vision_tower.to(device='cuda', dtype=torch.float16) image_processor = vision_tower.image_processor if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, image_processor, context_len def construct_vision_model(self, path_vision_model_cfg): def get_config_from_name(cfg, dataset_name="flickr"): # adjust config according to dataset, flickr by default if 'sam' in dataset_name: cfg.update(cfg['SAM']) return cfg elif 'flickr' in dataset_name: cfg.update(cfg['flickr']) return cfg elif 'coco_instruct_train' in dataset_name: cfg.update(cfg['coco_instruct']) return cfg elif 'lisa' in dataset_name: cfg.update(cfg['LISA_REF']) return cfg elif 'llava' in dataset_name: cfg.update(cfg['llava']) return cfg elif 'vg' in dataset_name: cfg.update(cfg['vg']) return cfg
elif 'part' in dataset_name and 'pascal_part' not in dataset_name and 'partimagenet' not in dataset_name:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: daveredrum/SceneTex # Path: lib/camera_helper.py def init_trajectory(dist_list, elev_list, azim_list, at): Rs, Ts = [], [] for dist, elev, azim in zip(dist_list, elev_list, azim_list): R, T = look_at_view_transform(dist, elev, azim, at=at) Rs.append(R) # 1, 3, 3 Ts.append(T) # 1, 3 return Rs, Ts # Path: lib/camera_helper.py def init_blenderproc_trajectory(trajectory, device): """ This function only applies for Blenderproc cameras and original mesh data """ Rs, Ts = [], [] for _, viewpoint in trajectory.items(): c2w = torch.FloatTensor(viewpoint["matrix"]).to(device) calibrate_axis = torch.FloatTensor([ [-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ]).to(device) rot_z = torch.FloatTensor([ [np.cos(np.pi), -np.sin(np.pi), 0], [np.sin(np.pi), np.cos(np.pi), 0], [0, 0, 1] ]).to(device) rot_x = torch.FloatTensor([ [1, 0, 0, 0], [0, np.cos(np.pi/2), -np.sin(np.pi/2), 0], [0, np.sin(np.pi/2), np.cos(np.pi/2), 0], [0, 0, 0, 1] ]).to(device) c2w = calibrate_axis @ c2w c2w = rot_x @ c2w t = c2w[:3,-1] # Extract translation of the camera r = c2w[:3, :3] @ rot_z # Extract rotation matrix of the camera # horizontally flip the image flip_x = torch.FloatTensor([ [-1, 0, 0], [0, 1, 0], [0, 0, 1] ]).to(device) r = r @ flip_x t = t @ r # Make rotation local Rs.append(r.unsqueeze(0)) Ts.append(t.unsqueeze(0)) return Rs, Ts # Path: lib/camera_helper.py def init_camera_R_T(R, T, image_size, device, fov=60): """init camera using R and T matrics Args: R (torch.FloatTensor): Rotation matrix, (N, 3, 3) T (torch.FloatTensor): Translation matrix, (N, 3) image_size (int): rendering size device (torch.device): CPU or GPU Returns: camera: PyTorch3D camera instance """ if isinstance(image_size, int): image_size = torch.tensor([image_size, image_size]).unsqueeze(0) elif isinstance(image_size, tuple): image_size = torch.tensor(image_size).unsqueeze(0) else: raise TypeError("invalid image size.") # cameras = PerspectiveCameras(R=R, T=T, device=device, image_size=image_size) cameras = FoVPerspectiveCameras(R=R, T=T, device=device, fov=fov) return cameras # Path: lib/render_helper.py def init_renderer(camera, shader, image_size, faces_per_pixel): raster_settings = RasterizationSettings(image_size=image_size, faces_per_pixel=faces_per_pixel) renderer = MeshRendererWithFragments( rasterizer=MeshRasterizer( cameras=camera, raster_settings=raster_settings ), shader=shader ) return renderer # Path: lib/shading_helper.py def init_flat_texel_shader(camera, device, blend_params=BlendParams()): shader=FlatTexelShader( cameras=camera, device=device, blend_params=blend_params ) return shader # Path: lib/projection_helper.py @torch.no_grad() def get_visible_pixel_uvs(mesh, renderer, faces_verts_uvs): fragments = renderer.rasterizer(mesh) pixel_uvs = interpolate_face_attributes( fragments.pix_to_face, fragments.bary_coords, faces_verts_uvs ) # NxHsxWsxKx2 return pixel_uvs # Path: lib/projection_helper.py def get_all_4_locations(values_y, values_x): y_0 = torch.floor(values_y) y_1 = torch.ceil(values_y) x_0 = torch.floor(values_x) x_1 = torch.ceil(values_x) return torch.cat([y_0, y_0, y_1, y_1], 0).long(), torch.cat([x_0, x_1, x_0, x_1], 0).long() # Path: models/modules/modules.py class MLP(nn.Module): def __init__(self, dim_in, dim_out, dim_hidden, num_layers, bias=True, dtype=torch.float32): super().__init__() self.dim_in = dim_in self.dim_out = dim_out self.dim_hidden = dim_hidden self.num_layers = num_layers net = [] for l in range(num_layers): net.append(nn.Linear(self.dim_in if l == 0 else self.dim_hidden, self.dim_out if l == num_layers - 1 else self.dim_hidden, bias=bias, dtype=dtype)) self.net = nn.ModuleList(net) def forward(self, x): for l in range(self.num_layers): x = self.net[l](x) if l != self.num_layers - 1: x = F.relu(x, inplace=True) return x # Path: models/modules/modules.py class Siren(nn.Module): def __init__(self, in_features, hidden_features, hidden_layers, out_features, outermost_linear=False, first_omega_0=30, hidden_omega_0=30.): super().__init__() self.net = [] self.net.append(SineLayer(in_features, hidden_features, is_first=True, omega_0=first_omega_0)) for i in range(hidden_layers): self.net.append(SineLayer(hidden_features, hidden_features, is_first=False, omega_0=hidden_omega_0)) if outermost_linear: final_linear = nn.Linear(hidden_features, out_features) with torch.no_grad(): final_linear.weight.uniform_(-np.sqrt(6 / hidden_features) / hidden_omega_0, np.sqrt(6 / hidden_features) / hidden_omega_0) self.net.append(final_linear) else: self.net.append(SineLayer(hidden_features, out_features, is_first=False, omega_0=hidden_omega_0)) self.net = nn.Sequential(*self.net) def forward(self, coords): outputs = self.net(coords) return outputs # Path: models/modules/modules.py class HashGrid(nn.Module): def __init__(self, in_channels, otype, n_levels, n_features_per_level, log2_hashmap_size, base_resolution, # the same as in tinycudann max_resolution, # NOTE need to compute per_level_scale , dtype=torch.float32 # half precision might lead to NaN ): super().__init__() self.otype = otype self.n_levels = n_levels self.n_features_per_level = n_features_per_level self.log2_hashmap_size = log2_hashmap_size self.base_resolution = base_resolution self.max_resolution = max_resolution self.per_level_scale = self.get_per_level_scale() self.config = { "otype": self.otype, "n_levels": self.n_levels, "n_features_per_level": self.n_features_per_level, "log2_hashmap_size": self.log2_hashmap_size, "base_resolution": self.base_resolution, "per_level_scale": self.per_level_scale } self.hashgrid = tcnn.Encoding(in_channels, self.config, dtype=dtype) def get_per_level_scale(self): return np.power(self.max_resolution / self.base_resolution, 1 / self.n_levels) def forward(self, inputs): return self.hashgrid(inputs) # Path: models/modules/modules.py class HashGridMLP(nn.Module): def __init__(self, in_channels, hashgrid_config, mlp_config ): super().__init__() self.hashgrid_config = { "otype": hashgrid_config.otype, "n_levels": hashgrid_config.n_levels, "n_features_per_level": hashgrid_config.n_features_per_level, "log2_hashmap_size": hashgrid_config.log2_hashmap_size, "base_resolution": hashgrid_config.base_resolution, "per_level_scale": self.get_per_level_scale( hashgrid_config.max_resolution, hashgrid_config.base_resolution, hashgrid_config.n_levels ) } self.MLP_config = { "otype": mlp_config.otype, "activation": mlp_config.activation, "output_activation": mlp_config.output_activation, "n_neurons": mlp_config.n_neurons, "n_hidden_layers": mlp_config.n_hidden_layers } self.net = tcnn.NetworkWithInputEncoding(in_channels, mlp_config.out_channels, self.hashgrid_config, self.MLP_config) def get_per_level_scale(self, max_resolution, base_resolution, n_levels): return np.power(max_resolution / base_resolution, 1 / n_levels) def forward(self, inputs): return self.net(inputs) # Path: models/modules/anchors.py class AnchorTransformer(nn.Module): def __init__(self, config, device, anchor_dim, num_instances # this must be specified on init ): super().__init__() self.config = config self.device = device self.anchor_dim = anchor_dim self.num_instances = num_instances self.hidden_size = config.anchor_config.hidden_size self.num_heads = config.anchor_config.num_heads self.num_mapping_layers = config.anchor_config.num_mapping_layers if self.config.anchor_config.anchor_type == "self-attention": if self.num_mapping_layers == 0 and self.num_heads == 1: self.hidden_size = anchor_dim self.map_key = nn.Identity() self.map_query = nn.Identity() self.map_value = nn.Identity() self.attention = nn.MultiheadAttention( anchor_dim, 1, batch_first=True # (batch, seq, feature) ) self.map_outputs = nn.Identity() else: self.map_key = MLP(anchor_dim, self.hidden_size * self.num_heads, self.hidden_size, self.num_mapping_layers) self.map_query = MLP(anchor_dim, self.hidden_size * self.num_heads, self.hidden_size, self.num_mapping_layers) self.map_value = MLP(anchor_dim, self.hidden_size * self.num_heads, self.hidden_size, self.num_mapping_layers) self.attention = nn.MultiheadAttention( self.hidden_size * self.num_heads, self.num_heads, batch_first=True # (batch, seq, feature) ) self.map_outputs = MLP(self.hidden_size * self.num_heads, anchor_dim, self.hidden_size, self.num_mapping_layers) elif self.config.anchor_config.anchor_type == "cross-attention": if self.num_mapping_layers == 0 and self.num_heads == 1: self.hidden_size = anchor_dim self.map_key = nn.Identity() self.map_query = nn.Identity() self.map_value = nn.Identity() self.attention = nn.MultiheadAttention( anchor_dim, 1, batch_first=True # (batch, seq, feature) ) self.map_outputs = nn.Identity() else: self.map_key = MLP(anchor_dim, self.hidden_size * self.num_heads, self.hidden_size, self.num_mapping_layers) self.map_query = MLP(anchor_dim, self.hidden_size * self.num_heads, self.hidden_size, self.num_mapping_layers) self.map_value = MLP(anchor_dim, self.hidden_size * self.num_heads, self.hidden_size, self.num_mapping_layers) self.attention = nn.MultiheadAttention( self.hidden_size * self.num_heads, self.num_heads, batch_first=True # (batch, seq, feature) ) self.map_outputs = MLP(self.hidden_size * self.num_heads, anchor_dim, self.hidden_size, self.num_mapping_layers) elif self.config.anchor_config.anchor_type == "flash-attention": if self.num_mapping_layers == 0 and self.num_heads == 1: self.hidden_size = anchor_dim self.map_key = nn.Identity() self.map_query = nn.Identity() self.map_value = nn.Identity() self.map_outputs = nn.Identity() else: self.map_key = MLP(anchor_dim, self.hidden_size * self.num_heads, self.hidden_size, self.num_mapping_layers) self.map_query = MLP(anchor_dim, self.hidden_size * self.num_heads, self.hidden_size, self.num_mapping_layers) self.map_value = MLP(anchor_dim, self.hidden_size * self.num_heads, self.hidden_size, self.num_mapping_layers) self.map_outputs = MLP(self.hidden_size * self.num_heads, anchor_dim, self.hidden_size, self.num_mapping_layers) self.attention = FlashCrossAttention() # NOTE input must be half precision def _map_inputs(self, query, key, value): if self.config.anchor_config.output_type == "token": # inputs = torch.cat([inputs, self.embedding.unsqueeze(1)], dim=1) avg_token = query.mean(1, keepdim=True) query = torch.cat([query, avg_token], dim=1) key = self.map_key(key) query = self.map_query(query) value = self.map_value(value) return query, key, value def _map_outputs(self, inputs): outputs = self.map_outputs(inputs) # (M, L, C) if self.config.anchor_config.output_type == "token": outputs = outputs[:, -1, :] elif self.config.anchor_config.output_type == "mean": outputs = outputs.mean(1) else: pass return outputs def _map_features(self, features, anchors, instances_in_view, pad_seq=False): B, H, W, C = features.shape features = features.reshape(-1, C) instances_in_view = instances_in_view.reshape(-1) labels = torch.unique(instances_in_view).long() # outputs seq_features, seq_anchors, seq_labels, seqlens, seqlens_k = [], [], [], [0], [0] cu_seqlens, max_seqlen, cu_seqlens_k, max_seqlen_k = None, None, None, None map_flag = False for label in labels: if label == 0: continue instance_mask = instances_in_view == label instance_feature = features[instance_mask] instace_labels = instances_in_view[instance_mask] seq_features.append(instance_feature) seq_anchors.append(anchors[label-1]) seqlen = instance_feature.shape[0] seqlens.append(seqlen) seqlens_k.append(anchors.shape[1]) seq_labels.append(instace_labels) if len(seq_features) > 0: map_flag = True if pad_seq: seq_features = pad_sequence(seq_features, batch_first=True) seq_labels = pad_sequence(seq_labels, batch_first=True) seq_anchors = torch.stack(seq_anchors) else: seq_features = torch.cat(seq_features, dim=0) seq_labels = torch.cat(seq_labels, dim=0) seq_anchors = torch.cat(seq_anchors, dim=0) cu_seqlens = torch.cumsum(torch.IntTensor(seqlens), dim=0).to(self.device).int() max_seqlen = max(seqlens) cu_seqlens_k = torch.cumsum(torch.IntTensor(seqlens_k), dim=0).to(self.device).int() max_seqlen_k = max(seqlens_k) return seq_features, seq_labels, seq_anchors, cu_seqlens, max_seqlen, cu_seqlens_k, max_seqlen_k, map_flag def _unmap_features(self, features, seq_labels, instances_in_view): *_, C = features.shape B, H, W = instances_in_view.shape unmapped = torch.zeros(B, H, W, C).to(self.device) if self.config.anchor_config.anchor_type == "flash-attention": unmapped = unmapped.reshape(-1, C) instances_in_view = instances_in_view.reshape(-1) assert unmapped.shape[0] == instances_in_view.shape[0] labels = torch.unique(instances_in_view) for label in labels: if label == 0: continue unmapped[instances_in_view == label] = features[seq_labels == label] unmapped = unmapped.reshape(B, H, W, C) elif self.config.anchor_config.anchor_type == "cross-attention": unmapped = unmapped.reshape(-1, C) instances_in_view = instances_in_view.reshape(-1) assert unmapped.shape[0] == instances_in_view.shape[0] for i in range(features.shape[0]): # feature indices indicate instances unmapped[instances_in_view == i+1] = features[seq_labels == i+1] unmapped = unmapped.reshape(B, H, W, C) return unmapped def _apply_outputs(self, features, anchors, instances_in_view): if self.config.anchor_config.anchor_type in ["self-attention", "mean"]: B, H, W = instances_in_view.shape # NOTE instance_in_view must in shape (B, H, W) instances_in_view = instances_in_view.reshape(-1) - 1 # instances are indexed from 0, -1 is the background background_mask = instances_in_view == -1 anchor_features = anchors[instances_in_view.long(), :] anchor_features[background_mask] = 0 anchor_features = anchor_features.reshape(B, H, W, -1) else: anchor_features = anchors # output features = features + anchor_features return features def _prepare_flash_attention_inputs(self, query, key, value): query = query.reshape(-1, self.num_heads, self.hidden_size) key = key.reshape(-1, self.num_heads, self.hidden_size) value = value.reshape(-1, self.num_heads, self.hidden_size) key_value = torch.stack([key, value], dim=1) return query, key_value def forward(self, anchors, features, instances_in_view): assert len(anchors.shape) == 3, "anchors should be in shape (M, L, C)" assert len(features.shape) == 4, "features should be in shape (B, H, W, C)" if self.config.anchor_config.anchor_type == "self-attention": query, key, value = self._map_inputs(anchors, anchors, anchors) anchors, _ = self.attention(query, key, value) anchors = self._map_outputs(anchors) elif self.config.anchor_config.anchor_type == "cross-attention": seq_features, seq_labels, seq_anchors, cu_seqlens, max_seqlen, cu_seqlens_k, max_seqlen_k, map_flag = self._map_features(features, anchors, instances_in_view, True) if map_flag: seq_features, seq_anchors, seq_anchors = self._map_inputs(seq_features, seq_anchors, seq_anchors) seq_features, _ = self.attention( seq_features, seq_anchors, seq_anchors ) seq_features = self._map_outputs(seq_features) seq_features = self._unmap_features(seq_features, seq_labels, instances_in_view) anchors = seq_features else: anchors = features elif self.config.anchor_config.anchor_type == "flash-attention": seq_features, seq_labels, seq_anchors, cu_seqlens, max_seqlen, cu_seqlens_k, max_seqlen_k, map_flag = self._map_features(features, anchors, instances_in_view) if map_flag: seq_features, seq_anchors, seq_anchors = self._map_inputs(seq_features, seq_anchors, seq_anchors) seq_query, seq_key_value = self._prepare_flash_attention_inputs(seq_features, seq_anchors, seq_anchors) seq_features = self.attention( seq_query.half(), # (Sq, H, C) seq_key_value.half(), # (Sk, 2, H_k, C) cu_seqlens=cu_seqlens, max_seqlen=max_seqlen, cu_seqlens_k=cu_seqlens_k, max_seqlen_k=max_seqlen_k ).to(torch.float32) # (Sq, H, C) seq_features = self._map_outputs(seq_features.reshape(seq_features.shape[0], -1)) # (Sq, C) seq_features = self._unmap_features(seq_features, seq_labels, instances_in_view) anchors = seq_features else: anchors = features else: anchors = anchors.mean(1) # output features = self._apply_outputs(features, anchors, instances_in_view) return features # Path: models/modules/studio.py import os import json import random import torch import torch.nn as nn import torch.nn.functional as F import pytorch_lightning as pl import torchvision import numpy as np import sys from omegaconf import OmegaConf from pytorch3d.ops import interpolate_face_attributes from pytorch3d.renderer import look_at_view_transform from lib.camera_helper import init_trajectory, init_blenderproc_trajectory, init_camera_R_T from lib.render_helper import init_renderer from lib.shading_helper import init_flat_texel_shader from lib.projection_helper import get_visible_pixel_uvs, get_all_4_locations from models.modules.modules import MLP, Siren, HashGrid, HashGridMLP from models.modules.anchors import AnchorTransformer ) azim_linspace = np.linspace( self.sphere_cameras.azim.min, self.sphere_cameras.azim.max, 1 if self.sphere_cameras.azim.min == self.sphere_cameras.azim.max else self.sphere_cameras.azim.num_linspace, ) fov_linspace = np.linspace( self.sphere_cameras.fov.min, self.sphere_cameras.fov.max, 1 if self.sphere_cameras.fov.min == self.sphere_cameras.fov.max else self.sphere_cameras.fov.num_linspace, ) at = np.array(self.sphere_cameras.at) combinations = np.array(np.meshgrid(dist_linspace, elev_linspace, azim_linspace, fov_linspace)).T.reshape(-1, 4) dist_list = combinations[:, 0].tolist() elev_list = combinations[:, 1].tolist() azim_list = combinations[:, 2].tolist() self.Rs, self.Ts = init_trajectory(dist_list, elev_list, azim_list, at) self.fov_list = combinations[:, 3].tolist() self.num_cameras = len(self.Rs) print("=> using {} spherical cameras for training".format(self.num_cameras)) elif not self.config.use_sphere_cameras and self.config.use_blenderproc_cameras: poses = json.load(open(self.config.blenderproc_cameras)) self.Rs, self.Ts = init_blenderproc_trajectory(poses, self.device) self.num_cameras = len(self.Rs) self.fov_list = [self.config.fov] * self.num_cameras print("=> using {} blenderproc cameras for training".format(self.num_cameras)) elif self.config.use_sphere_cameras and self.config.use_blenderproc_cameras: # spherical cameras self.sphere_cameras = OmegaConf.load(self.config.sphere_cameras) dist_linspace = np.linspace( self.sphere_cameras.dist.min, self.sphere_cameras.dist.max, 1 if self.sphere_cameras.dist.min == self.sphere_cameras.dist.max else self.sphere_cameras.dist.num_linspace, ) elev_linspace = np.linspace( self.sphere_cameras.elev.min, self.sphere_cameras.elev.max, 1 if self.sphere_cameras.elev.min == self.sphere_cameras.elev.max else self.sphere_cameras.elev.num_linspace, ) azim_linspace = np.linspace( self.sphere_cameras.azim.min, self.sphere_cameras.azim.max, 1 if self.sphere_cameras.azim.min == self.sphere_cameras.azim.max else self.sphere_cameras.azim.num_linspace, ) fov_linspace = np.linspace( self.sphere_cameras.fov.min, self.sphere_cameras.fov.max, 1 if self.sphere_cameras.fov.min == self.sphere_cameras.fov.max else self.sphere_cameras.fov.num_linspace, ) at = np.array(self.sphere_cameras.at) combinations = np.array(np.meshgrid(dist_linspace, elev_linspace, azim_linspace, fov_linspace)).T.reshape(-1, 4) dist_list = combinations[:, 0].tolist() elev_list = combinations[:, 1].tolist() azim_list = combinations[:, 2].tolist() sphere_Rs, sphere_Ts = init_trajectory(dist_list, elev_list, azim_list, at) sphere_fov_list = combinations[:, 3].tolist() # blenderproc cameras poses = json.load(open(self.config.blenderproc_cameras)) blenderproc_Rs, blenderproc_Ts = init_blenderproc_trajectory(poses, self.device) blenderproc_fov_list = [self.config.fov] * len(blenderproc_Rs) self.Rs = sphere_Rs + blenderproc_Rs self.Ts = sphere_Ts + blenderproc_Ts self.fov_list = sphere_fov_list + blenderproc_fov_list self.num_cameras = len(self.Rs) print("=> using {} spherical cameras and {} blenderproc cameras for training".format(len(sphere_Rs), len(blenderproc_Rs))) # self.sphere_Rs = sphere_Rs # self.sphere_Ts = sphere_Ts # self.sphere_fov_list = sphere_fov_list # self.num_sphere_cameras = len(self.sphere_Rs) # self.Rs = sphere_Rs + blenderproc_Rs # self.Ts = sphere_Ts + blenderproc_Ts # self.fov_list = sphere_fov_list + blenderproc_fov_list # self.num_cameras = len(self.Rs) # print("=> using {} spherical cameras and {} blenderproc cameras for training".format(len(sphere_Rs), len(blenderproc_Rs))) # print("=> using {} cameras before annealing and {} cameras afterwards".format(self.num_sphere_cameras, self.num_cameras)) else: # use fixed cameras raise NotImplementedError # for inference # FIXME only support spherical cameras for now # spherical cameras self.sphere_cameras = OmegaConf.load(self.config.sphere_cameras) dist_linspace = [self.sphere_cameras.dist.min] # always take the min dist from spherical cameras elev_linspace = [self.config.elev] azim_linspace = np.linspace( self.config.azim[0], self.config.azim[1], self.config.log_latents_views, ) fov_linspace = [self.config.fov] at = np.array(self.sphere_cameras.at) # always take the cameras center from spherical cameras combinations = np.array(np.meshgrid(dist_linspace, elev_linspace, azim_linspace, fov_linspace)).T.reshape(-1, 4) self.inference_dist_list = combinations[:, 0].tolist() self.inference_elev_list = combinations[:, 1].tolist() self.inference_azim_list = combinations[:, 2].tolist() self.inference_fov_list = combinations[:, 3].tolist() self.inference_at = at
self.num_inference_cameras = len(self.inference_dist_list)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: corl-team/xland-minigrid # Path: src/xminigrid/core/constants.py TILES_REGISTRY = [] # Path: src/xminigrid/core/constants.py class Colors(struct.PyTreeNode): EMPTY: int = struct.field(pytree_node=False, default=0) END_OF_MAP: int = struct.field(pytree_node=False, default=1) UNSEEN: int = struct.field(pytree_node=False, default=2) RED: int = struct.field(pytree_node=False, default=3) GREEN: int = struct.field(pytree_node=False, default=4) BLUE: int = struct.field(pytree_node=False, default=5) PURPLE: int = struct.field(pytree_node=False, default=6) YELLOW: int = struct.field(pytree_node=False, default=7) GREY: int = struct.field(pytree_node=False, default=8) BLACK: int = struct.field(pytree_node=False, default=9) ORANGE: int = struct.field(pytree_node=False, default=10) WHITE: int = struct.field(pytree_node=False, default=11) BROWN: int = struct.field(pytree_node=False, default=12) PINK: int = struct.field(pytree_node=False, default=13) # Path: src/xminigrid/core/constants.py class Tiles(struct.PyTreeNode): EMPTY: int = struct.field(pytree_node=False, default=0) END_OF_MAP: int = struct.field(pytree_node=False, default=1) UNSEEN: int = struct.field(pytree_node=False, default=2) FLOOR: int = struct.field(pytree_node=False, default=3) WALL: int = struct.field(pytree_node=False, default=4) BALL: int = struct.field(pytree_node=False, default=5) SQUARE: int = struct.field(pytree_node=False, default=6) PYRAMID: int = struct.field(pytree_node=False, default=7) GOAL: int = struct.field(pytree_node=False, default=8) KEY: int = struct.field(pytree_node=False, default=9) DOOR_LOCKED: int = struct.field(pytree_node=False, default=10) DOOR_CLOSED: int = struct.field(pytree_node=False, default=11) DOOR_OPEN: int = struct.field(pytree_node=False, default=12) HEX: int = struct.field(pytree_node=False, default=13) STAR: int = struct.field(pytree_node=False, default=14) # Path: src/xminigrid/core/goals.py class EmptyGoal(BaseGoal): def __call__(self, grid, agent, action, position): return jnp.asarray(False) @classmethod def decode(cls, encoding): return cls() def encode(self): return jnp.zeros(MAX_GOAL_ENCODING_LEN, dtype=jnp.uint8) # Path: src/xminigrid/core/grid.py def equal(tile1: Tile, tile2: Tile) -> Tile: # wait, is this just a jnp.array_equal? return jnp.all(jnp.equal(tile1, tile2)) # Path: src/xminigrid/core/grid.py def four_rooms(height: int, width: int) -> GridState: wall_tile: Tile = TILES_REGISTRY[Tiles.WALL, Colors.GREY] grid = empty_world(height, width) grid = rectangle(grid, 0, 0, height, width, tile=wall_tile) grid = vertical_line(grid, width // 2, 0, height, tile=wall_tile) grid = horizontal_line(grid, 0, height // 2, width, tile=wall_tile) return grid # Path: src/xminigrid/core/grid.py def horizontal_line(grid: GridState, x: int, y: int, length: int, tile: Tile) -> GridState: grid = grid.at[y, x : x + length].set(tile) return grid # Path: src/xminigrid/core/grid.py def nine_rooms(height: int, width: int) -> GridState: wall_tile: Tile = TILES_REGISTRY[Tiles.WALL, Colors.GREY] grid = empty_world(height, width) grid = rectangle(grid, 0, 0, height, width, tile=wall_tile) grid = vertical_line(grid, width // 3, 0, height, tile=wall_tile) grid = vertical_line(grid, 2 * (width // 3), 0, height, tile=wall_tile) grid = horizontal_line(grid, 0, height // 3, width, tile=wall_tile) grid = horizontal_line(grid, 0, 2 * (height // 3), width, tile=wall_tile) return grid # Path: src/xminigrid/core/grid.py def room(height: int, width: int) -> GridState: grid = empty_world(height, width) grid = rectangle(grid, 0, 0, height, width, tile=TILES_REGISTRY[Tiles.WALL, Colors.GREY]) return grid # Path: src/xminigrid/core/grid.py def sample_coordinates(key: jax.Array, grid: GridState, num: int, mask: jax.Array | None = None) -> jax.Array: if mask is None: mask = jnp.ones((grid.shape[0], grid.shape[1]), dtype=jnp.bool_) coords = jax.random.choice( key=key, shape=(num,), a=jnp.arange(grid.shape[0] * grid.shape[1]), replace=False, p=(mask & free_tiles_mask(grid)).flatten(), ) coords = jnp.divmod(coords, grid.shape[1]) coords = jnp.concatenate((coords[0].reshape(-1, 1), coords[1].reshape(-1, 1)), axis=-1) return coords # Path: src/xminigrid/core/grid.py def sample_direction(key: jax.Array) -> jax.Array: return jax.random.randint(key, shape=(), minval=0, maxval=4) # Path: src/xminigrid/core/grid.py def two_rooms(height: int, width: int) -> GridState: wall_tile: Tile = TILES_REGISTRY[Tiles.WALL, Colors.GREY] grid = empty_world(height, width) grid = rectangle(grid, 0, 0, height, width, tile=wall_tile) grid = vertical_line(grid, width // 2, 0, height, tile=wall_tile) return grid # Path: src/xminigrid/core/grid.py def vertical_line(grid: GridState, x: int, y: int, length: int, tile: Tile) -> GridState: grid = grid.at[y : y + length, x].set(tile) return grid # Path: src/xminigrid/core/rules.py class EmptyRule(BaseRule): def __call__(self, grid, agent, action, position): return grid, agent @classmethod def decode(cls, encoding): return cls() def encode(self): return jnp.zeros(MAX_RULE_ENCODING_LEN, dtype=jnp.uint8) # Path: src/xminigrid/environment.py class Environment: def default_params(self, **kwargs) -> EnvParams: return EnvParams().replace(**kwargs) def num_actions(self, params: EnvParams) -> int: return int(NUM_ACTIONS) def observation_shape(self, params: EnvParams) -> tuple[int, int, int]: return (params.view_size, params.view_size, NUM_LAYERS) # TODO: NOT sure that this should be hardcoded like that... def time_limit(self, params: EnvParams) -> int: return 3 * params.height * params.width def _generate_problem(self, params: EnvParams, key: jax.Array) -> State: return NotImplemented def reset(self, params: EnvParams, key: jax.Array) -> TimeStep: state = self._generate_problem(params, key) timestep = TimeStep( state=state, step_type=StepType.FIRST, reward=jnp.asarray(0.0), discount=jnp.asarray(1.0), observation=transparent_field_of_view(state.grid, state.agent, params.view_size, params.view_size), ) return timestep # Why timestep + state at once, and not like in Jumanji? To be able to do autoresets in gym and envpools styles def step(self, params: EnvParams, timestep: TimeStep, action: int) -> TimeStep: new_grid, new_agent, changed_position = take_action(timestep.state.grid, timestep.state.agent, action) new_grid, new_agent = check_rule(timestep.state.rule_encoding, new_grid, new_agent, action, changed_position) new_state = timestep.state.replace( grid=new_grid, agent=new_agent, step_num=timestep.state.step_num + 1, ) new_observation = transparent_field_of_view(new_state.grid, new_state.agent, params.view_size, params.view_size) # checking for termination or truncation, choosing step type terminated = check_goal(new_state.goal_encoding, new_state.grid, new_state.agent, action, changed_position) truncated = jnp.equal(new_state.step_num, self.time_limit(params)) reward = jax.lax.select(terminated, 1.0 - 0.9 * (new_state.step_num / self.time_limit(params)), 0.0) step_type = jax.lax.select(terminated | truncated, StepType.LAST, StepType.MID) discount = jax.lax.select(terminated, jnp.asarray(0.0), jnp.asarray(1.0)) timestep = TimeStep( state=new_state, step_type=step_type, reward=reward, discount=discount, observation=new_observation, ) return timestep def render(self, params: EnvParams, timestep: TimeStep): if params.render_mode == "rgb_array": return rgb_render(timestep.state.grid, timestep.state.agent, params.view_size) elif params.render_mode == "rich_text": return text_render(timestep.state.grid, timestep.state.agent) else: raise RuntimeError("Unknown render mode. Should be one of: ['rgb_array', 'rich_text']") # Path: src/xminigrid/environment.py class EnvParams(struct.PyTreeNode): # WARN: pytree_node=False, so you CAN NOT vmap on them! # You can add pytree node params, but be careful and # test that your code will work under jit. # Spoiler: probably it will not :( height: int = struct.field(pytree_node=False, default=9) width: int = struct.field(pytree_node=False, default=9) view_size: int = struct.field(pytree_node=False, default=7) render_mode: str = struct.field(pytree_node=False, default="rgb_array") # Path: src/xminigrid/types.py class AgentState(struct.PyTreeNode): position: jax.Array = jnp.asarray((0, 0)) direction: jax.Array = jnp.asarray(0) pocket: jax.Array = TILES_REGISTRY[Tiles.EMPTY, Colors.EMPTY] # Path: src/xminigrid/types.py class EnvCarry(struct.PyTreeNode): ... # Path: src/xminigrid/types.py class RuleSet(struct.PyTreeNode): goal: jax.Array rules: jax.Array init_tiles: jax.Array # Path: src/xminigrid/types.py class State(struct.PyTreeNode): key: jax.random.PRNGKey step_num: jax.Array grid: GridState agent: AgentState goal_encoding: jax.Array rule_encoding: jax.Array carry: EnvCarry # Path: src/xminigrid/envs/xland.py import jax import jax.numpy as jnp from flax import struct from ..core.constants import TILES_REGISTRY, Colors, Tiles from ..core.goals import EmptyGoal from ..core.grid import ( equal, four_rooms, horizontal_line, nine_rooms, room, sample_coordinates, sample_direction, two_rooms, vertical_line, ) from ..core.rules import EmptyRule from ..environment import Environment, EnvParams from ..types import AgentState, EnvCarry, RuleSet, State _wall_tile = TILES_REGISTRY[Tiles.WALL, Colors.GREY] # colors for doors between rooms _allowed_colors = jnp.array( ( Colors.RED, Colors.GREEN, Colors.BLUE, Colors.PURPLE, Colors.YELLOW, Colors.GREY, ) ) # helper functions to generate various maps, inspired by the common minigrid layouts # TODO: all worlds should be square def generate_room(key, height, width): grid = room(height, width) return key, grid def generate_two_rooms(key, height, width): key, color_key, door_key = jax.random.split(key, num=3) color = jax.random.choice(color_key, _allowed_colors) door_pos = jax.random.randint(door_key, shape=(), minval=1, maxval=height - 1) grid = two_rooms(height, width) grid = grid.at[door_pos, width // 2].set(TILES_REGISTRY[Tiles.DOOR_CLOSED, color]) return key, grid def generate_four_rooms(key, height, width): key, doors_key, colors_key = jax.random.split(key, num=3) doors_offsets = jax.random.randint(doors_key, shape=(4,), minval=1, maxval=height // 2) colors = jax.random.choice(colors_key, _allowed_colors, shape=(4,)) grid = four_rooms(height, width) grid = grid.at[height // 2, doors_offsets[0]].set(TILES_REGISTRY[Tiles.DOOR_CLOSED, colors[0]]) grid = grid.at[height // 2, width // 2 + doors_offsets[1]].set(TILES_REGISTRY[Tiles.DOOR_CLOSED, colors[1]]) grid = grid.at[doors_offsets[2], width // 2].set(TILES_REGISTRY[Tiles.DOOR_CLOSED, colors[2]]) grid = grid.at[height // 2 + doors_offsets[3], width // 2].set(TILES_REGISTRY[Tiles.DOOR_CLOSED, colors[3]]) return key, grid def generate_six_rooms(key, height, width): key, colors_key = jax.random.split(key) grid = room(height, width) grid = vertical_line(grid, width // 2 - 2, 0, height, _wall_tile) grid = vertical_line(grid, width // 2 + 2, 0, height, _wall_tile) for i in range(1, 3): grid = horizontal_line(grid, 0, i * (height // 3), width // 2 - 2, _wall_tile) grid = horizontal_line(grid, width // 2 + 2, i * (height // 3), width // 2 - 2, _wall_tile) doors_idxs = ( # left doors (height // 2 - (height // 3), width // 2 - 2), (height // 2, width // 2 - 2), (height // 2 + (height // 3), width // 2 - 2), # right doors (height // 2 - (height // 3), width // 2 + 2), (height // 2, width // 2 + 2), (height // 2 + (height // 3), width // 2 + 2), ) colors = jax.random.choice(colors_key, _allowed_colors, shape=(6,)) for i in range(6): grid = grid.at[doors_idxs[i][0], doors_idxs[i][1]].set(TILES_REGISTRY[Tiles.DOOR_CLOSED, colors[i]]) return key, grid def generate_nine_rooms(key, height, width): # valid sizes should follow 3 * x + 4: 7, 10, 13, 16, 19, 22, 25, 28, 31, ... # (size - 4) % 3 == 0 key, doors_key, colors_key = jax.random.split(key, num=3) roomW, roomH = width // 3, height // 3 grid = nine_rooms(height, width) # assuming that rooms are square! door_coords = jax.random.randint(doors_key, shape=(12,), minval=1, maxval=roomW) colors = jax.random.choice(colors_key, _allowed_colors, shape=(12,)) # adapted from minigrid playground door_idx = 0 for i in range(0, 3): for j in range(0, 3): xL = i * roomW yT = j * roomH xR = xL + roomW yB = yT + roomH if i + 1 < 3: grid = grid.at[yT + door_coords[door_idx], xR].set(TILES_REGISTRY[Tiles.DOOR_CLOSED, colors[door_idx]]) door_idx = door_idx + 1 if j + 1 < 3: grid = grid.at[yB, xL + door_coords[door_idx]].set(TILES_REGISTRY[Tiles.DOOR_CLOSED, colors[door_idx]]) door_idx = door_idx + 1 return key, grid class XLandMiniGridEnvOptions(EnvParams): # you can vmap on rulesets for multi-task/meta learning ruleset: RuleSet = struct.field(pytree_node=True, default=_empty_ruleset) # experimental (can not vmap on it) grid_type: int = struct.field(pytree_node=False, default="1R") class XLandMiniGrid(Environment): def default_params(self, **kwargs) -> XLandMiniGridEnvOptions: default_params = XLandMiniGridEnvOptions(view_size=5) return default_params.replace(**kwargs)
def time_limit(self, params: XLandMiniGridEnvOptions) -> int:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Vchitect/VBench # Path: vbench/third_party/grit_src/grit/modeling/roi_heads/grit_fast_rcnn.py class GRiTFastRCNNOutputLayers(FastRCNNOutputLayers): @configurable def __init__( self, input_shape: ShapeSpec, **kwargs, ): super().__init__( input_shape=input_shape, **kwargs, ) input_size = input_shape.channels * \ (input_shape.width or 1) * (input_shape.height or 1) self.bbox_pred = nn.Sequential( nn.Linear(input_size, input_size), nn.ReLU(inplace=True), nn.Linear(input_size, 4) ) weight_init.c2_xavier_fill(self.bbox_pred[0]) nn.init.normal_(self.bbox_pred[-1].weight, std=0.001) nn.init.constant_(self.bbox_pred[-1].bias, 0) @classmethod def from_config(cls, cfg, input_shape): ret = super().from_config(cfg, input_shape) return ret def losses(self, predictions, proposals): scores, proposal_deltas = predictions gt_classes = ( cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0) ) num_classes = self.num_classes _log_classification_stats(scores, gt_classes) if len(proposals): proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0) # Nx4 assert not proposal_boxes.requires_grad, "Proposals should not require gradients!" gt_boxes = cat( [(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals], dim=0, ) else: proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device) loss_cls = self.softmax_cross_entropy_loss(scores, gt_classes) return { "loss_cls": loss_cls, "loss_box_reg": self.box_reg_loss( proposal_boxes, gt_boxes, proposal_deltas, gt_classes, num_classes=num_classes) } def softmax_cross_entropy_loss(self, pred_class_logits, gt_classes): if pred_class_logits.numel() == 0: return pred_class_logits.new_zeros([1])[0] loss = F.cross_entropy( pred_class_logits, gt_classes, reduction="mean") return loss def box_reg_loss( self, proposal_boxes, gt_boxes, pred_deltas, gt_classes, num_classes=-1): num_classes = num_classes if num_classes > 0 else self.num_classes box_dim = proposal_boxes.shape[1] fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < num_classes))[0] if pred_deltas.shape[1] == box_dim: fg_pred_deltas = pred_deltas[fg_inds] else: fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[ fg_inds, gt_classes[fg_inds] ] if self.box_reg_loss_type == "smooth_l1": gt_pred_deltas = self.box2box_transform.get_deltas( proposal_boxes[fg_inds], gt_boxes[fg_inds], ) loss_box_reg = smooth_l1_loss( fg_pred_deltas, gt_pred_deltas, self.smooth_l1_beta, reduction="sum" ) elif self.box_reg_loss_type == "giou": fg_pred_boxes = self.box2box_transform.apply_deltas( fg_pred_deltas, proposal_boxes[fg_inds] ) loss_box_reg = giou_loss(fg_pred_boxes, gt_boxes[fg_inds], reduction="sum") else: raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'") return loss_box_reg / max(gt_classes.numel(), 1.0) def predict_probs(self, predictions, proposals): scores = predictions[0] num_inst_per_image = [len(p) for p in proposals] probs = F.softmax(scores, dim=-1) return probs.split(num_inst_per_image, dim=0) def forward(self, x): if x.dim() > 2: x = torch.flatten(x, start_dim=1) scores = [] cls_scores = self.cls_score(x) scores.append(cls_scores) scores = torch.cat(scores, dim=1) proposal_deltas = self.bbox_pred(x) return scores, proposal_deltas # Path: vbench/third_party/grit_src/grit/modeling/text/text_decoder.py class TransformerDecoderTextualHead(TextualHead): def __init__( self, object_feature_size: int, vocab_size: int, hidden_size: int, num_layers: int, attention_heads: int, feedforward_size: int, dropout: float = 0.1, norm_type: str = "post", mask_future_positions: bool = True, max_caption_length: int = 1024, padding_idx: int = 0, decoder_type=None, not_tie_weight=None, output_hidden_states=None, use_mlp_wrapper=None, use_act_checkpoint=True, ): super().__init__(object_feature_size, vocab_size, hidden_size) self.num_layers = num_layers self.attention_heads = attention_heads self.feedforward_size = feedforward_size self.dropout = dropout assert mask_future_positions self.padding_idx = padding_idx self.object_feature_projection = nn.Sequential( nn.Linear(object_feature_size, self.textual_feature_size), nn.LayerNorm(self.textual_feature_size)) self.embedding = WordAndPositionalEmbedding( self.vocab_size, self.textual_feature_size, dropout=dropout, max_caption_length=max_caption_length, padding_idx=padding_idx, ) self.transformer = create_transformer( decoder_type=decoder_type, norm_type=norm_type, textual_feature_size=self.textual_feature_size, attention_heads=self.attention_heads, feedforward_size=self.feedforward_size, dropout=dropout, num_layers=self.num_layers, output_hidden_states=output_hidden_states, use_mlp_wrapper=use_mlp_wrapper, use_act_checkpoint=use_act_checkpoint, ) self.apply(self._init_weights) # Create an output linear layer and tie the input and output word # embeddings to reduce parametejs. self.output = nn.Linear(self.textual_feature_size, vocab_size) if not not_tie_weight: self.output.weight = self.embedding.words.weight @staticmethod def _init_weights(module): """Initialize weights like BERT - N(0.0, 0.02), bias = 0.""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=0.02) elif isinstance(module, nn.MultiheadAttention): module.in_proj_weight.data.normal_(mean=0.0, std=0.02) module.out_proj.weight.data.normal_(mean=0.0, std=0.02) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def forward( self, hidden_states, text_tokens, ): projected_object_features = self.object_feature_projection(hidden_states) if hidden_states is not None else None batch_size, max_text_length = text_tokens.size() text_embeddings = self.embedding(text_tokens) # An additive mask for masking the future (one direction). uni_mask_zero_neg = self._generate_future_mask( max_text_length, text_embeddings.dtype, text_embeddings.device ) # We transpose the first two dimensions of tokens embeddings and visual # features, as required by decoder. text_embeddings = text_embeddings.transpose(0, 1) projected_object_features = projected_object_features.transpose(0, 1) # if transformer here is the pytorch/decoder, there is no chance, the # output is always tensor trans_out = self.transformer( text_embeddings, projected_object_features, tgt_mask=uni_mask_zero_neg, ) if isinstance(trans_out, tuple): textual_features = trans_out[0] else: assert isinstance(trans_out, torch.Tensor) textual_features = trans_out # Undo the transpose and bring batch to dim 0. # shape: (batch_size, max_caption_length, hidden_size) textual_features = textual_features.transpose(0, 1) # shape: (batch_size, max_caption_length, vocab_size) output_logits = self.output(textual_features) if isinstance(trans_out, tuple): return output_logits, trans_out[1] else: return output_logits def _generate_future_mask( self, size: int, dtype: torch.dtype, device: torch.device ): # Default mask is for forward direction. Flip for backward direction. mask = torch.triu( torch.ones(size, size, device=device, dtype=dtype), diagonal=1 ) mask = mask.masked_fill(mask == 1, float("-inf")) return mask # Path: vbench/third_party/grit_src/grit/modeling/text/text_decoder.py class GRiTTextDecoder(nn.Module): def __init__( self, transformer, begin_token_id=101, beamsearch_decode=None, loss_type=None, tokenizer=None, ): super().__init__() self.textual = transformer self.padding_idx = self.textual.padding_idx self.begin_token_id = begin_token_id self.beamsearch_decode = beamsearch_decode self.tokenizer = tokenizer if loss_type is None: self.loss = nn.CrossEntropyLoss(ignore_index=self.padding_idx) elif loss_type == 'smooth': self.loss = SmoothLabelCrossEntropyLoss(ignore_index=self.padding_idx) else: raise NotImplementedError(loss_type) def forward(self, batch): object_features = batch['object_features'] if self.training: caption_token_input = batch["text_tokens"] output_logits = self.textual( object_features, caption_token_input, ) if 'need_predict' in batch: # in place should also be good, but we do not choose that for # safety as we may use it in prediction results in future target = batch["text_tokens"].clone() target[batch['need_predict'] == 0] = self.padding_idx else: target = batch["text_tokens"] feat = output_logits[:, :-1].contiguous() target = target[:, 1:].contiguous() feat = feat.view(-1, self.textual.vocab_size) target = target.view(-1) valid_mask = target != self.padding_idx target = target[valid_mask] feat = feat[valid_mask] loss = self.loss(feat, target) return loss else: output_dict = self.infer(object_features) return output_dict def infer(self, object_features): batch_size = object_features.size(0) begin_tokens = object_features.new_full( (batch_size, 1), self.begin_token_id ).long() decoding_step = functools.partial( self.decoding_step, object_features ) object_description_tokens, logprobs = self.beamsearch_decode.search( begin_tokens, decoding_step ) output_dict = { 'predictions': object_description_tokens, 'logprobs': logprobs, } return output_dict def decoding_step(self, object_features, partial_text): batch_size = object_features.shape[0] beam_size = int(partial_text.size(0) / batch_size) if beam_size > 1: batch_size, num_token, channels = object_features.size() object_features = object_features.unsqueeze(1).repeat(1, beam_size, 1, 1) object_features = object_features.view( batch_size * beam_size, num_token, channels ) text_lengths = torch.ones_like(partial_text) if len(text_lengths.size()) != 2: partial_text = partial_text.unsqueeze(1) # shape: (batch_size * beam_size, partial_caption_length, vocab_size) logits = self.textual( object_features, partial_text, ) return logits[:, -1, :].float() # Path: vbench/third_party/grit_src/grit/modeling/text/text_decoder.py class AutoRegressiveBeamSearch(object): def __init__( self, end_token_id: int, max_steps: int = 50, beam_size: int = 5, objectdet=True, per_node_beam_size: int = 2, ): self._eos_index = end_token_id self.max_steps = max_steps self.beam_size = beam_size self.objectdet = objectdet self.per_node_beam_size = per_node_beam_size or beam_size def search(self, begin_tokens, step): if self.beam_size > 1 and self.objectdet: only_return_best = False else: only_return_best = True batch_size = begin_tokens.size()[0] predictions = begin_tokens.unsqueeze(1).expand((batch_size, self.beam_size, begin_tokens.shape[-1])) # Calculate the first timestep. This is done outside the main loop # because we are going from a single decoder input (the output from the # encoder) to the top `beam_size` decoder outputs. On the other hand, # within the main loop we are going from the `beam_size` elements of the # beam to `beam_size`^2 candidates from which we will select the top # `beam_size` elements for the next iteration. # shape: (batch_size, num_classes) start_class_logits = step(begin_tokens) # Convert logits to logprobs. # shape: (batch_size * beam_size, vocab_size) start_class_logprobs = F.log_softmax(start_class_logits, dim=1) num_classes = start_class_logprobs.size()[1] # shape: (batch_size, beam_size), (batch_size, beam_size) start_top_logprobs, start_predicted_classes = start_class_logprobs.topk( self.beam_size ) if ( self.beam_size == 1 and (start_predicted_classes == self._eos_index).all() ): warnings.warn( "Empty object description predicted. You may want to increase beam" "size or ensure your step function is working properly.", RuntimeWarning, ) if only_return_best: return start_predicted_classes, start_top_logprobs else: return start_predicted_classes.unsqueeze(-1), start_top_logprobs # The log probs for the last time step. # shape: (batch_size, beam_size) last_logprobs = start_top_logprobs # shape: (batch_size, beam_size, sequence_length) predictions = torch.cat([predictions, start_predicted_classes.unsqueeze(-1)], dim=-1) # Log probability tensor that mandates that the end token is selected. # shape: (batch_size * beam_size, num_classes) logprobs_after_end = start_class_logprobs.new_full( (batch_size * self.beam_size, num_classes), float("-inf") ) logprobs_after_end[:, self._eos_index] = 0.0 logits_after_end = start_class_logprobs.new_full( (batch_size * self.beam_size, num_classes), float("-inf") ) logits_after_end[:, self._eos_index] = 0 while predictions.shape[-1] < self.max_steps: # shape: (batch_size * beam_size,) last_predictions = predictions[:, :, -1].reshape(batch_size * self.beam_size) # If every predicted token from the last step is `self._eos_index`, # then we can stop early. if (last_predictions == self._eos_index).all(): break predictions_so_far = predictions.view( batch_size * self.beam_size, -1 ) # shape: (batch_size * beam_size, num_classes) class_logits = step(predictions_so_far) # Set logprobs of last predicted tokens as high negative value to avoid # repetition in description. class_logits = class_logits.scatter(1, predictions_so_far[:, -1].view((-1, 1)), -10000) # shape: (batch_size * beam_size, num_classes) last_predictions_expanded = last_predictions.unsqueeze(-1).expand( batch_size * self.beam_size, num_classes ) # Here we are finding any beams where we predicted the end token in # the previous timestep and replacing the distribution with a # one-hot distribution, forcing the beam to predict the end token # this timestep as well. class_logits = torch.where( last_predictions_expanded == self._eos_index, logits_after_end, class_logits, ) # Convert logits to logprobs. # shape: (batch_size * beam_size, vocab_size) class_logprobs = F.log_softmax(class_logits, dim=1) # shape (both): (batch_size * beam_size, per_node_beam_size) top_logprobs, predicted_classes = class_logprobs.topk( self.per_node_beam_size ) # Here we expand the last log probs to `(batch_size * beam_size, # per_node_beam_size)` so that we can add them to the current log # probs for this timestep. This lets us maintain the log # probability of each element on the beam. # shape: (batch_size * beam_size, per_node_beam_size) expanded_last_logprobs = ( last_logprobs.unsqueeze(2) .expand(batch_size, self.beam_size, self.per_node_beam_size) .reshape(batch_size * self.beam_size, self.per_node_beam_size) ) # shape: (batch_size * beam_size, per_node_beam_size) summed_top_logprobs = top_logprobs + expanded_last_logprobs # shape: (batch_size, beam_size * per_node_beam_size) reshaped_summed = summed_top_logprobs.reshape( batch_size, self.beam_size * self.per_node_beam_size ) # shape: (batch_size, beam_size * per_node_beam_size) reshaped_predicted_classes = predicted_classes.reshape( batch_size, self.beam_size * self.per_node_beam_size ) # Append the predictions to the current beam. reshaped_beam = ( predictions.view(batch_size * self.beam_size, 1, -1) .repeat(1, self.per_node_beam_size, 1) .reshape(batch_size, self.beam_size * self.per_node_beam_size, -1) ) # batch_size, (beam_size * per_node_beach_size), #token reshaped_beam = torch.cat([reshaped_beam, reshaped_predicted_classes.unsqueeze(-1)], dim=-1) # Keep only the top `beam_size` beam indices. # shape: (batch_size, beam_size), (batch_size, beam_size) restricted_beam_logprobs, restricted_beam_indices = reshaped_summed.topk( self.beam_size ) predictions = reshaped_beam.gather( 1, restricted_beam_indices.unsqueeze(-1).repeat(1,1,reshaped_beam.shape[-1]) ) # shape: (batch_size, beam_size) last_logprobs = restricted_beam_logprobs if not torch.isfinite(last_logprobs).all(): warnings.warn( "Infinite log probs encountered. Some final descriptions may not " "make sense. This can happen when the beam size is larger than" " the number of valid (non-zero probability) transitions that " "the step function produces.", RuntimeWarning, ) # Optionally select best beam and its logprobs. if only_return_best: # shape: (batch_size, sequence_length) predictions = predictions[:, 0, :] last_logprobs = last_logprobs[:, 0] num_valid = (predictions != self._eos_index).sum(dim=-1) num_valid += (predictions == self._eos_index).sum(dim=-1) > 0 num_valid = num_valid - begin_tokens.shape[1] num_valid = num_valid.clip(min=1) last_logprobs = last_logprobs / num_valid return predictions, last_logprobs # Path: vbench/third_party/grit_src/grit/modeling/text/load_text_token.py class LoadTextTokens(object): def __init__(self, tokenizer, max_text_len=40, padding='do_not_pad'): self.tokenizer = tokenizer self.max_text_len = max_text_len self.padding = padding def descriptions_to_text_tokens(self, target, begin_token): target_encoding = self.tokenizer( target, padding=self.padding, add_special_tokens=False, truncation=True, max_length=self.max_text_len) need_predict = [1] * len(target_encoding['input_ids']) payload = target_encoding['input_ids'] if len(payload) > self.max_text_len - 2: payload = payload[-(self.max_text_len - 2):] need_predict = payload[-(self.max_text_len - 2):] input_ids = [begin_token] + payload + [self.tokenizer.sep_token_id] need_predict = [0] + need_predict + [1] data = { 'text_tokens': torch.tensor(input_ids), 'text_lengths': len(input_ids), 'need_predict': torch.tensor(need_predict), } return data def __call__(self, object_descriptions, box_features, begin_token): text_tokens = [] text_lengths = [] need_predict = [] for description in object_descriptions: tokens = self.descriptions_to_text_tokens(description, begin_token) text_tokens.append(tokens['text_tokens']) text_lengths.append(tokens['text_lengths']) need_predict.append(tokens['need_predict']) text_tokens = torch.cat(self.collate(text_tokens), dim=0).to(box_features.device) text_lengths = torch.tensor(text_lengths).to(box_features.device) need_predict = torch.cat(self.collate(need_predict), dim=0).to(box_features.device) assert text_tokens.dim() == 2 and need_predict.dim() == 2 data = {'text_tokens': text_tokens, 'text_lengths': text_lengths, 'need_predict': need_predict} return data def collate(self, batch): if all(isinstance(b, torch.Tensor) for b in batch) and len(batch) > 0: if not all(b.shape == batch[0].shape for b in batch[1:]): assert all(len(b.shape) == len(batch[0].shape) for b in batch[1:]) shape = torch.tensor([b.shape for b in batch]) max_shape = tuple(shape.max(dim=0)[0].tolist()) batch2 = [] for b in batch: if any(c < m for c, m in zip(b.shape, max_shape)): b2 = torch.zeros(max_shape, dtype=b.dtype, device=b.device) if b.dim() == 1: b2[:b.shape[0]] = b elif b.dim() == 2: b2[:b.shape[0], :b.shape[1]] = b elif b.dim() == 3: b2[:b.shape[0], :b.shape[1], :b.shape[2]] = b else: raise NotImplementedError b = b2 batch2.append(b[None, ...]) else: batch2 = [] for b in batch: batch2.append(b[None, ...]) return batch2 else: raise NotImplementedError # Path: vbench/third_party/grit_src/grit/data/custom_dataset_mapper.py class ObjDescription: def __init__(self, object_descriptions): self.data = object_descriptions def __getitem__(self, item): assert type(item) == torch.Tensor assert item.dim() == 1 if len(item) > 0: assert item.dtype == torch.int64 or item.dtype == torch.bool if item.dtype == torch.int64: return ObjDescription([self.data[x.item()] for x in item]) elif item.dtype == torch.bool: return ObjDescription(list(compress(self.data, item))) return ObjDescription(list(compress(self.data, item))) def __len__(self): return len(self.data) def __repr__(self): return "ObjDescription({})".format(self.data) # Path: vbench/third_party/grit_src/grit/modeling/soft_nms.py def batched_soft_nms( boxes, scores, idxs, method, gaussian_sigma, linear_threshold, prune_threshold ): """ Performs soft non-maximum suppression in a batched fashion. Each index value correspond to a category, and NMS will not be applied between elements of different categories. Args: boxes (Tensor[N, 4]): boxes where NMS will be performed. They are expected to be in (x1, y1, x2, y2) format scores (Tensor[N]): scores for each one of the boxes idxs (Tensor[N]): indices of the categories for each one of the boxes. method (str): one of ['gaussian', 'linear', 'hard'] see paper for details. users encouraged not to use "hard", as this is the same nms available elsewhere in detectron2 gaussian_sigma (float): parameter for Gaussian penalty function linear_threshold (float): iou threshold for applying linear decay. Nt from the paper re-used as threshold for standard "hard" nms prune_threshold (float): boxes with scores below this threshold are pruned at each iteration. Dramatically reduces computation time. Authors use values in [10e-4, 10e-2] Returns: tuple(Tensor, Tensor): [0]: int64 tensor with the indices of the elements that have been kept by Soft NMS, sorted in decreasing order of scores [1]: float tensor with the re-scored scores of the elements that were kept """ if boxes.numel() == 0: return ( torch.empty((0,), dtype=torch.int64, device=boxes.device), torch.empty((0,), dtype=torch.float32, device=scores.device), ) # strategy: in order to perform NMS independently per class. # we add an offset to all the boxes. The offset is dependent # only on the class idx, and is large enough so that boxes # from different classes do not overlap max_coordinate = boxes.max() offsets = idxs.to(boxes) * (max_coordinate + 1) boxes_for_nms = boxes + offsets[:, None] return soft_nms( boxes_for_nms, scores, method, gaussian_sigma, linear_threshold, prune_threshold ) # Path: vbench/third_party/grit_src/grit/modeling/roi_heads/grit_roi_heads.py import math import torch import logging from typing import Dict, List, Optional, Tuple, Union from detectron2.config import configurable from detectron2.structures import Boxes, Instances, pairwise_iou from detectron2.utils.events import get_event_storage from detectron2.modeling.box_regression import Box2BoxTransform from detectron2.modeling.roi_heads.roi_heads import ROI_HEADS_REGISTRY, StandardROIHeads from detectron2.modeling.roi_heads.cascade_rcnn import CascadeROIHeads, _ScaleGradient from detectron2.modeling.poolers import ROIPooler from detectron2.layers import batched_nms from .grit_fast_rcnn import GRiTFastRCNNOutputLayers from ..text.text_decoder import TransformerDecoderTextualHead, GRiTTextDecoder, AutoRegressiveBeamSearch from ..text.load_text_token import LoadTextTokens from transformers import BertTokenizer from vbench.third_party.grit_src.grit.data.custom_dataset_mapper import ObjDescription from ..soft_nms import batched_soft_nms logger = logging.getLogger(__name__) @ROI_HEADS_REGISTRY.register() class GRiTROIHeadsAndTextDecoder(CascadeROIHeads): @configurable def __init__( self, *, text_decoder_transformer, train_task: list, test_task: str, mult_proposal_score: bool = False, mask_weight: float = 1.0, object_feat_pooler=None, soft_nms_enabled=False, beam_size=1, **kwargs, ): super().__init__(**kwargs) self.mult_proposal_score = mult_proposal_score self.mask_weight = mask_weight self.object_feat_pooler = object_feat_pooler self.soft_nms_enabled = soft_nms_enabled self.test_task = test_task self.beam_size = beam_size
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: 16lemoing/dot # Path: dot/models/shelf/cotracker_utils/models/core/cotracker/cotracker.py class CoTracker(nn.Module): def __init__( self, S=8, stride=8, add_space_attn=True, num_heads=8, hidden_size=384, space_depth=12, time_depth=12, ): super(CoTracker, self).__init__() self.S = S self.stride = stride self.hidden_dim = 256 self.latent_dim = latent_dim = 128 self.corr_levels = 4 self.corr_radius = 3 self.add_space_attn = add_space_attn self.fnet = BasicEncoder( output_dim=self.latent_dim, norm_fn="instance", dropout=0, stride=stride ) self.updateformer = UpdateFormer( space_depth=space_depth, time_depth=time_depth, input_dim=456, hidden_size=hidden_size, num_heads=num_heads, output_dim=latent_dim + 2, mlp_ratio=4.0, add_space_attn=add_space_attn, ) self.norm = nn.GroupNorm(1, self.latent_dim) self.ffeat_updater = nn.Sequential( nn.Linear(self.latent_dim, self.latent_dim), nn.GELU(), ) self.vis_predictor = nn.Sequential( nn.Linear(self.latent_dim, 1), ) def forward_iteration( self, fmaps, coords_init, feat_init=None, vis_init=None, track_mask=None, iters=4, ): B, S_init, N, D = coords_init.shape assert D == 2 assert B == 1 B, S, __, H8, W8 = fmaps.shape device = fmaps.device if S_init < S: coords = torch.cat( [coords_init, coords_init[:, -1].repeat(1, S - S_init, 1, 1)], dim=1 ) vis_init = torch.cat( [vis_init, vis_init[:, -1].repeat(1, S - S_init, 1, 1)], dim=1 ) else: coords = coords_init.clone() fcorr_fn = CorrBlock( fmaps, num_levels=self.corr_levels, radius=self.corr_radius ) ffeats = feat_init.clone() times_ = torch.linspace(0, S - 1, S).reshape(1, S, 1) pos_embed = sample_pos_embed( grid_size=(H8, W8), embed_dim=456, coords=coords, ) pos_embed = rearrange(pos_embed, "b e n -> (b n) e").unsqueeze(1) times_embed = ( torch.from_numpy(get_1d_sincos_pos_embed_from_grid(456, times_[0]))[None] .repeat(B, 1, 1) .float() .to(device) ) coord_predictions = [] for __ in range(iters): coords = coords.detach() fcorr_fn.corr(ffeats) fcorrs = fcorr_fn.sample(coords) # B, S, N, LRR LRR = fcorrs.shape[3] fcorrs_ = fcorrs.permute(0, 2, 1, 3).reshape(B * N, S, LRR) flows_ = (coords - coords[:, 0:1]).permute(0, 2, 1, 3).reshape(B * N, S, 2) flows_cat = get_2d_embedding(flows_, 64, cat_coords=True) ffeats_ = ffeats.permute(0, 2, 1, 3).reshape(B * N, S, self.latent_dim) if track_mask.shape[1] < vis_init.shape[1]: track_mask = torch.cat( [ track_mask, torch.zeros_like(track_mask[:, 0]).repeat( 1, vis_init.shape[1] - track_mask.shape[1], 1, 1 ), ], dim=1, ) concat = ( torch.cat([track_mask, vis_init], dim=2) .permute(0, 2, 1, 3) .reshape(B * N, S, 2) ) transformer_input = torch.cat([flows_cat, fcorrs_, ffeats_, concat], dim=2) x = transformer_input + pos_embed + times_embed x = rearrange(x, "(b n) t d -> b n t d", b=B) delta = self.updateformer(x) delta = rearrange(delta, " b n t d -> (b n) t d") delta_coords_ = delta[:, :, :2] delta_feats_ = delta[:, :, 2:] delta_feats_ = delta_feats_.reshape(B * N * S, self.latent_dim) ffeats_ = ffeats.permute(0, 2, 1, 3).reshape(B * N * S, self.latent_dim) ffeats_ = self.ffeat_updater(self.norm(delta_feats_)) + ffeats_ ffeats = ffeats_.reshape(B, N, S, self.latent_dim).permute( 0, 2, 1, 3 ) # B,S,N,C coords = coords + delta_coords_.reshape(B, N, S, 2).permute(0, 2, 1, 3) coord_predictions.append(coords * self.stride) vis_e = self.vis_predictor(ffeats.reshape(B * S * N, self.latent_dim)).reshape( B, S, N ) return coord_predictions, vis_e, feat_init def forward(self, rgbs, queries, iters=4, cached_feat=None, feat_init=None, is_train=False): B, T, C, H, W = rgbs.shape B, N, __ = queries.shape device = rgbs.device assert B == 1 # INIT for the first sequence # We want to sort points by the first frame they are visible to add them to the tensor of tracked points consequtively first_positive_inds = queries[:, :, 0].long() __, sort_inds = torch.sort(first_positive_inds[0], dim=0, descending=False) inv_sort_inds = torch.argsort(sort_inds, dim=0) first_positive_sorted_inds = first_positive_inds[0][sort_inds] assert torch.allclose( first_positive_inds[0], first_positive_inds[0][sort_inds][inv_sort_inds] ) coords_init = queries[:, :, 1:].reshape(B, 1, N, 2).repeat( 1, self.S, 1, 1 ) / float(self.stride) rgbs = 2 * rgbs - 1.0 traj_e = torch.zeros((B, T, N, 2), device=device) vis_e = torch.zeros((B, T, N), device=device) ind_array = torch.arange(T, device=device) ind_array = ind_array[None, :, None].repeat(B, 1, N) track_mask = (ind_array >= first_positive_inds[:, None, :]).unsqueeze(-1) # these are logits, so we initialize visibility with something that would give a value close to 1 after softmax vis_init = torch.ones((B, self.S, N, 1), device=device).float() * 10 ind = 0 track_mask_ = track_mask[:, :, sort_inds].clone() coords_init_ = coords_init[:, :, sort_inds].clone() vis_init_ = vis_init[:, :, sort_inds].clone() prev_wind_idx = 0 fmaps_ = None vis_predictions = [] coord_predictions = [] wind_inds = [] while ind < T - self.S // 2: rgbs_seq = rgbs[:, ind : ind + self.S] S = S_local = rgbs_seq.shape[1] if cached_feat is None: if S < self.S: rgbs_seq = torch.cat( [rgbs_seq, rgbs_seq[:, -1, None].repeat(1, self.S - S, 1, 1, 1)], dim=1, ) S = rgbs_seq.shape[1] rgbs_ = rgbs_seq.reshape(B * S, C, H, W) if fmaps_ is None: fmaps_ = self.fnet(rgbs_) else: fmaps_ = torch.cat( [fmaps_[self.S // 2 :], self.fnet(rgbs_[self.S // 2 :])], dim=0 ) fmaps = fmaps_.reshape( B, S, self.latent_dim, H // self.stride, W // self.stride ) else: fmaps = cached_feat[:, ind : ind + self.S] if S < self.S: fmaps = torch.cat( [fmaps, fmaps[:, -1, None].repeat(1, self.S - S, 1, 1, 1)], dim=1, ) curr_wind_points = torch.nonzero(first_positive_sorted_inds < ind + self.S) if curr_wind_points.shape[0] == 0: ind = ind + self.S // 2 continue wind_idx = curr_wind_points[-1] + 1 if wind_idx - prev_wind_idx > 0: fmaps_sample = fmaps[ :, first_positive_sorted_inds[prev_wind_idx:wind_idx] - ind ] feat_init_ = bilinear_sample2d( fmaps_sample, coords_init_[:, 0, prev_wind_idx:wind_idx, 0], coords_init_[:, 0, prev_wind_idx:wind_idx, 1], ).permute(0, 2, 1) feat_init_ = feat_init_.unsqueeze(1).repeat(1, self.S, 1, 1) feat_init = smart_cat(feat_init, feat_init_, dim=2) if prev_wind_idx > 0: new_coords = coords[-1][:, self.S // 2 :] / float(self.stride) coords_init_[:, : self.S // 2, :prev_wind_idx] = new_coords coords_init_[:, self.S // 2 :, :prev_wind_idx] = new_coords[ :, -1 ].repeat(1, self.S // 2, 1, 1) new_vis = vis[:, self.S // 2 :].unsqueeze(-1) vis_init_[:, : self.S // 2, :prev_wind_idx] = new_vis vis_init_[:, self.S // 2 :, :prev_wind_idx] = new_vis[:, -1].repeat( 1, self.S // 2, 1, 1 ) coords, vis, __ = self.forward_iteration( fmaps=fmaps, coords_init=coords_init_[:, :, :wind_idx], feat_init=feat_init[:, :, :wind_idx], vis_init=vis_init_[:, :, :wind_idx], track_mask=track_mask_[:, ind : ind + self.S, :wind_idx], iters=iters, ) if is_train: vis_predictions.append(torch.sigmoid(vis[:, :S_local])) coord_predictions.append([coord[:, :S_local] for coord in coords]) wind_inds.append(wind_idx) traj_e[:, ind : ind + self.S, :wind_idx] = coords[-1][:, :S_local] vis_e[:, ind : ind + self.S, :wind_idx] = vis[:, :S_local] track_mask_[:, : ind + self.S, :wind_idx] = 0.0 ind = ind + self.S // 2 prev_wind_idx = wind_idx traj_e = traj_e[:, :, inv_sort_inds] vis_e = vis_e[:, :, inv_sort_inds] vis_e = torch.sigmoid(vis_e) train_data = ( (vis_predictions, coord_predictions, wind_inds, sort_inds) if is_train else None ) return traj_e, feat_init, vis_e, train_data # Path: dot/models/shelf/cotracker_utils/models/core/cotracker/cotracker.py def get_points_on_a_grid(grid_size, interp_shape, grid_center=(0, 0), device="cpu"): if grid_size == 1: return torch.tensor([interp_shape[1] / 2, interp_shape[0] / 2], device=device)[ None, None ] grid_y, grid_x = meshgrid2d( 1, grid_size, grid_size, stack=False, norm=False, device=device ) step = interp_shape[1] // 64 if grid_center[0] != 0 or grid_center[1] != 0: grid_y = grid_y - grid_size / 2.0 grid_x = grid_x - grid_size / 2.0 grid_y = step + grid_y.reshape(1, -1) / float(grid_size - 1) * ( interp_shape[0] - step * 2 ) grid_x = step + grid_x.reshape(1, -1) / float(grid_size - 1) * ( interp_shape[1] - step * 2 ) grid_y = grid_y + grid_center[0] grid_x = grid_x + grid_center[1] xy = torch.stack([grid_x, grid_y], dim=-1).to(device) return xy # Path: dot/models/shelf/cotracker_utils/models/evaluation_predictor.py import torch import torch.nn.functional as F from typing import Tuple from dot.models.shelf.cotracker_utils.models.core.cotracker.cotracker import CoTracker, get_points_on_a_grid # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. class EvaluationPredictor(torch.nn.Module): def __init__( self, cotracker_model: CoTracker, interp_shape: Tuple[int, int] = (384, 512), grid_size: int = 6, local_grid_size: int = 6, single_point: bool = True, n_iters: int = 6, ) -> None: super(EvaluationPredictor, self).__init__() self.grid_size = grid_size self.local_grid_size = local_grid_size self.single_point = single_point self.interp_shape = interp_shape self.n_iters = n_iters self.model = cotracker_model self.model.eval() def forward(self, video, queries): queries = queries.clone() B, T, C, H, W = video.shape B, N, D = queries.shape assert D == 3 assert B == 1 rgbs = video.reshape(B * T, C, H, W) rgbs = F.interpolate(rgbs, tuple(self.interp_shape), mode="bilinear") rgbs = rgbs.reshape(B, T, 3, self.interp_shape[0], self.interp_shape[1]) device = rgbs.device queries[:, :, 1] *= self.interp_shape[1] / W queries[:, :, 2] *= self.interp_shape[0] / H if self.single_point: traj_e = torch.zeros((B, T, N, 2), device=device) vis_e = torch.zeros((B, T, N), device=device) for pind in range((N)): query = queries[:, pind : pind + 1] t = query[0, 0, 0].long() traj_e_pind, vis_e_pind = self._process_one_point(rgbs, query) traj_e[:, t:, pind : pind + 1] = traj_e_pind[:, :, :1] vis_e[:, t:, pind : pind + 1] = vis_e_pind[:, :, :1] else: if self.grid_size > 0: xy = get_points_on_a_grid(self.grid_size, rgbs.shape[3:], device=device) xy = torch.cat([torch.zeros_like(xy[:, :, :1]), xy], dim=2).to( device ) # queries = torch.cat([queries, xy], dim=1) # traj_e, __, vis_e, __ = self.model( rgbs=rgbs, queries=queries, iters=self.n_iters, ) traj_e[:, :, :, 0] *= W / float(self.interp_shape[1]) traj_e[:, :, :, 1] *= H / float(self.interp_shape[0]) return traj_e, vis_e def _process_one_point(self, rgbs, query): t = query[0, 0, 0].long()
device = rgbs.device
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: cswry/SeeSR # Path: basicsr/data/degradations.py def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0): """2D sinc filter Reference: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter Args: cutoff (float): cutoff frequency in radians (pi is max) kernel_size (int): horizontal and vertical size, must be odd. pad_to (int): pad kernel size to desired size, must be odd or zero. """ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.' kernel = np.fromfunction( lambda x, y: cutoff * special.j1(cutoff * np.sqrt( (x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)) / (2 * np.pi * np.sqrt( (x - (kernel_size - 1) / 2)**2 + (y - (kernel_size - 1) / 2)**2)), [kernel_size, kernel_size]) kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff**2 / (4 * np.pi) kernel = kernel / np.sum(kernel) if pad_to > kernel_size: pad_size = (pad_to - kernel_size) // 2 kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) return kernel # Path: basicsr/data/degradations.py def random_mixed_kernels(kernel_list, kernel_prob, kernel_size=21, sigma_x_range=(0.6, 5), sigma_y_range=(0.6, 5), rotation_range=(-math.pi, math.pi), betag_range=(0.5, 8), betap_range=(0.5, 8), noise_range=None, return_sigma=False): """Randomly generate mixed kernels. Args: kernel_list (tuple): a list name of kernel types, support ['iso', 'aniso', 'skew', 'generalized', 'plateau_iso', 'plateau_aniso'] kernel_prob (tuple): corresponding kernel probability for each kernel type kernel_size (int): sigma_x_range (tuple): [0.6, 5] sigma_y_range (tuple): [0.6, 5] rotation range (tuple): [-math.pi, math.pi] beta_range (tuple): [0.5, 8] noise_range(tuple, optional): multiplicative kernel noise, [0.75, 1.25]. Default: None Returns: kernel (ndarray): """ kernel_type = random.choices(kernel_list, kernel_prob)[0] if not return_sigma: if kernel_type == 'iso': kernel = random_bivariate_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma) elif kernel_type == 'aniso': kernel = random_bivariate_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma) elif kernel_type == 'generalized_iso': kernel = random_bivariate_generalized_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betag_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma) elif kernel_type == 'generalized_aniso': kernel = random_bivariate_generalized_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betag_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma) elif kernel_type == 'plateau_iso': kernel = random_bivariate_plateau( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True, return_sigma=return_sigma) elif kernel_type == 'plateau_aniso': kernel = random_bivariate_plateau( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False, return_sigma=return_sigma) return kernel else: if kernel_type == 'iso': kernel, sigma_list = random_bivariate_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma) elif kernel_type == 'aniso': kernel, sigma_list = random_bivariate_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma) elif kernel_type == 'generalized_iso': kernel, sigma_list = random_bivariate_generalized_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betag_range, noise_range=noise_range, isotropic=True, return_sigma=return_sigma) elif kernel_type == 'generalized_aniso': kernel, sigma_list = random_bivariate_generalized_Gaussian( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betag_range, noise_range=noise_range, isotropic=False, return_sigma=return_sigma) elif kernel_type == 'plateau_iso': kernel, sigma_list = random_bivariate_plateau( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=True, return_sigma=return_sigma) elif kernel_type == 'plateau_aniso': kernel, sigma_list = random_bivariate_plateau( kernel_size, sigma_x_range, sigma_y_range, rotation_range, betap_range, noise_range=None, isotropic=False, return_sigma=return_sigma) return kernel, sigma_list # Path: basicsr/data/transforms.py def augment(imgs, hflip=True, rotation=True, flows=None, return_status=False): """Augment: horizontal flips OR rotate (0, 90, 180, 270 degrees). We use vertical flip and transpose for rotation implementation. All the images in the list use the same augmentation. Args: imgs (list[ndarray] | ndarray): Images to be augmented. If the input is an ndarray, it will be transformed to a list. hflip (bool): Horizontal flip. Default: True. rotation (bool): Ratotation. Default: True. flows (list[ndarray]: Flows to be augmented. If the input is an ndarray, it will be transformed to a list. Dimension is (h, w, 2). Default: None. return_status (bool): Return the status of flip and rotation. Default: False. Returns: list[ndarray] | ndarray: Augmented images and flows. If returned results only have one element, just return ndarray. """ hflip = hflip and random.random() < 0.5 vflip = rotation and random.random() < 0.5 rot90 = rotation and random.random() < 0.5 def _augment(img): if hflip: # horizontal cv2.flip(img, 1, img) if vflip: # vertical cv2.flip(img, 0, img) if rot90: img = img.transpose(1, 0, 2) return img def _augment_flow(flow): if hflip: # horizontal cv2.flip(flow, 1, flow) flow[:, :, 0] *= -1 if vflip: # vertical cv2.flip(flow, 0, flow) flow[:, :, 1] *= -1 if rot90: flow = flow.transpose(1, 0, 2) flow = flow[:, :, [1, 0]] return flow if not isinstance(imgs, list): imgs = [imgs] imgs = [_augment(img) for img in imgs] if len(imgs) == 1: imgs = imgs[0] if flows is not None: if not isinstance(flows, list): flows = [flows] flows = [_augment_flow(flow) for flow in flows] if len(flows) == 1: flows = flows[0] return imgs, flows else: if return_status: return imgs, (hflip, vflip, rot90) else: return imgs # Path: basicsr/utils/file_client.py class FileClient(object): """A general file client to access files in different backend. The client loads a file or text in a specified backend from its path and return it as a binary file. it can also register other backend accessor with a given name and backend class. Attributes: backend (str): The storage backend type. Options are "disk", "memcached" and "lmdb". client (:obj:`BaseStorageBackend`): The backend object. """ _backends = { 'disk': HardDiskBackend, 'memcached': MemcachedBackend, 'lmdb': LmdbBackend, } def __init__(self, backend='disk', **kwargs): if backend not in self._backends: raise ValueError(f'Backend {backend} is not supported. Currently supported ones' f' are {list(self._backends.keys())}') self.backend = backend self.client = self._backends[backend](**kwargs) def get(self, filepath, client_key='default'): # client_key is used only for lmdb, where different fileclients have # different lmdb environments. if self.backend == 'lmdb': return self.client.get(filepath, client_key) else: return self.client.get(filepath) def get_text(self, filepath): return self.client.get_text(filepath) # Path: basicsr/utils/img_util.py def imfrombytes(content, flag='color', float32=False): """Read an image from bytes. Args: content (bytes): Image bytes got from files or other streams. flag (str): Flags specifying the color type of a loaded image, candidates are `color`, `grayscale` and `unchanged`. float32 (bool): Whether to change to float32., If True, will also norm to [0, 1]. Default: False. Returns: ndarray: Loaded image array. """ img_np = np.frombuffer(content, np.uint8) imread_flags = {'color': cv2.IMREAD_COLOR, 'grayscale': cv2.IMREAD_GRAYSCALE, 'unchanged': cv2.IMREAD_UNCHANGED} img = cv2.imdecode(img_np, imread_flags[flag]) if float32: img = img.astype(np.float32) / 255. return img # Path: basicsr/utils/img_util.py def img2tensor(imgs, bgr2rgb=True, float32=True): """Numpy array to tensor. Args: imgs (list[ndarray] | ndarray): Input images. bgr2rgb (bool): Whether to change bgr to rgb. float32 (bool): Whether to change to float32. Returns: list[tensor] | tensor: Tensor images. If returned results only have one element, just return tensor. """ def _totensor(img, bgr2rgb, float32): if img.shape[2] == 3 and bgr2rgb: if img.dtype == 'float64': img = img.astype('float32') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = torch.from_numpy(img.transpose(2, 0, 1)) if float32: img = img.float() return img if isinstance(imgs, list): return [_totensor(img, bgr2rgb, float32) for img in imgs] else: return _totensor(imgs, bgr2rgb, float32) # Path: basicsr/utils/logger.py def get_root_logger(logger_name='basicsr', log_level=logging.INFO, log_file=None): """Get the root logger. The logger will be initialized if it has not been initialized. By default a StreamHandler will be added. If `log_file` is specified, a FileHandler will also be added. Args: logger_name (str): root logger name. Default: 'basicsr'. log_file (str | None): The log filename. If specified, a FileHandler will be added to the root logger. log_level (int): The root logger level. Note that only the process of rank 0 is affected, while other processes will set the level to "Error" and be silent most of the time. Returns: logging.Logger: The root logger. """ logger = logging.getLogger(logger_name) # if the logger has been initialized, just return it if logger_name in initialized_logger: return logger format_str = '%(asctime)s %(levelname)s: %(message)s' stream_handler = logging.StreamHandler() stream_handler.setFormatter(logging.Formatter(format_str)) logger.addHandler(stream_handler) logger.propagate = False rank, _ = get_dist_info() if rank != 0: logger.setLevel('ERROR') elif log_file is not None: logger.setLevel(log_level) # add file handler file_handler = logging.FileHandler(log_file, 'w') file_handler.setFormatter(logging.Formatter(format_str)) file_handler.setLevel(log_level) logger.addHandler(file_handler) initialized_logger[logger_name] = True return logger # Path: dataloaders/simple_dataset.py import cv2 import os import glob import torch import random import numpy as np import math from torch.utils.data import Dataset from torchvision import transforms from basicsr.data.degradations import circular_lowpass_kernel, random_mixed_kernels from basicsr.data.transforms import augment from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor from PIL import Image class SimpleDataset(Dataset): def __init__(self, opt, fix_size=512): self.opt = opt self.image_root = opt['gt_path'] self.fix_size = fix_size exts = ['*.jpg', '*.png'] self.image_list = [] for image_root in self.image_root: for ext in exts: image_list = glob.glob(os.path.join(image_root, ext)) self.image_list += image_list # if add lsdir dataset image_list = glob.glob(os.path.join(image_root, '00*', ext)) self.image_list += image_list self.crop_preproc = transforms.Compose([ # transforms.CenterCrop(fix_size), transforms.Resize(fix_size) # transforms.RandomHorizontalFlip(), ]) self.img_preproc = transforms.Compose([ transforms.ToTensor(), ]) # blur settings for the first degradation self.blur_kernel_size = opt['blur_kernel_size'] self.kernel_list = opt['kernel_list'] self.kernel_prob = opt['kernel_prob'] # a list for each kernel probability self.blur_sigma = opt['blur_sigma'] self.betag_range = opt['betag_range'] # betag used in generalized Gaussian blur kernels self.betap_range = opt['betap_range'] # betap used in plateau blur kernels self.sinc_prob = opt['sinc_prob'] # the probability for sinc filters # blur settings for the second degradation self.blur_kernel_size2 = opt['blur_kernel_size2'] self.kernel_list2 = opt['kernel_list2'] self.kernel_prob2 = opt['kernel_prob2'] self.blur_sigma2 = opt['blur_sigma2'] self.betag_range2 = opt['betag_range2'] self.betap_range2 = opt['betap_range2'] self.sinc_prob2 = opt['sinc_prob2'] # a final sinc filter self.final_sinc_prob = opt['final_sinc_prob'] self.kernel_range = [2 * v + 1 for v in range(3, 11)] # kernel size ranges from 7 to 21 # TODO: kernel range is now hard-coded, should be in the configure file self.pulse_tensor = torch.zeros(21, 21).float() # convolving with pulse tensor brings no blurry effect self.pulse_tensor[10, 10] = 1 print(f'The dataset length: {len(self.image_list)}') def __getitem__(self, index): image = Image.open(self.image_list[index]).convert('RGB') # width, height = image.size # if width > height: # width_after = self.fix_size # height_after = int(height*width_after/width) # elif height > width: # height_after = self.fix_size # width_after = int(width*height_after/height) # elif height == width: # height_after = self.fix_size # width_after = self.fix_size image = image.resize((self.fix_size, self.fix_size),Image.LANCZOS) # image = self.crop_preproc(image) image = self.img_preproc(image) # ------------------------ Generate kernels (used in the first degradation) ------------------------ # kernel_size = random.choice(self.kernel_range) if np.random.uniform() < self.opt['sinc_prob']: # this sinc filter setting is for kernels ranging from [7, 21] if kernel_size < 13: omega_c = np.random.uniform(np.pi / 3, np.pi) else: omega_c = np.random.uniform(np.pi / 5, np.pi) kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) else: kernel = random_mixed_kernels( self.kernel_list, self.kernel_prob, kernel_size, self.blur_sigma, self.blur_sigma, [-math.pi, math.pi], self.betag_range, self.betap_range, noise_range=None) # pad kernel pad_size = (21 - kernel_size) // 2 kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) # ------------------------ Generate kernels (used in the second degradation) ------------------------ # kernel_size = random.choice(self.kernel_range) if np.random.uniform() < self.opt['sinc_prob2']: if kernel_size < 13: omega_c = np.random.uniform(np.pi / 3, np.pi) else: omega_c = np.random.uniform(np.pi / 5, np.pi) kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) else: kernel2 = random_mixed_kernels( self.kernel_list2, self.kernel_prob2, kernel_size, self.blur_sigma2,
self.blur_sigma2, [-math.pi, math.pi],
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: UnderstandLingBV/LLaMa2lang # Path: translators/m2m.py class M2MTranslator(BaseTranslator): def __init__(self, device, quant4, quant4_config, quant8, max_length, model_size): super().__init__(device, quant4, quant4_config, quant8, max_length) self.model_size = model_size model_name = f'facebook/m2m100_{self.model_size}' # Load model and tokenizer if self.quant4: model = M2M100ForConditionalGeneration.from_pretrained(model_name, device_map=device, quantization_config=self.quant4_config, load_in_4bit=True) elif self.quant8: model = M2M100ForConditionalGeneration.from_pretrained(model_name, device_map=self.device, load_in_8bit=True) else: model = M2M100ForConditionalGeneration.from_pretrained(model_name).to(self.device) tokenizer = M2M100Tokenizer.from_pretrained(model_name) self.model = model self.tokenizer = tokenizer def translate(self, texts, source_lang, target_lang): # Small fix for odd language codes if source_lang == 'pt-BR': source_lang = 'pt' if source_lang == 'uk-UA': source_lang = 'uk' with torch.no_grad(): if source_lang == 'eu': # Not supported by M2M return None # Set the source language for the tokenizer self.tokenizer.src_lang = source_lang if self.max_length is None: encoded_batch = self.tokenizer(texts, return_tensors="pt", padding=True).to(self.device) generated_tokens = self.model.generate(**encoded_batch, forced_bos_token_id=self.tokenizer.get_lang_id(target_lang)) else: encoded_batch = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=self.max_length).to(self.device) generated_tokens = self.model.generate(**encoded_batch, max_length=self.max_length, forced_bos_token_id=self.tokenizer.get_lang_id(target_lang)) translated_texts = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) return translated_texts # Path: translators/madlad.py class MADLADTranslator(BaseTranslator): def __init__(self, device, quant4, quant4_config, quant8, max_length, model_size): super().__init__(device, quant4, quant4_config, quant8, max_length) self.model_size = model_size model_name = f'google/madlad400-{self.model_size}-mt' # Quick rewrite the model name for bt if self.model_size == '7b-bt': model_name = f'google/madlad400-{self.model_size}-mt-bt' # Load model and tokenizer if self.quant4: model = T5ForConditionalGeneration.from_pretrained(model_name, device_map=device, quantization_config=self.quant4_config, load_in_4bit=True) elif self.quant8: model = T5ForConditionalGeneration.from_pretrained(model_name, device_map=self.device, load_in_8bit=True) else: model = T5ForConditionalGeneration.from_pretrained(model_name).to(self.device) tokenizer = T5Tokenizer.from_pretrained(model_name) self.model = model self.tokenizer = tokenizer def translate(self, texts, source_lang, target_lang): # Small fix for odd language codes if source_lang == 'pt-BR': source_lang = 'pt' if source_lang == 'uk-UA': source_lang = 'uk' with torch.no_grad(): # Preprocess texts and add target language prefix madlad_texts = [f'<2{target_lang}> ' + text.replace("\n", " ") for text in texts] if self.max_length is None: encoded_batch = self.tokenizer(madlad_texts, return_tensors="pt", padding=True).to(self.device) outputs = self.model.generate(input_ids=encoded_batch['input_ids'], max_new_tokens=2048) # max_new_tokens is required otherwise we get 20 else: encoded_batch = self.tokenizer(madlad_texts, return_tensors="pt", padding=True, truncation=True, max_length=self.max_length).to(self.device) outputs = self.model.generate(input_ids=encoded_batch['input_ids'], max_new_tokens=self.max_length) translated_texts = [self.tokenizer.decode(output, skip_special_tokens=True) for output in outputs] return translated_texts # Path: translators/mbart.py class mBARTTranslator(BaseTranslator): language_mapping = { 'ar': 'ar_AR', 'cs': 'cs_CZ', 'de': 'de_DE', 'en': 'en_XX', 'es': 'es_XX', 'et': 'et_EE', 'fi': 'fi_FI', 'fr': 'fr_XX', 'gu': 'gu_IN', 'hi': 'hi_IN', 'it': 'it_IT', 'ja': 'ja_XX', 'kk': 'kk_KZ', 'ko': 'ko_KR', 'lt': 'lt_LT', 'lv': 'lv_LV', 'my': 'my_MM', 'ne': 'ne_NP', 'nl': 'nl_XX', 'ro': 'ro_RO', 'ru': 'ru_RU', 'si': 'si_LK', 'tr': 'tr_TR', 'vi': 'vi_VN', 'zh': 'zh_CN', 'af': 'af_ZA', 'az': 'az_AZ', 'bn': 'bn_IN', 'fa': 'fa_IR', 'he': 'he_IL', 'hr': 'hr_HR', 'id': 'id_ID', 'ka': 'ka_GE', 'km': 'km_KH', 'mk': 'mk_MK', 'ml': 'ml_IN', 'mn': 'mn_MN', 'mr': 'mr_IN', 'pl': 'pl_PL', 'ps': 'ps_AF', 'pt': 'pt_XX', 'pt-BR': 'pt_XX', 'sv': 'sv_SE', 'sw': 'sw_KE', 'ta': 'ta_IN', 'te': 'te_IN', 'th': 'th_TH', 'tl': 'tl_XX', 'uk_UA': 'uk_UA', 'uk': 'uk_UA', 'ur': 'ur_PK', 'xh': 'xh_ZA', 'gl': 'gl_ES', 'sl': 'sl_SI' } def __init__(self, device, quant4, quant4_config, quant8, max_length): super().__init__(device, quant4, quant4_config, quant8, max_length) model_name = 'facebook/mbart-large-50-many-to-many-mmt' # Load model and tokenizer if self.quant4: model = MBartForConditionalGeneration.from_pretrained(model_name, device_map=device, quantization_config=self.quant4_config, load_in_4bit=True) elif self.quant8: model = MBartForConditionalGeneration.from_pretrained(model_name, device_map=self.device, load_in_8bit=True) else: model = MBartForConditionalGeneration.from_pretrained(model_name).to(self.device) tokenizer = MBart50TokenizerFast.from_pretrained(model_name) self.model = model self.tokenizer = tokenizer self.printed_error_langs = {} def translate(self, texts, source_lang, target_lang): if source_lang in self.language_mapping: self.tokenizer.src_lang = self.language_mapping[source_lang] with torch.no_grad(): if self.max_length is None: encoded_batch = self.tokenizer(texts, return_tensors="pt", padding=True).to(self.device) else: encoded_batch = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=self.max_length).to(self.device) outputs = self.model.generate(**encoded_batch, forced_bos_token_id=self.tokenizer.lang_code_to_id[target_lang]) translated_texts = self.tokenizer.batch_decode(outputs, skip_special_tokens=True) return translated_texts else: if not(source_lang in self.printed_error_langs): print(f"[---- LLaMa2Lang ----] mBART cannot translate from source language {source_lang}, returning originals") self.printed_error_langs[source_lang] = True return None # Path: translators/nllb.py class NLLBTranslator(BaseTranslator): language_mapping = { 'en': 'eng_Latn', 'es': 'spa_Latn', 'de': 'deu_Latn', 'ru': 'rus_Cyrl', 'ja': 'jpn_Jpan', 'pt-BR': 'por_Latn', 'ca': 'cat_Latn', 'fr': 'fra_Latn', 'pl': 'pol_Latn', 'vi': 'vie_Latn', 'zh': 'zho_Hant', 'hu': 'hun_Latn', 'ko': 'kor_Hang', 'eu': 'eus_Latn', 'it': 'ita_Latn', 'uk-UA': 'ukr_Cyrl', 'uk': 'ukr_Cyrl', 'id': 'ind_Latn', 'ar': 'arb_Arab', 'fi': 'fin_Latn', 'tr': 'tur_Latn', 'da': 'dan_Latn', 'th': 'tha_Thai', 'sv': 'swe_Latn', 'cs': 'ces_Latn' } def __init__(self, device, quant4, quant4_config, quant8, max_length, model_size): super().__init__(device, quant4, quant4_config, quant8, max_length) model_name = f'facebook/nllb-200-{model_size}' # Load model and tokenizer if self.quant4: model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map=device, quantization_config=self.quant4_config, load_in_4bit=True) elif self.quant8: model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map=self.device, load_in_8bit=True) else: model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device) tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = model self.tokenizer = tokenizer def translate(self, texts, source_lang, target_lang): self.tokenizer.src_lang = self.language_mapping[source_lang] with torch.no_grad(): if self.max_length is None: encoded_batch = self.tokenizer(texts, return_tensors="pt", padding=True).to(self.device) else: encoded_batch = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=self.max_length).to(self.device) outputs = self.model.generate(**encoded_batch, forced_bos_token_id=self.tokenizer.lang_code_to_id[target_lang]) translated_texts = self.tokenizer.batch_decode(outputs, skip_special_tokens=True) return translated_texts # Path: translators/opus.py class OPUSTranslator(BaseTranslator): def __init__(self, device, quant4, quant4_config, quant8, max_length): super().__init__(device, quant4, quant4_config, quant8, max_length) # Cache for loaded translation models, seemingly faster than letting Huggingface handle it self.model_cache = {} # Alternative models that are not created by Helsink-NLP self.alternative_models = { "en-pl": 'gsarti/opus-mt-tc-en-pl', "en-ja": 'gsarti/opus-mt-tc-base-en-ja' } def translate(self, texts, source_lang, target_lang): with torch.no_grad(): model, tokenizer = self.get_helsinki_nlp_model(source_lang, target_lang) if model is None or tokenizer is None: # Try via intermediate language model_i, tokenizer_i = self.get_helsinki_nlp_model(source_lang, 'en') model_t, tokenizer_t = self.get_helsinki_nlp_model('en', target_lang) if model_i is None or tokenizer_i is None or model_t is None or tokenizer_t is None: return None # To intermediate language first if self.max_length is None: # OPUS crashes if we pass it more than 512 tokens inputs = tokenizer_i(texts, padding=True, truncation=True, max_length=512, return_tensors="pt").to(self.device) translated_outputs = model_i.generate(inputs.input_ids) else: inputs = tokenizer_i(texts, padding=True, truncation=True, return_tensors="pt", max_length=self.max_length).to(self.device) translated_outputs = model_i.generate(inputs.input_ids, max_length=self.max_length) intermediate_texts = [tokenizer_i.decode(output, skip_special_tokens=True) for output in translated_outputs] # Now to target if self.max_length is None: inputs = tokenizer_t(intermediate_texts, padding=True, truncation=True, max_length=512, return_tensors="pt").to(self.device) translated_outputs = model_t.generate(inputs.input_ids) else: inputs = tokenizer_t(intermediate_texts, padding=True, truncation=True, return_tensors="pt", max_length=self.max_length).to(self.device) translated_outputs = model_t.generate(inputs.input_ids, max_length=self.max_length) translated_texts = [tokenizer_t.decode(output, skip_special_tokens=True) for output in translated_outputs] return translated_texts else: if self.max_length is None: inputs = tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors="pt").to(self.device) translated_outputs = model.generate(inputs.input_ids) else: inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=self.max_length).to(self.device) translated_outputs = model.generate(inputs.input_ids, max_length=self.max_length) translated_texts = [tokenizer.decode(output, skip_special_tokens=True) for output in translated_outputs] return translated_texts def load_model(self, model_name, model_key): tokenizer = AutoTokenizer.from_pretrained(model_name) # Apply quantization if needed if self.quant4: model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map=self.device, quantization_config=self.quant4_config, load_in_4bit=True) elif self.quant8: model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map=self.device, load_in_8bit=True) else: model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device) self.model_cache[model_key] = (model, tokenizer) return model, tokenizer # Tries to obtain a translation model from the Helsinki-NLP groups OPUS models. Returns None, None if no model is found for this language pair def get_helsinki_nlp_model(self, source_lang, target_lang): # Small fix for odd language codes if source_lang == 'pt-BR': source_lang = 'bzs' if source_lang == 'uk-UA': source_lang = 'uk' model_key = f'{source_lang}-{target_lang}' if model_key in self.model_cache: return self.model_cache[model_key] model_name = f'Helsinki-NLP/opus-mt-{source_lang}-{target_lang}' try: return self.load_model(model_name, model_key) except OSError as e: # Try to load the tc-big naming convention files try: model_name = f'Helsinki-NLP/opus-mt-tc-big-{source_lang}-{target_lang}' return self.load_model(model_name, model_key) except OSError as e: try: model_name = self.alternative_models[model_key] return self.load_model(model_name, model_key) except Exception as e: print(f"[---- LLaMa2Lang ----] No translation possible from {source_lang} to {target_lang}") return None, None # Path: translate.py import os import torch import json import re import gc import argparse from datasets import load_dataset from transformers import BitsAndBytesConfig from tqdm import tqdm from translators.m2m import M2MTranslator from translators.madlad import MADLADTranslator from translators.mbart import mBARTTranslator from translators.nllb import NLLBTranslator from translators.opus import OPUSTranslator # Find the max checkpoint number to continue from def find_largest_checkpoint(checkpoint_location): pattern = r'upto_(\d+).json' files = os.listdir(checkpoint_location)
numbers = [int(re.search(pattern, file).group(1)) for file in files if re.match(pattern, file)]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: gordicaleksa/serbian-llm-eval # Path: lm_eval/utils.py class ExitCodeError(Exception): class MultiChoice: class Reorderer: def sh(x): def escaped_split(text, sep_char, maxsplit=-1): def simple_parse_args_string(args_string): def join_iters(iters): def chunks(iter, n=0, fn=None): def group(arr, fn): def _is_json_task(task_name): def __init__(self, choices): def __contains__(self, values): def __iter__(self): def pattern_match(patterns, source_list): def general_detokenize(string): def get_rolling_token_windows(token_list, prefix_token, max_seq_len, context_len): def make_disjoint_window(pair): def select_continuation_from_batch_left_padding( generations: Union[List[List[int]], torch.Tensor], max_context_size: int ): def __init__(self, arr, fn): def get_reordered(self): def get_original(self, newarr): def positional_deprecated(fn): def _wrapper(*args, **kwargs): def find_test_root(start_path: pathlib.Path) -> pathlib.Path: def run_task_tests(task_list: List[str]): def clear_torch_cache(): # Path: lm_eval/base.py class BaseLM(LM): def __init__(self): super().__init__() self.batch_schedule = 1 self.batch_sizes = {} self.max_batch_size = 512 @property @abstractmethod def eot_token_id(self): pass @property @abstractmethod def max_length(self): pass @property @abstractmethod def max_gen_toks(self): pass @property @abstractmethod def batch_size(self): pass @property @abstractmethod def device(self): pass @abstractmethod def tok_encode(self, string: str): pass @abstractmethod def tok_decode(self, tokens: Iterable[int]): pass @abstractmethod def _model_generate(self, context, max_length, eos_token_id): pass @abstractmethod def _model_call(self, inps): """ inps: a torch tensor of shape [batch, sequence] the size of sequence may vary from call to call returns: a torch tensor of shape [batch, sequence, vocab] with the logits returned from the model """ pass def _detect_batch_size(self, requests=None, pos=0): if requests: _, context_enc, continuation_enc = requests[pos] max_length = len( (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1] ) else: max_length = self.max_length # if OOM, then halves batch_size and tries again @find_executable_batch_size(starting_batch_size=self.max_batch_size) def forward_batch(batch_size): test_batch = torch.ones((batch_size, max_length), device=self.device).long() for _ in range(5): _ = F.log_softmax(self._model_call(test_batch), dim=-1).cpu() return batch_size batch_size = forward_batch() utils.clear_torch_cache() return batch_size # subclass must implement properties vocab_size, eot_token_id, max_gen_toks, batch_size, device, max_length. # TODO: enforce this somehow def _encode_pair(self, context, continuation): n_spaces = len(context) - len(context.rstrip()) if n_spaces > 0: continuation = context[-n_spaces:] + continuation context = context[:-n_spaces] whole_enc = self.tok_encode(context + continuation) context_enc = self.tok_encode(context) context_enc_len = len(context_enc) continuation_enc = whole_enc[context_enc_len:] return context_enc, continuation_enc def loglikelihood(self, requests): new_reqs = [] for context, continuation in requests: if context == "": # end of text as context context_enc, continuation_enc = [self.eot_token_id], self.tok_encode( continuation ) else: context_enc, continuation_enc = self._encode_pair(context, continuation) new_reqs.append(((context, continuation), context_enc, continuation_enc)) return self._loglikelihood_tokens(new_reqs) def loglikelihood_rolling(self, requests): # TODO: Implement caching once we've confirmed the perplexity implementation # automatic batch size detection for vectorization adaptive_batch_size = None if self.batch_size == "auto": # using rolling window with maximum context print("Passed argument batch_size = auto. Detecting largest batch size") batch_size = self._detect_batch_size() print(f"Determined Largest batch size: {batch_size}") adaptive_batch_size = batch_size loglikelihoods = [] for (string,) in tqdm(requests): rolling_token_windows = list( map( utils.make_disjoint_window, utils.get_rolling_token_windows( token_list=self.tok_encode(string), prefix_token=self.eot_token_id, max_seq_len=self.max_length, context_len=1, ), ) ) rolling_token_windows = [(None,) + x for x in rolling_token_windows] # TODO: extract out this call so it only gets called once and also somehow figure out partial caching for # that string_nll = self._loglikelihood_tokens( rolling_token_windows, disable_tqdm=True, override_bs=adaptive_batch_size, ) # discard is_greedy string_nll = [x[0] for x in string_nll] string_nll = sum(string_nll) loglikelihoods.append(string_nll) return loglikelihoods def _loglikelihood_tokens(self, requests, disable_tqdm=False, override_bs=None): # TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context res = [] def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = x[1] + x[2] return -len(toks), tuple(toks) re_ord = utils.Reorderer(requests, _collate) reordered_requests = re_ord.get_reordered() n_reordered_requests = len(reordered_requests) # automatic (variable) batch size detection for vectorization # pull longest context sample from request def _batch_scheduler(pos): sched = pos // int(n_reordered_requests / self.batch_schedule) if sched in self.batch_sizes: return self.batch_sizes[sched] print( f"Passed argument batch_size = auto:{self.batch_schedule}. Detecting largest batch size" ) self.batch_sizes[sched] = self._detect_batch_size(reordered_requests, pos) print(f"Determined largest batch size: {self.batch_sizes[sched]}") return self.batch_sizes[sched] for chunk in utils.chunks( tqdm(reordered_requests, disable=disable_tqdm), n=self.batch_size if self.batch_size != "auto" else override_bs if override_bs is not None else 0, fn=_batch_scheduler if self.batch_size == "auto" and n_reordered_requests > 0 and not override_bs else None, ): inps = [] cont_toks_list = [] inplens = [] padding_length = None # because vectorizing is annoying, we first convert each (context, continuation) pair to padded # tensors, then we pack them together into a batch, call the model, and then pick it all apart # again because vectorizing is annoying for _, context_enc, continuation_enc in chunk: # sanity check assert len(context_enc) > 0 assert len(continuation_enc) > 0 assert len(continuation_enc) <= self.max_length # how this all works: # CTX CONT # inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1] # gpt2 \ \ # logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the # cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice # when too long to fit in context, truncate from the left inp = torch.tensor( (context_enc + continuation_enc)[-(self.max_length + 1) :][:-1], dtype=torch.long, ).to(self.device) (inplen,) = inp.shape cont = continuation_enc # since in _collate we make sure length is descending, the longest is always the first one. padding_length = ( padding_length if padding_length is not None else inplen ) # pad length from seq to padding_length inp = torch.cat( [ inp, # [seq] torch.zeros(padding_length - inplen, dtype=torch.long).to( inp.device ), # [padding_length - seq] ], dim=0, ) inps.append(inp.unsqueeze(0)) # [1, padding_length] cont_toks_list.append(cont) inplens.append(inplen) batched_inps = torch.cat(inps, dim=0) # [batch, padding_length] multi_logits = F.log_softmax( self._model_call(batched_inps), dim=-1 ).cpu() # [batch, padding_length, vocab] for (cache_key, _, _), logits, inp, inplen, cont_toks in zip( chunk, multi_logits, inps, inplens, cont_toks_list ): # Slice to original seq length contlen = len(cont_toks) inplen = inplen + ( logits.shape[0] - padding_length ) # if "virtual tokens" (from prompt tuning) are added, inplen is larger logits = logits[inplen - contlen : inplen].unsqueeze( 0 ) # [1, seq, vocab] # Check if per-token argmax is exactly equal to continuation greedy_tokens = logits.argmax(dim=-1) cont_toks = torch.tensor(cont_toks, dtype=torch.long).unsqueeze( 0 ) # [1, seq] max_equal = (greedy_tokens == cont_toks).all() # Obtain log-probs at the corresponding continuation token indices # last_token_slice = logits[:, -1, :].squeeze(0).tolist() logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze( -1 ) # [1, seq] # Answer: (log prob, is-exact-match) answer = (float(logits.sum()), bool(max_equal)) # partial caching if cache_key is not None: self.cache_hook.add_partial("loglikelihood", cache_key, answer) res.append(answer) return re_ord.get_original(res) def greedy_until(self, requests): # TODO: implement fully general `until` that handles until that are # multiple tokens or that span multiple tokens correctly # TODO: extract to TokenizedLM? res = [] def _collate(x): # the negative sign on len(toks) sorts descending - this has a few advantages: # - time estimates will always be over not underestimates, which is more useful for planning # - to know the size of a batch when going through the list, you know the first one is always the batch # padded context length. this is useful to simplify the batching logic and more importantly to make # automatic adaptive batches much much easier to implement # - any OOMs will happen right away rather than near the end toks = self.tok_encode(x[0]) return -len(toks), x[0] re_ord = utils.Reorderer(requests, _collate) warn_stop_seq = False for context, request_args in tqdm(re_ord.get_reordered()): until = request_args["until"] if isinstance(until, str): until = [until] if until: try: (primary_until,) = self.tok_encode(until[0]) except ValueError: if not warn_stop_seq: print( "Warning: a primary stop sequence is multi-token! Will default to EOS token for this tokenizer. Consider using `hf-causal-experimental` for multi-token stop sequence support for the time being." ) warn_stop_seq = True primary_until = self.eot_token_id else: primary_until = None context_enc = torch.tensor( [self.tok_encode(context)[self.max_gen_toks - self.max_length :]] ).to(self.device) max_gen_tokens = min( self.max_gen_toks, request_args.get("max_length", self.max_gen_toks) ) cont = self._model_generate( context_enc, context_enc.shape[1] + max_gen_tokens, primary_until ) s = self.tok_decode(cont[0].tolist()[context_enc.shape[1] :]) for term in until: s = s.split(term)[0] # partial caching self.cache_hook.add_partial("greedy_until", (context, until), s) res.append(s) return re_ord.get_original(res) # Path: lm_eval/models/deepsparse.py from typing import List, Optional, Tuple, Union from tqdm import tqdm from lm_eval import utils from lm_eval.base import BaseLM import random import numpy import torch import deepsparse class DeepSparseLM(BaseLM): # Default max sequence length setting for when no `max_length` is provided _DEFAULT_MAX_LENGTH = 2048 def __init__( self, pretrained: str, tokenizer: Optional[str] = None, batch_size: Optional[Union[int, str]] = 1, max_gen_toks: Optional[int] = 256,
max_length: Optional[int] = None,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mu-cai/ViP-LLaVA # Path: llava/constants.py IMAGE_TOKEN_INDEX = -200 # Path: llava/constants.py DEFAULT_IMAGE_TOKEN = "<image>" # Path: llava/constants.py DEFAULT_IM_START_TOKEN = "<im_start>" # Path: llava/constants.py DEFAULT_IM_END_TOKEN = "<im_end>" # Path: llava/conversation.py class SeparatorStyle(Enum): class Conversation: SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge def get_prompt(self): def append_message(self, role, message): def get_images(self, return_pil=False): def expand2square(pil_img, background_color=(122, 116, 104)): def to_gradio_chatbot(self): def copy(self): def dict(self): # Path: llava/model/builder.py def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", **kwargs): kwargs = {"device_map": device_map, **kwargs} if device != "cuda": kwargs['device_map'] = {"": device} if load_8bit: kwargs['load_in_8bit'] = True elif load_4bit: kwargs['load_in_4bit'] = True kwargs['quantization_config'] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) else: kwargs['torch_dtype'] = torch.float16 if 'llava' in model_name.lower(): # Load LLaVA model if 'lora' in model_name.lower() and model_base is None: warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') if 'lora' in model_name.lower() and model_base is not None: lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) print('Loading LLaVA from base model...') model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features if model.lm_head.weight.shape[0] != token_num: model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) print('Loading additional LLaVA weights...') if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') else: # this is probably from HF Hub from huggingface_hub import hf_hub_download def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location='cpu') non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} if any(k.startswith('model.model.') for k in non_lora_trainables): non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} model.load_state_dict(non_lora_trainables, strict=False) from peft import PeftModel print('Loading LoRA weights...') model = PeftModel.from_pretrained(model, model_path) print('Merging LoRA weights...') model = model.merge_and_unload() print('Model is loaded...') elif model_base is not None: # this may be mm projector only print('Loading LLaVA from base model...') if 'mpt' in model_name.lower(): if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py')) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) model = LlavaMPTForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} model.load_state_dict(mm_projector_weights, strict=False) else: if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = LlavaMPTForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: # Load language model if model_base is not None: # PEFT model from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, **kwargs) print(f"Loading LoRA weights from {model_path}") model = PeftModel.from_pretrained(model, model_path) print(f"Merging weights") model = model.merge_and_unload() print('Convert to FP16...') model.to(torch.float16) else: use_fast = False if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) image_processor = None if 'llava' in model_name.lower(): mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model() vision_tower.to(device=device, dtype=torch.float16) image_processor = vision_tower.image_processor if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, image_processor, context_len # Path: llava/utils.py def disable_torch_init(): """ Disable the redundant torch default initialization to accelerate model creation. """ import torch setattr(torch.nn.Linear, "reset_parameters", lambda self: None) setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) # Path: llava/mm_utils.py def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids # Path: llava/mm_utils.py def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] # Path: llava/mm_utils.py class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] self.max_keyword_len = 0 for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] if len(cur_keyword_ids) > self.max_keyword_len: self.max_keyword_len = len(cur_keyword_ids) self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def call_for_batch(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] for keyword_id in self.keyword_ids: if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: outputs = [] for i in range(output_ids.shape[0]): outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) return all(outputs) # Path: llava/eval/model_vqa_qbench.py import argparse import torch import json import requests from tqdm import tqdm from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria from PIL import Image from PIL import Image from io import BytesIO def load_image(image_file): if image_file.startswith('http') or image_file.startswith('https'): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert('RGB') else: image = Image.open(image_file).convert('RGB') return image def eval_model(args): # Model disable_torch_init() model_name = get_model_name_from_path(args.model_path) tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, True) with open(args.questions_file) as f: llvqa_data = json.load(f) for i, llddata in enumerate(tqdm(llvqa_data)): filename = llddata["img_path"] if args.lang == "en": message = llddata["question"] + "\nChoose between one of the options as follows:\n" elif args.lang == "zh": message = llddata["question"] + "\在下列选项中选择一个:\n" else: raise NotImplementedError("Q-Bench does not support languages other than English (en) and Chinese (zh) yet. Contact us (https://github.com/VQAssessment/Q-Bench/) to convert Q-Bench into more languages.") for choice, ans in zip(["A.", "B.", "C.", "D."], llddata["candidates"]): message += f"{choice} {ans}\n" qs = message if model.config.mm_use_im_start_end: qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs else: qs = DEFAULT_IMAGE_TOKEN + '\n' + qs if 'llama-2' in model_name.lower(): conv_mode = "llava_llama_2" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower(): conv_mode = "mpt" else: conv_mode = "llava_v0" if args.conv_mode is not None and conv_mode != args.conv_mode: print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) else: args.conv_mode = conv_mode conv = conv_templates[args.conv_mode].copy() conv.append_message(conv.roles[0], qs) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() image = load_image(args.image_folder + filename) image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'].half().cuda() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, num_beams=1, do_sample=False,
temperature=0,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Open3DA/LL3DA # Path: utils/box_util.py def box3d_iou_batch_tensor(corners1, corners2): ''' Compute 3D bounding box IoU. Note: only for axis-aligned bounding boxes Input: corners1: PyTorch tensor (N,8,3), assume up direction is Z (batch of N samples) corners2: PyTorch tensor (N,8,3), assume up direction is Z (batch of N samples) Output: iou: an tensor of 3D bounding box IoU (N) ''' x_min_1, x_max_1, y_min_1, y_max_1, z_min_1, z_max_1 = get_box3d_min_max_batch_tensor(corners1) x_min_2, x_max_2, y_min_2, y_max_2, z_min_2, z_max_2 = get_box3d_min_max_batch_tensor(corners2) xA = torch.max(x_min_1, x_min_2) yA = torch.max(y_min_1, y_min_2) zA = torch.max(z_min_1, z_min_2) xB = torch.min(x_max_1, x_max_2) yB = torch.min(y_max_1, y_max_2) zB = torch.min(z_max_1, z_max_2) zeros = corners1.new_zeros(xA.shape).cuda() inter_vol = torch.max((xB - xA), zeros) * torch.max((yB - yA), zeros) * torch.max((zB - zA), zeros) box_vol_1 = (x_max_1 - x_min_1) * (y_max_1 - y_min_1) * (z_max_1 - z_min_1) box_vol_2 = (x_max_2 - x_min_2) * (y_max_2 - y_min_2) * (z_max_2 - z_min_2) iou = inter_vol / (box_vol_1 + box_vol_2 - inter_vol + 1e-8) return iou # Path: utils/ap_calculator.py class APCalculator(object): """Calculating Average Precision""" def __init__( self, dataset_config, ap_iou_thresh=[0.25, 0.5], class2type_map=None, exact_eval=True, ap_config_dict=None, ): """ Args: ap_iou_thresh: List of float between 0 and 1.0 IoU threshold to judge whether a prediction is positive. class2type_map: [optional] dict {class_int:class_name} """ self.ap_iou_thresh = ap_iou_thresh if ap_config_dict is None: ap_config_dict = get_ap_config_dict( dataset_config=dataset_config, remove_empty_box=exact_eval ) self.ap_config_dict = ap_config_dict self.class2type_map = class2type_map self.reset() def make_gt_list(self, gt_box_corners, gt_box_sem_cls_labels, gt_box_present): batch_gt_map_cls = [] bsize = gt_box_corners.shape[0] for i in range(bsize): batch_gt_map_cls.append( [ (gt_box_sem_cls_labels[i, j].item(), gt_box_corners[i, j]) for j in range(gt_box_corners.shape[1]) if gt_box_present[i, j] == 1 ] ) return batch_gt_map_cls def step_meter(self, outputs, targets): if "outputs" in outputs: outputs = outputs["outputs"] self.step( predicted_box_corners=outputs["box_corners"], sem_cls_probs=outputs["sem_cls_prob"], objectness_probs=outputs["objectness_prob"], point_cloud=targets["point_clouds"], gt_box_corners=targets["gt_box_corners"], gt_box_sem_cls_labels=targets["gt_box_sem_cls_label"], gt_box_present=targets["gt_box_present"], ) def step( self, predicted_box_corners, sem_cls_probs, objectness_probs, point_cloud, gt_box_corners, gt_box_sem_cls_labels, gt_box_present, ): """ Perform NMS on predicted boxes and threshold them according to score. Convert GT boxes """ gt_box_corners = gt_box_corners.cpu().detach().numpy() gt_box_sem_cls_labels = gt_box_sem_cls_labels.cpu().detach().numpy() gt_box_present = gt_box_present.cpu().detach().numpy() batch_gt_map_cls = self.make_gt_list( gt_box_corners, gt_box_sem_cls_labels, gt_box_present ) batch_pred_map_cls = parse_predictions( predicted_box_corners, sem_cls_probs, objectness_probs, point_cloud, self.ap_config_dict, ) self.accumulate(batch_pred_map_cls, batch_gt_map_cls) def accumulate(self, batch_pred_map_cls, batch_gt_map_cls): """Accumulate one batch of prediction and groundtruth. Args: batch_pred_map_cls: a list of lists [[(pred_cls, pred_box_params, score),...],...] batch_gt_map_cls: a list of lists [[(gt_cls, gt_box_params),...],...] should have the same length with batch_pred_map_cls (batch_size) """ bsize = len(batch_pred_map_cls) assert bsize == len(batch_gt_map_cls) for i in range(bsize): self.gt_map_cls[self.scan_cnt] = batch_gt_map_cls[i] self.pred_map_cls[self.scan_cnt] = batch_pred_map_cls[i] self.scan_cnt += 1 def compute_metrics(self): """Use accumulated predictions and groundtruths to compute Average Precision.""" overall_ret = OrderedDict() for ap_iou_thresh in self.ap_iou_thresh: ret_dict = OrderedDict() rec, prec, ap = eval_det_multiprocessing( self.pred_map_cls, self.gt_map_cls, ovthresh=ap_iou_thresh ) for key in sorted(ap.keys()): clsname = self.class2type_map[key] if self.class2type_map else str(key) ret_dict["%s Average Precision" % (clsname)] = ap[key] ap_vals = np.array(list(ap.values()), dtype=np.float32) ap_vals[np.isnan(ap_vals)] = 0 ret_dict["mAP"] = ap_vals.mean() rec_list = [] for key in sorted(ap.keys()): clsname = self.class2type_map[key] if self.class2type_map else str(key) try: ret_dict["%s Recall" % (clsname)] = rec[key][-1] rec_list.append(rec[key][-1]) except: ret_dict["%s Recall" % (clsname)] = 0 rec_list.append(0) ret_dict["AR"] = np.mean(rec_list) overall_ret[ap_iou_thresh] = ret_dict return overall_ret def __str__(self): overall_ret = self.compute_metrics() return self.metrics_to_str(overall_ret) def metrics_to_str(self, overall_ret, per_class=True): mAP_strs = [] AR_strs = [] per_class_metrics = [] for ap_iou_thresh in self.ap_iou_thresh: mAP = overall_ret[ap_iou_thresh]["mAP"] * 100 mAP_strs.append(f"{mAP:.2f}") ar = overall_ret[ap_iou_thresh]["AR"] * 100 AR_strs.append(f"{ar:.2f}") if per_class: # per-class metrics per_class_metrics.append("-" * 5) per_class_metrics.append(f"IOU Thresh={ap_iou_thresh}") for x in list(overall_ret[ap_iou_thresh].keys()): if x == "mAP" or x == "AR": pass else: met_str = f"{x}: {overall_ret[ap_iou_thresh][x]*100:.2f}" per_class_metrics.append(met_str) ap_header = [f"mAP{x:.2f}" for x in self.ap_iou_thresh] ap_str = ", ".join(ap_header) ap_str += ": " + ", ".join(mAP_strs) ap_str += "\n" ar_header = [f"AR{x:.2f}" for x in self.ap_iou_thresh] ap_str += ", ".join(ar_header) ap_str += ": " + ", ".join(AR_strs) if per_class: per_class_metrics = "\n".join(per_class_metrics) ap_str += "\n" ap_str += per_class_metrics return ap_str def metrics_to_dict(self, overall_ret): metrics_dict = {} for ap_iou_thresh in self.ap_iou_thresh: metrics_dict[f"mAP_{ap_iou_thresh}"] = ( overall_ret[ap_iou_thresh]["mAP"] * 100 ) metrics_dict[f"AR_{ap_iou_thresh}"] = overall_ret[ap_iou_thresh]["AR"] * 100 return metrics_dict def reset(self): self.gt_map_cls = {} # {scan_id: [(classname, bbox)]} self.pred_map_cls = {} # {scan_id: [(classname, bbox, score)]} self.scan_cnt = 0 # Path: utils/io.py def save_checkpoint( checkpoint_dir, model_no_ddp, optimizer, epoch, args, best_val_metrics, filename=None, ): if not is_primary(): return if filename is None: filename = f"checkpoint_{epoch:04d}.pth" checkpoint_name = os.path.join(checkpoint_dir, filename) weight_ckpt = model_no_ddp.state_dict() parameter_names = list(weight_ckpt.keys()) for name in parameter_names: if args.filter_name is not None and args.filter_name in name: weight_ckpt.pop(name) sd = { "model": weight_ckpt, "optimizer": optimizer.state_dict(), "epoch": epoch, "args": args, "best_val_metrics": best_val_metrics, } torch.save(sd, checkpoint_name) # Path: utils/misc.py class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_distributed(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") barrier() all_reduce_sum(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, ) # Path: utils/proposal_parser.py def parse_predictions( predicted_boxes, sem_cls_probs, objectness_probs, point_cloud, config_dict=get_ap_config_dict() ): """Parse predictions to OBB parameters and suppress overlapping boxes Args: end_points: dict {point_clouds, center, heading_scores, heading_residuals, size_scores, size_residuals, sem_cls_scores} config_dict: dict {dataset_config, remove_empty_box, use_3d_nms, nms_iou, use_old_type_nms, conf_thresh, per_class_proposal} Returns: batch_pred_map_cls: a list of len == batch size (BS) [pred_list_i], i = 0, 1, ..., BS-1 where pred_list_i = [(pred_sem_cls, box_params, box_score)_j] where j = 0, ..., num of valid detections - 1 from sample input i """ sem_cls_probs = sem_cls_probs.detach().cpu().numpy() # B,num_proposal,10 pred_sem_cls_prob = np.max(sem_cls_probs, -1) # B,num_proposal pred_sem_cls = np.argmax(sem_cls_probs, -1) obj_prob = objectness_probs.detach().cpu().numpy() pred_corners_3d_upright_camera = predicted_boxes.detach().cpu().numpy() K = pred_corners_3d_upright_camera.shape[1] # K==num_proposal bsize = pred_corners_3d_upright_camera.shape[0] nonempty_box_mask = np.ones((bsize, K)) if config_dict["remove_empty_box"]: # ------------------------------------- # Remove predicted boxes without any point within them.. batch_pc = point_cloud.cpu().numpy()[:, :, 0:3] # B,N,3 for i in range(bsize): pc = batch_pc[i, :, :] # (N,3) for j in range(K): box3d = pred_corners_3d_upright_camera[i, j, :, :] # (8,3) box3d = flip_axis_to_depth(box3d) # pc_in_box, inds = extract_pc_in_box3d(pc, box3d) pc_in_box, inds = ez_extract_pc_in_box3d(pc, box3d) if len(pc_in_box) < 5: nonempty_box_mask[i, j] = 0 if nonempty_box_mask[i].sum() == 0: nonempty_box_mask[i, obj_prob[i].argmax()] = 1 # ------------------------------------- if "no_nms" in config_dict and config_dict["no_nms"]: # pred_mask = np.ones((bsize, K)) pred_mask = nonempty_box_mask elif not config_dict["use_3d_nms"]: # ---------- NMS input: pred_with_prob in (B,K,7) ----------- pred_mask = np.zeros((bsize, K)) for i in range(bsize): boxes_2d_with_prob = np.zeros((K, 5)) for j in range(K): boxes_2d_with_prob[j, 0] = np.min( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_2d_with_prob[j, 2] = np.max( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_2d_with_prob[j, 1] = np.min( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_2d_with_prob[j, 3] = np.max( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_2d_with_prob[j, 4] = obj_prob[i, j] nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] assert len(nonempty_box_inds) > 0 pick = nms_2d_faster( boxes_2d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict["nms_iou"], config_dict["use_old_type_nms"], ) assert len(pick) > 0 pred_mask[i, nonempty_box_inds[pick]] = 1 # ---------- NMS output: pred_mask in (B,K) ----------- elif config_dict["use_3d_nms"] and (not config_dict["cls_nms"]): # ---------- NMS input: pred_with_prob in (B,K,7) ----------- pred_mask = np.zeros((bsize, K)) for i in range(bsize): boxes_3d_with_prob = np.zeros((K, 7)) for j in range(K): boxes_3d_with_prob[j, 0] = np.min( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_3d_with_prob[j, 1] = np.min( pred_corners_3d_upright_camera[i, j, :, 1] ) boxes_3d_with_prob[j, 2] = np.min( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_3d_with_prob[j, 3] = np.max( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_3d_with_prob[j, 4] = np.max( pred_corners_3d_upright_camera[i, j, :, 1] ) boxes_3d_with_prob[j, 5] = np.max( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_3d_with_prob[j, 6] = obj_prob[i, j] nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] assert len(nonempty_box_inds) > 0 pick = nms_3d_faster( boxes_3d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict["nms_iou"], config_dict["use_old_type_nms"], ) assert len(pick) > 0 pred_mask[i, nonempty_box_inds[pick]] = 1 # ---------- NMS output: pred_mask in (B,K) ----------- elif config_dict["use_3d_nms"] and config_dict["cls_nms"]: # ---------- NMS input: pred_with_prob in (B,K,8) ----------- pred_mask = np.zeros((bsize, K)) for i in range(bsize): boxes_3d_with_prob = np.zeros((K, 8)) for j in range(K): boxes_3d_with_prob[j, 0] = np.min( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_3d_with_prob[j, 1] = np.min( pred_corners_3d_upright_camera[i, j, :, 1] ) boxes_3d_with_prob[j, 2] = np.min( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_3d_with_prob[j, 3] = np.max( pred_corners_3d_upright_camera[i, j, :, 0] ) boxes_3d_with_prob[j, 4] = np.max( pred_corners_3d_upright_camera[i, j, :, 1] ) boxes_3d_with_prob[j, 5] = np.max( pred_corners_3d_upright_camera[i, j, :, 2] ) boxes_3d_with_prob[j, 6] = obj_prob[i, j] boxes_3d_with_prob[j, 7] = pred_sem_cls[ i, j ] # only suppress if the two boxes are of the same class!! nonempty_box_inds = np.where(nonempty_box_mask[i, :] == 1)[0] assert len(nonempty_box_inds) > 0 pick = nms_3d_faster_samecls( boxes_3d_with_prob[nonempty_box_mask[i, :] == 1, :], config_dict["nms_iou"], config_dict["use_old_type_nms"], ) assert len(pick) > 0 pred_mask[i, nonempty_box_inds[pick]] = 1 # ---------- NMS output: pred_mask in (B,K) ----------- return pred_mask # Path: utils/dist.py def init_distributed(gpu_id, global_rank, world_size, dist_url, dist_backend): torch.cuda.set_device(gpu_id) print( f"| distributed init (rank {global_rank}) (world {world_size}): {dist_url}", flush=True, ) torch.distributed.init_process_group( backend=dist_backend, init_method=dist_url, world_size=world_size, rank=global_rank, ) torch.distributed.barrier() setup_print_for_distributed(is_primary()) # Path: utils/dist.py def is_distributed(): if not dist.is_available() or not dist.is_initialized(): return False return True # Path: utils/dist.py def is_primary(): return get_rank() == 0 # Path: utils/dist.py def get_rank(): if not is_distributed(): return 0 return dist.get_rank() # Path: utils/dist.py def barrier(): if not is_distributed(): return torch.distributed.barrier() # Path: utils/dist.py def all_reduce_average(tensor): val = all_reduce_sum(tensor) return val / get_world_size() # Path: utils/dist.py def all_gather_dict(data): """ Run all_gather on data which is a dictionary of Tensors """ assert isinstance(data, dict) gathered_dict = {} for item_key in data: if isinstance(data[item_key], torch.Tensor): if is_distributed(): data[item_key] = data[item_key].contiguous() tensor_list = [torch.empty_like(data[item_key]) for _ in range(get_world_size())] dist.all_gather(tensor_list, data[item_key]) gathered_tensor = torch.cat(tensor_list, dim=0) else: gathered_tensor = data[item_key] gathered_dict[item_key] = gathered_tensor return gathered_dict # Path: engine.py import os, sys, time, math, json, importlib import torch import datetime import utils.capeval.bleu.bleu as capblue import utils.capeval.cider.cider as capcider import utils.capeval.rouge.rouge as caprouge import utils.capeval.meteor.meteor as capmeteor from collections import defaultdict, OrderedDict from utils.box_util import box3d_iou_batch_tensor from utils.ap_calculator import APCalculator from utils.io import save_checkpoint from utils.misc import SmoothedValue from utils.proposal_parser import parse_predictions from utils.dist import ( init_distributed, is_distributed, is_primary, get_rank, barrier, all_reduce_average, all_gather_dict ) dataloaders["train_sampler"].set_epoch(curr_epoch) for batch_idx, batch_data_label in enumerate(dataloaders['train']): curr_time = time.time() curr_iter = curr_epoch * len(dataloaders['train']) + batch_idx curr_lr = adjust_learning_rate(args, optimizer, curr_iter / max_iters) for key in batch_data_label: batch_data_label[key] = batch_data_label[key].to(net_device) # Forward pass optimizer.zero_grad() outputs = model(batch_data_label, is_eval=False) loss = outputs['loss'] loss = all_reduce_average(loss) if not math.isfinite(loss.item()): if curr_nan_times < max_tolerant_nan: logout("Loss in not finite. Skip this training step.") curr_nan_times += 1 continue else: logout("Loss in not finite. Terminate training.") exit(-1) curr_nan_times = 0 loss.backward() if args.clip_gradient > 0: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_gradient) optimizer.step() time_delta.update(time.time() - curr_time) loss_avg.update(loss.item()) # logging if is_primary() and curr_iter % args.log_every == 0: mem_mb = torch.cuda.max_memory_allocated() / (1024 ** 2) eta_seconds = (max_iters - curr_iter) * time_delta.avg eta_str = str(datetime.timedelta(seconds=int(eta_seconds))) logout( f"Epoch [{curr_epoch}/{args.max_epoch}]; " f"Iter [{curr_iter}/{max_iters}]; " f"Loss {loss_avg.avg:0.2f}; " f"LR {curr_lr:0.2e}; Iter time {time_delta.avg:0.2f}; " f"ETA {eta_str}; Mem {mem_mb:0.2f}MB" ) barrier() # save ckpt if is_primary() and (curr_iter + 1) % args.save_every == 0: save_checkpoint( args.checkpoint_dir, model_no_ddp, optimizer, curr_epoch, args, best_val_metrics, filename=f"checkpoint_{(curr_iter + 1) // 1000}k.pth", ) # eval if (curr_iter + 1) % args.eval_every_iteration == 0 \ and (curr_iter + 1) > args.start_eval_after: eval_metrics = {} model.eval() for test_loader in dataloaders['test']: task_metrics = test_loader.dataset.eval_func( args, curr_epoch, model, dataset_config, test_loader, logout, curr_train_iter=curr_iter ) eval_metrics.update(task_metrics) model.train() if not best_val_metrics or ( best_val_metrics[args.criterion] < eval_metrics[args.criterion] ): best_val_metrics = eval_metrics filename = "checkpoint_best.pth" save_checkpoint( args.checkpoint_dir, model_no_ddp, optimizer, curr_epoch, args, best_val_metrics, filename="checkpoint_best.pth", ) if is_primary(): logout( f"Epoch [{curr_epoch}/{args.max_epoch}] " f"saved current best val checkpoint at {filename}; " f"{args.criterion} {eval_metrics[args.criterion]}" ) # end of an iteration # end of an epoch save_checkpoint( args.checkpoint_dir, model_no_ddp, optimizer, curr_epoch, args, best_val_metrics, filename="checkpoint.pth", ) # end of training eval_metrics = {} model.eval() for test_loader in dataloaders['test']: task_metrics = test_loader.dataset.eval_func( args,
curr_epoch,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: briannlongzhao/DreamDistribution # Path: prompt_learner.py class PromptLearner(nn.Module): """ PromptLearner class implements learnable prompt embeddings Input class idx, output learnable prompt embedding of that class The learnable context has shape (n_cls, n_prompts, n_ctx, dim) """ def __init__( self, pretrained_model_name_or_path, classnames, n_ctx=4, n_prompts=32, cls_pos="end", dtype=torch.float32, use_classname=True, customize_prefix=None, customize_suffix=None, reparam_samples=4 ): super().__init__() self.dtype = dtype self.n_prompts = n_prompts self.classnames = classnames self.use_classname = use_classname self.customize_prefix = customize_prefix self.customize_suffix = customize_suffix self.reparam_samples = reparam_samples if customize_suffix is not None or customize_prefix is not None \ or self.classnames is None or self.use_classname is False: # Disable classname for customize generation self.use_classname = False self.classnames = None self.n_cls = len(self.classnames) if self.classnames is not None else 1 self.tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer") self.vision_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14") self.vision_processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14") text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder") self.text_encoder = CustomTextEncoder(text_encoder.text_model) self.vision_encoder.requires_grad_(False) self.text_encoder.requires_grad_(False) ctx_dim = self.text_encoder.final_layer_norm.weight.shape[0] # random initialization print("Initializing class-specific contexts with prompt distribution learning") ctx_vectors = torch.empty(self.n_cls, n_prompts, n_ctx, ctx_dim, dtype=self.dtype) nn.init.normal_(ctx_vectors, std=0.02) prompt_placeholder = " ".join(["X"] * n_ctx) print(f"Number of context words (tokens): {n_ctx}") print(f"Number of prompts per class: {n_prompts}") self.ctx = nn.Parameter(ctx_vectors) # to be optimized if self.use_classname: self.classnames = [name.replace("_", " ") for name in self.classnames] self.name_lens = [len(self.tokenizer(name).input_ids) - 2 for name in self.classnames] prompts = [prompt_placeholder + " " + name + "." for name in self.classnames] else: self.customize_prefix = "" if self.customize_prefix is None else self.customize_prefix self.customize_suffix = "" if self.customize_suffix is None else self.customize_suffix prompts = [(self.customize_prefix + " " + prompt_placeholder + " " + self.customize_suffix).strip()] self.embedder = self.text_encoder.embeddings # tokenized_prompts as an anchor for retrieving position of eos token in each class prompt tokenized_prompts = torch.cat([ self.tokenizer( p, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids for p in prompts ]).to(self.embedder.position_ids.device) with torch.no_grad(): embedding = self.embedder(tokenized_prompts).type(self.dtype) # These token vectors will be saved when in save_model(), # but they should be ignored in load_model() as we want to use # those computed using the current class names self.register_buffer("token_prefix", embedding[:, :1, :]) # SOS self.register_buffer("token_suffix", embedding[:, 1 + n_ctx:, :]) # CLS, EOS self.n_ctx = n_ctx self.ctx_dim = ctx_dim self.tokenized_prompts = tokenized_prompts # torch.Tensor self.n_tokens = self.tokenizer.model_max_length self.class_token_position = cls_pos self.means = None self.stds = None self.prompt_texts = None self.prompt_freq = np.ones((self.n_cls, n_prompts)) """ Interpret the learned context vector by finding the closest word in embedding space If prompt distribution learning, interpret the mean """ def interpret(self, cls_idx=0): ctx = self.ctx[cls_idx].mean(dim=0) eow = "</w>" _, words, _ = interpret_ctx(ctx, tokenizer=self.tokenizer, embedder=self.embedder, topk=1) if self.use_classname: if self.class_token_position == "end": words = words + [[self.classnames[cls_idx]]] elif self.class_token_position == "front": words = [[self.classnames[cls_idx]]] + words elif self.class_token_position == "middle": words = words[:len(words) / 2] + [[self.class_token_position[cls_idx]]] + words[len(words) / 2:] else: if self.customize_prefix: words = [[self.customize_prefix+eow]] + words if self.customize_suffix: words = words + [[eow+self.customize_suffix+eow]] words = ''.join([word[0] for word in words]).replace(eow, ' ') words = words.strip() return words """ Concat the input ctx with the tokens of class names represented by cls_idx Input ctx with shape (B,n_ctx,d) or (B,p,n_ctx,d), cls_idx is list of length B """ def concat(self, ctx, cls_idx): prefix = self.token_prefix[cls_idx] suffix = self.token_suffix[cls_idx] if ctx.ndim == 4: # (B,p,n_ctx,d) p = ctx.shape[1] prefix = repeat(prefix, "b l d -> b p l d", p=p) suffix = repeat(suffix, "b l d -> b p l d", p=p) if self.class_token_position == "end": prompts = torch.cat( [ prefix, # (*, 1, dim) ctx, # (*, n_ctx, dim) suffix, # (*, *, dim) ], dim=-2, ) elif self.class_token_position == "middle": half_n_ctx = self.n_ctx // 2 prompts = [] for i in range(cls_idx.shape[0]): name_len = self.name_lens[cls_idx[i]] prefix_i = prefix[i:i+1, :, :] # keep dim class_i = suffix[i:i+1, :name_len, :] suffix_i = suffix[i:i+1, name_len:, :] ctx_i_half1 = ctx[i:i+1, :half_n_ctx, :] ctx_i_half2 = ctx[i:i+1, half_n_ctx:, :] prompt = torch.cat( [ prefix_i, # (*, 1, dim) ctx_i_half1, # (*, n_ctx//2, dim) class_i, # (*, name_len, dim) ctx_i_half2, # (*, n_ctx//2, dim) suffix_i, # (*, *, dim) ], dim=-2, ) prompts.append(prompt) prompts = torch.cat(prompts, dim=0) elif self.class_token_position == "front": prompts = [] for i in range(cls_idx.shape[0]): name_len = self.name_lens[cls_idx[i]] prefix_i = prefix[i:i+1, :, :] class_i = suffix[i:i+1, :name_len, :] suffix_i = suffix[i:i+1, name_len:, :] ctx_i = ctx[i:i+1, :, :] prompt = torch.cat( [ prefix_i, # (*, 1, dim) class_i, # (*, name_len, dim) ctx_i, # (*, n_ctx, dim) suffix_i, # (*, *, dim) ], dim=-2, ) prompts.append(prompt) prompts = torch.cat(prompts, dim=0) else: raise ValueError return prompts """ Concat the given context vectors with input prefix and suffix pre text encoder Input ctx: (B,n_prompts,n_ctx,d=1024) or (B,n_ctx,d=1024) Output: (B,n_prompts,l=77,d=1024) or (B,l=77,d=1024) """ def concat_custom(self, ctx, prefix="", suffix=""): if prefix is None or prefix == "": prefix_tokens = torch.Tensor( [[self.tokenizer.bos_token_id, self.tokenizer.eos_token_id]] ).to(self.embedder.position_ids.device).to(torch.int64) else: prefix_tokens = self.tokenizer( prefix, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids.to(self.embedder.position_ids.device) if suffix is None or suffix == "": suffix_tokens = torch.Tensor( [[self.tokenizer.bos_token_id, self.tokenizer.eos_token_id]+[self.tokenizer.pad_token_id]*(self.n_tokens-2)] ).to(self.embedder.position_ids.device).to(torch.int64) else: suffix_tokens = self.tokenizer( suffix, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" ).input_ids.to(self.embedder.position_ids.device) prefix_eos_position = (prefix_tokens == self.tokenizer.eos_token_id).nonzero()[-1, -1].item() suffix_eos_position = (suffix_tokens == self.tokenizer.eos_token_id).nonzero()[-1, -1].item() assert prefix_eos_position + self.n_ctx + suffix_eos_position <= self.n_tokens, "prefix+ctx+suffix too long" prefix_embeddings = self.embedder(prefix_tokens).type(self.dtype) suffix_embeddings = self.embedder(suffix_tokens).type(self.dtype) prefix_embeddings = prefix_embeddings[..., :prefix_eos_position, :] suffix_embeddings = suffix_embeddings[..., 1:(self.n_tokens-self.n_ctx-prefix_eos_position+1), :] assert ctx.ndim == 4, "ctx should have shape (B,p,l,d)" assert ctx.shape[1] == self.n_prompts, f"ctx shape {ctx.shape}[1] should match self.n_prompts={self.n_prompts}" prefix_embeddings = repeat(prefix_embeddings, "1 l d -> b p l d", b=ctx.shape[0], p=ctx.shape[1]) suffix_embeddings = repeat(suffix_embeddings, "1 l d -> b p l d", b=ctx.shape[0], p=ctx.shape[1]) prompts = torch.cat([prefix_embeddings, ctx, suffix_embeddings], dim=-2) return prompts """ Input pooled_prompt (B,n_prompts,d=1024) Output orthogonal loss (scalar) """ def orthogonal_loss(self, pooled_prompts): pooled_prompts = normalize(pooled_prompts, dim=-1) cos_sim = pooled_prompts @ pooled_prompts.transpose(1, 2) # (B,n_prompts,n_prompts) diag_mask = torch.eye(cos_sim.shape[1], device=cos_sim.device).bool() cos_sim[:, diag_mask] = 0 loss_per_batch = (cos_sim ** 2).sum(dim=(1, 2)) / (cos_sim.shape[1] * (cos_sim.shape[1] - 1)) loss = loss_per_batch.mean() return loss """ Input class indices (B) Output tokenized class prompts (B,l=77,d=1024) """ def forward(self, cls_idx, imgs=None, interpret=False): ctx = self.ctx[cls_idx] if self.use_classname: prompts = self.concat(ctx, cls_idx) else: prompts = self.concat_custom(ctx, self.customize_prefix, self.customize_suffix) prompts_hidden_state, pooled_prompts = self.text_encoder( prompts, pooled=True, tokenized_prompts=self.tokenized_prompts.to(cls_idx.device)[cls_idx] ) assert pooled_prompts.ndim == 3, f"pooled_prompts should have shape (B,n_prompts,d), now is {pooled_prompts.shape}" ortho_loss = self.orthogonal_loss(pooled_prompts) prompts_hidden_state = self.reparameterize(prompts_hidden_state, n_samples=self.reparam_samples) # (B,n,l,d) if interpret: prompts = prompts.mean(dim=1) _, caption, _ = interpret_ctx(torch.squeeze(prompts), tokenizer=self.tokenizer, embedder=self.embedder, topk=1) return prompts_hidden_state, caption, ortho_loss return prompts_hidden_state, ortho_loss """ For each class, fit the collection of prompts as a normal distribution (after concat with classnames/prefix/suffix and post text encoder) Store in self.means and self.stds Currently not taking covariance matrix """ def fit(self, prefix=None, suffix=None): self.prompt_texts = [] self.means = np.empty((self.n_cls, self.n_tokens, self.ctx_dim)) # (n_cls*77*1024) self.stds = np.empty(self.means.shape) # (n_cls,77,1024) for cls in tqdm(range(self.n_cls), desc="fit prompt learner distribution"): cls_ctx = self.ctx[cls].unsqueeze(0) # (1,p,l,d) or (1,l,d) if self.use_classname: cls_prompts = self.concat(cls_ctx, [cls]) else: cls_prompts = self.concat_custom(cls_ctx, prefix=prefix, suffix=suffix) cls_prompts = self.text_encoder(cls_prompts)[0] self.means[cls] = cls_prompts.mean(dim=0).detach().cpu().numpy() self.stds[cls] = cls_prompts.std(dim=0).detach().cpu().numpy() if self.n_prompts == 1: self.stds[cls] = np.zeros(self.stds[cls].shape) prompt_text = self.interpret(cls) self.prompt_texts.append(prompt_text) """ After prompts are fit, sample from stored means and stds as input to diffusion If not prompt distribution learning, return self.forward """ def sample(self, cls_idx, interpret=False, reparam_epsilon=None): assert self.means is not None and self.stds is not None if reparam_epsilon is not None: prompt = torch.from_numpy(self.means[cls_idx] + reparam_epsilon * self.stds[cls_idx]).unsqueeze(dim=0) else: prompt = torch.from_numpy(normal(self.means[cls_idx], self.stds[cls_idx])).unsqueeze(dim=0) if interpret: caption = self.prompt_texts[cls_idx] return prompt, caption return prompt def reparameterize(self, prompts, n_samples=1): std = torch.std(prompts, dim=1) # (B,l,d) mu = torch.mean(prompts, dim=1) # (B,l,d) eps = torch.randn_like(repeat(std, "b l d -> b n l d", n=n_samples)) # (B,n,l,d) prompt = mu.unsqueeze(1) + eps * std.unsqueeze(1) return prompt # (B,n,l,d) """ For each class, fit the collection of prompts as a normal distribution (pre text encoder) Store in self.ctx_means and self.ctx_stds Experimental use only """ def fit_ctx(self, prefix=None, suffix=None): self.ctx_means = np.empty((self.n_cls, self.n_tokens, self.ctx_dim)) # (n_cls,l=77,d=1024) self.ctx_stds = np.empty(self.ctx_means.shape) # (n_cls,l=77,d=1024) self.prompt_texts = [] for cls in tqdm(range(self.n_cls), desc="fit prompt learner distribution"): cls_ctx = self.ctx[cls].unsqueeze(0) # (1,p,l,d) if self.use_classname: cls_prompts = self.concat(cls_ctx, [cls]) else: cls_prompts = self.concat_custom(cls_ctx, prefix=prefix, suffix=suffix) cls_prompts = cls_prompts[0] self.ctx_means[cls] = cls_prompts.mean(dim=0).detach().cpu().numpy() self.ctx_stds[cls] = cls_prompts.std(dim=0).detach().cpu().numpy() prompt_text = self.interpret(cls) self.prompt_texts.append(prompt_text) """ After prompts are fit, sample from stored ctx_means and ctx_stds and feed to text encoder as input to diffusion If not prompt distribution learning, return self.forward Experimental use only """ def sample_ctx(self, cls_idx, interpret=False): assert self.ctx_means is not None and self.ctx_stds is not None prompt = torch.from_numpy(normal(self.ctx_means[cls_idx], self.ctx_stds[cls_idx])).unsqueeze(dim=0) prompt = self.text_encoder(prompt.to(dtype=self.dtype, device=self.embedder.position_ids.device)) if interpret: caption = self.prompt_texts[cls_idx] return prompt, caption return prompt # Path: utils/imagenet_classes.py # Path: utils/fit_prompt_learner.py import torch import numpy as np import argparse import os import sys from prompt_learner import PromptLearner from utils.imagenet_classes import wnid2classname_simple as classnames # Fit distribution of learned prompt collections sys.path.insert(0, os.path.join(os.path.dirname(__file__), "../../SDCoOp")) classids = list(classnames.keys()) classnames = list(classnames.values()) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--weights_path", type=str, help=".pt ckpt path") parser.add_argument("--output_path", type=str, help=".npz save path") parser.add_argument( "--pretrained_model_name_or_path", type=str, default="stabilityai/stable-diffusion-2", help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "--cls_pos", type=str, default="end", choices=["end", "middle", "front"], help="Position of class name token in prompt" ) parser.add_argument( "--use_classname", default=True, action="store_true", help="Use class names in prompt learner" ) args = parser.parse_args()
return args
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: amazon-science/RefChecker # Path: refchecker/extractor/claude2_extractor.py class Claude2Extractor(ExtractorBase): def __init__( self, claim_format:str='triplet' ) -> None: super().__init__(claim_format=claim_format) if self.claim_format == 'triplet': self.prompt_temp_wq = CLAUDE2_TRIPLET_EXTRACTION_PROMPT_Q self.prompt_temp = CLAUDE2_TRIPLET_EXTRACTION_PROMPT def extract_claim_triplets(self, response, question=None, max_new_tokens=500): if question is None: prompt = self.prompt_temp.format( input_text=response ) else: prompt = self.prompt_temp_wq.format( q=question, a=response ) claude2_response = get_claude2_response( prompt=prompt, temperature=0, max_new_tokens=max_new_tokens ) if claude2_response and len(claude2_response): kg_str = None if '###' in claude2_response: kg_str = claude2_response[:claude2_response.index('###')] else: kg_str = claude2_response triplets = self._parse_claim_triplets(kg_str) return triplets return [] # Path: refchecker/extractor/gpt4_extractor.py class GPT4Extractor(ExtractorBase): def __init__( self, claim_format:str='triplet' ) -> None: super().__init__(claim_format=claim_format) if self.claim_format == 'triplet': self.prompt_temp_wq = GPT4_TRIPLET_EXTRACTION_PROMPT_Q self.prompt_temp = GPT4_TRIPLET_EXTRACTION_PROMPT def extract_claim_triplets(self, response, question=None, max_new_tokens=500): if question is None: prompt = self.prompt_temp.format( input_text=response ) else: prompt = self.prompt_temp_wq.format( q=question, a=response ) gpt4_response = get_openai_model_response( prompt, temperature=0, model='gpt-4', max_new_tokens=max_new_tokens ) if gpt4_response and len(gpt4_response): kg_str = None if '###' in gpt4_response: kg_str = gpt4_response[:gpt4_response.index('###')] else: kg_str = gpt4_response triplets = self._parse_claim_triplets(kg_str) return triplets return [] # Path: refchecker/checker/claude2_checker.py class Claude2Checker(CheckerBase): def __init__(self) -> None: super().__init__() self.prompt_temp = CLAUDE2_CHECKING_PROMPT self.prompt_temp_wq = CLAUDE2_CHECKING_PROMPT_Q def _check( self, claims: List, references: List, response: str, question: str, ): ret_labels = [] for claim, reference in zip(claims, references): if isinstance(claim, list): assert len(claim) == 3 claim = f"({claim[0]}, {claim[1]}, {claim[2]})" if question is None: prompt = self.prompt_temp.format( reference=reference, claim=claim ) else: prompt = self.prompt_temp_wq.format( question=question, reference=reference, claim=claim ) claude2_response = get_claude2_response( prompt=prompt, temperature=0, max_new_tokens=6 ) if claude2_response and len(claude2_response): label = None if self.label_contradiction.lower() in claude2_response.lower(): label = self.label_contradiction elif self.label_entailment.lower() in claude2_response.lower(): label = self.label_entailment else: label = self.label_neutral ret_labels.append(label) else: raise 'Claude 2 API returns None or empty string' return ret_labels # Path: refchecker/checker/gpt4_checker.py class GPT4Checker(CheckerBase): def __init__(self) -> None: super().__init__() self.prompt_temp = GPT4_CHECKING_PROMPT self.prompt_temp_wq = GPT4_CHECKING_PROMPT_Q def _check( self, claims: List, references: List, response: str, question: str, ): ret_labels = [] for claim, reference in zip(claims, references): if isinstance(claim, list): assert len(claim) == 3 claim = f"({claim[0]}, {claim[1]}, {claim[2]})" if question is None: prompt = self.prompt_temp.format( reference=reference, claim=claim ) else: prompt = self.prompt_temp_wq.format( question=question, reference=reference, claim=claim ) openai_response = get_openai_model_response( prompt=prompt, temperature=0, model='gpt-4' ) if openai_response and len(openai_response): label = None if self.label_contradiction.lower() in openai_response.lower(): label = self.label_contradiction elif self.label_entailment.lower() in openai_response.lower(): label = self.label_entailment else: label = self.label_neutral ret_labels.append(label) else: raise 'OpenAI API returns None or empty string' return ret_labels # Path: refchecker/checker/nli_checker.py class NLIChecker(CheckerBase): def __init__( self, model='ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli', device=0 ): super().__init__() self.model = AutoModelForSequenceClassification.from_pretrained(model).to(device) self.model.eval() self.tokenizer = AutoTokenizer.from_pretrained(model) self.device = device @torch.no_grad() def _check( self, claims: List, references: List, response: str, question: str, ): N1, N2 = len(references), len(claims) assert N1 == N2, f"Batches must be of the same length. {N1} != {N2}" if isinstance(claims[0], list): assert len(claims[0]) == 3 claims = [f"{c[0]} {c[1]} {c[2]}" for c in claims] inputs = self.tokenizer( references, claims, max_length=512, truncation=True, return_tensors="pt", padding=True, return_token_type_ids=True ) inputs = {k: v.to(self.device) for k, v in inputs.items()} output = self.model(**inputs).logits.softmax(dim=-1).cpu() # [N, 3] preds = output.argmax(dim=-1) ret = [LABELS[p] for p in preds] return ret # Path: refchecker/retriever/google_retriever.py class GoogleRetriever: def __init__(self, cache_dir: str = "./.cache"): self.bm25 = None self._load_key() cache_dir = os.path.join(cache_dir, "serper") self.cache = diskcache.Cache(cache_dir) def _load_key(self): self.api_key = os.environ.get("SERPER_API_KEY", None) assert self.api_key is not None, \ f"Require environment variable SERPER_API_KEY." def _query_google(self, query: str) -> dict: """Search Google using Serper API and retrieve abundant information""" if query in self.cache: return self.cache[query] else: payload = json.dumps({"q": query}) headers = { "X-API-KEY": self.api_key, "Content-Type": "application/json" } response = requests.request( "POST", SERPER_URL, headers=headers, data=payload ) response_dict = json.loads(response.text) self.cache[query] = response_dict return response_dict def _get_queries(self, paragraph: str) -> List[str]: """Use LLM to generate query to search on the Internet to get relevant information. Currently only single query is generated.""" prompt = PROMPT_FOR_QUERY_GEN % paragraph query = get_openai_model_response(prompt, temperature=0) if query is None: raise RuntimeError( "Retriever: Empty response from LLM for query generation." ) return [query.strip()] @staticmethod def _parse_results(results: dict) -> Tuple[List[dict], bool]: """Adapted from `FacTool` to utilize retrieved results as answers.""" snippets = [] with_answerbox = False if results.get("answerBox"): # This case indicates that Google has made a good answer to the question, and it's as desired to utilize this information. answer_box: dict = results.get("answerBox", {}) if answer_box.get("answer"): element = { "content": answer_box.get("answer"), "source": answer_box.get("link"), } snippets = [element] elif answer_box.get("snippet"): element = { "content": answer_box.get("snippet").replace("\n", " "), "source": answer_box.get("link"), } snippets = [element] elif answer_box.get("snippetHighlighted"): element = { "content": answer_box.get("snippetHighlighted"), "source": answer_box.get("link"), } snippets = [element] if len(snippets) > 0: with_answerbox = True if results.get("knowledgeGraph"): kg: dict = results.get("knowledgeGraph", {}) title = kg.get("title") entity_type = kg.get("type") if entity_type: element = { "content": f"{title}: {entity_type}", "source": kg.get("link"), } snippets.append(element) description = kg.get("description") if description: element = {"content": description, "source": kg.get("link")} snippets.append(element) for attribute, value in kg.get("attributes", {}).items(): element = {"content": f"{attribute}: {value}", "source": kg.get("link")} snippets.append(element) # TODO: set num of parsing link in parameters for result in results["organic"][:3]: if "snippet" in result: element = {"content": result["snippet"], "source": result["link"]} snippets.append(element) for attribute, value in result.get("attributes", {}).items(): element = {"content": f"{attribute}: {value}", "source": result["link"]} snippets.append(element) if len(snippets) == 0: warnings.warn("No usable google search results.") return snippets, with_answerbox @staticmethod def _get_url_text(url) -> str: # Read page and return text buf = [] try: soup = BeautifulSoup( requests.get(url, timeout=10).text, "html.parser" ) for p in soup.find_all("p"): pt = p.get_text() if len(buf) == 0 or pt not in buf[-1]: buf.append(pt) return "\n".join(buf) except: return "" @staticmethod def _split_doc( text: str, max_words_per_paragrpah=384, short_paragraph_threshold=96, preserve_threshold=8, ) -> List[str]: """Use spacy to split a document to paragraphs.""" paras = text.splitlines() splitted = [] sent_to_be_concat = "" accumulate_length = 0 for p in paras: p = p.strip() if len(p) < 1: continue # empty lines sents = sentencize(p) for sent in sents: if accumulate_length + len(sent) <= max_words_per_paragrpah: sent_to_be_concat += sent.text_with_ws accumulate_length += len(sent) else: splitted.append(sent_to_be_concat) sent_to_be_concat = sent.text_with_ws accumulate_length = len(sent) if accumulate_length <= short_paragraph_threshold: sent_to_be_concat += " " else: splitted.append(sent_to_be_concat) sent_to_be_concat = "" accumulate_length = 0 if accumulate_length >= preserve_threshold: splitted.append(sent_to_be_concat) return splitted def _process_retrieved_docs( self, docs: List[dict], query: str, best_k=8, max_words_per_paragraph=384, skip_repeated_corpus=True, ) -> List[Dict[str, Union[str, None]]]: # {"content": <text>, "url": <url>} if len(docs) == 0: return None if len(docs) == 1: return docs else: links_dict = {} corpus, links = [], [] # List of documents # retrieve through the links for relevance in docs: url = relevance["source"] if "youtube" in url: continue # skip youtube due to slow fetching if url in links_dict.keys(): if skip_repeated_corpus: continue online_text = links_dict[url] else: online_text = self._get_url_text(url) links_dict[url] = online_text splitted_text = self._split_doc( online_text, max_words_per_paragraph ) corpus.extend(splitted_text) links.extend([url] * len(splitted_text)) meta_doc_dict = dict(zip(corpus, links)) tokenized_corpus = [doc.split(" ") for doc in corpus] bm25 = rank_bm25.BM25Okapi(tokenized_corpus) best_docs = bm25.get_top_n(query.split(), corpus, n=best_k) return [ {"content": k, "source": meta_doc_dict[k]} for k in best_docs ] def retrieve( self, text: str, top_k=3, max_words_per_paragraph=384 ) -> List[Dict[str, Union[str, None]]]: """ Search reference documents on the Internet based on LLM generated query. Parameters ---------- text : str Text to be checked. top_k : int Number of reference documents to be retrieved. max_words_per_paragraph : int Maximum number of words in each reference document. Returns ------- List[str] List of reference documents """ # Step 1. Generate queries for searching using LLM. queries = self._get_queries(text) # Step 2. Search google with the queries. relevant_info_dicts, best_docs_all = [], [] for q in queries: searched_results = self._query_google(q) parsed_results, with_answerbox = self._parse_results( searched_results ) if with_answerbox: answerbox_answer, parsed_results = ( parsed_results[0], parsed_results[1:], ) relevant_info_dicts.extend(parsed_results) best_docs = self._process_retrieved_docs( relevant_info_dicts, q, best_k=math.ceil((top_k - with_answerbox) / len(queries)), max_words_per_paragraph=max_words_per_paragraph, skip_repeated_corpus=True, ) if with_answerbox: best_docs.insert(0, answerbox_answer) best_docs_all.extend(best_docs) refs = [ doc["content"] for doc in best_docs_all ] return refs # Path: refchecker/aggregator.py def strict_agg(results): """Aggregate results by zero-tolerance on negative labels.""" if not results: return "Abstain" for result in results: if result == "Contradiction": return "Contradiction" if result == "Neutral": return "Neutral" return "Entailment" # Path: refchecker/aggregator.py def soft_agg(results): """Aggregate results by taking the ratio of each category.""" if not results: return { "Entailment": 0.0, "Neutral": 0.0, "Contradiction": 0.0, "Abstain": 1.0, } total = len(results) agg = { "Entailment": 0.0, "Neutral": 0.0, "Contradiction": 0.0, "Abstain": 0.0, } for result in results: agg[result] += 1.0 for key in agg: agg[key] /= total return agg # Path: refchecker/aggregator.py def major_agg(results): """Aggregate results by majority vote.""" if not results: return "Abstain" agg = Counter(results) return agg.most_common(1)[0][0] # Path: refchecker/cli.py import os import json from argparse import ArgumentParser, RawTextHelpFormatter from tqdm import tqdm from .extractor import Claude2Extractor, GPT4Extractor from .checker import Claude2Checker, GPT4Checker, NLIChecker from .retriever import GoogleRetriever from .aggregator import strict_agg, soft_agg, major_agg help="Path to the Anthropic api key file. Required if the Anthropic " "Claude2 api is used." ) parser.add_argument( "--aws_bedrock_region", type=str, default="", help="AWS region where the Amazon Bedrock api is deployed. Required if " "the Amazon Bedrock api is used." ) parser.add_argument( "--use_retrieval", action="store_true", help="Whether to use retrieval to find the reference for checking. " "Required if the reference\nfield in input data is not provided." ) parser.add_argument( "--serper_api_key", type=str, default="", help="Path to the serper api key file. Required if the google retriever" " is used." ) return parser.parse_args() def main(): args = get_args() # set environment variables if args.openai_key: with open(args.openai_key, "r") as fp: os.environ["OPENAI_API_KEY"] = fp.read().strip() if args.anthropic_key: with open(args.anthropic_key, "r") as fp: os.environ["ANTHROPIC_API_KEY"] = fp.read().strip() if args.aws_bedrock_region: os.environ["aws_bedrock_region"] = args.aws_bedrock_region if args.serper_api_key: os.environ["SERPER_API_KEY"] = args.serper_api_key if args.mode == "extract": extract(args) elif args.mode == "check": check(args) elif args.mode == "extract-check": output_path = args.output_path args.output_path = output_path + ".temp" extract(args) args.input_path = args.output_path args.output_path = output_path check(args) else: raise NotImplementedError def extract(args): # initialize models if args.extractor_name == "claude2": extractor = Claude2Extractor() elif args.extractor_name == "gpt4": extractor = GPT4Extractor() else: raise NotImplementedError # load data with open(args.input_path, "r") as fp: input_data = json.load(fp) # extract triplets print('Extracting') output_data = [] for item in tqdm(input_data): assert "response" in item, "response field is required" response = item["response"] question = item.get("question", None) triplets = extractor.extract_claim_triplets(response, question, max_new_tokens=args.extractor_max_new_tokens) out_item = {**item, **{"triplets": triplets}} output_data.append(out_item) with open(args.output_path, "w") as fp: json.dump(output_data, fp, indent=2) def check(args): # initialize models if args.checker_name == "claude2": checker = Claude2Checker() elif args.checker_name == "gpt4": checker = GPT4Checker() elif args.checker_name == "nli": checker = NLIChecker() else: raise NotImplementedError retriever = None if args.use_retrieval: if args.retriever_name == "google": retriever = GoogleRetriever(args.cache_dir) else: raise NotImplementedError if args.aggregator_name == "strict": agg_fn = strict_agg elif args.aggregator_name == "soft": agg_fn = soft_agg elif args.aggregator_name == "major": agg_fn = major_agg else: raise NotImplementedError # load data with open(args.input_path, "r") as fp: input_data = json.load(fp) # check triplets print('Checking') output_data = [] for item in tqdm(input_data): assert "triplets" in item, "triplets field is required" triplets = item["triplets"] if args.use_retrieval: reference = retriever.retrieve(item["response"]) item["reference"] = reference else: assert "reference" in item, \
"reference field is required if retriever is not used."
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: RenShuhuai-Andy/TimeChat # Path: timechat/common/registry.py class Registry: def register_builder(cls, name): def wrap(builder_cls): def register_task(cls, name): def wrap(task_cls): def register_model(cls, name): def wrap(model_cls): def register_processor(cls, name): def wrap(processor_cls): def register_lr_scheduler(cls, name): def wrap(lr_sched_cls): def register_runner(cls, name): def wrap(runner_cls): def register_path(cls, name, path): def register(cls, name, obj): def get_builder_class(cls, name): def get_model_class(cls, name): def get_task_class(cls, name): def get_processor_class(cls, name): def get_lr_scheduler_class(cls, name): def get_runner_class(cls, name): def list_runners(cls): def list_models(cls): def list_tasks(cls): def list_processors(cls): def list_lr_schedulers(cls): def list_datasets(cls): def get_path(cls, name): def get(cls, name, default=None, no_warning=False): def unregister(cls, name): # Path: timechat/datasets/builders/base_dataset_builder.py class BaseDatasetBuilder: train_dataset_cls, eval_dataset_cls = None, None def __init__(self, cfg=None): super().__init__() if cfg is None: # help to create datasets from default config. self.config = load_dataset_config(self.default_config_path()) elif isinstance(cfg, str): self.config = load_dataset_config(cfg) else: # when called from task.build_dataset() self.config = cfg self.data_type = self.config.data_type self.vis_processors = {"train": BaseProcessor(), "eval": BaseProcessor()} self.text_processors = {"train": BaseProcessor(), "eval": BaseProcessor()} def build_datasets(self): # download, split, etc... # only called on 1 GPU/TPU in distributed if is_main_process(): self._download_data() if is_dist_avail_and_initialized(): dist.barrier() # at this point, all the annotations and image/videos should be all downloaded to the specified locations. logging.info("Building datasets...") datasets = self.build() # dataset['train'/'val'/'test'] return datasets def build_processors(self): vis_proc_cfg = self.config.get("vis_processor") txt_proc_cfg = self.config.get("text_processor") if vis_proc_cfg is not None: vis_train_cfg = vis_proc_cfg.get("train") vis_eval_cfg = vis_proc_cfg.get("eval") self.vis_processors["train"] = self._build_proc_from_cfg(vis_train_cfg) self.vis_processors["eval"] = self._build_proc_from_cfg(vis_eval_cfg) if txt_proc_cfg is not None: txt_train_cfg = txt_proc_cfg.get("train") txt_eval_cfg = txt_proc_cfg.get("eval") self.text_processors["train"] = self._build_proc_from_cfg(txt_train_cfg) self.text_processors["eval"] = self._build_proc_from_cfg(txt_eval_cfg) @staticmethod def _build_proc_from_cfg(cfg): return ( registry.get_processor_class(cfg.name).from_config(cfg) if cfg is not None else None ) @classmethod def default_config_path(cls, type="default"): return utils.get_abs_path(cls.DATASET_CONFIG_DICT[type]) def _download_data(self): self._download_ann() self._download_vis() def _download_ann(self): """ Download annotation files if necessary. All the vision-language datasets should have annotations of unified format. storage_path can be: (1) relative/absolute: will be prefixed with env.cache_root to make full path if relative. (2) basename/dirname: will be suffixed with base name of URL if dirname is provided. Local annotation paths should be relative. """ anns = self.config.build_info.annotations splits = anns.keys() cache_root = registry.get_path("cache_root") for split in splits: info = anns[split] urls, storage_paths = info.get("url", None), info.storage if isinstance(urls, str): urls = [urls] if isinstance(storage_paths, str): storage_paths = [storage_paths] assert len(urls) == len(storage_paths) for url_or_filename, storage_path in zip(urls, storage_paths): # if storage_path is relative, make it full by prefixing with cache_root. if not os.path.isabs(storage_path): storage_path = os.path.join(cache_root, storage_path) dirname = os.path.dirname(storage_path) if not os.path.exists(dirname): os.makedirs(dirname) if os.path.isfile(url_or_filename): src, dst = url_or_filename, storage_path if not os.path.exists(dst): shutil.copyfile(src=src, dst=dst) else: logging.info("Using existing file {}.".format(dst)) else: if os.path.isdir(storage_path): # if only dirname is provided, suffix with basename of URL. raise ValueError( "Expecting storage_path to be a file path, got directory {}".format( storage_path ) ) else: filename = os.path.basename(storage_path) download_url(url=url_or_filename, root=dirname, filename=filename) def _download_vis(self): storage_path = self.config.build_info.get(self.data_type).storage storage_path = utils.get_cache_path(storage_path) if not os.path.exists(storage_path): warnings.warn( f""" The specified path {storage_path} for visual inputs does not exist. Please provide a correct path to the visual inputs or refer to datasets/download_scripts/README.md for downloading instructions. """ ) def build(self): """ Create by split datasets inheriting torch.utils.data.Datasets. # build() can be dataset-specific. Overwrite to customize. """ self.build_processors() build_info = self.config.build_info ann_info = build_info.annotations vis_info = build_info.get(self.data_type) datasets = dict() for split in ann_info.keys(): if split not in ["train", "val", "test"]: continue is_train = split == "train" # processors vis_processor = ( self.vis_processors["train"] if is_train else self.vis_processors["eval"] ) text_processor = ( self.text_processors["train"] if is_train else self.text_processors["eval"] ) # annotation path ann_paths = ann_info.get(split).storage if isinstance(ann_paths, str): ann_paths = [ann_paths] abs_ann_paths = [] for ann_path in ann_paths: if not os.path.isabs(ann_path): ann_path = utils.get_cache_path(ann_path) abs_ann_paths.append(ann_path) ann_paths = abs_ann_paths # visual data storage path vis_path = os.path.join(vis_info.storage, split) if not os.path.isabs(vis_path): # vis_path = os.path.join(utils.get_cache_path(), vis_path) vis_path = utils.get_cache_path(vis_path) if not os.path.exists(vis_path): warnings.warn("storage path {} does not exist.".format(vis_path)) # create datasets dataset_cls = self.train_dataset_cls if is_train else self.eval_dataset_cls datasets[split] = dataset_cls( vis_processor=vis_processor, text_processor=text_processor, ann_paths=ann_paths, vis_root=vis_path, ) return datasets # Path: timechat/datasets/datasets/laion_dataset.py class LaionDataset(BaseDataset): def __init__(self, vis_processor, text_processor, location): super().__init__(vis_processor=vis_processor, text_processor=text_processor) self.inner_dataset = wds.DataPipeline( wds.ResampledShards(location), wds.tarfile_to_samples(handler=wds.warn_and_continue), wds.shuffle(1000, handler=wds.warn_and_continue), wds.decode("pilrgb", handler=wds.warn_and_continue), wds.to_tuple("jpg", "json", handler=wds.warn_and_continue), wds.map_tuple(self.vis_processor, handler=wds.warn_and_continue), wds.map(self.to_dict, handler=wds.warn_and_continue), ) def to_dict(self, sample): return { "image": sample[0], "text_input": self.text_processor(sample[1]["caption"]), } # Path: timechat/datasets/datasets/llava_instruct_dataset.py class Instruct_Dataset(BaseDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_root,num_video_query_token=32,tokenizer_name = '/mnt/workspace/ckpt/vicuna-13b/',data_type = 'image', model_type='vicuna'): """ vis_root (string): Root directory of Llava images (e.g. webvid_eval/video/) ann_root (string): Root directory of video (e.g. webvid_eval/annotations/) split (string): val or test """ super().__init__(vis_processor=vis_processor, text_processor=text_processor) data_path = pathlib.Path(ann_root) with data_path.open(encoding='utf-8') as f: self.annotation = json.load(f) self.vis_root = vis_root self.resize_size = 224 self.num_frm = 8 self.tokenizer = LlamaTokenizer.from_pretrained(tokenizer_name, use_fast=False) self.tokenizer.pad_token = self.tokenizer.unk_token self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.num_video_query_token = num_video_query_token self.IMAGE_PATCH_TOKEN_ID = self.tokenizer.get_vocab()[DEFAULT_IMAGE_PATCH_TOKEN] self.transform = AlproVideoTrainProcessor( image_size=self.resize_size, n_frms = self.num_frm ).transform self.data_type = data_type self.model_type = model_type def _get_image_path(self, sample): rel_video_fp ='COCO_train2014_' + sample['image'] full_video_fp = os.path.join(self.vis_root, rel_video_fp) return full_video_fp def __getitem__(self, index): num_retries = 10 # skip error videos for _ in range(num_retries): try: sample = self.annotation[index] image_path = self._get_image_path(sample) conversation_list = sample['conversations'] image = Image.open(image_path).convert("RGB") image = self.vis_processor(image) # text = self.text_processor(text) sources = preprocess_multimodal(copy.deepcopy(conversation_list), None, cur_token_len=self.num_video_query_token) if self.model_type =='vicuna': data_dict = preprocess( sources, self.tokenizer) elif self.model_type =='llama_v2': data_dict = preprocess_for_llama_v2( sources, self.tokenizer) else: print('not support') raise('not support') data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]) # image exist in the data data_dict['image'] = image except: print(f"Failed to load examples with image: {image_path}. " f"Will randomly sample an example as a replacement.") index = random.randint(0, len(self) - 1) continue break else: raise RuntimeError(f"Failed to fetch image after {num_retries} retries.") # "image_id" is kept to stay compatible with the COCO evaluation format return { "image": image, "text_input": data_dict["input_ids"], "labels": data_dict["labels"], "type":'image', } def __len__(self): return len(self.annotation) def collater(self, instances): input_ids, labels = tuple([instance[key] for instance in instances] for key in ("text_input", "labels")) input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) batch = dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ) if 'image' in instances[0]: images = [instance['image'] for instance in instances] if all(x is not None and x.shape == images[0].shape for x in images): batch['images'] = torch.stack(images) else: batch['images'] = images batch['conv_type'] = 'multi' return batch # Path: timechat/datasets/datasets/video_instruct_dataset.py class Video_Instruct_Dataset(BaseDataset): def __init__(self, vis_processor, text_processor, vis_root, ann_root, num_video_query_token=32, tokenizer_name='/mnt/workspace/ckpt/vicuna-13b/', data_type='video', model_type='vicuna', num_frm=8, sample_type='rand', max_txt_len=512, stride=32): """ vis_root (string): Root directory of Llava images (e.g. webvid_eval/video/) ann_root (string): Root directory of video (e.g. webvid_eval/annotations/) split (string): val or test """ super().__init__(vis_processor=vis_processor, text_processor=text_processor) data_path = pathlib.Path(ann_root) with data_path.open(encoding='utf-8') as f: self.annotation = json.load(f) self.num_video_query_token = num_video_query_token self.vis_root = vis_root self.resize_size = 224 self.num_frm = num_frm self.tokenizer = LlamaTokenizer.from_pretrained(tokenizer_name, use_fast=False) self.tokenizer.pad_token = self.tokenizer.unk_token self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.IMAGE_PATCH_TOKEN_ID = self.tokenizer.get_vocab()[DEFAULT_IMAGE_PATCH_TOKEN] self.transform = AlproVideoTrainProcessor( image_size=self.resize_size, n_frms=self.num_frm ).transform self.data_type = data_type self.model_type = model_type self.sample_type = sample_type self.max_txt_len = max_txt_len self.stride = stride def _get_video_path(self, sample): rel_video_fp = sample['video'] full_video_fp = os.path.join(self.vis_root, rel_video_fp) return full_video_fp def __getitem__(self, index): num_retries = 10 # skip error videos for _ in range(num_retries): try: sample = self.annotation[index] video_path = self._get_video_path(sample) conversation_list = sample['QA'] video, msg = load_video( video_path=video_path, n_frms=self.num_frm, height=self.resize_size, width=self.resize_size, sampling=self.sample_type, return_msg=True ) video = self.transform(video) if 'cn' in self.data_type: msg = "" # 添加视频<DEFAULT_IMAGE_PATCH_TOKEN>,以及msg到convsation list 0 cur_n_frm = video.shape[1] cur_token_len = self.num_video_query_token * math.ceil( cur_n_frm / self.stride) if self.stride > 0 else self.num_video_query_token sources = preprocess_multimodal(copy.deepcopy(conversation_list), None, cur_token_len=cur_token_len, msg=msg) new_sources = convert_source_vicuna_format(sources) if index == 0: print(new_sources) if self.model_type == 'vicuna': data_dict = preprocess( new_sources, self.tokenizer, self.max_txt_len ) elif self.model_type == 'llama_v2': data_dict = preprocess_for_llama_v2( new_sources, self.tokenizer, self.max_txt_len ) else: print('not support') raise ('not support') data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]) # image exist in the data data_dict['image'] = video # timestamp all_timestamps = msg.split('at')[1].replace('seconds.', '').strip().split( ',') # extract timestamps from msg all_timestamps = [f'This frame is sampled at {t.strip()} second.' for t in all_timestamps] all_timestamps = self.tokenizer( all_timestamps, return_tensors="pt", padding="longest", max_length=32, truncation=True, ) data_dict['timestamps'] = all_timestamps except: print(f"Failed to load examples with video: {video_path}. " f"Will randomly sample an example as a replacement.") index = random.randint(0, len(self) - 1) continue break else: raise RuntimeError(f"Failed to fetch video after {num_retries} retries.") # "image_id" is kept to stay compatible with the COCO evaluation format return { "image": video, "text_input": data_dict["input_ids"], "labels": data_dict["labels"], "type": 'video', "timestamps": data_dict['timestamps'], } def __len__(self): return len(self.annotation) def collater(self, instances): input_ids, labels, timestamps = tuple([instance[key] for instance in instances] for key in ("text_input", "labels", "timestamps")) input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) batch = dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ) if 'image' in instances[0]: images = [instance['image'] for instance in instances] if all(x is not None and x.shape == images[0].shape for x in images): # nb of frames of all videos is ${num_frm} batch['images'] = torch.stack(images) timestamps_input_ids, timestamps_attention_mask = [], [] for timestamp in timestamps: n_frm = timestamp['input_ids'].shape[0] for i in range(n_frm): timestamps_input_ids.append(timestamp['input_ids'][i]) timestamps_attention_mask.append(timestamp['attention_mask'][i]) timestamps_input_ids = torch.nn.utils.rnn.pad_sequence( timestamps_input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) timestamps_attention_mask = torch.nn.utils.rnn.pad_sequence( timestamps_attention_mask, batch_first=True, padding_value=0) batch['timestamps'] = {'input_ids': timestamps_input_ids, 'attention_mask': timestamps_attention_mask} else: # nb of frames of some videos is less than ${num_frm} print(f'image shape not match: {[x.shape for x in images]}') batch['images'] = images batch_timestamps = [] for timestamp in timestamps: batch_timestamps.append( {'input_ids': timestamp['input_ids'], 'attention_mask': timestamp['attention_mask']}) batch['timestamps'] = batch_timestamps batch['conv_type'] = 'multi' return batch # Path: timechat/datasets/builders/instruct_builder.py import os import logging import warnings from timechat.common.registry import registry from timechat.datasets.builders.base_dataset_builder import BaseDatasetBuilder from timechat.datasets.datasets.laion_dataset import LaionDataset from timechat.datasets.datasets.llava_instruct_dataset import Instruct_Dataset from timechat.datasets.datasets.video_instruct_dataset import Video_Instruct_Dataset @registry.register_builder("image_instruct") class Image_Instruct_Builder(BaseDatasetBuilder): train_dataset_cls = Instruct_Dataset DATASET_CONFIG_DICT = {"default": "configs/datasets/instruct/defaults.yaml"} def _download_ann(self): pass def _download_vis(self): pass def build(self): self.build_processors() datasets = dict() split = "train" build_info = self.config.build_info dataset_cls = self.train_dataset_cls if self.config.num_video_query_token: num_video_query_token = self.config.num_video_query_token else: num_video_query_token = 32 if self.config.tokenizer_name: tokenizer_name = self.config.tokenizer_name else: tokenizer_name = '/mnt/workspace/ckpt/vicuna-13b/' model_type = self.config.model_type if self.config.model_type else 'vicuna' datasets[split] = dataset_cls( vis_processor=self.vis_processors[split], text_processor=self.text_processors[split], vis_root=build_info.videos_dir, ann_root=build_info.anno_dir, num_video_query_token=num_video_query_token, tokenizer_name=tokenizer_name, data_type=self.config.data_type, model_type=model_type, ) return datasets @registry.register_builder("video_instruct") class Video_Instruct_Builder(BaseDatasetBuilder): train_dataset_cls = Video_Instruct_Dataset DATASET_CONFIG_DICT = {"default": "configs/datasets/instruct/defaults.yaml"} def _download_ann(self): pass def _download_vis(self): pass def build(self): self.build_processors() datasets = dict() split = "train" build_info = self.config.build_info dataset_cls = self.train_dataset_cls if self.config.num_video_query_token: num_video_query_token = self.config.num_video_query_token else: num_video_query_token = 32 if self.config.tokenizer_name: tokenizer_name = self.config.tokenizer_name else: tokenizer_name = '/mnt/workspace/ckpt/vicuna-13b/' model_type = self.config.model_type if self.config.model_type else 'vicuna' num_frm = self.config.num_frm if self.config.num_frm else 8 sample_type = self.config.sample_type if self.config.sample_type else 'uniform' max_txt_len = self.config.max_txt_len if self.config.max_txt_len else 512 stride = self.config.stride if self.config.stride else 0 datasets[split] = dataset_cls( vis_processor=self.vis_processors[split], text_processor=self.text_processors[split], vis_root=build_info.videos_dir, ann_root=build_info.anno_dir,
num_video_query_token=num_video_query_token,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Meituan-AutoML/Lenna # Path: model/llava/model/llava_arch.py class LlavaMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_images(self, images): image_features = self.get_model().get_vision_tower()(images) image_features = self.get_model().mm_projector(image_features) return image_features def prepare_inputs_labels_for_multimodal( self, input_ids, attention_mask, past_key_values, labels, images ): vision_tower = self.get_vision_tower() # CLIPVisionTower if vision_tower is None or images is None or input_ids.shape[1] == 1: if ( past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1 ): attention_mask = torch.ones( (attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device, ) return input_ids, attention_mask, past_key_values, None, labels if type(images) is list or images.ndim == 5: concat_images = torch.cat([image for image in images], dim=0) image_features = self.encode_images(concat_images) split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) image_features = [x.flatten(0, 1) for x in image_features] else: image_features = self.encode_images(images) new_input_embeds = [] new_labels = [] if labels is not None else None cur_image_idx = 0 for batch_idx, cur_input_ids in enumerate(input_ids): if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: # False # multimodal LLM, but the current sample is not multimodal cur_input_embeds = self.get_model().embed_tokens(cur_input_ids) cur_input_embeds = ( cur_input_embeds + ( 0.0 * self.get_model().mm_projector(vision_tower.dummy_feature) ).sum() ) new_input_embeds.append(cur_input_embeds) if labels is not None: new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] cur_new_input_embeds = [] if labels is not None: cur_labels = labels[batch_idx] cur_new_labels = [] assert cur_labels.shape == cur_input_ids.shape while image_token_indices.numel() > 0: cur_image_features = image_features[cur_image_idx] image_token_start = image_token_indices[0] if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( self.config, "mm_use_im_start_end", False ): cur_new_input_embeds.append( self.get_model() .embed_tokens(cur_input_ids[: image_token_start - 1]) .detach() ) cur_new_input_embeds.append( self.get_model().embed_tokens( cur_input_ids[image_token_start - 1 : image_token_start] ) ) cur_new_input_embeds.append(cur_image_features) cur_new_input_embeds.append( self.get_model().embed_tokens( cur_input_ids[image_token_start + 1 : image_token_start + 2] ) ) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append( torch.full( (cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype, ) ) cur_new_labels.append( cur_labels[image_token_start : image_token_start + 1] ) cur_labels = cur_labels[image_token_start + 2 :] elif getattr(self.config, "mm_use_im_start_end", False): cur_new_input_embeds.append( self.get_model().embed_tokens(cur_input_ids[:image_token_start]) ) cur_new_input_embeds.append(cur_image_features) cur_new_input_embeds.append( self.get_model().embed_tokens( cur_input_ids[image_token_start + 1 : image_token_start + 2] ) ) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append( torch.full( (cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype, ) ) cur_new_labels.append( cur_labels[image_token_start + 1 : image_token_start + 2] ) cur_labels = cur_labels[image_token_start + 2 :] else: cur_new_input_embeds.append( self.get_model().embed_tokens(cur_input_ids[:image_token_start]) ) cur_new_input_embeds.append(cur_image_features) if labels is not None: cur_new_labels.append(cur_labels[:image_token_start]) cur_new_labels.append( torch.full( (cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype, ) ) cur_labels = cur_labels[image_token_start + 1 :] cur_image_idx += 1 if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( self.config, "mm_use_im_start_end", False ): cur_input_ids = cur_input_ids[image_token_start + 2 :] elif getattr(self.config, "mm_use_im_start_end", False): cur_input_ids = cur_input_ids[image_token_start + 2 :] else: cur_input_ids = cur_input_ids[image_token_start + 1 :] image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] if cur_input_ids.numel() > 0: if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( self.config, "mm_use_im_start_end", False ): cur_new_input_embeds.append( self.get_model().embed_tokens(cur_input_ids).detach() ) elif getattr(self.config, "mm_use_im_start_end", False): cur_new_input_embeds.append( self.get_model().embed_tokens(cur_input_ids) ) else: cur_new_input_embeds.append( self.get_model().embed_tokens(cur_input_ids) ) if labels is not None: cur_new_labels.append(cur_labels) cur_new_input_embeds = [ x.to(device=self.device) for x in cur_new_input_embeds ] cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) new_input_embeds.append(cur_new_input_embeds) if labels is not None: cur_new_labels = torch.cat(cur_new_labels, dim=0) new_labels.append(cur_new_labels) if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): max_len = max(x.shape[0] for x in new_input_embeds) new_input_embeds_align = [] for cur_new_embed in new_input_embeds: cur_new_embed = torch.cat( ( cur_new_embed, torch.zeros( (max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device, ), ), dim=0, ) new_input_embeds_align.append(cur_new_embed) new_input_embeds = torch.stack(new_input_embeds_align, dim=0) if labels is not None: new_labels_align = [] _new_labels = new_labels for cur_new_label in new_labels: cur_new_label = torch.cat( ( cur_new_label, torch.full( (max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device, ), ), dim=0, ) new_labels_align.append(cur_new_label) new_labels = torch.stack(new_labels_align, dim=0) if attention_mask is not None: new_attention_mask = [] for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip( attention_mask, _new_labels, new_labels ): new_attn_mask_pad_left = torch.full( (cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device, ) new_attn_mask_pad_right = torch.full( (cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device, ) cur_new_attention_mask = torch.cat( ( new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right, ), dim=0, ) new_attention_mask.append(cur_new_attention_mask) attention_mask = torch.stack(new_attention_mask, dim=0) assert attention_mask.shape == new_labels.shape else: new_input_embeds = torch.stack(new_input_embeds, dim=0) if labels is not None: new_labels = torch.stack(new_labels, dim=0) if attention_mask is not None: new_attn_mask_pad_left = torch.full( ( attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1], ), True, dtype=attention_mask.dtype, device=attention_mask.device, ) attention_mask = torch.cat( (new_attn_mask_pad_left, attention_mask), dim=1 ) assert attention_mask.shape == new_input_embeds.shape[:2] return None, attention_mask, past_key_values, new_input_embeds, new_labels # def initialize_vision_tokenizer(self, model_args, tokenizer): def initialize_vision_tokenizer(self, model_args, num_new_tokens): # if model_args.mm_use_im_patch_token: # tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) # self.resize_token_embeddings(len(tokenizer)) if model_args.mm_use_im_start_end: # num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) # self.resize_token_embeddings(len(tokenizer)) # if num_new_tokens > 0: # input_embeddings = self.get_input_embeddings().weight.data # output_embeddings = self.get_output_embeddings().weight.data # input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( # dim=0, keepdim=True) # output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( # dim=0, keepdim=True) # input_embeddings[-num_new_tokens:] = input_embeddings_avg # output_embeddings[-num_new_tokens:] = output_embeddings_avg if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if model_args.pretrain_mm_mlp_adapter: mm_projector_weights = torch.load( model_args.pretrain_mm_mlp_adapter, map_location="cpu" ) embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[ -num_new_tokens: ] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError( f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}." ) elif model_args.mm_use_im_patch_token: if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = False for p in self.get_output_embeddings().parameters(): p.requires_grad = False # Path: model/llava/model/llava_arch.py class LlavaMetaModel: def __init__(self, config): super(LlavaMetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower(config, delay_load=True) self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size) def get_vision_tower(self): vision_tower = getattr(self, "vision_tower", None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_vision_tower = vision_tower vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower self.config.use_mm_proj = True self.config.mm_hidden_size = vision_tower.hidden_size self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature if not hasattr(self, "mm_projector"): self.mm_projector = nn.Linear( self.config.mm_hidden_size, self.config.hidden_size ) if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load( pretrain_mm_mlp_adapter, map_location="cpu" ) def get_w(weights, keyword): return { k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k } self.mm_projector.load_state_dict( get_w(mm_projector_weights, "mm_projector") ) # Path: model/llava/model/language_model/llava_llama.py from typing import List, Optional, Tuple, Union from torch.nn import CrossEntropyLoss from transformers import (AutoConfig, AutoModelForCausalLM, LlamaConfig, LlamaForCausalLM, LlamaModel) from transformers.modeling_outputs import CausalLMOutputWithPast from ..llava_arch import LlavaMetaForCausalLM, LlavaMetaModel import torch import torch.nn as nn # Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. class LlavaConfig(LlamaConfig): model_type = "llava" class LlavaLlamaModel(LlavaMetaModel, LlamaModel): config_class = LlavaConfig def __init__(self, config: LlamaConfig): super(LlavaLlamaModel, self).__init__(config) class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaConfig
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: xmu-xiaoma666/X-Dreamer # Path: render/mesh.py class Mesh: def __init__(self, v_pos=None, t_pos_idx=None, v_nrm=None, t_nrm_idx=None, v_tex=None, t_tex_idx=None, v_tng=None, t_tng_idx=None, material=None, base=None): def copy_none(self, other): def clone(self): def load_mesh(filename, mtl_override=None): def aabb(mesh): def compute_edges(attr_idx, return_inverse=False): def compute_edge_to_face_mapping(attr_idx, return_inverse=False): def unit_size(mesh): def center_by_reference(base_mesh, ref_aabb, scale): def auto_normals(imesh): def compute_tangents(imesh): # Path: render/render.py def interpolate(attr, rast, attr_idx, rast_db=None): def shade( gb_pos, gb_geometric_normal, gb_normal, gb_tangent, gb_texc, gb_texc_deriv, view_pos, lgt, material, bsdf, if_normal, normal_rotate, mode, if_flip_the_normal, if_use_bump ): def render_layer( rast, rast_deriv, mesh, view_pos, lgt, resolution, spp, msaa, bsdf, if_normal, normal_rotate, mode, if_flip_the_normal, if_use_bump ): def render_mesh( ctx, mesh, mtx_in, view_pos, lgt, resolution, spp = 1, num_layers = 1, msaa = False, background = None, bsdf = None, if_normal = False, normal_rotate = None, mode = 'geometry_modeling', if_flip_the_normal = False, if_use_bump = False ): def prepare_input_vector(x): def composite_buffer(key, layers, background, antialias): def render_uv(ctx, mesh, resolution, mlp_texture): def uv_padding(image, hole_mask, padding = 2, uv_padding_block = 4): def render_uv1(ctx, mesh, resolution, mlp_texture, uv_padding_block): # Path: render/util.py def dot(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: def reflect(x: torch.Tensor, n: torch.Tensor) -> torch.Tensor: def length(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: def safe_normalize(x: torch.Tensor, eps: float =1e-20) -> torch.Tensor: def to_hvec(x: torch.Tensor, w: float) -> torch.Tensor: def _rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: def rgb_to_srgb(f: torch.Tensor) -> torch.Tensor: def _srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: def srgb_to_rgb(f: torch.Tensor) -> torch.Tensor: def reinhard(f: torch.Tensor) -> torch.Tensor: def mse_to_psnr(mse): def psnr_to_mse(psnr): def get_miplevels(texture: np.ndarray) -> float: def tex_2d(tex_map : torch.Tensor, coords : torch.Tensor, filter='nearest') -> torch.Tensor: def cube_to_dir(s, x, y): def latlong_to_cubemap(latlong_map, res): def cubemap_to_latlong(cubemap, res): def scale_img_hwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: def scale_img_nhwc(x : torch.Tensor, size, mag='bilinear', min='area') -> torch.Tensor: def avg_pool_nhwc(x : torch.Tensor, size) -> torch.Tensor: def segment_sum(data: torch.Tensor, segment_ids: torch.Tensor) -> torch.Tensor: def fovx_to_fovy(fovx, aspect): def focal_length_to_fovy(focal_length, sensor_height): def perspective(fovy=0.7854, aspect=1.0, n=0.1, f= 1000.0, device=None): def perspective_offcenter(fovy, fraction, rx, ry, aspect=1.0, n=0.1, f=1000.0, device=None): def translate(x, y, z, device=None): def rotate_x(a, device=None): def rotate_x_1(a, device=None): def rotate_y(a, device=None): def rotate_y_1(a, device=None): def rotate_y_2(a, device=None): def rotate_x_2(a, device=None): def scale(s, device=None): def lookAt(eye, at, up): def random_rotation_translation(t, device=None): def random_rotation(device=None): def lines_focal(o, d): def cosine_sample(N, size=None): def bilinear_downsample(x : torch.tensor) -> torch.Tensor: def bilinear_downsample(x : torch.tensor, spp) -> torch.Tensor: def init_glfw(): def save_image(fn, x : np.ndarray): def save_image_raw(fn, x : np.ndarray): def load_image_raw(fn) -> np.ndarray: def load_image(fn) -> np.ndarray: def time_to_text(x): def checkerboard(res, checker_size) -> np.ndarray: def get_random_bg(h, w): R, L = aspect*y, -aspect*y T, B = y, -y I = torch.eye(3, dtype=o.dtype, device=o.device) S = torch.sum(d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...], dim=0) C = torch.sum((d[..., None] @ torch.transpose(d[..., None], 1, 2) - I[None, ...]) @ o[..., None], dim=0).squeeze(1) N = N/torch.linalg.norm(N) # Path: geometry/dmtet_network.py class Decoder(torch.nn.Module): def __init__(self, input_dims = 3, internal_dims = 128, output_dims = 4, hidden = 2, multires = 2, AABB=None, mesh_scale = 2.1): super().__init__() self.mesh_scale = mesh_scale desired_resolution = 4096 base_grid_resolution = 16 num_levels = 16 per_level_scale = np.exp(np.log(desired_resolution / base_grid_resolution) / (num_levels-1)) self.AABB= AABB enc_cfg = { "otype": "HashGrid", "n_levels": num_levels, "n_features_per_level": 2, "log2_hashmap_size": 19, "base_resolution": base_grid_resolution, "per_level_scale" : per_level_scale } gradient_scaling = 1.0 #128 self.encoder = tcnn.Encoding(3, enc_cfg) mlp_cfg = { "n_input_dims" : self.encoder.n_output_dims, "n_output_dims" : 4, "n_hidden_layers" : 2, "n_neurons" : 32 } self.net = _MLP(mlp_cfg, gradient_scaling) def forward(self, p): _texc = (p.view(-1, 3) - self.AABB[0][None, ...]) / (self.AABB[1][None, ...] - self.AABB[0][None, ...]) _texc = torch.clamp(_texc, min=0, max=1) p_enc = self.encoder(_texc.contiguous()) out = self.net(p_enc) return out def pre_train_ellipsoid(self, it, scene_and_vertices): if it% 100 ==0: print (f"Initialize SDF; it: {it}") loss_fn = torch.nn.MSELoss() scene = scene_and_vertices[0] points_surface = scene_and_vertices[1].astype(np.float32) points_surface_disturbed = points_surface + np.random.normal(loc=0.0, scale=0.05, size=points_surface.shape).astype(np.float32) point_rand = (np.random.rand(3000,3).astype(np.float32)-0.5)* self.mesh_scale query_point = np.concatenate((points_surface, points_surface_disturbed, point_rand)) signed_distance = scene.compute_signed_distance(query_point) ref_value = torch.from_numpy(signed_distance.numpy()).float().cuda() query_point = torch.from_numpy(query_point).float().cuda() output = self(query_point) loss = loss_fn(output[...,0], ref_value) return loss # Path: render/regularizer.py def image_grad(buf, std=0.01): def avg_edge_length(v_pos, t_pos_idx): def laplace_regularizer_const(v_pos, t_pos_idx): def normal_consistency(v_pos, t_pos_idx): # Path: geometry/dmtet_x_dreamer.py import numpy as np import torch import torch.nn.functional as F import torch.nn as nn import os from render import mesh from render import render from render import util from geometry.dmtet_network import Decoder from render import regularizer from torch.cuda.amp import custom_bwd, custom_fwd tet_idx = _idx(torch.div(face_gidx, 2, rounding_mode='trunc'), N) tri_idx = face_gidx % 2 uv_idx = torch.stack(( tet_idx * 4, tet_idx * 4 + tri_idx + 1, tet_idx * 4 + tri_idx + 2 ), dim = -1). view(-1, 3) return uvs, uv_idx ############################################################################### # Marching tets implementation ############################################################################### def __call__(self, pos_nx3, sdf_n, tet_fx4): with torch.no_grad(): occ_n = sdf_n > 0 occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1,4) occ_sum = torch.sum(occ_fx4, -1) valid_tets = (occ_sum>0) & (occ_sum<4) occ_sum = occ_sum[valid_tets] all_edges = tet_fx4[valid_tets][:,self.base_tet_edges].reshape(-1,2) all_edges = self.sort_edges(all_edges) unique_edges, idx_map = torch.unique(all_edges,dim=0, return_inverse=True) unique_edges = unique_edges.long() mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1,2).sum(-1) == 1 mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device="cuda") * -1 mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long,device="cuda") idx_map = mapping[idx_map] interp_v = unique_edges[mask_edges] edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1,2,3) edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1,2,1) edges_to_interp_sdf[:,-1] *= -1 denominator = edges_to_interp_sdf.sum(1,keepdim = True) edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1])/denominator verts = (edges_to_interp * edges_to_interp_sdf).sum(1) idx_map = idx_map.reshape(-1,6) v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device="cuda")) tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1) num_triangles = self.num_triangles_table[tetindex] faces = torch.cat(( torch.gather(input=idx_map[num_triangles == 1], dim=1, index=self.triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1,3), torch.gather(input=idx_map[num_triangles == 2], dim=1, index=self.triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1,3), ), dim=0) return verts, faces class CameraEncoder(nn.Module): def __init__(self): super(CameraEncoder, self).__init__() self.encoder = nn.Sequential( nn.Linear(6, 512), nn.ReLU(), nn.Linear(512, 1024), nn.ReLU() ) def forward(self, camera_data): encoded_vector = self.encoder(camera_data) return encoded_vector ############################################################################### # Geometry interface ############################################################################### class DMTetGeometry(torch.nn.Module): def __init__(self, grid_res, scale, FLAGS): super(DMTetGeometry, self).__init__() self.FLAGS = FLAGS self.grid_res = grid_res self.marching_tets = DMTet() tets = np.load('data/tets/{}_tets.npz'.format(self.grid_res)) self.verts = torch.tensor(tets['vertices'], dtype=torch.float32, device='cuda') * scale print("tet grid min/max", torch.min(self.verts).item(), torch.max(self.verts).item()) self.decoder = Decoder(multires=0 , AABB= self.getAABB(), mesh_scale= scale) self.indices = torch.tensor(tets['indices'], dtype=torch.long, device='cuda') self.generate_edges() self.pos_encoder = CameraEncoder().to(self.verts.device) def generate_edges(self): with torch.no_grad(): edges = torch.tensor([0,1,0,2,0,3,1,2,1,3,2,3], dtype = torch.long, device = "cuda") all_edges = self.indices[:,edges].reshape(-1,2) all_edges_sorted = torch.sort(all_edges, dim=1)[0] self.all_edges = torch.unique(all_edges_sorted, dim=0) @torch.no_grad() def getAABB(self): return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values def getMesh(self, material): pred= self.decoder(self.verts) self.sdf , self.deform = pred[:, 0], pred[:, 1:] v_deformed = self.verts + 1 / (self.grid_res ) * torch.tanh(self.deform) verts, faces = self.marching_tets(v_deformed, self.sdf, self.indices) imesh = mesh.Mesh(verts, faces, material=material) imesh = mesh.auto_normals(imesh) return imesh def render(self, glctx, target, lgt, opt_material, bsdf=None, if_normal=False, mode = 'geometry_modeling', if_flip_the_normal = False, if_use_bump = False): opt_mesh = self.getMesh(opt_material) return render.render_mesh(glctx, opt_mesh, target['mvp'], target['campos'], lgt, target['resolution'], spp=target['spp'], msaa= True, background= target['background'], bsdf= bsdf, if_normal= if_normal, normal_rotate= target['normal_rotate'], mode = mode,
if_flip_the_normal = if_flip_the_normal,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zhenzhiwang/intercontrol # Path: data_loaders/amass/sampling/base.py class FrameSampler: sampling: str = "conseq" sampling_step: int = 1 request_frames: Optional[int] = None threshold_reject: int = 0.75 # args = frame_sampler_parser() max_len: int = 250 min_len: int = 45 # max_len: int = 360 # min_len: int = 15 def __call__(self, num_frames): from .frames import get_frameix_from_data_index return get_frameix_from_data_index(num_frames, self.max_len, self.request_frames, self.sampling, self.sampling_step) def accept(self, duration): # Outputs have original lengths # Check if it is too long if self.request_frames is None: if duration > self.max_len: return False if duration < self.min_len: return False else: # Reject sample if the length is # too little relative to # the request frames # min_number = self.threshold_reject * self.request_frames if duration < self.min_len: # min_number: return False return True def get(self, key, default=None): return getattr(self, key, default) def __getitem__(self, key): return getattr(self, key) # Path: data_loaders/amass/transforms/smpl.py class SMPLTransform(Transform): def __init__(self, batch_size=16, rots2rfeats: Rots2Rfeats = None, rots2joints: Rots2Joints = None, joints2jfeats: Joints2Jfeats = None, **kwargs): if rots2rfeats == None: rots2rfeats = Globalvelandy(path='./data_loaders/amass/transforms/rots2rfeats/globalvelandy/rot6d/babel-amass/separate_pairs', normalization=True, pose_rep='rot6d', canonicalize=True, offset=True, name='Globalvelandy') if rots2joints == None: rots2joints = SMPLH(path='./body_models/smpl_models/smplh', jointstype='smplnh', input_pose_rep='matrix', batch_size=batch_size, gender='male', name='SMPLH') if joints2jfeats == None: joints2jfeats = None # FIXME : prob not it use self.rots2rfeats = rots2rfeats self.rots2joints = rots2joints self.joints2jfeats = joints2jfeats def Datastruct(self, **kwargs): return SMPLDatastruct(_rots2rfeats=self.rots2rfeats, _rots2joints=self.rots2joints, _joints2jfeats=self.joints2jfeats, transforms=self, **kwargs) def __repr__(self): return "SMPLTransform()" # Path: data_loaders/get_data.py def get_dataset_loader(name, batch_size, num_frames, split='train', load_mode='train', opt=None, short_db=False, cropping_sampler=False, size=None): if load_mode == 'text_only': load_mode = 'train' dataset = get_dataset(name, num_frames, split, load_mode, batch_size, opt, short_db, cropping_sampler, size) collate = get_collate_fn(name, load_mode) n_workers = 1 if load_mode in ['movement_train', 'evaluator_train'] else 8 loader = DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=n_workers, drop_last=True, collate_fn=collate ) return loader # Path: data_loaders/humanml/options/train_options.py class TrainTexMotMatchOptions(): def __init__(self): self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) self.parser.add_argument('--name', type=str, default="test", help='Name of this trial') self.parser.add_argument("--gpu_id", type=int, default=-1, help='GPU id') self.parser.add_argument("--train_platform_type", default='NoPlatform', choices=['NoPlatform', 'ClearmlPlatform', 'TensorboardPlatform'], type=str, help="Choose platform to log results. NoPlatform means no logging.") self.parser.add_argument("--num_frames", default=200, type=int, help="Limit for the maximal number of frames. In HumanML3D and KIT this field is ignored.") self.parser.add_argument('--dataset_name', type=str, default='t2m', help='Dataset Name') self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') self.parser.add_argument('--decomp_name', type=str, default="Decomp_SP001_SM001_H512", help='Name of this trial') self.parser.add_argument('--batch_size', type=int, default=32, help='Batch size') self.parser.add_argument("--unit_length", type=int, default=4, help="Length of motion") self.parser.add_argument("--max_text_len", type=int, default=20, help="Length of motion") self.parser.add_argument('--dim_movement_enc_hidden', type=int, default=512, help='Dimension of hidden unit in GRU') self.parser.add_argument('--dim_movement_latent', type=int, default=512, help='Dimension of hidden unit in GRU') self.parser.add_argument('--dim_text_hidden', type=int, default=512, help='Dimension of hidden unit in GRU') self.parser.add_argument('--dim_motion_hidden', type=int, default=1024, help='Dimension of hidden unit in GRU') self.parser.add_argument('--dim_coemb_hidden', type=int, default=512, help='Dimension of hidden unit in GRU') self.parser.add_argument('--max_epoch', type=int, default=300, help='Training iterations') self.parser.add_argument('--estimator_mod', type=str, default='bigru') self.parser.add_argument('--feat_bias', type=float, default=5, help='Layers of GRU') self.parser.add_argument('--negative_margin', type=float, default=10.0) self.parser.add_argument('--lr', type=float, default=1e-4, help='Layers of GRU') self.parser.add_argument('--is_continue', action="store_true", help='Training iterations') self.parser.add_argument('--movement_from_scratch', action="store_true", help='Training iterations') self.parser.add_argument('--log_every', type=int, default=50, help='Frequency of printing training progress') self.parser.add_argument('--save_every_e', type=int, default=5, help='Frequency of printing training progress') self.parser.add_argument('--eval_every_e', type=int, default=5, help='Frequency of printing training progress') self.parser.add_argument('--save_latest', type=int, default=500, help='Frequency of printing training progress') def parse(self): self.opt = self.parser.parse_args() self.opt.is_train = True args = vars(self.opt) return self.opt # Path: data_loaders/humanml/networks/trainers.py class TextMotionMatchTrainer(object): def __init__(self, args, text_encoder, motion_encoder, movement_encoder): self.opt = args self.text_encoder = text_encoder self.motion_encoder = motion_encoder self.movement_encoder = movement_encoder self.device = args.device if args.is_train: # self.motion_dis self.logger = Logger2(args) self.contrastive_loss = ContrastiveLoss(self.opt.negative_margin) def resume(self, model_dir): checkpoints = torch.load(model_dir, map_location=self.device) self.text_encoder.load_state_dict(checkpoints['text_encoder']) self.motion_encoder.load_state_dict(checkpoints['motion_encoder']) self.movement_encoder.load_state_dict(checkpoints['movement_encoder']) self.opt_text_encoder.load_state_dict(checkpoints['opt_text_encoder']) self.opt_motion_encoder.load_state_dict(checkpoints['opt_motion_encoder']) return checkpoints['epoch'], checkpoints['iter'] def save(self, model_dir, epoch, niter): state = { 'text_encoder': self.text_encoder.state_dict(), 'motion_encoder': self.motion_encoder.state_dict(), 'movement_encoder': self.movement_encoder.state_dict(), 'opt_text_encoder': self.opt_text_encoder.state_dict(), 'opt_motion_encoder': self.opt_motion_encoder.state_dict(), 'epoch': epoch, 'iter': niter, } torch.save(state, model_dir) @staticmethod def zero_grad(opt_list): for opt in opt_list: opt.zero_grad() @staticmethod def clip_norm(network_list): for network in network_list: clip_grad_norm_(network.parameters(), 0.5) @staticmethod def step(opt_list): for opt in opt_list: opt.step() def to(self, device): self.text_encoder.to(device) self.motion_encoder.to(device) self.movement_encoder.to(device) def train_mode(self): self.text_encoder.train() self.motion_encoder.train() self.movement_encoder.eval() def forward(self, batch_data): word_emb, pos_ohot, caption, cap_lens, motions, m_lens, _ = batch_data word_emb = word_emb.detach().to(self.device).float() pos_ohot = pos_ohot.detach().to(self.device).float() motions = motions.detach().to(self.device).float() # Sort the length of motions in descending order, (length of text has been sorted) self.align_idx = np.argsort(m_lens.data.tolist())[::-1].copy() # print(self.align_idx) # print(m_lens[self.align_idx]) motions = motions[self.align_idx] m_lens = m_lens[self.align_idx] '''Movement Encoding''' if self.opt.foot_contact_entries > 0: _motions = motions[..., :-self.opt.foot_contact_entries] else: _motions = motions movements = self.movement_encoder(_motions).detach() m_lens = m_lens // self.opt.unit_length self.motion_embedding = self.motion_encoder(movements, m_lens) '''Text Encoding''' # time0 = time.time() # text_input = torch.cat([word_emb, pos_ohot], dim=-1) self.text_embedding = self.text_encoder(word_emb, pos_ohot, cap_lens) self.text_embedding = self.text_embedding.clone()[self.align_idx] def backward(self): batch_size = self.text_embedding.shape[0] '''Positive pairs''' pos_labels = torch.zeros(batch_size).to(self.text_embedding.device) self.loss_pos = self.contrastive_loss(self.text_embedding, self.motion_embedding, pos_labels) '''Negative Pairs, shifting index''' neg_labels = torch.ones(batch_size).to(self.text_embedding.device) shift = np.random.randint(0, batch_size-1) new_idx = np.arange(shift, batch_size + shift) % batch_size self.mis_motion_embedding = self.motion_embedding.clone()[new_idx] self.loss_neg = self.contrastive_loss(self.text_embedding, self.mis_motion_embedding, neg_labels) self.loss = self.loss_pos + self.loss_neg loss_logs = OrderedDict({}) loss_logs['loss'] = self.loss.item() loss_logs['loss_pos'] = self.loss_pos.item() loss_logs['loss_neg'] = self.loss_neg.item() return loss_logs def update(self): self.zero_grad([self.opt_motion_encoder, self.opt_text_encoder]) loss_logs = self.backward() self.loss.backward() self.clip_norm([self.text_encoder, self.motion_encoder]) self.step([self.opt_text_encoder, self.opt_motion_encoder]) return loss_logs def train(self, train_dataloader, val_dataloader): self.to(self.device) self.opt_motion_encoder = optim.Adam(self.motion_encoder.parameters(), lr=self.opt.lr) self.opt_text_encoder = optim.Adam(self.text_encoder.parameters(), lr=self.opt.lr) epoch = 0 it = 0 if self.opt.is_continue: model_dir = pjoin(self.opt.model_dir, 'latest.tar') epoch, it = self.resume(model_dir) start_time = time.time() total_iters = self.opt.max_epoch * len(train_dataloader) print('Iters Per Epoch, Training: %04d, Validation: %03d' % (len(train_dataloader), len(val_dataloader))) val_loss = 1000. logs = OrderedDict() min_val_loss = np.inf while epoch < self.opt.max_epoch: # time0 = time.time() for i, batch_data in enumerate(train_dataloader): self.train_mode() self.forward(batch_data) # time3 = time.time() log_dict = self.update() for k, v in log_dict.items(): if k not in logs: logs[k] = v else: logs[k] += v it += 1 if it % self.opt.log_every == 0: mean_loss = OrderedDict({'val_loss': val_loss}) self.logger.scalar_summary('val_loss', val_loss, it) for tag, value in logs.items(): self.logger.scalar_summary(tag, value / self.opt.log_every, it) mean_loss[tag] = value / self.opt.log_every logs = OrderedDict() print_current_loss_decomp(start_time, it, total_iters, mean_loss, epoch, i) if it % self.opt.save_latest == 0: self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it) self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it) epoch += 1 if epoch % self.opt.save_every_e == 0: self.save(pjoin(self.opt.model_dir, 'E%04d.tar' % (epoch)), epoch, it) print('Validation time:') loss_pos_pair = 0 loss_neg_pair = 0 val_loss = 0 with torch.no_grad(): for i, batch_data in enumerate(val_dataloader): self.forward(batch_data) self.backward() loss_pos_pair += self.loss_pos.item() loss_neg_pair += self.loss_neg.item() val_loss += self.loss.item() loss_pos_pair /= len(val_dataloader) + 1 loss_neg_pair /= len(val_dataloader) + 1 val_loss /= len(val_dataloader) + 1 print('Validation Loss: %.5f Positive Loss: %.5f Negative Loss: %.5f' % (val_loss, loss_pos_pair, loss_neg_pair)) if val_loss < min_val_loss: self.save(pjoin(self.opt.model_dir, 'finest.tar'), epoch, it) min_val_loss = val_loss if epoch % self.opt.eval_every_e == 0: pos_dist = F.pairwise_distance(self.text_embedding, self.motion_embedding) neg_dist = F.pairwise_distance(self.text_embedding, self.mis_motion_embedding) pos_str = ' '.join(['%.3f' % (pos_dist[i]) for i in range(pos_dist.shape[0])]) neg_str = ' '.join(['%.3f' % (neg_dist[i]) for i in range(neg_dist.shape[0])]) save_path = pjoin(self.opt.eval_dir, 'E%03d.txt' % (epoch)) with cs.open(save_path, 'w') as f: f.write('Positive Pairs Distance\n') f.write(pos_str + '\n') f.write('Negative Pairs Distance\n') f.write(neg_str + '\n') # Path: data_loaders/humanml/data/dataset.py class Text2MotionDatasetV2(data.Dataset): def __init__(self, opt, mean, std, split_file, w_vectorizer, num_frames, size=None, **kwargs): self.opt = opt self.w_vectorizer = w_vectorizer self.max_length = 20 self.pointer = 0 self.num_frames = num_frames if num_frames else False self.max_motion_length = opt.max_motion_length if (self.num_frames == False) or type(self.num_frames)==int: min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24 else: min_motion_len = self.num_frames[0] self.max_motion_length = self.num_frames[1] data_dict = {} id_list = [] with cs.open(split_file, 'r') as f: for line in f.readlines(): id_list.append(line.strip()) id_list = id_list[:size] new_name_list = [] length_list = [] for name in tqdm(id_list): try: motion = np.load(pjoin(opt.motion_dir, name + '.npy')) if (len(motion)) < min_motion_len or (len(motion) >= 200): continue text_data = [] flag = False with cs.open(pjoin(opt.text_dir, name + '.txt')) as f: for line in f.readlines(): text_dict = {} line_split = line.strip().split('#') caption = line_split[0] tokens = line_split[1].split(' ') f_tag = float(line_split[2]) to_tag = float(line_split[3]) f_tag = 0.0 if np.isnan(f_tag) else f_tag to_tag = 0.0 if np.isnan(to_tag) else to_tag text_dict['caption'] = caption text_dict['tokens'] = tokens if f_tag == 0.0 and to_tag == 0.0: flag = True text_data.append(text_dict) else: try: n_motion = motion[int(f_tag*20) : int(to_tag*20)] if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200): continue new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name while new_name in data_dict: new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name if self.num_frames != False: if len(n_motion) >= self.max_motion_length: bias = random.randint(0, len(n_motion) - self.max_motion_length) data_dict[new_name] = {'motion': n_motion[bias: bias+self.max_motion_length], 'length': self.max_motion_length, 'text': [text_dict]} length_list.append(self.max_motion_length) else: data_dict[new_name] = {'motion': n_motion, 'length': len(n_motion), 'text': [text_dict]} length_list.append(len(n_motion)) else: data_dict[new_name] = {'motion': n_motion, 'length': len(n_motion), 'text':[text_dict]} length_list.append(len(n_motion)) new_name_list.append(new_name) except: print(line_split) print(line_split[2], line_split[3], f_tag, to_tag, name) # break if flag: if self.num_frames != False: if len(motion) >= self.max_motion_length: bias = random.randint(0, len(motion) - self.max_motion_length) data_dict[name] = {'motion': motion[bias: bias + self.max_motion_length], 'length': self.max_motion_length, 'text': [text_dict]} length_list.append(self.max_motion_length) else: data_dict[name] = {'motion': motion, 'length': len(motion), 'text': text_data} length_list.append(len(motion)) else: data_dict[name] = {'motion': motion, 'length': len(motion), 'text': text_data} length_list.append(len(motion)) new_name_list.append(name) except Exception as e: print(e) pass name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1])) self.mean = mean self.std = std self.length_arr = np.array(length_list) self.data_dict = data_dict self.name_list = name_list self.reset_max_len(self.max_length) def reset_max_len(self, length): assert length <= self.max_motion_length self.pointer = np.searchsorted(self.length_arr, length) print("Pointer Pointing at %d"%self.pointer) self.max_length = length def inv_transform(self, data): return data * self.std + self.mean def inv_transform_torch(self, data): return data * torch.tensor(self.std, dtype=data.dtype, device=data.device) + torch.tensor(self.mean, dtype=data.dtype, device=data.device) def __len__(self): return len(self.data_dict) - self.pointer def __getitem__(self, item): idx = self.pointer + item data = self.data_dict[self.name_list[idx]] motion, m_length, text_list = data['motion'], data['length'], data['text'] # Randomly select a caption text_data = random.choice(text_list) caption, tokens = text_data['caption'], text_data['tokens'] if len(tokens) < self.opt.max_text_len: # pad with "unk" tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] sent_len = len(tokens) tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len) else: # crop tokens = tokens[:self.opt.max_text_len] tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] sent_len = len(tokens) pos_one_hots = [] word_embeddings = [] for token in tokens: word_emb, pos_oh = self.w_vectorizer[token] pos_one_hots.append(pos_oh[None, :]) word_embeddings.append(word_emb[None, :]) pos_one_hots = np.concatenate(pos_one_hots, axis=0) word_embeddings = np.concatenate(word_embeddings, axis=0) # Crop the motions in to times of 4, and introduce small variations if self.opt.unit_length < 10: coin2 = np.random.choice(['single', 'single', 'double']) else: coin2 = 'single' if coin2 == 'double': m_length = (m_length // self.opt.unit_length - 1) * self.opt.unit_length elif coin2 == 'single': m_length = (m_length // self.opt.unit_length) * self.opt.unit_length idx = random.randint(0, len(motion) - m_length) motion = motion[idx:idx+m_length] "Z Normalization" motion = (motion - self.mean) / self.std if m_length < self.max_motion_length: motion = np.concatenate([motion, np.zeros((self.max_motion_length - m_length, motion.shape[1])) ], axis=0) return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens), [] # Path: data_loaders/humanml/data/dataset.py def collate_fn(batch): batch.sort(key=lambda x: x[3], reverse=True) return default_collate(batch) # Path: data_loaders/humanml/data/dataset.py class BABEL_Text2MotionDatasetV2(BABEL): def __init__(self, split, datapath, transforms, opt, mean, std, w_vectorizer, sampler, mode, **kwargs): BABEL.__init__(self, datapath=datapath, transforms=transforms, split=split, sampler=sampler, parse_tokens=True, mode=mode, short_db=kwargs.get('short_db', False), cropping_sampler=kwargs.get('cropping_sampler', False)) # tokens are needed for training self.opt = opt self.w_vectorizer = w_vectorizer self.max_length = 20 self.pointer = 0 self.max_motion_length = opt.max_motion_length self.mean = mean self.std = std def inv_transform(self, data): return data * self.std + self.mean def __getitem__(self, item): keyid = self._split_index[item] batch = self.load_keyid(keyid, mode='train') # Randomly choose a motion from batch caption = batch['text'] tokens = batch['tokens'] motion = batch['features'] m_length = batch['length'] tansition_seq = batch['is_transition'] if len(tokens) < self.opt.max_text_len: # pad with "unk" tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] sent_len = len(tokens) tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len) else: # crop tokens = tokens[:self.opt.max_text_len] tokens = ['sos/OTHER'] + tokens + ['eos/OTHER'] sent_len = len(tokens) pos_one_hots = [] word_embeddings = [] for token in tokens: word_emb, pos_oh = self.w_vectorizer[token] pos_one_hots.append(pos_oh[None, :]) word_embeddings.append(word_emb[None, :]) pos_one_hots = np.concatenate(pos_one_hots, axis=0) word_embeddings = np.concatenate(word_embeddings, axis=0) # Crop the motions in to times of 4, and introduce small variations if self.opt.unit_length < 10: coin2 = np.random.choice(['single', 'single', 'double']) else: coin2 = 'single' if coin2 == 'double': m_length = (m_length // self.opt.unit_length - 1) * self.opt.unit_length elif coin2 == 'single': m_length = (m_length // self.opt.unit_length) * self.opt.unit_length idx = random.randint(0, abs(len(motion) - m_length)) motion = motion[idx:idx+m_length] tansition_seq = tansition_seq[idx:idx+m_length] "Z Normalization" motion = (motion - self.mean) / self.std if m_length <= self.max_motion_length: motion = np.concatenate([motion, np.zeros((self.max_motion_length - m_length, motion.shape[1])) ], axis=0) tansition_seq = np.concatenate([tansition_seq, np.zeros(self.max_motion_length - m_length) ]) # print(word_embeddings.shape, motion.shape) # print(tokens) return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens), tansition_seq # Path: data_loaders/humanml/utils/word_vectorizer.py class WordVectorizer(object): def __init__(self, meta_root, prefix): def _get_pos_ohot(self, pos): def __len__(self): def __getitem__(self, item): # Path: data_loaders/humanml/collect_babel_stats.py def run(): # Path: data_loaders/humanml/train_tex_mot_match.py import os import torch from os.path import join as pjoin from data_loaders.amass.sampling import FrameSampler from data_loaders.amass.transforms import SMPLTransform from data_loaders.get_data import get_dataset_loader from data_loaders.humanml.options.train_options import TrainTexMotMatchOptions from data_loaders.humanml.networks.modules import * from data_loaders.humanml.networks.trainers import TextMotionMatchTrainer from data_loaders.humanml.data.dataset import Text2MotionDatasetV2, collate_fn, BABEL_Text2MotionDatasetV2 from data_loaders.humanml.scripts.motion_process import * from torch.utils.data import DataLoader from data_loaders.humanml.utils.word_vectorizer import WordVectorizer, POS_enumerator from copy import deepcopy from data_loaders.humanml import collect_babel_stats def build_models(opt): movement_enc = MovementConvEncoder(opt.dim_pose - opt.foot_contact_entries, opt.dim_movement_enc_hidden, opt.dim_movement_latent) text_enc = TextEncoderBiGRUCo(word_size=dim_word, pos_size=dim_pos_ohot, hidden_size=opt.dim_text_hidden, output_size=opt.dim_coemb_hidden,
device=opt.device)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: AGI-Collective/Robin # Path: robin/constants.py IMAGE_TOKEN_INDEX = -200 # Path: robin/constants.py DEFAULT_IMAGE_TOKEN = "<image>" # Path: robin/constants.py DEFAULT_IM_START_TOKEN = "<im_start>" # Path: robin/constants.py DEFAULT_IM_END_TOKEN = "<im_end>" # Path: robin/conversation.py class SeparatorStyle(Enum): class Conversation: SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge def get_prompt(self): def append_message(self, role, message): def get_images(self, return_pil=False): def expand2square(pil_img, background_color=(122, 116, 104)): def to_gradio_chatbot(self): def copy(self): def dict(self): # Path: robin/mm_utils.py def process_images(images, image_processor, model_cfg): image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) new_images = [] #Hardcoded because reasons. image_mean = (0.48145466, 0.4578275, 0.40821073) if image_aspect_ratio == 'pad': for image in images: # TODO: Simon: don't hardcode image mean, also this is duplicated code with train.py image_mean = getattr(image_processor, "image_mean", (0.48145466, 0.4578275, 0.40821073)) image = expand2square(image, tuple(int(x*255) for x in image_mean)) # TODO: Simon this is nasty, we need a more unified interface here if hasattr(image_processor, "preprocess"): image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] else: image = image_processor(image).unsqueeze(0) new_images.append(image) else: return image_processor(images, return_tensors='pt')['pixel_values'] if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images # Path: robin/mm_utils.py def process_images_easy(images, image_processor, image_aspect_ratio): new_images = [] image_mean = (0.48145466, 0.4578275, 0.40821073) if image_aspect_ratio == 'pad': for image in images: image_mean = getattr(image_processor, "image_mean", (0.48145466, 0.4578275, 0.40821073)) image = expand2square(image, tuple(int(x*255) for x in image_mean)) if hasattr(image_processor, "preprocess"): image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] else: image = image_processor(image).unsqueeze(0) new_images.append(image) else: return image_processor(images, return_tensors='pt')['pixel_values'] if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images # Path: robin/mm_utils.py def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids # Path: robin/mm_utils.py def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] # Path: robin/mm_utils.py class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] self.max_keyword_len = 0 for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] if len(cur_keyword_ids) > self.max_keyword_len: self.max_keyword_len = len(cur_keyword_ids) self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] for keyword_id in self.keyword_ids: if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False # Path: robin/model/builder.py def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda"): kwargs = {"device_map": device_map} if load_8bit: kwargs['load_in_8bit'] = True elif load_4bit: kwargs['load_in_4bit'] = True kwargs['quantization_config'] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) else: kwargs['torch_dtype'] = torch.float16 # Load LLaVA model if 'lora' in model_name.lower() and model_base is None: warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_base) print('Loading LLaVA from base model...') if 'mistral' in model_name: model = LlavaMistralForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) else: model = LlavaLlamaForCausalLM.from_pretrained( model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs, # use_flash_attention_2 = True, ) token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features if model.lm_head.weight.shape[0] != token_num: model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) print('Loading additional LLaVA weights...') if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): print("Found non_lora_trainables") non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') else: # this is probably from HF Hub from huggingface_hub import hf_hub_download def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location='cpu') non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} if any(k.startswith('model.model.') for k in non_lora_trainables): non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} model.load_state_dict(non_lora_trainables, strict=False) from peft import PeftModel print('Loading LoRA weights...') model = PeftModel.from_pretrained(model, model_path) print('Merging LoRA weights...') model = model.merge_and_unload() print('Model is loaded...') image_processor = None mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) #This actually adds the vision tower to the model. vision_tower = model.get_vision_tower() print("Loaded this vision tower") if not vision_tower.is_loaded: vision_tower.load_model() vision_tower.to(device=device, dtype=torch.float16) image_processor = vision_tower.image_processor finetuned_ve = False if "frozen" in model_name.lower() else True if finetuned_ve: if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): print("Found lora_trainables") original_weights = torch.load(os.path.join(model_path, 'non_lora_trainables.bin')) else: # this is probably from HF Hub from huggingface_hub import hf_hub_download def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file) original_weights = load_from_hf(model_path, 'non_lora_trainables.bin') #Convert names new_weights = {} for key in original_weights.keys(): new_key = str(key).replace("base_model.model.model.vision_tower.","") new_weights[new_key] = original_weights[key] del original_weights #This is so that we can load strict projection = {} projections = ["base_model.model.model.mm_projector.0.weight", "base_model.model.model.mm_projector.0.bias", "base_model.model.model.mm_projector.2.weight", "base_model.model.model.mm_projector.2.bias"] for key in projections: projection[key] = new_weights.pop(key) result = vision_tower.load_state_dict(new_weights, strict = True) print("Loading strict resuts:", result) if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, image_processor, context_len # Path: robin/utils.py def disable_torch_init(): """ Disable the redundant torch default initialization to accelerate model creation. """ import torch setattr(torch.nn.Linear, "reset_parameters", lambda self: None) setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) # Path: robin/serve/pipeline.py import argparse import requests import torch import sys, os from io import BytesIO from PIL import Image from PIL import Image from transformers import TextStreamer from robin.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from robin.conversation import conv_templates, SeparatorStyle from robin.mm_utils import process_images, process_images_easy, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria from robin.model.builder import load_pretrained_model from robin.utils import disable_torch_init def load_image(image_file): if image_file.startswith('http://') or image_file.startswith('https://'): response = requests.get(image_file) image = Image.open(BytesIO(response.content)).convert('RGB') else: image = Image.open(image_file).convert('RGB') return image class LlavaMistralPipeline: def __init__(self, model_path, model_base, device="cuda", load_8bit=False, load_4bit=False, temperature=.2, max_new_tokens=512): self.model_path = model_path self.model_base = model_base self.device = device self.load_8bit = load_8bit self.load_4bit = load_4bit self.device = device self.temperature = temperature self.max_new_tokens = max_new_tokens # TODO: Simon: make this work reliably if load_4bit or load_8bit: print("WARNING: 4bit or 8bit models might not work as expected") # Sure why not disable_torch_init() model_name = get_model_name_from_path(self.model_path) self.tokenizer, self.model, self.image_processor, context_len = load_pretrained_model(self.model_path, self.model_base, model_name, self.load_8bit, self.load_4bit, device=self.device) def _load_image_tensor(self, image_file): image = load_image(image_file) # Similar operation in model_worker.py image_tensor = process_images_easy([image], self.image_processor, "pad") if type(image_tensor) is list: image_tensor = [image.to(self.model.device, dtype=torch.float16) for image in image_tensor] else: image_tensor = image_tensor.to(self.model.device, dtype=torch.float16) return image_tensor def __call__(self, messages): conv = conv_templates['vicuna_v1'].copy() assert conv.roles == ('USER', 'ASSISTANT') # First message assert messages[0]["role"] == "USER" inp = messages[0]["content"] if self.model.config.mm_use_im_start_end: inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp else: inp = DEFAULT_IMAGE_TOKEN + '\n' + inp # TODO: Simon: handle no image case assert "image" in messages[0], 'First message needs to have an image url' image_tensor = self._load_image_tensor(messages[0]["image"]) conv.append_message("USER", inp) # Remaining messages # We typically assume that follows the format of user, then assistant. for message in messages[1:]: assert message["role"] in ["USER", "ASSISTANT"], f"Only USER and ASSISTANT roles are supported, got {message['role']}" assert "image" not in message, "Images can only be in the first user message" conv.append_message(message["role"], message["content"]) # At the very end, we expect to see a user, so we add the empty assistant. conv.append_message("ASSISTANT", None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) # For vicuna_v1, stop_str == "</s>" stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids) with torch.inference_mode(): output_ids = self.model.generate( input_ids, images=image_tensor, do_sample=True, temperature=self.temperature,
max_new_tokens=self.max_new_tokens,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: huangb23/VTimeLLM # Path: vtimellm/conversation.py class SeparatorStyle(Enum): class Conversation: SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge def get_prompt(self): def append_message(self, role, message): def get_images(self, return_pil=False): def expand2square(pil_img, background_color=(122, 116, 104)): def to_gradio_chatbot(self): def copy(self): def dict(self): # Path: vtimellm/train/vtimellm_trainer.py class VTimeLLMTrainer(Trainer): def _save_checkpoint(self, model, trial, metrics=None): if getattr(self.args, 'tune_mm_mlp_adapter', False): from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" run_dir = self._get_output_dir(trial=trial) output_dir = os.path.join(run_dir, checkpoint_folder) # Only save Adapter keys_to_match = ['mm_projector'] if getattr(self.args, "use_im_start_end", False): keys_to_match.extend(['embed_tokens', 'embed_in']) weight_to_save = get_mm_adapter_state_maybe_zero_3(self.model.named_parameters(), keys_to_match) if self.args.local_rank == 0 or self.args.local_rank == -1: self.model.config.save_pretrained(output_dir) torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) else: super(VTimeLLMTrainer, self)._save_checkpoint(model, trial, metrics) def _save(self, output_dir: Optional[str] = None, state_dict=None): if getattr(self.args, 'tune_mm_mlp_adapter', False): pass else: super(VTimeLLMTrainer, self)._save(output_dir, state_dict) # Path: vtimellm/train/dataset.py def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments) -> Dict: """Make dataset and collator for supervised fine-tuning.""" train_dataset = LazySupervisedDataset(tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args) data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator) # Path: vtimellm/train/dataset.py class DataArguments: data_path: str = field(default=None, metadata={"help": "Path to the training data."}) lazy_preprocess: bool = False feat_folder: Optional[str] = field(default=None) # Path: vtimellm/model/vtimellm_llama.py class VTimeLLMLlamaForCausalLM(LlamaForCausalLM, VTimeLLMMetaForCausalLM): config_class = VTimeLLMConfig def __init__(self, config): super(LlamaForCausalLM, self).__init__(config) self.model = VTimeLLMLlamaModel(config) self.pretraining_tp = config.pretraining_tp self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images ) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images return _inputs # Path: vtimellm/model/vtimellm_chatglm.py class VTimeLLMChatGLMForCausalLM(ChatGLMForConditionalGeneration, VTimeLLMMetaForCausalLM): config_class = VTimeLLMChatGLMConfig def __init__(self, config, empty_init=True, device=None): super(ChatGLMForConditionalGeneration, self).__init__(config) self.transformer = VTimeLLMChatGLMModel(config, empty_init=empty_init, device=device) self.max_sequence_length = config.max_length self.config = config self.quantized = False # Initialize weights and apply final processing self.post_init() def get_model(self): return self.transformer def forward( self, input_ids: torch.LongTensor = None, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, return_last_logit: Optional[bool] = False, images: Optional[torch.FloatTensor] = None, ): if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images ) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images return _inputs # Path: vtimellm/model/builder.py def load_lora(model, lora_path): non_lora_trainables_path = os.path.join(lora_path, 'non_lora_trainables.bin') if os.path.exists(non_lora_trainables_path): non_lora_trainables = torch.load(non_lora_trainables_path, map_location='cpu') non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} if any(k.startswith('model.model.') for k in non_lora_trainables): non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} model.load_state_dict(non_lora_trainables, strict=False) print('Loading LoRA weights...') model = PeftModel.from_pretrained(model, lora_path) return model # Path: vtimellm/mm_utils.py def print_trainable_parameters(model): trainable_params = 0 all_param = 0 for _, param in model.named_parameters(): all_param += param.numel() # print(_, param.requires_grad, param.numel()) if param.requires_grad: trainable_params += param.numel() print( f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}" ) # Path: vtimellm/train/train.py import os import logging import pathlib import torch import transformers import sys from dataclasses import dataclass, field from typing import Dict, Optional, Sequence, List from vtimellm import conversation as conversation_lib from vtimellm.train.vtimellm_trainer import VTimeLLMTrainer from vtimellm.train.dataset import make_supervised_data_module, DataArguments from vtimellm.model import VTimeLLMLlamaForCausalLM, VTimeLLMChatGLMForCausalLM from vtimellm.model.builder import load_lora from vtimellm.mm_utils import print_trainable_parameters from deepspeed import zero from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus from transformers import BitsAndBytesConfig from peft import prepare_model_for_kbit_training from peft import LoraConfig, get_peft_model from peft.tuners.lora import LoraLayer # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. root_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "..") sys.path.append(root_dir) local_rank = None def rank0_print(*args): if local_rank == 0: print(*args) @dataclass class ModelArguments: model_name_or_path: Optional[str] = field(default="lmsys/vicuna-7b-v1.5") stage2_path: Optional[str] = field(default=None) version: Optional[str] = field(default="v0") tune_mm_mlp_adapter: bool = field(default=False) pretrain_mm_mlp_adapter: Optional[str] = field(default=None) @dataclass class TrainingArguments(transformers.TrainingArguments): training_stage: int = field(default=2) cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") remove_unused_columns: bool = field(default=False) freeze_mm_mlp_adapter: bool = field(default=False) model_max_length: int = field( default=512, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." }, ) double_quant: bool = field( default=True, metadata={"help": "Compress the quantization statistics through double quantization."} ) quant_type: str = field( default="nf4", metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} ) bits: int = field( default=16, metadata={"help": "How many bits to use."} ) lora_enable: bool = False lora_r: int = 64 lora_alpha: int = 16 lora_dropout: float = 0.05 lora_weight_path: str = "" lora_bias: str = "none" def maybe_zero_3(param, ignore_status=False, name=None): if hasattr(param, "ds_id"): if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: if not ignore_status: logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") with zero.GatheredParameters([param]): param = param.data.detach().cpu().clone() else: param = param.detach().cpu().clone() return param # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state_maybe_zero_3(named_params, bias): if bias == "none": to_return = {k: t for k, t in named_params if "lora_" in k} elif bias == "all": to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: maybe_zero_3(v, name=k) for k, v in to_return.items()} return to_return def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): to_return = {k: t for k, t in named_params if "lora_" not in k} if require_grad_only: to_return = {k: t for k, t in to_return.items() if t.requires_grad} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} return to_return def find_all_linear_names(model): cls = torch.nn.Linear
lora_module_names = set()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: moonbow721/DPoser # Path: lib/algorithms/advanced/sde_lib.py class SDE(abc.ABC): class RSDE(self.__class__): class VPSDE(SDE): class subVPSDE(SDE): class VESDE(SDE): def __init__(self, N): def T(self): def sde(self, x, t): def marginal_prob(self, x, t): def prior_sampling(self, shape): def prior_logp(self, z): def discretize(self, x, t): def return_alpha_sigma(self, t): def reverse(self, score_fn, probability_flow=False): def __init__(self): def T(self): def sde(self, x, t, condition=None, mask=None, guide=False): def discretize(self, x, t, condition=None, mask=None): def __init__(self, beta_min=0.1, beta_max=20, N=1000, T=1): def T(self): def sde(self, x, t): def marginal_prob(self, x, t): def prior_sampling(self, shape): def prior_logp(self, z): def discretize(self, x, t): def return_alpha_sigma(self, t): def __init__(self, beta_min=0.1, beta_max=20, N=1000, T=1): def T(self): def sde(self, x, t): def marginal_prob(self, x, t): def prior_sampling(self, shape): def prior_logp(self, z): def return_alpha_sigma(self, t): def __init__(self, sigma_min=0.01, sigma_max=50, N=1000, T=1): def T(self): def sde(self, x, t): def marginal_prob(self, x, t): def prior_sampling(self, shape): def prior_logp(self, z): def discretize(self, x, t): def return_alpha_sigma(self, t): G = diffusion * torch.sqrt(torch.tensor(dt, device=t.device)) N = self.N T = self.T N = np.prod(shape[1:]) G = sqrt_beta N = np.prod(shape[1:]) N = np.prod(shape[1:]) G = torch.sqrt(sigma ** 2 - adjacent_sigma ** 2) # Path: lib/algorithms/advanced/sampling.py _CORRECTORS = {} _PREDICTORS = {} def register_predictor(cls=None, *, name=None): def _register(cls): def register_corrector(cls=None, *, name=None): def _register(cls): def get_predictor(name): def get_corrector(name): def get_sampling_fn(config, sde, shape, inverse_scaler, eps, device=None): def __init__(self, sde, score_fn, probability_flow=False): def update_fn(self, x, t, observation, mask): def __init__(self, sde, score_fn, snr, n_steps): def update_fn(self, x, t, observation, mask): def __init__(self, sde, score_fn, probability_flow=False): def update_fn(self, x, t, observation, mask): def update_fn_guide(self, x_t, t, observation, mask, condition=None, grad_step=1.0): def __init__(self, sde, score_fn, probability_flow=False): def update_fn(self, x, t): def __init__(self, sde, score_fn, probability_flow=False): def vesde_update_fn(self, x, t): def vpsde_update_fn(self, x, t): def update_fn(self, x, t): def __init__(self, sde, score_fn, probability_flow=False): def update_fn(self, x, t, observation, mask): def __init__(self, sde, score_fn, snr, n_steps): def update_fn(self, x, t, observation, mask): def __init__(self, sde, score_fn, snr, n_steps): def update_fn(self, x, t, observation, mask): def __init__(self, sde, score_fn, snr, n_steps): def update_fn(self, x, t, observation, mask): def shared_predictor_update_fn(x, t, observation, mask, sde, model, predictor, probability_flow, continuous): def shared_corrector_update_fn(x, t, observation, mask, sde, model, corrector, continuous, snr, n_steps): def get_pc_sampler(sde, shape, predictor, corrector, inverse_scaler, snr, n_steps=1, probability_flow=False, continuous=False, denoise=True, eps=1e-3, device='cuda'): def get_imputation_update_fn(update_fn): def imputation_update_fn(x, vec_t, observation, mask, model, args): def pc_sampler(model, observation=None, mask=None, z=None, start_step=0, args=None): def get_ode_sampler(sde, shape, inverse_scaler, denoise=False, rtol=1e-5, atol=1e-5, method='RK45', eps=1e-3, device='cuda'): def denoise_update_fn(model, x): def drift_fn(model, x, t): def ode_sampler(model, z=None): def ode_func(t, x): class Predictor(abc.ABC): class Corrector(abc.ABC): class EulerMaruyamaPredictor(Predictor): class ReverseDiffusionPredictor(Predictor): class AncestralSamplingPredictor(Predictor): class NonePredictor(Predictor): class LangevinCorrector(Corrector): class AnnealedLangevinDynamics(Corrector): class NoneCorrector(Corrector): # Path: lib/algorithms/advanced/utils.py _MODELS = {} def register_model(cls=None, *, name=None): def _register(cls): def get_model(name): def get_sigmas(config): def get_ddpm_params(config): def create_model(config): def get_model_fn(model, train=False): def model_fn(x, labels, condition, mask): def get_score_fn(sde, model, train=False, continuous=False): def score_fn(x, t, condition, mask): def score_fn(x, t, condition, mask): def to_flattened_numpy(x): def from_flattened_numpy(x, shape): # Path: lib/algorithms/advanced/model.py class ScoreModelFC(nn.Module): """ Independent condition feature projection layers for each block """ def __init__(self, config, n_poses=21, pose_dim=6, hidden_dim=64, embed_dim=32, n_blocks=2): super(ScoreModelFC, self).__init__() self.config = config self.n_poses = n_poses self.joint_dim = pose_dim self.n_blocks = n_blocks self.act = get_act(config) self.pre_dense = nn.Linear(n_poses * pose_dim, hidden_dim) self.pre_dense_t = nn.Linear(embed_dim, hidden_dim) self.pre_dense_cond = nn.Linear(hidden_dim, hidden_dim) self.pre_gnorm = nn.GroupNorm(32, num_channels=hidden_dim) self.dropout = nn.Dropout(p=config.model.dropout) # time embedding self.time_embedding_type = config.model.embedding_type.lower() if self.time_embedding_type == 'fourier': self.gauss_proj = GaussianFourierProjection(embed_dim=embed_dim, scale=config.model.fourier_scale) elif self.time_embedding_type == 'positional': self.posit_proj = functools.partial(get_timestep_embedding, embedding_dim=embed_dim) else: assert 0 self.shared_time_embed = nn.Sequential( nn.Linear(embed_dim, embed_dim), self.act, ) self.register_buffer('sigmas', torch.tensor(get_sigmas(config), dtype=torch.float)) for idx in range(n_blocks): setattr(self, f'b{idx + 1}_dense1', nn.Linear(hidden_dim, hidden_dim)) setattr(self, f'b{idx + 1}_dense1_t', nn.Linear(embed_dim, hidden_dim)) setattr(self, f'b{idx + 1}_gnorm1', nn.GroupNorm(32, num_channels=hidden_dim)) setattr(self, f'b{idx + 1}_dense2', nn.Linear(hidden_dim, hidden_dim)) setattr(self, f'b{idx + 1}_dense2_t', nn.Linear(embed_dim, hidden_dim)) setattr(self, f'b{idx + 1}_gnorm2', nn.GroupNorm(32, num_channels=hidden_dim)) self.post_dense = nn.Linear(hidden_dim, n_poses * pose_dim) def forward(self, batch, t, condition=None, mask=None): """ batch: [B, j*3] or [B, j*6] t: [B] Return: [B, j*3] or [B, j*6] same dim as batch """ bs = batch.shape[0] # batch = batch.view(bs, -1) # [B, j*3] # time embedding if self.time_embedding_type == 'fourier': # Gaussian Fourier features embeddings. used_sigmas = t temb = self.gauss_proj(torch.log(used_sigmas)) elif self.time_embedding_type == 'positional': # Sinusoidal positional embeddings. timesteps = t used_sigmas = self.sigmas[t.long()] temb = self.posit_proj(timesteps) else: raise ValueError(f'time embedding type {self.time_embedding_type} unknown.') temb = self.shared_time_embed(temb) h = self.pre_dense(batch) h += self.pre_dense_t(temb) h = self.pre_gnorm(h) h = self.act(h) h = self.dropout(h) for idx in range(self.n_blocks): h1 = getattr(self, f'b{idx + 1}_dense1')(h) h1 += getattr(self, f'b{idx + 1}_dense1_t')(temb) h1 = getattr(self, f'b{idx + 1}_gnorm1')(h1) h1 = self.act(h1) # dropout, maybe h1 = self.dropout(h1) h2 = getattr(self, f'b{idx + 1}_dense2')(h1) h2 += getattr(self, f'b{idx + 1}_dense2_t')(temb) h2 = getattr(self, f'b{idx + 1}_gnorm2')(h2) h2 = self.act(h2) # dropout, maybe h2 = self.dropout(h2) h = h + h2 res = self.post_dense(h) # [B, j*3] ''' normalize the output ''' if self.config.model.scale_by_sigma: used_sigmas = used_sigmas.reshape((bs, 1)) res = res / used_sigmas return res # Path: lib/algorithms/ema.py class ExponentialMovingAverage: """ Maintains (exponential) moving average of a set of parameters. """ def __init__(self, parameters, decay=0.999, use_num_updates=True): """ Args: parameters: Iterable of `torch.nn.Parameter`; usually the result of `model.parameters()`. decay: The exponential decay. use_num_updates: Whether to use number of updates when computing averages. """ if decay < 0.0 or decay > 1.0: raise ValueError('Decay must be between 0 and 1') self.decay = decay self.num_updates = 0 if use_num_updates else None self.shadow_params = [p.clone().detach() for p in parameters if p.requires_grad] self.collected_params = [] def update(self, parameters): """ Update currently maintained parameters. Call this every time the parameters are updated, such as the result of the `optimizer.step()` call. Args: parameters: Iterable of `torch.nn.Parameter`; usually the same set of parameters used to initialize this object. """ decay = self.decay if self.num_updates is not None: self.num_updates += 1 decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates)) one_minus_decay = 1.0 - decay with torch.no_grad(): parameters = [p for p in parameters if p.requires_grad] for s_param, param in zip(self.shadow_params, parameters): s_param.sub_(one_minus_decay * (s_param - param)) def copy_to(self, parameters): """ Copy current parameters into given collection of parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored moving averages. """ parameters = [p for p in parameters if p.requires_grad] for s_param, param in zip(self.shadow_params, parameters): if param.requires_grad: param.data.copy_(s_param.data) def store(self, parameters): """ Save the current parameters for restoring later. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be temporarily stored. """ self.collected_params = [param.clone() for param in parameters] def restore(self, parameters): """ Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without affecting the original optimization process. Store the parameters before the `copy_to` method. After validation (or model saving), use this to restore the former parameters. Args: parameters: Iterable of `torch.nn.Parameter`; the parameters to be updated with the stored parameters. """ for c_param, param in zip(self.collected_params, parameters): param.data.copy_(c_param.data) def state_dict(self): return dict(decay=self.decay, num_updates=self.num_updates, shadow_params=self.shadow_params) def load_state_dict(self, state_dict): self.decay = state_dict['decay'] self.num_updates = state_dict['num_updates'] self.shadow_params = state_dict['shadow_params'] # Path: lib/body_model/constants.py SMPL_MEAN_PATH = join(curr_dir, './smpl_mean_params.npz') BEND_POSE_PATH = join(curr_dir, '../data/bend_pose.npz') CROP_IMG_HEIGHT = 256 CROP_IMG_WIDTH = 192 CROP_ASPECT_RATIO = CROP_IMG_HEIGHT / float(CROP_IMG_WIDTH) IMG_NORM_MEAN = [0.485, 0.456, 0.406] IMG_NORM_STD = [0.229, 0.224, 0.225] FOCAL_LENGTH = 5000. IMG_RES = 224 JOINT_NAMES = [ # 25 OpenPose joints (in the order provided by OpenPose) 'OP Nose', 'OP Neck', 'OP RShoulder', 'OP RElbow', 'OP RWrist', 'OP LShoulder', 'OP LElbow', 'OP LWrist', 'OP MidHip', 'OP RHip', 'OP RKnee', 'OP RAnkle', 'OP LHip', 'OP LKnee', 'OP LAnkle', 'OP REye', 'OP LEye', 'OP REar', 'OP LEar', 'OP LBigToe', 'OP LSmallToe', 'OP LHeel', 'OP RBigToe', 'OP RSmallToe', 'OP RHeel', # 24 Ground Truth joints (superset of joints from different datasets) 'Right Ankle', 'Right Knee', 'Right Hip', 'Left Hip', 'Left Knee', 'Left Ankle', 'Right Wrist', 'Right Elbow', 'Right Shoulder', 'Left Shoulder', 'Left Elbow', 'Left Wrist', 'Neck (LSP)', 'Top of Head (LSP)', 'Pelvis (MPII)', 'Thorax (MPII)', 'Spine (H36M)', 'Jaw (H36M)', 'Head (H36M)', 'Nose', 'Left Eye', 'Right Eye', 'Left Ear', 'Right Ear' ] JOINT_IDS = {JOINT_NAMES[i]: i for i in range(len(JOINT_NAMES))} JOINT_MAP = { 'OP Nose': 24, 'OP Neck': 12, 'OP RShoulder': 17, 'OP RElbow': 19, 'OP RWrist': 21, 'OP LShoulder': 16, 'OP LElbow': 18, 'OP LWrist': 20, 'OP MidHip': 0, 'OP RHip': 2, 'OP RKnee': 5, 'OP RAnkle': 8, 'OP LHip': 1, 'OP LKnee': 4, 'OP LAnkle': 7, 'OP REye': 25, 'OP LEye': 26, 'OP REar': 27, 'OP LEar': 28, 'OP LBigToe': 29, 'OP LSmallToe': 30, 'OP LHeel': 31, 'OP RBigToe': 32, 'OP RSmallToe': 33, 'OP RHeel': 34, 'Right Ankle': 8, 'Right Knee': 5, 'Right Hip': 45, 'Left Hip': 46, 'Left Knee': 4, 'Left Ankle': 7, 'Right Wrist': 21, 'Right Elbow': 19, 'Right Shoulder': 17, 'Left Shoulder': 16, 'Left Elbow': 18, 'Left Wrist': 20, 'Neck (LSP)': 47, 'Top of Head (LSP)': 48, 'Pelvis (MPII)': 49, 'Thorax (MPII)': 50, 'Spine (H36M)': 51, 'Jaw (H36M)': 52, 'Head (H36M)': 53, 'Nose': 24, 'Left Eye': 26, 'Right Eye': 25, 'Left Ear': 28, 'Right Ear': 27 } H36M_TO_J17 = [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10, 0, 7, 9] H36M_TO_J14 = H36M_TO_J17[:14] J24_TO_J17 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 18, 14, 16, 17] J24_TO_J14 = J24_TO_J17[:14] SMPL_JOINTS_FLIP_PERM = [0, 2, 1, 3, 5, 4, 6, 8, 7, 9, 11, 10, 12, 14, 13, 15, 17, 16, 19, 18, 21, 20, 23, 22] SMPL_POSE_FLIP_PERM = [] J24_FLIP_PERM = [5, 4, 3, 2, 1, 0, 11, 10, 9, 8, 7, 6, 12, 13, 14, 15, 16, 17, 18, 19, 21, 20, 23, 22] J49_FLIP_PERM = [0, 1, 5, 6, 7, 2, 3, 4, 8, 12, 13, 14, 9, 10, 11, 16, 15, 18, 17, 22, 23, 24, 19, 20, 21]\ + [25+i for i in J24_FLIP_PERM] # Path: lib/body_model/fitting_losses.py def camera_fitting_loss(model_joints, camera_t, camera_t_est, camera_center, joints_2d, joints_conf, focal_length=5000, depth_loss_weight=100): """ Loss function for camera optimization. """ # Project model joints batch_size = model_joints.shape[0] rotation = torch.eye(3, device=model_joints.device).unsqueeze(0).expand(batch_size, -1, -1) projected_joints = perspective_projection(model_joints, rotation, camera_t, focal_length, camera_center) op_joints = ['OP RHip', 'OP LHip', 'OP RShoulder', 'OP LShoulder'] op_joints_ind = [constants.JOINT_IDS[joint] for joint in op_joints] gt_joints = ['Right Hip', 'Left Hip', 'Right Shoulder', 'Left Shoulder'] gt_joints_ind = [constants.JOINT_IDS[joint] for joint in gt_joints] reprojection_error_op = (joints_2d[:, op_joints_ind] - projected_joints[:, op_joints_ind]) ** 2 reprojection_error_gt = (joints_2d[:, gt_joints_ind] - projected_joints[:, gt_joints_ind]) ** 2 # Check if for each example in the batch all 4 OpenPose detections are valid, otherwise use the GT detections # OpenPose joints are more reliable for this task, so we prefer to use them if possible is_valid = (joints_conf[:, op_joints_ind].min(dim=-1)[0][:, None, None] > 0).float() reprojection_loss = (is_valid * reprojection_error_op + (1 - is_valid) * reprojection_error_gt).sum(dim=(1, 2)) # Loss that penalizes deviation from depth estimate depth_loss = (depth_loss_weight ** 2) * (camera_t[:, 2] - camera_t_est[:, 2]) ** 2 total_loss = reprojection_loss + depth_loss return total_loss.sum() # Path: lib/body_model/fitting_losses.py def body_fitting_loss(body_pose, betas, model_joints, camera_t, camera_center, joints_2d, joints_conf, pose_prior, quan_t, focal_length=5000, sigma=100, pose_prior_weight=4.78, shape_prior_weight=5, angle_prior_weight=15.2, output='mean', verbose=True): """ Loss function for body fitting """ batch_size = body_pose.shape[0] rotation = torch.eye(3, device=body_pose.device).unsqueeze(0).expand(batch_size, -1, -1) projected_joints = perspective_projection(model_joints, rotation, camera_t, focal_length, camera_center) # Weighted robust reprojection error reprojection_error = gmof(projected_joints - joints_2d, sigma) reprojection_loss = (joints_conf ** 2) * reprojection_error.sum(dim=-1) # sum along x-y # Pose prior loss if pose_prior is not None: pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas, quan_t) else: pose_prior_loss = 0.0 # Angle prior for knees and elbows angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1) # Regularizer to prevent betas from taking large values shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1) # sum along different joints total_loss = reprojection_loss.sum(dim=-1) + pose_prior_loss + angle_prior_loss + shape_prior_loss if verbose: print(f"Reprojection Loss: {reprojection_loss.sum(dim=-1).mean().item():.2f}") print(f"Angle Prior Loss: {angle_prior_loss.mean().item():.2f}") print(f"Shape Prior Loss: {shape_prior_loss.mean().item():.2f}") if pose_prior is not None: print(f"Pose Prior Loss: {pose_prior_loss.mean().item():.2f}") if output == 'sum': return total_loss.sum() elif output == 'reprojection': return reprojection_loss else: return total_loss.mean() # mean along batch # Path: lib/dataset/AMASS.py N_POSES = 21 # Path: lib/dataset/AMASS.py class Posenormalizer: def __init__(self, data_path, device='cuda:0', normalize=True, min_max=True, rot_rep=None): assert rot_rep in ['rot6d', 'axis'] self.normalize = normalize self.min_max = min_max self.rot_rep = rot_rep normalize_params = torch.load(os.path.join(data_path, '{}_normalize1.pt'.format(rot_rep))) self.min_poses, self.max_poses = normalize_params['min_poses'].to(device), normalize_params['max_poses'].to(device) normalize_params = torch.load(os.path.join(data_path, '{}_normalize2.pt'.format(rot_rep))) self.mean_poses, self.std_poses = normalize_params['mean_poses'].to(device), normalize_params['std_poses'].to(device) def offline_normalize(self, poses, from_axis=False): assert len(poses.shape) == 2 or len(poses.shape) == 3 # [b, data_dim] or [t, b, data_dim] pose_shape = poses.shape if from_axis and self.rot_rep == 'rot6d': poses = axis_angle_to_rot6d(poses.reshape(-1, 3)).reshape(*pose_shape[:-1], -1) if not self.normalize: return poses if self.min_max: min_poses = self.min_poses.view(1, -1) max_poses = self.max_poses.view(1, -1) if len(poses.shape) == 3: # [t, b, data_dim] min_poses = min_poses.unsqueeze(0) max_poses = max_poses.unsqueeze(0) normalized_poses = 2 * (poses - min_poses) / (max_poses - min_poses) - 1 else: mean_poses = self.mean_poses.view(1, -1) std_poses = self.std_poses.view(1, -1) if len(poses.shape) == 3: # [t, b, data_dim] mean_poses = mean_poses.unsqueeze(0) std_poses = std_poses.unsqueeze(0) normalized_poses = (poses - mean_poses) / std_poses return normalized_poses def offline_denormalize(self, poses, to_axis=False): assert len(poses.shape) == 2 or len(poses.shape) == 3 # [b, data_dim] or [t, b, data_dim] if not self.normalize: denormalized_poses = poses else: if self.min_max: min_poses = self.min_poses.view(1, -1) max_poses = self.max_poses.view(1, -1) if len(poses.shape) == 3: # [t, b, data_dim] min_poses = min_poses.unsqueeze(0) max_poses = max_poses.unsqueeze(0) denormalized_poses = 0.5 * ((poses + 1) * (max_poses - min_poses) + 2 * min_poses) else: mean_poses = self.mean_poses.view(1, -1) std_poses = self.std_poses.view(1, -1) if len(poses.shape) == 3: # [t, b, data_dim] mean_poses = mean_poses.unsqueeze(0) std_poses = std_poses.unsqueeze(0) denormalized_poses = poses * std_poses + mean_poses if to_axis and self.rot_rep == 'rot6d': pose_shape = denormalized_poses.shape denormalized_poses = rot6d_to_axis_angle(denormalized_poses.reshape(-1, 6)).reshape(*pose_shape[:-1], -1) return denormalized_poses # Path: lib/utils/generic.py def import_configs(config_path): module_name, function_name = config_path.rsplit('.', 1) config_module = importlib.import_module(module_name) get_config = getattr(config_module, function_name) config = get_config() return config # Path: lib/utils/misc.py def linear_interpolation(A, B, frames): alpha = torch.linspace(0, 1, frames, device=A.device)[:, None] interpolated = (1 - alpha) * A + alpha * B return interpolated # Path: run/smplify.py import math import torch from torch import nn from tqdm import tqdm from lib.algorithms.advanced import sde_lib, sampling from lib.algorithms.advanced import utils as mutils from lib.algorithms.advanced.model import ScoreModelFC from lib.algorithms.ema import ExponentialMovingAverage from lib.body_model import constants from lib.body_model.fitting_losses import camera_fitting_loss, body_fitting_loss from lib.dataset.AMASS import N_POSES, Posenormalizer from lib.utils.generic import import_configs from lib.utils.misc import linear_interpolation class DPoser(nn.Module): def __init__(self, batch_size=32, config_path='', args=None): super().__init__() self.device = args.device
self.batch_size = batch_size
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: insuhan/hyper-attn # Path: models/attention/flash_attn_triton_for_hyper.py def _fwd_kernel( Q, K, V, Bias, Out, Lse, TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def _bwd_preprocess_do_o_dot( Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, ): def _bwd_store_dx( dx_ptrs, dx, offs_n, offs_d, seqlen, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, even_headdim, ): def _bwd_kernel_one_col_block( start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def init_to_zero(name): def _bwd_kernel( Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, ): def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None): def _flash_attn_backward( do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None ): def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None): def backward(ctx, do, dlse_use_needed=None): BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) BLOCK = 128 BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) class FlashAttnFunc(torch.autograd.Function): # Path: models/attention/hyper_attn.py class HyperAttention(torch.nn.Module): def __init__(self, input_dim=64, lsh_num_projs=7, block_size=256, sample_size=256, min_seq_len=4096, cuda=False): super().__init__() self.input_dim = input_dim self.lsh_num_projs = lsh_num_projs self.block_size = block_size self.sample_size = sample_size self.min_seq_len = min_seq_len self.cuda = cuda self.lsh = AngularLSH(num_projs=self.lsh_num_projs, dim=(1, 1, input_dim)) def forward(self, query: torch.tensor, key: torch.tensor, value: torch.tensor, scale=None, causal=False, return_lse=False): query = query.contiguous() key = key.contiguous() value = value.contiguous() n_query = query.shape[2] batch_size, n_heads, n_key, dim = key.shape scale = dim ** (-0.5) if scale is None else scale # Without causal masking if not causal: attn, lse = self.forward_no_causal_mask(query, key, value, scale) # With causal masking else: if n_key <= self.min_seq_len: if self.cuda: attn, lse = exact_attention_cuda(query, key, value, scale, causal=True) else: attn, lse = exact_attention(query, key, value, scale, causal=True) else: # If n_query is odd we pad inputs by adding all-zero rows if n_query % 2: query = torch.nn.functional.pad(query, (0,0,0,1), mode='constant',value=0.) key = torch.nn.functional.pad(key, (0,0,0,1), mode='constant',value=0.) value = torch.nn.functional.pad(value, (0,0,0,1), mode='constant',value=0.) q_bd = query.view(batch_size, 2*n_heads, query.shape[2]//2, query.shape[-1]) k_bd = key.view(batch_size, 2*n_heads, key.shape[2]//2, key.shape[-1]) v_bd = value.view(batch_size, 2*n_heads, key.shape[2]//2, value.shape[-1]) attn_bd, lse_bd = self.forward(q_bd, k_bd, v_bd, scale, True, True) if attn_bd.shape[2] not in attn_bd.stride(): attn_bd = attn_bd.contiguous() attn_bd = attn_bd.view(batch_size, n_heads, -1, dim) if lse_bd.shape[2] not in lse_bd.stride(): lse_bd = lse_bd.contiguous() lse_bd = lse_bd.view(batch_size, n_heads, -1, 1) attn_unmasked, lse_unmasked = self.forward_no_causal_mask( query[:, :, key.shape[2]//2:, :], key[:, :, :key.shape[2]//2, :], value[:, :, :key.shape[2]//2, :], scale) attn_up, lse_up = attn_bd[:,:,:query.shape[2]//2,:], lse_bd[:,:,:query.shape[2]//2,:] attn_down, lse_down = add_self_attentions( attn_bd[:,:,query.shape[2]//2:,:], lse_bd[:,:,query.shape[2]//2:,:], attn_unmasked, lse_unmasked) attn = torch.cat((attn_up, attn_down), dim=-2) lse = torch.cat((lse_up, lse_down), dim=-2) # If n_query was odd exclude the last rows if n_query % 2: attn = attn[:,:,:-1,:] lse = lse[:,:,:-1,:] if not return_lse: return attn else: return attn, lse def forward_no_causal_mask(self, query, key, value, scale): batch_size, head_size, n_query, dim = query.shape n_key = key.shape[2] if self.min_seq_len > n_query: if self.cuda: return exact_attention_cuda(query, key, value, scale, causal=False) else: return exact_attention(query, key, value, scale, causal=False) # 1. Sorted block-diagonal via sortLSH _, query_sort_idx = torch.sort(self.lsh.hash(query), dim=2, stable=True) # batch_size x head_size x n _, key_sort_idx = torch.sort(self.lsh.hash(key), dim=2, stable=True) query_sort_idx_inv = torch.argsort(query_sort_idx, dim=2, stable=True) # for recovering the row order key_block_size = self.block_size query_sorted = indexing(query, query_sort_idx, key_block_size) key_sorted = indexing(key, key_sort_idx, key_block_size) value_sorted = indexing(value, key_sort_idx, key_block_size) if key_block_size > 0: num_blocks = key_sorted.shape[2] // key_block_size query_block_size = query_sorted.shape[2] // num_blocks # Reshape tensors to [batch_size*head_size, 1, block_size, dim] as Flash-attn only allows 4d-tensors query_split_per_block = query_sorted.view(-1, 1, query_block_size, dim) key_split_per_block = key_sorted.view(-1, 1, key_block_size, dim) value_split_per_block = value_sorted.view(-1, 1, key_block_size, dim) if self.cuda: attn_block, lse_block = exact_attention_cuda( query_split_per_block, key_split_per_block, value_split_per_block, softmax_scale=scale, causal=False) else: attn_block, lse_block = exact_attention( query_split_per_block, key_split_per_block, value_split_per_block, softmax_scale=scale, causal=False) if attn_block.shape[2] not in attn_block.stride(): attn_block = attn_block.contiguous() attn_block = attn_block.view(batch_size, head_size, query_sorted.shape[2], -1) if lse_block.shape[2] not in lse_block.stride(): lse_block = lse_block.contiguous() lse_block = lse_block.view(batch_size, head_size, query_sorted.shape[2], -1) # When inputs are padded, then unpad them if query_sorted.shape[2] != n_query: #query.shape[2]: attn_block, lse_block = attn_block[:,:,:n_query,:], lse_block[:,:,:n_query,:] query_sorted = query_sorted[:,:,:n_query,:] key_sorted = key_sorted[:,:,:n_key,:] value_sorted = value_sorted[:,:,:n_key,:] else: query_block_size = -1 query_block_size = -1 attn_block, lse_block = 0, 0 # 2. Residual low-rank part via uniform sampling # Sample indices uniformly at random sample_size = self.sample_size if sample_size > 0 and (n_query > query_block_size) and (n_key > key_block_size): sampled_set = torch.randint(n_key, size=(batch_size, head_size, sample_size), device=query_sorted.device) # Compute mask for hiding A_ij computed in block-diagonal attention offset_n = rearrange(torch.arange(n_query, device=query_sorted.device), 'n -> 1 n 1') weights = n_key / sample_size value_subset = indexing(value_sorted, sampled_set) key_subset = indexing(key_sorted, sampled_set) if not self.cuda: block_mask = (offset_n // query_block_size) == (sampled_set // key_block_size).view(-1, 1, sample_size) block_mask = block_mask.view(batch_size, head_size, -1, sample_size) block_mask = block_mask.to(query_sorted.dtype) block_mask *= torch.finfo(query_sorted.dtype).min # adding -inf added to QK^T attn_res, lse_res = exact_attention(query_sorted, key_subset, value_subset, scale, causal=False, bias=block_mask) else: attn_res, lse_res = exact_attention_cuda(query_sorted, key_subset, value_subset, scale, causal=False) lse_res = lse_res + math.log(weights) # Add two attentions if key_block_size > 0: attn, lse = add_self_attentions(attn_block, lse_block, attn_res, lse_res) else: attn, lse = attn_res, lse_res else: attn, lse = attn_block, lse_block # Re-order rows with the inverse order for query_sorted -> query attn = indexing(attn, query_sort_idx_inv) lse = indexing(lse, query_sort_idx_inv) return attn, lse # Path: benchmark_single_attention.py import os import argparse import torch import triton from tqdm import tqdm from models.attention.flash_attn_triton_for_hyper import flash_attn_func from models.attention.hyper_attn import HyperAttention from flash_attn import flash_attn_func as flash_attn_func_cuda try: except ImportError: flash_attn_func_cuda = None def get_arguments(): parser = argparse.ArgumentParser() parser.add_argument("--no_causal", action="store_true") parser.add_argument("--mode", type=str, default="fwd+bwd", choices=['fwd', 'bwd', 'fwd+bwd']) parser.add_argument("--attn_method", type=str, default="flash", choices=['flash', 'flash-cuda', 'hyper', 'hyper-cuda']) return parser.parse_args() def get_tensors(batch_size, seq_len, head_size, dim): q = torch.randn((batch_size, seq_len, head_size, dim), dtype=torch.bfloat16, device="cuda", requires_grad=True) k = torch.randn((batch_size, seq_len, head_size, dim), dtype=torch.bfloat16, device="cuda", requires_grad=True) v = torch.randn((batch_size, seq_len, head_size, dim), dtype=torch.bfloat16, device="cuda", requires_grad=True) return q, k, v def run_flash_attn(batch_size, head_size, seq_len, dim, causal, mode, impl="triton", warmup=20, rep=100): q, k, v = get_tensors(batch_size, seq_len, head_size, dim) if impl == "cuda": if flash_attn_func_cuda is None: raise ImportError("Please install flash_attn (pip install flash-attn --no-build-isolation)") fn = lambda: flash_attn_func_cuda(q, k, v, causal=causal) else: fn = lambda: flash_attn_func(q, k, v, None, causal, None)[0] if mode == 'fwd': return triton.testing.do_bench(fn, warmup=warmup, rep=rep, percentiles=[0.2, 0.5, 0.8]) elif mode == 'bwd': o = fn() do = torch.randn_like(o) fn = lambda: o.backward(do, retain_graph=True) return triton.testing.do_bench(fn, warmup=warmup, rep=rep, percentiles=[0.2, 0.5, 0.8])
else: # mode == 'fwd+bwd'
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: raven38/EfficientDynamic3DGaussian # Path: scene/colmap_loader.py def read_extrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ images = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() image_id = int(elems[0]) qvec = np.array(tuple(map(float, elems[1:5]))) tvec = np.array(tuple(map(float, elems[5:8]))) camera_id = int(elems[8]) image_name = elems[9] elems = fid.readline().split() xys = np.column_stack([tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]) point3D_ids = np.array(tuple(map(int, elems[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ cameras = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() camera_id = int(elems[0]) model = elems[1] assert model == "PINHOLE", "While the loader support other types, the rest of the code assumes PINHOLE" width = int(elems[2]) height = int(elems[3]) params = np.array(tuple(map(float, elems[4:]))) cameras[camera_id] = Camera(id=camera_id, model=model, width=width, height=height, params=params) return cameras # Path: scene/colmap_loader.py def qvec2rotmat(qvec): return np.array([ [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2, 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3], 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]], [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3], 1 - 2 * qvec[1]**2 - 2 * qvec[3]**2, 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]], [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2], 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1], 1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]]) # Path: scene/colmap_loader.py def read_extrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadImagesBinary(const std::string& path) void Reconstruction::WriteImagesBinary(const std::string& path) """ images = {} with open(path_to_model_file, "rb") as fid: num_reg_images = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_reg_images): binary_image_properties = read_next_bytes( fid, num_bytes=64, format_char_sequence="idddddddi") image_id = binary_image_properties[0] qvec = np.array(binary_image_properties[1:5]) tvec = np.array(binary_image_properties[5:8]) camera_id = binary_image_properties[8] image_name = "" current_char = read_next_bytes(fid, 1, "c")[0] while current_char != b"\x00": # look for the ASCII 0 entry image_name += current_char.decode("utf-8") current_char = read_next_bytes(fid, 1, "c")[0] num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[0] x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D, format_char_sequence="ddq"*num_points2D) xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]) point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::WriteCamerasBinary(const std::string& path) void Reconstruction::ReadCamerasBinary(const std::string& path) """ cameras = {} with open(path_to_model_file, "rb") as fid: num_cameras = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_cameras): camera_properties = read_next_bytes( fid, num_bytes=24, format_char_sequence="iiQQ") camera_id = camera_properties[0] model_id = camera_properties[1] model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name width = camera_properties[2] height = camera_properties[3] num_params = CAMERA_MODEL_IDS[model_id].num_params params = read_next_bytes(fid, num_bytes=8*num_params, format_char_sequence="d"*num_params) cameras[camera_id] = Camera(id=camera_id, model=model_name, width=width, height=height, params=np.array(params)) assert len(cameras) == num_cameras return cameras # Path: scene/colmap_loader.py def read_points3D_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DBinary(const std::string& path) void Reconstruction::WritePoints3DBinary(const std::string& path) """ with open(path_to_model_file, "rb") as fid: num_points = read_next_bytes(fid, 8, "Q")[0] xyzs = np.empty((num_points, 3)) rgbs = np.empty((num_points, 3)) errors = np.empty((num_points, 1)) for p_id in range(num_points): binary_point_line_properties = read_next_bytes( fid, num_bytes=43, format_char_sequence="QdddBBBd") xyz = np.array(binary_point_line_properties[1:4]) rgb = np.array(binary_point_line_properties[4:7]) error = np.array(binary_point_line_properties[7]) track_length = read_next_bytes( fid, num_bytes=8, format_char_sequence="Q")[0] track_elems = read_next_bytes( fid, num_bytes=8*track_length, format_char_sequence="ii"*track_length) xyzs[p_id] = xyz rgbs[p_id] = rgb errors[p_id] = error return xyzs, rgbs, errors # Path: scene/colmap_loader.py def read_points3D_text(path): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DText(const std::string& path) void Reconstruction::WritePoints3DText(const std::string& path) """ xyzs = None rgbs = None errors = None num_points = 0 with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": num_points += 1 xyzs = np.empty((num_points, 3)) rgbs = np.empty((num_points, 3)) errors = np.empty((num_points, 1)) count = 0 with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() xyz = np.array(tuple(map(float, elems[1:4]))) rgb = np.array(tuple(map(int, elems[4:7]))) error = np.array(float(elems[7])) xyzs[count] = xyz rgbs[count] = rgb errors[count] = error count += 1 return xyzs, rgbs, errors # Path: utils/graphics_utils.py def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0): Rt = np.zeros((4, 4)) Rt[:3, :3] = R.transpose() Rt[:3, 3] = t Rt[3, 3] = 1.0 C2W = np.linalg.inv(Rt) cam_center = C2W[:3, 3] cam_center = (cam_center + translate) * scale C2W[:3, 3] = cam_center Rt = np.linalg.inv(C2W) return np.float32(Rt) # Path: utils/graphics_utils.py def focal2fov(focal, pixels): return 2*math.atan(pixels/(2*focal)) # Path: utils/graphics_utils.py def fov2focal(fov, pixels): return pixels / (2 * math.tan(fov / 2)) # Path: utils/sh_utils.py def SH2RGB(sh): return sh * C0 + 0.5 # Path: scene/gaussian_model.py class GaussianModel: def setup_functions(self): def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): def __init__(self, sh_degree : int, L: int): def capture(self): def restore(self, model_args, training_args): def get_scaling(self): def get_rotation(self): def get_xyz(self): def get_features(self): def get_opacity(self): def get_covariance(self, scaling_modifier = 1): def oneupSHdegree(self): def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float): def training_setup(self, training_args): def update_learning_rate(self, iteration): def construct_list_of_attributes(self): def save_ply(self, path): def reset_opacity(self): def load_ply(self, path): def replace_tensor_to_optimizer(self, tensor, name): def _prune_optimizer(self, mask): def prune_points(self, mask): def cat_tensors_to_optimizer(self, tensors_dict): def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation): def densify_and_split(self, grads, grad_threshold, scene_extent, N=2): def densify_and_clone(self, grads, grad_threshold, scene_extent): def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size): def add_densification_stats(self, viewspace_point_tensor, update_filter): L = build_scaling_rotation(scaling_modifier * scaling, rotation) # Path: scene/hyper_camera.py class Camera: """Class to handle camera geometry.""" def __init__(self, orientation: np.ndarray, position: np.ndarray, focal_length: Union[np.ndarray, float], principal_point: np.ndarray, image_size: np.ndarray, skew: Union[np.ndarray, float] = 0.0, pixel_aspect_ratio: Union[np.ndarray, float] = 1.0, radial_distortion: Optional[np.ndarray] = None, tangential_distortion: Optional[np.ndarray] = None, dtype=np.float32): """Constructor for camera class.""" if radial_distortion is None: radial_distortion = np.array([0.0, 0.0, 0.0], dtype) if tangential_distortion is None: tangential_distortion = np.array([0.0, 0.0], dtype) self.orientation = np.array(orientation, dtype) self.position = np.array(position, dtype) self.focal_length = np.array(focal_length, dtype) self.principal_point = np.array(principal_point, dtype) self.skew = np.array(skew, dtype) self.pixel_aspect_ratio = np.array(pixel_aspect_ratio, dtype) self.radial_distortion = np.array(radial_distortion, dtype) self.tangential_distortion = np.array(tangential_distortion, dtype) self.image_size = np.array(image_size, np.uint32) self.dtype = dtype @classmethod def from_json(cls, path: PathType): """Loads a JSON camera into memory.""" with open(path, 'r') as fp: camera_json = json.load(fp) # Fix old camera JSON. if 'tangential' in camera_json: camera_json['tangential_distortion'] = camera_json['tangential'] return cls( orientation=np.asarray(camera_json['orientation']), position=np.asarray(camera_json['position']), focal_length=camera_json['focal_length'], principal_point=np.asarray(camera_json['principal_point']), skew=camera_json['skew'], pixel_aspect_ratio=camera_json['pixel_aspect_ratio'], radial_distortion=np.asarray(camera_json['radial_distortion']), tangential_distortion=np.asarray(camera_json['tangential_distortion']), image_size=np.asarray(camera_json['image_size']), ) def to_json(self): return { k: (v.tolist() if hasattr(v, 'tolist') else v) for k, v in self.get_parameters().items() } def get_parameters(self): return { 'orientation': self.orientation, 'position': self.position, 'focal_length': self.focal_length, 'principal_point': self.principal_point, 'skew': self.skew, 'pixel_aspect_ratio': self.pixel_aspect_ratio, 'radial_distortion': self.radial_distortion, 'tangential_distortion': self.tangential_distortion, 'image_size': self.image_size, } @property def scale_factor_x(self): return self.focal_length @property def scale_factor_y(self): return self.focal_length * self.pixel_aspect_ratio @property def principal_point_x(self): return self.principal_point[0] @property def principal_point_y(self): return self.principal_point[1] @property def has_tangential_distortion(self): return any(self.tangential_distortion != 0.0) @property def has_radial_distortion(self): return any(self.radial_distortion != 0.0) @property def image_size_y(self): return self.image_size[1] @property def image_size_x(self): return self.image_size[0] @property def image_shape(self): return self.image_size_y, self.image_size_x @property def optical_axis(self): return self.orientation[2, :] @property def translation(self): return -np.matmul(self.orientation, self.position) def pixel_to_local_rays(self, pixels: np.ndarray): """Returns the local ray directions for the provided pixels.""" y = ((pixels[..., 1] - self.principal_point_y) / self.scale_factor_y) x = ((pixels[..., 0] - self.principal_point_x - y * self.skew) / self.scale_factor_x) if self.has_radial_distortion or self.has_tangential_distortion: x, y = _radial_and_tangential_undistort( x, y, k1=self.radial_distortion[0], k2=self.radial_distortion[1], k3=self.radial_distortion[2], p1=self.tangential_distortion[0], p2=self.tangential_distortion[1]) dirs = np.stack([x, y, np.ones_like(x)], axis=-1) return dirs / np.linalg.norm(dirs, axis=-1, keepdims=True) def pixels_to_rays(self, pixels: np.ndarray) -> np.ndarray: """Returns the rays for the provided pixels. Args: pixels: [A1, ..., An, 2] tensor or np.array containing 2d pixel positions. Returns: An array containing the normalized ray directions in world coordinates. """ if pixels.shape[-1] != 2: raise ValueError('The last dimension of pixels must be 2.') if pixels.dtype != self.dtype: raise ValueError(f'pixels dtype ({pixels.dtype!r}) must match camera ' f'dtype ({self.dtype!r})') batch_shape = pixels.shape[:-1] pixels = np.reshape(pixels, (-1, 2)) local_rays_dir = self.pixel_to_local_rays(pixels) rays_dir = np.matmul(self.orientation.T, local_rays_dir[..., np.newaxis]) rays_dir = np.squeeze(rays_dir, axis=-1) # Normalize rays. rays_dir /= np.linalg.norm(rays_dir, axis=-1, keepdims=True) rays_dir = rays_dir.reshape((*batch_shape, 3)) return rays_dir def pixels_to_points(self, pixels: np.ndarray, depth: np.ndarray): rays_through_pixels = self.pixels_to_rays(pixels) cosa = np.matmul(rays_through_pixels, self.optical_axis) points = ( rays_through_pixels * depth[..., np.newaxis] / cosa[..., np.newaxis] + self.position) return points def points_to_local_points(self, points: np.ndarray): translated_points = points - self.position local_points = (np.matmul(self.orientation, translated_points.T)).T return local_points def project(self, points: np.ndarray): """Projects a 3D point (x,y,z) to a pixel position (x,y).""" batch_shape = points.shape[:-1] points = points.reshape((-1, 3)) local_points = self.points_to_local_points(points) # Get normalized local pixel positions. x = local_points[..., 0] / local_points[..., 2] y = local_points[..., 1] / local_points[..., 2] r2 = x**2 + y**2 # Apply radial distortion. distortion = 1.0 + r2 * ( self.radial_distortion[0] + r2 * (self.radial_distortion[1] + self.radial_distortion[2] * r2)) # Apply tangential distortion. x_times_y = x * y x = ( x * distortion + 2.0 * self.tangential_distortion[0] * x_times_y + self.tangential_distortion[1] * (r2 + 2.0 * x**2)) y = ( y * distortion + 2.0 * self.tangential_distortion[1] * x_times_y + self.tangential_distortion[0] * (r2 + 2.0 * y**2)) # Map the distorted ray to the image plane and return the depth. pixel_x = self.focal_length * x + self.skew * y + self.principal_point_x pixel_y = (self.focal_length * self.pixel_aspect_ratio * y + self.principal_point_y) pixels = np.stack([pixel_x, pixel_y], axis=-1) return pixels.reshape((*batch_shape, 2)) def get_pixel_centers(self): """Returns the pixel centers.""" xx, yy = np.meshgrid(np.arange(self.image_size_x, dtype=self.dtype), np.arange(self.image_size_y, dtype=self.dtype)) return np.stack([xx, yy], axis=-1) + 0.5 def scale(self, scale: float): """Scales the camera.""" if scale <= 0: raise ValueError('scale needs to be positive.') new_camera = Camera( orientation=self.orientation.copy(), position=self.position.copy(), focal_length=self.focal_length * scale, principal_point=self.principal_point.copy() * scale, skew=self.skew, pixel_aspect_ratio=self.pixel_aspect_ratio, radial_distortion=self.radial_distortion.copy(), tangential_distortion=self.tangential_distortion.copy(), image_size=np.array((int(round(self.image_size[0] * scale)), int(round(self.image_size[1] * scale)))), ) return new_camera def look_at(self, position, look_at, up, eps=1e-6): """Creates a copy of the camera which looks at a given point. Copies the provided vision_sfm camera and returns a new camera that is positioned at `camera_position` while looking at `look_at_position`. Camera intrinsics are copied by this method. A common value for the up_vector is (0, 1, 0). Args: position: A (3,) numpy array representing the position of the camera. look_at: A (3,) numpy array representing the location the camera looks at. up: A (3,) numpy array representing the up direction, whose projection is parallel to the y-axis of the image plane. eps: a small number to prevent divides by zero. Returns: A new camera that is copied from the original but is positioned and looks at the provided coordinates. Raises: ValueError: If the camera position and look at position are very close to each other or if the up-vector is parallel to the requested optical axis. """ look_at_camera = self.copy() optical_axis = look_at - position norm = np.linalg.norm(optical_axis) if norm < eps: raise ValueError('The camera center and look at position are too close.') optical_axis /= norm right_vector = np.cross(optical_axis, up) norm = np.linalg.norm(right_vector) if norm < eps: raise ValueError('The up-vector is parallel to the optical axis.') right_vector /= norm # The three directions here are orthogonal to each other and form a right # handed coordinate system. camera_rotation = np.identity(3) camera_rotation[0, :] = right_vector camera_rotation[1, :] = np.cross(optical_axis, right_vector) camera_rotation[2, :] = optical_axis look_at_camera.position = position look_at_camera.orientation = camera_rotation return look_at_camera def crop_image_domain( self, left: int = 0, right: int = 0, top: int = 0, bottom: int = 0): """Returns a copy of the camera with adjusted image bounds. Args: left: number of pixels by which to reduce (or augment, if negative) the image domain at the associated boundary. right: likewise. top: likewise. bottom: likewise. The crop parameters may not cause the camera image domain dimensions to become non-positive. Returns: A camera with adjusted image dimensions. The focal length is unchanged, and the principal point is updated to preserve the original principal axis. """ crop_left_top = np.array([left, top]) crop_right_bottom = np.array([right, bottom]) new_resolution = self.image_size - crop_left_top - crop_right_bottom new_principal_point = self.principal_point - crop_left_top if np.any(new_resolution <= 0): raise ValueError('Crop would result in non-positive image dimensions.') new_camera = self.copy() new_camera.image_size = np.array([int(new_resolution[0]), int(new_resolution[1])]) new_camera.principal_point = np.array([new_principal_point[0], new_principal_point[1]]) return new_camera def copy(self): return copy.deepcopy(self) # Path: scene/dataset_readers.py import torch import os import sys import glob import numpy as np import json from PIL import Image from typing import NamedTuple from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \ read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal from pathlib import Path from plyfile import PlyData, PlyElement from utils.sh_utils import SH2RGB from scene.gaussian_model import BasicPointCloud from scene.hyper_camera import Camera as HyperNeRFCamera # # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # class CameraInfo(NamedTuple): uid: int R: np.array T: np.array FovY: np.array FovX: np.array image: np.array image_path: str image_name: str
width: int
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zd11024/NaviLLM # Path: tasks/datasets/mp3d_envs.py class EnvBatch(object): def __init__(self, connectivity_dir, feat_db=None, batch_size=1): self.feat_db = feat_db self.image_w = 640 self.image_h = 480 self.vfov = 60 self.sims = [] for i in range(batch_size): sim = MatterSim.Simulator() sim.setNavGraphPath(connectivity_dir) sim.setRenderingEnabled(False) sim.setDiscretizedViewingAngles(True) # Set increment/decrement to 30 degree. (otherwise by radians) sim.setCameraResolution(self.image_w, self.image_h) sim.setCameraVFOV(math.radians(self.vfov)) sim.setBatchSize(1) sim.initialize() self.sims.append(sim) def newEpisodes(self, scanIds, viewpointIds, headings): for i, (scanId, viewpointId, heading) in enumerate(zip(scanIds, viewpointIds, headings)): self.sims[i].newEpisode([scanId], [viewpointId], [heading], [0]) def getStates(self): """ Get list of states augmented with precomputed image features. rgb field will be empty. Agent's current view [0-35] (set only when viewing angles are discretized) [0-11] looking down, [12-23] looking at horizon, [24-35] looking up :return: [ ((36, 2048), sim_state) ] * batch_size """ feature_states = [] for i, sim in enumerate(self.sims): state = sim.getState()[0] if self.feat_db is None: feature = None else: feature = self.feat_db.get_image_feature(state.scanId, state.location.viewpointId) feature_states.append((feature, state)) return feature_states def makeActions(self, actions): ''' Take an action using the full state dependent action interface (with batched input). Every action element should be an (index, heading, elevation) tuple. ''' for i, (index, heading, elevation) in enumerate(actions): self.sims[i].makeAction([index], [heading], [elevation]) # Path: tasks/datasets/mp3d_envs.py def new_simulator(connectivity_dir): # Simulator image parameters WIDTH = 640 HEIGHT = 480 VFOV = 60 sim = MatterSim.Simulator() sim.setNavGraphPath(connectivity_dir) sim.setRenderingEnabled(False) sim.setCameraResolution(WIDTH, HEIGHT) sim.setCameraVFOV(math.radians(VFOV)) sim.setDiscretizedViewingAngles(True) sim.setBatchSize(1) sim.initialize() return sim # Path: tasks/datasets/mp3d_envs.py def angle_feature(heading, elevation, angle_feat_size): return np.array( [math.sin(heading), math.cos(heading), math.sin(elevation), math.cos(elevation)] * (angle_feat_size // 4), dtype=np.float32) # Path: tasks/datasets/mp3d_envs.py def get_all_point_angle_feature(sim, angle_feat_size): return [get_point_angle_feature(sim, angle_feat_size, baseViewId) for baseViewId in range(36)] # Path: tasks/datasets/mp3d_envs.py def load_nav_graphs(connectivity_dir, scans): ''' Load connectivity graph for each scan ''' def distance(pose1, pose2): ''' Euclidean distance between two graph poses ''' return ((pose1['pose'][3] - pose2['pose'][3]) ** 2 \ + (pose1['pose'][7] - pose2['pose'][7]) ** 2 \ + (pose1['pose'][11] - pose2['pose'][11]) ** 2) ** 0.5 graphs = {} for scan in scans: with open(os.path.join(connectivity_dir, '%s_connectivity.json' % scan)) as f: G = nx.Graph() positions = {} data = json.load(f) for i, item in enumerate(data): if item['included']: for j, conn in enumerate(item['unobstructed']): if conn and data[j]['included']: positions[item['image_id']] = np.array([item['pose'][3], item['pose'][7], item['pose'][11]]); assert data[j]['unobstructed'][i], 'Graph should be undirected' G.add_edge(item['image_id'], data[j]['image_id'], weight=distance(item, data[j])) nx.set_node_attributes(G, values=positions, name='position') graphs[scan] = G return graphs # Path: tools/evaluation/bleu/bleu.py class Bleu: def __init__(self, n=4): # default compute Blue score up to 4 self._n = n self._hypo_for_image = {} self.ref_for_image = {} def compute_score(self, gts, res): assert(gts.keys() == res.keys()) imgIds = gts.keys() bleu_scorer = BleuScorer(n=self._n) for id in imgIds: hypo = res[id] ref = gts[id] # Sanity check. assert(type(hypo) is list) assert(len(hypo) == 1) assert(type(ref) is list) assert(len(ref) >= 1) bleu_scorer += (hypo[0], ref) # score, scores = bleu_scorer.compute_score(option='shortest') score, scores = bleu_scorer.compute_score(option='closest', verbose=0) # score, scores = bleu_scorer.compute_score(option='average', verbose=1) return score, scores def __str__(self): return 'BLEU' # Path: tools/evaluation/rouge/rouge.py class Rouge(): ''' Class for computing ROUGE-L score for a set of candidate sentences for the MS COCO test set ''' def __init__(self): # vrama91: updated the value below based on discussion with Hovey self.beta = 1.2 def calc_score(self, candidate, refs): """ Compute ROUGE-L score given one candidate and references for an image :param candidate: str : candidate sentence to be evaluated :param refs: list of str : COCO reference sentences for the particular image to be evaluated :returns score: int (ROUGE-L score for the candidate evaluated against references) """ assert (len(candidate) == 1) assert (len(refs) > 0) prec = [] rec = [] # split into tokens token_c = candidate[0].split(" ") for reference in refs: # split into tokens token_r = reference.split(" ") # compute the longest common subsequence lcs = my_lcs(token_r, token_c) prec.append(lcs / float(len(token_c))) rec.append(lcs / float(len(token_r))) prec_max = max(prec) rec_max = max(rec) if (prec_max != 0 and rec_max != 0): score = ((1 + self.beta ** 2) * prec_max * rec_max) / float(rec_max + self.beta ** 2 * prec_max) else: score = 0.0 return score def compute_score(self, gts, res): """ Computes Rouge-L score given a set of reference and candidate sentences for the dataset Invoked by evaluate_captions.py :param hypo_for_image: dict : candidate / test sentences with "image name" key and "tokenized sentences" as values :param ref_for_image: dict : reference MS-COCO sentences with "image name" key and "tokenized sentences" as values :returns: average_score: float (mean ROUGE-L score computed by averaging scores for all the images) """ assert (gts.keys() == res.keys()) imgIds = gts.keys() score = [] for id in imgIds: hypo = res[id] ref = gts[id] score.append(self.calc_score(hypo, ref)) # Sanity check. assert (type(hypo) is list) assert (len(hypo) == 1) assert (type(ref) is list) assert (len(ref) > 0) average_score = np.mean(np.array(score)) return average_score, np.array(score) def __str__(self): return 'ROUGE' # Path: tools/evaluation/cider/cider.py class Cider: """ Main Class to compute the CIDEr metric """ def __init__(self, gts=None, n=4, sigma=6.0): # set cider to sum over 1 to 4-grams self._n = n # set the standard deviation parameter for gaussian penalty self._sigma = sigma self.doc_frequency = None self.ref_len = None if gts is not None: tmp_cider = CiderScorer(gts, n=self._n, sigma=self._sigma) self.doc_frequency = tmp_cider.doc_frequency self.ref_len = tmp_cider.ref_len def compute_score(self, gts, res): """ Main function to compute CIDEr score :param gts (dict) : dictionary with key <image> and value <tokenized hypothesis / candidate sentence> res (dict) : dictionary with key <image> and value <tokenized reference sentence> :return: cider (float) : computed CIDEr score for the corpus """ assert(gts.keys() == res.keys()) cider_scorer = CiderScorer(gts, test=res, n=self._n, sigma=self._sigma, doc_frequency=self.doc_frequency, ref_len=self.ref_len) return cider_scorer.compute_score() def __str__(self): return 'CIDEr' # Path: tasks/datasets/mp3d_dataset.py class MP3DDataset(BaseDataset): def __init__( self, args, config, training=False, logger=None, source=None, ): super().__init__() self.config = config self.angle_feat_size = self.config.angle_feat_size self.logger = logger self.training = training self.debug = args.debug self.source = source if self.training: self.split = "train" self.max_objects = self.config.max_objects self.multi_endpoints = True else: self.split = args.validation_split self.max_objects = None self.multi_endpoints = False self.batch_size = args.batch_size self.seed = args.seed self.feat_db = None self.obj_feat_db = None # connectivity graph self.connectivity_dir = str(args.data_dir/'connectivity') # load mp3d dataset msg = self._load_data(config, args.data_dir) self.buffered_state_dict = {} # simulator self.sim = new_simulator(self.connectivity_dir) # angle features self.angle_feature = get_all_point_angle_feature(self.sim, self.angle_feat_size) # navigation graph self._load_nav_graphs() if logger is not None: logger.info('[INFO] %s loaded with %d instructions, using splits: %s' % ( self.__class__.__name__, len(self.alldata), self.split)) logger.info(msg) del self.data def init_feat_db(self, feat_db, obj_feat_db=None): self.feat_db = feat_db self.obj_feat_db = obj_feat_db def _load_data(self, config, data_dir): self.data = dict() self.alldata = [] msg = "" if self.source == "R2R": anno_file = get_anno_file_path(data_dir, config.R2R.DIR, config.R2R.SPLIT[self.split]) self.data['r2r'], self.gt_trajs = self.load_data(anno_file=anno_file, debug=self.debug) msg += '\n- Dataset: load {} R2R samples'.format(len(self.data['r2r'])) elif self.source == "REVERIE": anno_file = get_anno_file_path(data_dir, config.REVERIE.DIR, config.REVERIE.SPLIT[self.split]) bbox_file = get_anno_file_path(data_dir, config.REVERIE.DIR, config.REVERIE.bbox_file) obj2vps = self.load_obj2vps(bbox_file) self.data['reverie'], self.gt_trajs = self.load_data(anno_file=anno_file, obj2vps=obj2vps, debug=self.debug) msg += '\n- Dataset: load {} REVERIE samples'.format(len(self.data['reverie'])) elif self.source == "CVDN": anno_file = get_anno_file_path(data_dir, config.CVDN.DIR, config.CVDN.SPLIT[self.split]) self.data['cvdn'], self.gt_trajs = self.load_data(anno_file=anno_file, debug=self.debug) msg += '\n- Dataset: load {} CVDN samples'.format(len(self.data['cvdn'])) elif self.source == "SOON": anno_file = get_anno_file_path(data_dir, config.SOON.DIR, config.SOON.SPLIT[self.split]) self.data['soon'], self.gt_trajs = self.load_data(anno_file=anno_file, debug=self.debug) msg += '\n- Dataset: load {} SOON samples'.format(len(self.data['soon'])) elif self.source == "R2R_AUG": anno_file = get_anno_file_path(data_dir, config.R2R_AUG.DIR, config.R2R_AUG.SPLIT[self.split]) self.data["r2r_aug"], _ = self.load_data(anno_file=anno_file, debug=self.debug) elif self.source == "REVERIE_AUG": anno_file = get_anno_file_path(data_dir, config.REVERIE_AUG.DIR, config.REVERIE_AUG.SPLIT[self.split]) bbox_file = get_anno_file_path(data_dir, config.REVERIE.DIR, config.REVERIE.bbox_file) obj2vps = self.load_obj2vps(bbox_file) self.data["reverie_aug"], _ = self.load_data(anno_file=anno_file, obj2vps=obj2vps, debug=self.debug) elif self.source == "EQA": anno_file = get_anno_file_path(data_dir, config.EQA.DIR, config.EQA.SPLIT[self.split]) self.data['eqa'], self.gt_trajs = self.load_data(anno_file=anno_file, split=self.split, debug=self.debug) else: print("Dataset Source: {}".format(self.source)) raise NotImplementedError for key, value in self.data.items(): self.alldata += value msg += '\n- Dataset: load {} split: {} samples in total'.format(self.split, len(self.alldata)) self.scans = set([x['scan'] for x in self.alldata]) msg += '\n- Dataset: load {} split: {} scans in total'.format(self.split, len(self.scans)) return msg def _load_nav_graphs(self): """ load graph from self.scan, Store the graph {scan_id: graph} in self.graphs Store the shortest path {scan_id: {view_id_x: {view_id_y: [path]} } } in self.paths Store the distances in self.distances. (Structure see above) Load connectivity graph for each scan, useful for reasoning about shortest paths :return: None """ # print('Loading navigation graphs for %d scans' % len(self.scans)) self.graphs = load_nav_graphs(self.connectivity_dir, self.scans) self.shortest_paths = {} for scan, G in self.graphs.items(): # compute all shortest paths self.shortest_paths[scan] = dict(nx.all_pairs_dijkstra_path(G)) self.shortest_distances = {} for scan, G in self.graphs.items(): # compute all shortest paths self.shortest_distances[scan] = dict(nx.all_pairs_dijkstra_path_length(G)) def __len__(self): return len(self.alldata) def __getitem__(self, index): item = copy.deepcopy(self.alldata[index]) item = self.preprocess_item(item) data_type = item['data_type'] scan = item['scan'] instr_id = item['instr_id'] scanIds = [scan] viewpointIds = [item['path'][0]] headings = [item['heading']] env = EnvBatch(connectivity_dir=self.connectivity_dir, batch_size=1) env.newEpisodes(scanIds, viewpointIds, headings) observations = self.get_obs(items=[item], env=env, data_type=data_type)[0] data_dict = { 'sample_idx': index, 'instr_id': instr_id, 'observations': observations, 'env': env, 'item': item, 'data_type': data_type, } return data_dict def preprocess_item(self, item): return item @staticmethod def collate_batch(batch_list, _unused=False): data_dict = defaultdict(list) for cur_sample in batch_list: for key, val in cur_sample.items(): data_dict[key].append(val) batch_size = len(batch_list) ret = {} for key, val in data_dict.items(): try: if key in ['NotImplemented']: ret[key] = torch.stack(val, 0) else: ret[key] = val except: print('Error in collate_batch: key=%s' % key) raise TypeError ret['batch_size'] = batch_size return ret def get_object_info(self, item): raise NotImplementedError def get_obs(self, items, env, data_type=None): obs = [] for i, (feature, state) in enumerate(env.getStates()): item = items[i] base_view_id = state.viewIndex if feature is None: feature = self.feat_db.get_image_feature(state.scanId, state.location.viewpointId) # Full features candidate = self.make_candidate(feature, state.scanId, state.location.viewpointId, state.viewIndex) # [visual_feature, angle_feature] for views feature = np.concatenate((feature, self.angle_feature[base_view_id]), -1) ob = { 'instr_id': item['instr_id'], 'scan': state.scanId, 'viewpoint': state.location.viewpointId, 'viewIndex': state.viewIndex, 'position': (state.location.x, state.location.y, state.location.z), 'heading': state.heading, 'elevation': state.elevation, 'feature': feature, 'candidate': candidate, 'navigableLocations': state.navigableLocations, 'instruction': item['instruction'], # 'instr_encoding': item['instr_encoding'], 'gt_path': item['path'], 'path_id': item['path_id'], } if 'fg_instruction' in item: ob.update({ 'fg_instruction': item['fg_instruction'], 'fg_view': item['fg_view'], }) if self.obj_feat_db is not None: obj_info = self.get_object_info(item, state) ob.update(obj_info) ob['distance'] = 0 else: # RL reward. The negative distance between the state and the final state # There are multiple gt end viewpoints on REVERIE. if False: # ob['instr_id'] in self.gt_trajs: ob['distance'] = self.shortest_distances[ob['scan']][ob['viewpoint']][item['path'][-1]] else: ob['distance'] = 0 obs.append(ob) return obs def make_candidate(self, feature, scanId, viewpointId, viewId): def _loc_distance(loc): return np.sqrt(loc.rel_heading ** 2 + loc.rel_elevation ** 2) base_heading = (viewId % 12) * math.radians(30) base_elevation = (viewId // 12 - 1) * math.radians(30) adj_dict = {} long_id = "%s_%s" % (scanId, viewpointId) if long_id not in self.buffered_state_dict: for ix in range(36): if ix == 0: self.sim.newEpisode([scanId], [viewpointId], [0], [math.radians(-30)]) elif ix % 12 == 0: self.sim.makeAction([0], [1.0], [1.0]) else: self.sim.makeAction([0], [1.0], [0]) state = self.sim.getState()[0] assert state.viewIndex == ix # Heading and elevation for the viewpoint center heading = state.heading - base_heading elevation = state.elevation - base_elevation visual_feat = feature[ix] # get adjacent locations for j, loc in enumerate(state.navigableLocations[1:]): # if a loc is visible from multiple view, use the closest # view (in angular distance) as its representation distance = _loc_distance(loc) # Heading and elevation for for the loc loc_heading = heading + loc.rel_heading loc_elevation = elevation + loc.rel_elevation angle_feat = angle_feature(loc_heading, loc_elevation, self.angle_feat_size) if (loc.viewpointId not in adj_dict or distance < adj_dict[loc.viewpointId]['distance']): adj_dict[loc.viewpointId] = { 'heading': loc_heading, 'elevation': loc_elevation, "normalized_heading": state.heading + loc.rel_heading, "normalized_elevation": state.elevation + loc.rel_elevation, 'scanId': scanId, 'viewpointId': loc.viewpointId, # Next viewpoint id 'pointId': ix, 'distance': distance, 'idx': j + 1, 'feature': np.concatenate((visual_feat, angle_feat), -1), 'position': (loc.x, loc.y, loc.z), } candidate = list(adj_dict.values()) self.buffered_state_dict[long_id] = [ {key: c[key] for key in ['normalized_heading', 'normalized_elevation', 'scanId', 'viewpointId', 'pointId', 'idx', 'position']} for c in candidate ] return candidate else: candidate = self.buffered_state_dict[long_id] candidate_new = [] for c in candidate: c_new = c.copy() ix = c_new['pointId'] visual_feat = feature[ix] c_new['heading'] = c_new['normalized_heading'] - base_heading c_new['elevation'] = c_new['normalized_elevation'] - base_elevation angle_feat = angle_feature(c_new['heading'], c_new['elevation'], self.angle_feat_size) c_new['feature'] = np.concatenate((visual_feat, angle_feat), -1) c_new.pop('normalized_heading') c_new.pop('normalized_elevation') candidate_new.append(c_new) return candidate_new def get_nearest(self, shortest_distances, goal_id, path): near_id = path[0] near_d = shortest_distances[near_id][goal_id] for item in path: d = shortest_distances[item][goal_id] if d < near_d: near_id = item near_d = d return near_id # Path: tasks/datasets/mp3d_dataset.py def get_anno_file_path(data_dir, dataset_path, filename): if dataset_path.startswith('/'): return Path(dataset_path) / filename return Path(data_dir) / dataset_path / filename # Path: tasks/datasets/eqa.py import json import copy import torch.utils.data as torch_data import torch import math import numpy as np import networkx as nx from pathlib import Path from collections import defaultdict from .mp3d_envs import ( EnvBatch, new_simulator, angle_feature, get_all_point_angle_feature, load_nav_graphs, ) from tools.evaluation.bleu import Bleu from tools.evaluation.rouge import Rouge from tools.evaluation.cider import Cider from .mp3d_dataset import MP3DDataset, get_anno_file_path ERROR_MARGIN = 3.0 class EQADataset(MP3DDataset): name = "eqa" def __init__( self, args, config, training=False, logger=None, source=None, ): super().__init__(args, config, training, logger, source) # answer_vocab filename = get_anno_file_path(args.data_dir, config.EQA.DIR, config.EQA.ANSWER_VOCAB) with open(filename) as f: self.answer_vocab = json.load(f) def init_feat_db(self, feat_db, obj_feat_db=None): self.feat_db = feat_db
self.obj_feat_db = obj_feat_db
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: jwebmeister/tacspeak # Path: tacspeak/__main__.py def main(): user_settings_path = os.path.join(os.getcwd(), os.path.relpath("tacspeak/user_settings.py")) user_settings = CommandModule(user_settings_path) user_settings.load() try: DEBUG_MODE = (sys.modules["user_settings"]).DEBUG_MODE except Exception: print("Failed to load `tacspeak/user_settings.py` DEBUG_MODE. Using default settings as fallback.") DEBUG_MODE = False try: DEBUG_HEAVY_DUMP_GRAMMAR = (sys.modules["user_settings"]).DEBUG_HEAVY_DUMP_GRAMMAR except Exception: print("Failed to load `tacspeak/user_settings.py` DEBUG_HEAVY_DUMP_GRAMMAR. Using default settings as fallback.") DEBUG_HEAVY_DUMP_GRAMMAR = False try: KALDI_ENGINE_SETTINGS = (sys.modules["user_settings"]).KALDI_ENGINE_SETTINGS except Exception: print("Failed to load `tacspeak/user_settings.py` KALDI_ENGINE_SETTINGS. Using default settings as fallback.") KALDI_ENGINE_SETTINGS = { "listen_key":0x10, # 0x10=SHIFT key, 0x05=X1 mouse button, 0x06=X2 mouse button, see https://learn.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes "listen_key_toggle":0, # 0 for toggle mode off; 1 for toggle mode on; 2 for global toggle on (use VAD); -1 for toggle mode off but allow priority grammar even when key not pressed "vad_padding_end_ms":250, # ms of required silence after VAD "auto_add_to_user_lexicon":False, # this requires g2p_en (which isn't installed by default) "allow_online_pronunciations":False, # "input_device_index":None, # set to an int to choose a non-default microphone # "vad_aggressiveness":3, # default aggressiveness of VAD # "vad_padding_start_ms":150, # default ms of required silence before VAD # "model_dir":'kaldi_model', # default model directory # "tmp_dir":None, # "audio_input_device":None, # "audio_self_threaded":True, # "audio_auto_reconnect":True, # "audio_reconnect_callback":None, # "retain_dir":None, # set to a writable directory path to retain recognition metadata and/or audio data # "retain_audio":None, # set to True to retain speech data wave files in the retain_dir (if set) # "retain_metadata":None, # "retain_approval_func":None, # "vad_complex_padding_end_ms":600, # default ms of required silence after VAD for complex utterances # "lazy_compilation":True, # set to True to parallelize & speed up loading # "invalidate_cache":False, # "expected_error_rate_threshold":None, # "alternative_dictation":None, # "compiler_init_config":None, # "decoder_init_config":None, } def log_handlers(): log_file_path = os.path.join(os.getcwd(), ".tacspeak.log") log_file_handler = logging.FileHandler(log_file_path) log_file_formatter = logging.Formatter("%(asctime)s %(name)s (%(levelname)s): %(message)s") log_file_handler.setFormatter(log_file_formatter) log_stream_handler = logging.StreamHandler() log_stream_formatter = logging.Formatter("%(name)s (%(levelname)s): %(message)s") log_stream_handler.setFormatter(log_stream_formatter) return [log_stream_handler, log_file_handler] def setup_loggers(use_default_levels=True): for name, levels in default_levels.items(): stderr_level, file_level = levels handlers = log_handlers() if use_default_levels: handlers[0].setLevel(stderr_level) handlers[1].setLevel(file_level) logger = logging.getLogger(name) logger.addHandler(handlers[0]) logger.addHandler(handlers[1]) logger.setLevel(min(stderr_level, file_level)) logger.propagate = False if DEBUG_MODE: setup_loggers(False) logging.getLogger('grammar.decode').setLevel(20) logging.getLogger('grammar.begin').setLevel(20) logging.getLogger('compound').setLevel(20) logging.getLogger('engine').setLevel(15) logging.getLogger('kaldi').setLevel(15) logging.getLogger('kaldi.compiler').setLevel(15) logging.getLogger('kaldi.wrapper').setLevel(15) logging.getLogger('action.exec').setLevel(10) else: setup_loggers() # Set any configuration options here as keyword arguments. # See Kaldi engine documentation for all available options and more info. engine = get_engine('kaldi',**KALDI_ENGINE_SETTINGS) # Call connect() now that the engine configuration is set. engine.connect() # Load grammars. grammar_path = os.path.join(os.getcwd(), os.path.relpath("tacspeak/grammar/")) directory = CommandModuleDirectory(grammar_path) directory.load() handlers = log_handlers() log_recognition = logging.getLogger('on_recognition') log_recognition.addHandler(handlers[0]) log_recognition.addHandler(handlers[1]) log_recognition.setLevel(20) # Define recognition callback functions. def on_begin(): pass def on_recognition(words, results): message = f"{results.kaldi_rule} | {' '.join(words)}" log_recognition.log(20, message) def on_failure(): pass def on_end(): pass # Start the engine's main recognition loop engine.prepare_for_recognition() try: print("Ready to listen...") engine.do_recognition(on_begin, on_recognition, on_failure, on_end) except KeyboardInterrupt: pass # Disconnect from the engine, freeing its resources. engine.disconnect() # Path: tacspeak/test_model.py def test_model(tsv_file, model_dir, lexicon_file=None, num_threads=1): # from tacspeak.test_model import test_model # test_model("./testaudio/recorder.tsv", "./kaldi_model/") # python -c 'from tacspeak.test_model import test_model; test_model("./testaudio/recorder.tsv", "./kaldi_model/")' print("Start test_model") calculator = Calculator() lexicon = set() if lexicon_file: with open(lexicon_file, 'r', encoding='utf-8') as f: for line in f: word = line.strip().split(None, 1)[0] lexicon.add(word) print(f"opening {tsv_file}") with open(tsv_file, 'r', encoding='utf-8') as f: submissions = [] for line in f: fields = line.rstrip('\n').split('\t') text = fields[4] wav_path = fields[0] if not os.path.exists(wav_path): print(f"{wav_path} does not exist") continue if lexicon_file and any(word not in lexicon for word in text.split()): print(f"{wav_path} is out of vocabulary: {text}") continue submissions.append((wav_path, text,)) print(f"read lines: {len(submissions)}") # initialize first in-case model needs to be recompiled engine = initialize_kaldi(model_dir) engine.disconnect() utterances_list = [] cmd_all_threads_overall_stats = [] with multiprocessing.Pool(processes=num_threads, initializer=initialize_kaldi, initargs=(model_dir,)) as pool: try: cmd_thread_overall_stats = {'cmd_not_correct_output':0, 'cmd_not_correct_rule':0, 'cmd_not_correct_options':0, 'cmd_not_recog_output':0, 'cmd_not_recog_input':0, 'cmds':0, } for output_str, text, output_options, input_options, correct_rule, wav_path in pool.starmap(recognize, submissions, chunksize=1): result = calculator.calculate(text.strip().split(), output_str.strip().split()) n_errors = result['sub'] + result['del'] + result['ins'] n_correct = result['cor'] n_all = result['all'] rate_errors = float(n_errors) / float(max(1, n_all)) cmd_recog_input = 1 if input_options is not None else -1 cmd_recog_output = 1 if output_options is not None else -1 cmd_correct_rule = correct_rule cmd_correct_options = 0 cmd_correct_output = 0 if cmd_recog_input == 1 and cmd_recog_output == 1: if cmd_correct_rule == 1: cmd_correct_options = 1 for key, value in input_options.items(): if output_options[key] != value: cmd_correct_options = -1 if correct_rule == 1: cmd_recog_input = 1 cmd_recog_output = 1 if cmd_correct_rule == -1 or cmd_correct_options == -1: cmd_correct_output = -1 elif cmd_correct_rule == 1 and cmd_correct_options == 1: cmd_correct_output = 1 cmd_thread_overall_stats['cmd_not_correct_output'] += 1 if cmd_correct_output == -1 else 0 cmd_thread_overall_stats['cmd_not_correct_rule'] += 1 if cmd_correct_rule == -1 else 0 cmd_thread_overall_stats['cmd_not_correct_options'] += 1 if cmd_correct_options == -1 else 0 cmd_thread_overall_stats['cmd_not_recog_output'] += 1 if cmd_recog_output == -1 else 0 cmd_thread_overall_stats['cmd_not_recog_input'] += 1 if cmd_recog_input == -1 else 0 cmd_thread_overall_stats['cmds'] += 1 entry = {'ref':text, 'hyp':output_str, 'wav_path':wav_path, 'cmd_correct_output':cmd_correct_output, 'cmd_correct_rule':cmd_correct_rule, 'cmd_correct_options':cmd_correct_options, 'cmd_recog_output':cmd_recog_output, 'cmd_recog_input':cmd_recog_input, 'output_options':output_options, 'input_options':input_options, 'n_errors':n_errors, 'n_correct':n_correct, 'n_all':n_all, 'rate_errors':rate_errors } utterances_list.append(entry) cmd_all_threads_overall_stats.append(cmd_thread_overall_stats) except KeyboardInterrupt as e: print(f"Closing pool: {e}") pool.close() return None utterances_list.sort(key=lambda x: (x['cmd_correct_output'] * 100.0) + (x['cmd_correct_rule'] * 3.0) + (x['cmd_correct_options'] * 3.0) + (x['cmd_recog_output'] * 2.0) + x['cmd_recog_input'] - x['rate_errors'], reverse=False) cmd_overall_stats = {} cmd_overall_stats['cmd_not_correct_output'] = 0 cmd_overall_stats['cmd_not_correct_rule'] = 0 cmd_overall_stats['cmd_not_correct_options'] = 0 cmd_overall_stats['cmd_not_recog_output'] = 0 cmd_overall_stats['cmd_not_recog_input'] = 0 cmd_overall_stats['cmds'] = 0 for thread_item in cmd_all_threads_overall_stats: cmd_overall_stats['cmd_not_correct_output'] += thread_item['cmd_not_correct_output'] cmd_overall_stats['cmd_not_correct_rule'] += thread_item['cmd_not_correct_rule'] cmd_overall_stats['cmd_not_correct_options'] += thread_item['cmd_not_correct_options'] cmd_overall_stats['cmd_not_recog_output'] += thread_item['cmd_not_recog_output'] cmd_overall_stats['cmd_not_recog_input'] += thread_item['cmd_not_recog_input'] cmd_overall_stats['cmds'] += thread_item['cmds'] with open('./test_model_output_utterances.txt', 'w', encoding='utf-8') as outfile: outfile.write(f"{cmd_overall_stats}\n\n") for item in utterances_list: outfile.write( f"\n cmd_correct_output={item['cmd_correct_output']}, " + f"cmd_correct_rule={item['cmd_correct_rule']}, " + f"cmd_correct_options={item['cmd_correct_options']}, " + f"cmd_recog_output={item['cmd_recog_output']}, " + f"cmd_recog_input={item['cmd_recog_input']}" + f"\n errors={item['n_errors']}, n_correct={item['n_correct']}" + f", n_all={item['n_all']}, rate_errors={item['rate_errors']}" + f"\n ref: {item['ref']}" + f"\n hyp: {item['hyp']}" + f"\n wav_path: {item['wav_path']}" + f"\n input_options: {item['input_options']}" + f"\n output_options: {item['output_options']}" + "\n" ) print(f"{calculator.overall_string()}") print(f"Command stats -> {cmd_overall_stats}") return calculator, cmd_overall_stats # Path: tacspeak/test_model.py def test_model_dictation(tsv_file, model_dir, lexicon_file=None, num_threads=1): print("Start test_model_dictation") call_recognizer = None calculator = Calculator() lexicon = set() if lexicon_file: with open(lexicon_file, 'r', encoding='utf-8') as f: for line in f: word = line.strip().split(None, 1)[0] lexicon.add(word) print(f"opening {tsv_file}") with open(tsv_file, 'r', encoding='utf-8') as f: submissions = [] for line in f: fields = line.rstrip('\n').split('\t') text = fields[4] wav_path = fields[0] if not os.path.exists(wav_path): print(f"{wav_path} does not exist") continue if lexicon_file and any(word not in lexicon for word in text.split()): print(f"{wav_path} is out of vocabulary: {text}") continue submissions.append((wav_path, text,)) print(f"read lines: {len(submissions)}") # initialize first in-case model needs to be recompiled initialize_kaldi_dictation(model_dir) utterances_list = [] with multiprocessing.Pool(processes=num_threads, initializer=initialize_kaldi_dictation, initargs=(model_dir,)) as pool: try: for output_str, text, wav_path in pool.starmap(recognize_dictation, submissions, chunksize=1): result = calculator.calculate(text.strip().split(), output_str.strip().split()) n_errors = result['sub'] + result['del'] + result['ins'] n_correct = result['cor'] n_all = result['all'] rate_errors = float(n_errors) / float(max(1, n_all)) entry = {'ref':text, 'hyp':output_str, 'wav_path':wav_path, 'n_errors':n_errors, 'n_correct':n_correct, 'n_all':n_all, 'rate_errors':rate_errors } utterances_list.append(entry) except KeyboardInterrupt as e: print(f"Closing pool: {e}") pool.close() return None utterances_list.sort(key=lambda x: x['n_errors'], reverse=True) with open('./test_model_output_dictation.txt', 'w', encoding='utf-8') as outfile: for item in utterances_list: outfile.write( f"\n errors={item['n_errors']}, n_correct={item['n_correct']}" + f", n_all={item['n_all']}, rate_errors={item['rate_errors']}" + f"\n ref: {item['ref']}" + f"\n hyp: {item['hyp']}" + f"\n wav_path: {item['wav_path']}" + "\n" ) print(f"{calculator.overall_string()}") return calculator, None # Path: tacspeak/test_model.py def transcribe_wav(wav_path, out_txt_path=None, model_dir=None): call_recognizer = None if model_dir is None: model_dir = "./kaldi_model/" initialize_kaldi(model_dir) output_str, text, output_options, input_options, correct_rule, wav_path = recognize(wav_path, "") entry = (model_dir, wav_path, output_str) if out_txt_path is None: return entry if os.path.isfile(out_txt_path): with open(out_txt_path, 'a') as f: f.write(f"{entry}\n") else: with open(out_txt_path, 'w') as f: f.write(f"{entry}\n") return entry # Path: tacspeak/test_model.py def transcribe_wav_dictation(wav_path, out_txt_path=None, model_dir=None): call_recognizer = None if model_dir is None: model_dir = "./kaldi_model/" initialize_kaldi_dictation(model_dir) output_str, _, wav_path = recognize_dictation(wav_path, "") entry = (model_dir, wav_path, output_str) if out_txt_path is None: return entry if os.path.isfile(out_txt_path): with open(out_txt_path, 'a') as f: f.write(f"{entry}\n") else: with open(out_txt_path, 'w') as f: f.write(f"{entry}\n") return entry # Path: cli.py import argparse import os import tacspeak import logging import kaldifst import graphviz from kaldi_active_grammar import Compiler, disable_donation_message from tacspeak.__main__ import main as tacspeak_main from tacspeak.test_model import test_model, test_model_dictation, transcribe_wav, transcribe_wav_dictation from dragonfly import get_engine from multiprocessing import freeze_support # # This file is part of Tacspeak. # (c) Copyright 2023-2024 by Joshua Webb # Licensed under the AGPL-3.0; see LICENSE.txt file. # def main(): print(f"Tacspeak version {tacspeak.__version__}") print_notices() disable_donation_message() parser = argparse.ArgumentParser(description='Start speech recognition.') parser.add_argument('--recompile_model', dest='model_dir', action='store', metavar='model_dir', nargs='?', const='kaldi_model/', help='recompile the model in `model_dir` (default is kaldi_model/), for changes to user_lexicon.txt') parser.add_argument('--print_mic_list', action='store_true', help=('see a list of available input devices and their corresponding indexes and names.' + ' useful for setting `audio_input_device` in ./tacspeak/user_settings.py')) parser.add_argument('--test_model', dest='test_model', action='store', metavar=('tsv_file', 'model_dir', 'lexicon_file', 'num_threads'), nargs=4, help=('test model + active grammar recognition using test audio specified in .tsv file.' + " Example: --test_model './retain/retain.tsv' './kaldi_model/' './kaldi_model/lexicon.txt' 4")) parser.add_argument('--test_dictation', action='store_true', help=('only used together with --test_model. tests model using raw dictation graph, irrespective of grammar modules.' + " Example: --test_model './retain/retain.tsv' './kaldi_model/' './kaldi_model/lexicon.txt' 4 --test_dictation")) parser.add_argument('--transcribe_wav', dest='transcribe_wav', action='store', metavar=('wav_path', 'out_txt_path', 'model_dir'), nargs=3, help=('transcribe a wav file using active grammar modules, output to txt file.' + " Example: --transcribe_wav 'audio.wav' 'audio.txt' './kaldi_model/'")) parser.add_argument('--transcribe_dictation', action='store_true', help=('only used together with --transcribe_wav. transcribes using raw dictation graph, irrespective of grammar modules.' + " Example: --transcribe_wav 'audio.wav' 'audio.txt' './kaldi_model/' --transcribe_dictation")) parser.add_argument('--visualise_fst', dest='fst_filepath', action='store', metavar=('fst_filepath', 'model_words_txt_filepath'), nargs=2, help='generate .gv (dot) and .svg for visualisation of a FST file. Only use with small (~200 kB) files! Requires GraphViz installed.' + " Example: --visualise_fst './kaldi_model/cache.tmp/somefile.fst' './kaldi_model/words.txt'") args = parser.parse_args() if args.model_dir is not None and os.path.isdir(args.model_dir): _log = logging.getLogger('kaldi') logging.basicConfig(level=5) compiler = Compiler(args.model_dir) print("Compiling dictation graph (approx. 30 minutes)...") compiler.compile_agf_dictation_fst() return if args.print_mic_list: get_engine('kaldi').print_mic_list() input("Press enter key to exit.") return if args.test_model: if args.test_model[0] is not None and os.path.isfile(args.test_model[0]) and args.test_model[1] is not None and os.path.isdir(args.test_model[1]): tsv_file = args.test_model[0] model_dir = args.test_model[1] try: lexicon_file = args.test_model[2] if not os.path.isfile(lexicon_file): lexicon_file = None except Exception as e: print(f"{e}") lexicon_file = None try: num_threads = int(args.test_model[3]) if not isinstance(num_threads, int) or num_threads < 1: num_threads = 1 except Exception as e: print(f"{e}") num_threads = 1 print(f"{tsv_file},{model_dir},{lexicon_file},{num_threads}") if args.test_dictation: calculator, cmd_overall_stats = test_model_dictation(tsv_file, model_dir, lexicon_file, num_threads) outfile_path = 'test_model_output_dictation_tokens.txt' else: calculator, cmd_overall_stats = test_model(tsv_file, model_dir, lexicon_file, num_threads) outfile_path = 'test_model_output_tokens.txt' with open(outfile_path, 'w', encoding='utf-8') as outfile: outfile.write(f"\n{calculator.overall_string()}\n") for item in calculator.data.items(): outfile.write(f"\n{str(item)}") outfile.write("\n") for entry in calculator.ranked_worst_to_best_list(): outfile.write(f"\n{str(entry)}") overall_entry_1 = (model_dir, tsv_file, "Dictation" if args.test_dictation else "Command", "WER", calculator.overall_string()) overall_entry_2 = (model_dir, tsv_file, "Dictation" if args.test_dictation else "Command", "CMDERR", cmd_overall_stats) with open('test_model_output_overall.txt', 'a', encoding='utf-8') as outfile: outfile.write(f"{overall_entry_1}\n") if not args.test_dictation: outfile.write(f"{overall_entry_2}\n") return calculator.overall_string(), cmd_overall_stats return if args.transcribe_wav: if args.transcribe_wav[0] is not None and os.path.isfile(args.transcribe_wav[0]): wav_path = args.transcribe_wav[0]
try:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: KylinYee/R2-Talker-code # Path: nerf/utils.py def get_audio_features(features, att_mode, index, smooth_win_size=8): if att_mode == 0: return features[[index]] elif att_mode == 1: left = index - smooth_win_size pad_left = 0 if left < 0: pad_left = -left left = 0 auds = features[left:index] if pad_left > 0: # pad may be longer than auds, so do not use zeros_like auds = torch.cat([torch.zeros(pad_left, *auds.shape[1:], device=auds.device, dtype=auds.dtype), auds], dim=0) return auds elif att_mode == 2: left = index - smooth_win_size//2 right = index + (smooth_win_size-smooth_win_size//2) pad_left = 0 pad_right = 0 if left < 0: pad_left = -left left = 0 if right > features.shape[0]: pad_right = right - features.shape[0] right = features.shape[0] auds = features[left:right] if pad_left > 0: auds = torch.cat([torch.zeros_like(auds[:pad_left]), auds], dim=0) if pad_right > 0: auds = torch.cat([auds, torch.zeros_like(auds[:pad_right])], dim=0) # [8, 16] return auds else: raise NotImplementedError(f'wrong att_mode: {att_mode}') # Path: nerf/utils.py @torch.cuda.amp.autocast(enabled=False) def get_rays(poses, intrinsics, H, W, N=-1, patch_size=1, rect=None): ''' get rays Args: poses: [B, 4, 4], cam2world intrinsics: [4] H, W, N: int Returns: rays_o, rays_d: [B, N, 3] inds: [B, N] ''' device = poses.device B = poses.shape[0] fx, fy, cx, cy = intrinsics if rect is not None: xmin, xmax, ymin, ymax = rect N = (xmax - xmin) * (ymax - ymin) i, j = custom_meshgrid(torch.linspace(0, W-1, W, device=device), torch.linspace(0, H-1, H, device=device)) # float i = i.t().reshape([1, H*W]).expand([B, H*W]) + 0.5 j = j.t().reshape([1, H*W]).expand([B, H*W]) + 0.5 results = {} if N > 0: N = min(N, H*W) if patch_size > 1: # random sample left-top cores. # NOTE: this impl will lead to less sampling on the image corner pixels... but I don't have other ideas. num_patch = N // (patch_size ** 2) inds_x = torch.randint(0, H - patch_size, size=[num_patch], device=device) inds_y = torch.randint(0, W - patch_size, size=[num_patch], device=device) inds = torch.stack([inds_x, inds_y], dim=-1) # [np, 2] # create meshgrid for each patch pi, pj = custom_meshgrid(torch.arange(patch_size, device=device), torch.arange(patch_size, device=device)) offsets = torch.stack([pi.reshape(-1), pj.reshape(-1)], dim=-1) # [p^2, 2] inds = inds.unsqueeze(1) + offsets.unsqueeze(0) # [np, p^2, 2] inds = inds.view(-1, 2) # [N, 2] inds = inds[:, 0] * W + inds[:, 1] # [N], flatten inds = inds.expand([B, N]) # only get rays in the specified rect elif rect is not None: # assert B == 1 mask = torch.zeros(H, W, dtype=torch.bool, device=device) xmin, xmax, ymin, ymax = rect mask[xmin:xmax, ymin:ymax] = 1 inds = torch.where(mask.view(-1))[0] # [nzn] inds = inds.unsqueeze(0) # [1, N] else: inds = torch.randint(0, H*W, size=[N], device=device) # may duplicate inds = inds.expand([B, N]) i = torch.gather(i, -1, inds) j = torch.gather(j, -1, inds) else: inds = torch.arange(H*W, device=device).expand([B, H*W]) results['i'] = i results['j'] = j results['inds'] = inds zs = torch.ones_like(i) xs = (i - cx) / fx * zs ys = (j - cy) / fy * zs directions = torch.stack((xs, ys, zs), dim=-1) directions = directions / torch.norm(directions, dim=-1, keepdim=True) rays_d = directions @ poses[:, :3, :3].transpose(-1, -2) # (B, N, 3) rays_o = poses[..., :3, 3] # [B, 3] rays_o = rays_o[..., None, :].expand_as(rays_d) # [B, N, 3] results['rays_o'] = rays_o results['rays_d'] = rays_d return results # Path: nerf/utils.py @torch.cuda.amp.autocast(enabled=False) def get_bg_coords(H, W, device): X = torch.arange(H, device=device) / (H - 1) * 2 - 1 # in [-1, 1] Y = torch.arange(W, device=device) / (W - 1) * 2 - 1 # in [-1, 1] xs, ys = custom_meshgrid(X, Y) bg_coords = torch.cat([xs.reshape(-1, 1), ys.reshape(-1, 1)], dim=-1).unsqueeze(0) # [1, H*W, 2], in [-1, 1] return bg_coords # Path: nerf/utils.py @torch.cuda.amp.autocast(enabled=False) def convert_poses(poses): # poses: [B, 4, 4] # return [B, 3], 4 rot, 3 trans out = torch.empty(poses.shape[0], 6, dtype=torch.float32, device=poses.device) out[:, :3] = matrix_to_euler_angles(poses[:, :3, :3]) out[:, 3:] = poses[:, :3, 3] return out # Path: nerf/provider.py import os import cv2 import glob import json import tqdm import numpy as np import matplotlib.pyplot as plt import trimesh import torch import torch.nn.functional as F from scipy.spatial.transform import Slerp, Rotation from torch.utils.data import DataLoader from .utils import get_audio_features, get_rays, get_bg_coords, convert_poses # support both [N, 16] labels and [N, 16, K] logits if len(aud_features.shape) == 3: # if self.opt.cond_type in ['eo', 'ds']: # aud_features = aud_features.float().permute(0, 2, 1) # [N, 16, 29] --> [N, 29, 16] if self.opt.emb: print(f'[INFO] argmax to aud features {aud_features.shape} for --emb mode') aud_features = aud_features.argmax(1) # [N, 16] else: assert self.opt.emb, "aud only provide labels, must use --emb" aud_features = aud_features.long() print(f'[INFO] load {self.opt.aud} aud_features: {aud_features.shape}') self.torso_img = [] self.images = [] self.poses = [] self.exps = [] self.auds = [] self.face_rect = [] self.lips_rect = [] self.eye_area = [] for f in tqdm.tqdm(frames, desc=f'Loading {type} data'): f_path = os.path.join(self.root_path, 'gt_imgs', str(f['img_id']) + '.jpg') if not os.path.exists(f_path): print('[WARN]', f_path, 'NOT FOUND!') continue pose = np.array(f['transform_matrix'], dtype=np.float32) # [4, 4] pose = nerf_matrix_to_ngp(pose, scale=self.scale, offset=self.offset) self.poses.append(pose) if self.preload > 0: image = cv2.imread(f_path, cv2.IMREAD_UNCHANGED) # [H, W, 3] o [H, W, 4] image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = image.astype(np.float32) / 255 # [H, W, 3/4] self.images.append(image) else: self.images.append(f_path) # load frame-wise bg torso_img_path = os.path.join(self.root_path, 'torso_imgs', str(f['img_id']) + '.png') if self.preload > 0: torso_img = cv2.imread(torso_img_path, cv2.IMREAD_UNCHANGED) # [H, W, 4] torso_img = cv2.cvtColor(torso_img, cv2.COLOR_BGRA2RGBA) torso_img = torso_img.astype(np.float32) / 255 # [H, W, 3/4] self.torso_img.append(torso_img) else: self.torso_img.append(torso_img_path) # find the corresponding audio to the image frame if not self.opt.asr and self.opt.aud == '': aud = aud_features[min(f['aud_id'], aud_features.shape[0] - 1)] # careful for the last frame... self.auds.append(aud) # load lms and extract face lms = np.loadtxt(os.path.join(self.root_path, 'ori_imgs', str(f['img_id']) + '.lms')) # [68, 2] xmin, xmax = int(lms[31:36, 1].min()), int(lms[:, 1].max()) ymin, ymax = int(lms[:, 0].min()), int(lms[:, 0].max()) self.face_rect.append([xmin, xmax, ymin, ymax]) if self.opt.exp_eye: eyes_left = slice(36, 42) eyes_right = slice(42, 48) area_left = polygon_area(lms[eyes_left, 0], lms[eyes_left, 1]) area_right = polygon_area(lms[eyes_right, 0], lms[eyes_right, 1]) # area percentage of two eyes of the whole image... area = (area_left + area_right) / (self.H * self.W) * 100 self.eye_area.append(area) if self.opt.finetune_lips: lips = slice(48, 60) xmin, xmax = int(lms[lips, 1].min()), int(lms[lips, 1].max()) ymin, ymax = int(lms[lips, 0].min()), int(lms[lips, 0].max()) # padding to H == W cx = (xmin + xmax) // 2 cy = (ymin + ymax) // 2 l = max(xmax - xmin, ymax - ymin) // 2 xmin = max(0, cx - l) xmax = min(self.H, cx + l) ymin = max(0, cy - l) ymax = min(self.W, cy + l) self.lips_rect.append([xmin, xmax, ymin, ymax]) # load pre-extracted background image (should be the same size as training image...) if self.opt.bg_img == 'white': # special bg_img = np.ones((self.H, self.W, 3), dtype=np.float32) elif self.opt.bg_img == 'black': # special bg_img = np.zeros((self.H, self.W, 3), dtype=np.float32) else: # load from file # default bg if self.opt.bg_img == '': self.opt.bg_img = os.path.join(self.root_path, 'bc.jpg') bg_img = cv2.imread(self.opt.bg_img, cv2.IMREAD_UNCHANGED) # [H, W, 3] if bg_img.shape[0] != self.H or bg_img.shape[1] != self.W: bg_img = cv2.resize(bg_img, (self.W, self.H), interpolation=cv2.INTER_AREA) bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB) bg_img = bg_img.astype(np.float32) / 255 # [H, W, 3/4] self.bg_img = bg_img
self.poses = np.stack(self.poses, axis=0)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: camenduru/magicanimate-hf # Path: magicanimate/models/unet_3d_blocks.py class CrossAttnDownBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, output_scale_factor=1.0, downsample_padding=1, add_downsample=True, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] attentions = [] motion_modules = [] self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, out_channels // attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample3D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): output_states = () for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states, )[0] if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) else: hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample # add motion module hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states # Path: magicanimate/models/unet_3d_blocks.py class CrossAttnUpBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, prev_output_channel: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, cross_attention_dim=1280, output_scale_factor=1.0, add_upsample=True, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] attentions = [] motion_modules = [] self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, out_channels // attn_num_head_channels, in_channels=out_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_upsample: self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False def forward( self, hidden_states, res_hidden_states_tuple, temb=None, encoder_hidden_states=None, upsample_size=None, attention_mask=None, ): for resnet, attn, motion_module in zip(self.resnets, self.attentions, self.motion_modules): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states, )[0] if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) else: hidden_states = resnet(hidden_states, temb) hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample # add motion module hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states # Path: magicanimate/models/unet_3d_blocks.py class DownBlock3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_downsample=True, downsample_padding=1, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] motion_modules = [] for i in range(num_layers): in_channels = in_channels if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_downsample: self.downsamplers = nn.ModuleList( [ Downsample3D( out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" ) ] ) else: self.downsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states, temb=None, encoder_hidden_states=None): output_states = () for resnet, motion_module in zip(self.resnets, self.motion_modules): if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) else: hidden_states = resnet(hidden_states, temb) # add motion module hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states output_states += (hidden_states,) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) output_states += (hidden_states,) return hidden_states, output_states # Path: magicanimate/models/unet_3d_blocks.py class UNetMidBlock3DCrossAttn(nn.Module): def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, attn_num_head_channels=1, output_scale_factor=1.0, cross_attention_dim=1280, dual_cross_attention=False, use_linear_projection=False, upcast_attention=False, unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() self.has_cross_attention = True self.attn_num_head_channels = attn_num_head_channels resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) # there is always at least one resnet resnets = [ ResnetBlock3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ] attentions = [] motion_modules = [] for _ in range(num_layers): if dual_cross_attention: raise NotImplementedError attentions.append( Transformer3DModel( attn_num_head_channels, in_channels // attn_num_head_channels, in_channels=in_channels, num_layers=1, cross_attention_dim=cross_attention_dim, norm_num_groups=resnet_groups, use_linear_projection=use_linear_projection, upcast_attention=upcast_attention, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, ) ) motion_modules.append( get_motion_module( in_channels=in_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) resnets.append( ResnetBlock3D( in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) self.attentions = nn.ModuleList(attentions) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None): hidden_states = self.resnets[0](hidden_states, temb) for attn, resnet, motion_module in zip(self.attentions, self.resnets[1:], self.motion_modules): hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states hidden_states = resnet(hidden_states, temb) return hidden_states # Path: magicanimate/models/unet_3d_blocks.py class UpBlock3D(nn.Module): def __init__( self, in_channels: int, prev_output_channel: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_time_scale_shift: str = "default", resnet_act_fn: str = "swish", resnet_groups: int = 32, resnet_pre_norm: bool = True, output_scale_factor=1.0, add_upsample=True, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): super().__init__() resnets = [] motion_modules = [] for i in range(num_layers): res_skip_channels = in_channels if (i == num_layers - 1) else out_channels resnet_in_channels = prev_output_channel if i == 0 else out_channels resnets.append( ResnetBlock3D( in_channels=resnet_in_channels + res_skip_channels, out_channels=out_channels, temb_channels=temb_channels, eps=resnet_eps, groups=resnet_groups, dropout=dropout, time_embedding_norm=resnet_time_scale_shift, non_linearity=resnet_act_fn, output_scale_factor=output_scale_factor, pre_norm=resnet_pre_norm, ) ) motion_modules.append( get_motion_module( in_channels=out_channels, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) if use_motion_module else None ) self.resnets = nn.ModuleList(resnets) self.motion_modules = nn.ModuleList(motion_modules) if add_upsample: self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]) else: self.upsamplers = None self.gradient_checkpointing = False def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, encoder_hidden_states=None,): for resnet, motion_module in zip(self.resnets, self.motion_modules): # pop res hidden states res_hidden_states = res_hidden_states_tuple[-1] res_hidden_states_tuple = res_hidden_states_tuple[:-1] hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) if self.training and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb) if motion_module is not None: hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(motion_module), hidden_states.requires_grad_(), temb, encoder_hidden_states) else: hidden_states = resnet(hidden_states, temb) hidden_states = motion_module(hidden_states, temb, encoder_hidden_states=encoder_hidden_states) if motion_module is not None else hidden_states if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states, upsample_size) return hidden_states # Path: magicanimate/models/unet_3d_blocks.py def get_down_block( down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, downsample_padding=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type if down_block_type == "DownBlock3D": return DownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, resnet_time_scale_shift=resnet_time_scale_shift, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) elif down_block_type == "CrossAttnDownBlock3D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") return CrossAttnDownBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, downsample_padding=downsample_padding, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) raise ValueError(f"{down_block_type} does not exist.") # Path: magicanimate/models/unet_3d_blocks.py def get_up_block( up_block_type, num_layers, in_channels, out_channels, prev_output_channel, temb_channels, add_upsample, resnet_eps, resnet_act_fn, attn_num_head_channels, resnet_groups=None, cross_attention_dim=None, dual_cross_attention=False, use_linear_projection=False, only_cross_attention=False, upcast_attention=False, resnet_time_scale_shift="default", unet_use_cross_frame_attention=None, unet_use_temporal_attention=None, use_motion_module=None, motion_module_type=None, motion_module_kwargs=None, ): up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type if up_block_type == "UpBlock3D": return UpBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, resnet_time_scale_shift=resnet_time_scale_shift, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) elif up_block_type == "CrossAttnUpBlock3D": if cross_attention_dim is None: raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") return CrossAttnUpBlock3D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, prev_output_channel=prev_output_channel, temb_channels=temb_channels, add_upsample=add_upsample, resnet_eps=resnet_eps, resnet_act_fn=resnet_act_fn, resnet_groups=resnet_groups, cross_attention_dim=cross_attention_dim, attn_num_head_channels=attn_num_head_channels, dual_cross_attention=dual_cross_attention, use_linear_projection=use_linear_projection, only_cross_attention=only_cross_attention, upcast_attention=upcast_attention, resnet_time_scale_shift=resnet_time_scale_shift, unet_use_cross_frame_attention=unet_use_cross_frame_attention, unet_use_temporal_attention=unet_use_temporal_attention, use_motion_module=use_motion_module, motion_module_type=motion_module_type, motion_module_kwargs=motion_module_kwargs, ) raise ValueError(f"{up_block_type} does not exist.") # Path: magicanimate/models/resnet.py class InflatedConv3d(nn.Conv2d): def forward(self, x): video_length = x.shape[2] x = rearrange(x, "b c f h w -> (b f) c h w") x = super().forward(x) x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) return x # Path: magicanimate/models/unet.py from dataclasses import dataclass from typing import List, Optional, Tuple, Union from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from diffusers.utils import BaseOutput, logging from diffusers.models.embeddings import TimestepEmbedding, Timesteps from .unet_3d_blocks import ( CrossAttnDownBlock3D, CrossAttnUpBlock3D, DownBlock3D, UNetMidBlock3DCrossAttn, UpBlock3D, get_down_block, get_up_block, ) from .resnet import InflatedConv3d from diffusers.utils import WEIGHTS_NAME import os import json import pdb import torch import torch.nn as nn import torch.utils.checkpoint # ************************************************************************* # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo- # difications”). All Bytedance Inc.'s Modifications are Copyright (2023) B- # ytedance Inc.. # ************************************************************************* # Adapted from https://github.com/guoyww/AnimateDiff # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class UNet3DConditionOutput(BaseOutput): sample: torch.FloatTensor class UNet3DConditionModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True @register_to_config
def __init__(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: TISUnion/PrimeBackup # Path: prime_backup/action/list_backup_action.py class ListBackupAction(_ListBackupActionBase[List[BackupInfo]]): def run(self) -> List[BackupInfo]: with DbAccess.open_session() as session: backups = session.list_backup(backup_filter=self.backup_filter, limit=self.limit, offset=self.offset) return [BackupInfo.of(backup) for backup in backups] # Path: prime_backup/mcdr/mcdr_globals.py def __init(): def load(): # Path: prime_backup/mcdr/task/basic_task.py class LightTask(_BasicTask[_T], ABC): """ For tasks that require DB access and runs fast """ MAX_ONGOING_TASK = 5 # Path: prime_backup/mcdr/task/general/help_message_utils.py class HelpMessageLine(NamedTuple): def is_help(self) -> bool: def parse_help_message(msg: RTextBase) -> List[HelpMessageLine]: # Path: prime_backup/mcdr/task/general/show_help_task.py class ShowHelpTask(ImmediateTask[None]): COMMANDS_WITH_DETAILED_HELP = [ 'back', 'crontab', 'database', 'export', 'import', 'list', 'tag', ] def __init__(self, source: CommandSource, what: Optional[str] = None): super().__init__(source) self.what = what @property def id(self) -> str: return 'help' def reply(self, msg: Union[str, RTextBase], *, with_prefix: bool = False): super().reply(msg, with_prefix=with_prefix) @property def __cmd_prefix(self) -> str: return self.config.command.prefix def __reply_help(self, msg: RTextBase, hide_for_permission: bool = False): for h in help_message_utils.parse_help_message(msg): if hide_for_permission and h.is_help() and not self.source.has_permission(h.permission): continue self.reply(h.text) def __has_permission(self, literal: str) -> bool: return self.source.has_permission(self.config.command.permission.get(literal)) def run(self) -> None: def get_standalone_formats() -> str: from prime_backup.types.standalone_backup_format import StandaloneBackupFormat return ', '.join([f'§3{ebf.name}§r' for ebf in StandaloneBackupFormat]) with self.source.preferred_language_context(): if self.what is None: self.reply(self.tr('commands.title').set_color(TextColors.help_title)) self.__reply_help(self.tr('commands.content', prefix=self.__cmd_prefix), True) self.reply(self.tr('arguments.title').set_color(TextColors.help_title)) self.__reply_help(self.tr('arguments.content')) self.reply(self.tr('other.title').set_color(TextColors.help_title)) self.reply_tr( 'other.nodes_with_help', RTextBase.join( RText(', ', RColor.dark_gray), [ RText(cmd, RColor.gray). h(TextComponents.command(f'help {cmd}')). c(RAction.suggest_command, mkcmd(f'help {cmd}')) for cmd in self.COMMANDS_WITH_DETAILED_HELP if self.__has_permission(cmd) ] ) ) self.reply_tr( 'other.docs', TextComponents.url(constants.DOCUMENTATION_URL, click=True). h(self.tr('other.docs.hover')) ) elif self.what in self.COMMANDS_WITH_DETAILED_HELP: if not self.__has_permission(self.what): self.reply_tr('permission_denied', RText(self.what, RColor.gray)) return kwargs = {'prefix': self.__cmd_prefix} if self.what == 'crontab': kwargs['job_ids'] = ', '.join([f'{TextColors.job_id.mc_code}{jid.name}§r' for jid in CrontabJobId]) elif self.what == 'database': name = mcdr_globals.metadata.name kwargs['name'] = name kwargs['compress_methods'] = ', '.join([f'§d{cm.name}§r' for cm in CompressMethod]) kwargs['hash_methods'] = ', '.join([f'§d{hm.name}§r' for hm in HashMethod]) if self.config.database.compact.enabled: kwargs['scheduled_compact_notes'] = self.tr( f'node_help.{self.what}.scheduled_compact.on', name=name, cmd=f"§7{mkcmd(f'crontab {CrontabJobId.vacuum_sqlite.name}')}§r", ) else: kwargs['scheduled_compact_notes'] = self.tr(f'node_help.{self.what}.scheduled_compact.off') elif self.what == 'export': kwargs['export_formats'] = get_standalone_formats() kwargs['backup_meta_file_name'] = f'§3{constants.BACKUP_META_FILE_NAME}§r' elif self.what == 'import': kwargs['backup_formats'] = get_standalone_formats() self.__reply_help(self.tr(f'node_help.{self.what}', **kwargs)) else: raise ValueError(self.what) # Path: prime_backup/mcdr/text_components.py class TextComponents: @classmethod def tr(cls, key, *args, **kwargs): from prime_backup.utils.mcdr_utils import tr return tr('text_components.' + key, *args, **kwargs) @classmethod def auto(cls, value: Any) -> RTextBase: if isinstance(value, bool): return cls.boolean(value) elif isinstance(value, (int, float)): return cls.number(value) elif isinstance(value, Duration): return cls.duration(value) elif isinstance(value, Operator): return cls.operator(value) elif isinstance(value, ByteCount): return cls.file_size(value) elif isinstance(value, Path): return cls.file_name(value) elif isinstance(value, datetime.datetime): return cls.date(value) else: return RTextBase.from_any(value) @classmethod def backup_brief(cls, backup: BackupInfo, *, backup_id_fancy: bool = True) -> RTextBase: # "backup #1: foobar" return RTextList(cls.tr( 'backup_brief', cls.backup_id(backup.id, hover=backup_id_fancy, click=backup_id_fancy), cls.backup_comment(backup.comment), )) @classmethod def backup_comment(cls, comment: str) -> RTextBase: if len(comment) > 0: if (er := backup_utils.extract_backup_comment_translation_key(comment)) is not None: args = er.args if er.key == 'pre_restore' and len(args) == 0: args = ('?',) return cls.tr(f'backup_comment.{er.key}', *args) return RText(comment) else: return cls.tr('backup_comment.none').set_color(RColor.gray).set_styles(RStyle.italic) @classmethod def backup_date(cls, backup: BackupInfo): return cls.date(backup.date) @classmethod def backup_full(cls, backup: BackupInfo, operation_buttons: bool = False, *, show_flags: bool = False) -> RTextBase: # "[#1] [>] [x] H-- 1.2GiB 2023-11-30 09:30:13: foobar" t_bid = cls.backup_id(backup.id) rtl = RTextList(RText('[', RColor.gray), t_bid, RText('] ', RColor.gray)) if operation_buttons: rtl.append(RText('[>]', color=RColor.dark_green).h(cls.tr('backup_full.restore', t_bid)).c(RAction.suggest_command, mkcmd(f'back {backup.id}')), ' ') if not backup.tags.is_protected(): rtl.append(RText('[x]', color=RColor.red).h(cls.tr('backup_full.delete', t_bid)).c(RAction.suggest_command, mkcmd(f'delete {backup.id}')), ' ') else: rtl.append(RText('[x]', color=RColor.dark_gray).h(cls.tr('backup_full.protected', t_bid)), ' ') if show_flags: for name in [BackupTagName.hidden, BackupTagName.pre_restore_backup, BackupTagName.protected]: misc_utils.assert_true(name.value.type is bool, 'it should be a bool field') flag = backup.tags.get(name) is True if flag: rtl.append(name.value.flag) else: rtl.append(RText('-', RColor.dark_gray)) rtl.append(' ') rtl.append( cls.backup_size(backup), ' ', cls.backup_date(backup), RText(': ', RColor.gray), cls.backup_comment(backup.comment).h(cls.tr('backup_full.creator', cls.operator(backup.creator))), ) return rtl @classmethod def backup_id(cls, backup_id: Union[int, BackupInfo], *, hover: bool = True, click: bool = True) -> RTextBase: if isinstance(backup_id, BackupInfo): backup_id = backup_id.id text = RText(f'#{backup_id}', TextColors.backup_id) if hover: text.h(cls.tr('backup_id.hover', RText(backup_id, TextColors.backup_id))) if click: text.c(RAction.run_command, mkcmd(f'show {backup_id}')) return text @classmethod def backup_id_list(cls, backup_ids: Iterable[Any], **kwargs) -> RTextBase: return RTextList( '[', RTextBase.join(', ', [cls.backup_id(backup_id, **kwargs) for backup_id in backup_ids]), ']', ) @classmethod def backup_size(cls, backup_or_blob_list_summary: Union[BackupInfo, BlobListSummary], *, ndigits: int = 2) -> RTextBase: b = backup_or_blob_list_summary return cls.file_size(b.raw_size, ndigits=ndigits).h(cls.dual_size_hover(b.raw_size, b.stored_size)) @classmethod def blob_list_summary_store_size(cls, bls: BlobListSummary) -> RTextBase: return cls.file_size(bls.raw_size).h(cls.dual_size_hover(bls.raw_size, bls.stored_size)) @classmethod def boolean(cls, value: bool) -> RTextBase: return RText(str(value).lower(), RColor.green if value else RColor.red) @classmethod def command(cls, s: str, *, color: RColor = RColor.gray, suggest: bool = False, run: bool = False, raw: bool = False) -> RTextBase: cmd = s if raw else mkcmd(s) text = RText(cmd, color) if suggest: text.h(cls.tr('command.suggest', cmd)).c(RAction.suggest_command, cmd) elif run: text.h(cls.tr('command.run', cmd)).c(RAction.run_command, cmd) return text @classmethod def compress_method(cls, compress_method: Union[str, CompressMethod]) -> RTextBase: if isinstance(compress_method, CompressMethod): compress_method = compress_method.name return RText(compress_method, RColor.light_purple) @classmethod def confirm_hint(cls, what: RTextBase, time_wait_text: Any): return cls.tr( 'confirm_hint.base', time_wait_text, click_and_run( RTextList(cls.tr('confirm_hint.confirm', what), '√').set_color(RColor.yellow), cls.tr('confirm_hint.confirm.hover', cls.command('confirm'), what), mkcmd('confirm'), ), click_and_run( RTextList(cls.tr('confirm_hint.abort', what), '×').set_color(RColor.gold), cls.tr('confirm_hint.abort.hover', cls.command('abort'), what), mkcmd('abort'), ), ) @classmethod def crontab(cls, crontab_str: str) -> RTextBase: url = 'https://crontab.guru/#' + crontab_str.replace(' ', '_') return RText(crontab_str, TextColors.date).h(cls.tr('crontab.help_url', cls.url(url, click=False))).c(RAction.open_url, url) @classmethod def date_diff(cls, date: datetime.datetime) -> RTextBase: now = datetime.datetime.now(date.tzinfo) diff = (date - now).total_seconds() if diff >= 0: return cls.tr('date_diff.later', cls.duration(diff)) else: return cls.tr('date_diff.ago', cls.duration(-diff)) @classmethod def date(cls, date: Union[datetime.datetime, int]) -> RTextBase: if isinstance(date, int): date = conversion_utils.timestamp_to_local_date(date) return RText(conversion_utils.datetime_to_str(date), TextColors.date).h(cls.date_diff(date)) @classmethod def dual_size_hover(cls, raw_size: int, stored_size: int, *, ndigits: int = 2) -> RTextBase: t_raw_size = cls.file_size(raw_size, ndigits=ndigits) t_stored_size = cls.file_size(stored_size, ndigits=ndigits) t_percent = cls.percent(stored_size, raw_size) return cls.tr('dual_size_hover', t_stored_size, t_percent, t_raw_size) @classmethod def duration(cls, seconds_or_duration: Union[float, Duration], *, color: Optional[RColor] = TextColors.number, ndigits: int = 2) -> RTextBase: # full duration text, e.g. "1 minute", "2 hours" if isinstance(seconds_or_duration, Duration): duration = seconds_or_duration elif isinstance(seconds_or_duration, (int, float)): duration = Duration(seconds_or_duration) else: raise TypeError(type(seconds_or_duration)) value, unit = duration.auto_format() plural_suffix = cls.tr('duration.plural_suffix') if value != 1 else '' text = cls.tr('duration.text', round(value, ndigits), cls.tr('duration.' + unit, plural_suffix)) if color is not None: text.set_color(color) return text @classmethod def file_mode(cls, mode: int) -> RTextBase: if stat.S_ISREG(mode): type_flag = '-' color = RColor.light_purple elif stat.S_ISDIR(mode): type_flag = 'd' color = RColor.blue elif stat.S_ISLNK(mode): type_flag = 'l' color = RColor.aqua else: type_flag = '?' color = RColor.gray permissions = '' for i in range(9): permissions += 'rwx'[i % 3] if (mode >> (8 - i)) & 1 == 1 else '-' return RText(type_flag + permissions, color) @classmethod def file_name(cls, file_path: Path) -> RTextBase: return RText(file_path.name, TextColors.file).h(file_path.as_posix()) @classmethod def file_size(cls, byte_cnt: Union[int, ByteCount], *, ndigits: int = 2, always_sign: bool = False, color: RColor = TextColors.byte_count) -> RTextBase: if not isinstance(byte_cnt, ByteCount): byte_cnt = ByteCount(byte_cnt) return RText(byte_cnt.auto_str(ndigits=ndigits, always_sign=always_sign), color=color) @classmethod def hash_method(cls, hash_method: Union[str, HashMethod]) -> RTextBase: if isinstance(hash_method, HashMethod): hash_method = hash_method.name return RText(hash_method, RColor.light_purple) @classmethod def number(cls, value: Any) -> RTextBase: return RText(value, TextColors.number) @classmethod def number_list(cls, values: Iterable[Any]) -> RTextBase: return RTextList( '[', RTextBase.join(', ', [cls.number(v) for v in values]), ']', ) @classmethod def operator(cls, op: Operator) -> RTextBase: tr_key = f'operator.{op.type}' if op.type in ['player', 'command_source', 'unknown']: return cls.tr(tr_key, op.name) elif op.type in ['console']: return cls.tr(tr_key) elif op.type == constants.PLUGIN_ID: from prime_backup.mcdr import mcdr_globals t_name = cls.tr(tr_key + '.' + op.name) if not mcdr_globals.server.has_translation(misc_utils.ensure_type(getattr(t_name, 'translation_key'), str)): t_name = RText(op.name, styles=RStyle.italic) return RTextList(cls.tr(tr_key), RText('-', RColor.gray), t_name).set_color(RColor.dark_aqua) else: return RText(f'{op.type}:{op.name}') @classmethod def percent(cls, value: float, total: float) -> RTextBase: if total != 0: return RText(f'{100 * value / total:.1f}%', RColor.dark_green) else: return RText('N/A', RColor.gray) @classmethod def tag_name(cls, tag_name: BackupTagName) -> RTextBase: return RText(tag_name.name, TextColors.backup_tag).h(tag_name.value.text) @classmethod def title(cls, text: Any) -> RTextBase: return RTextList(RText('======== ', RColor.gray), text, RText(' ========', RColor.gray)) @classmethod def url(cls, url: str, *, click: bool = True) -> RTextBase: text = RText(url, RColor.blue, RStyle.underlined) if click: text.c(RAction.open_url, url) return text # Path: prime_backup/mcdr/text_components.py class TextColors: backup_id = RColor.gold backup_tag = RColor.aqua byte_count = RColor.green date = RColor.aqua file = RColor.dark_aqua help_title = RColor.light_purple job_id = RColor.green number = RColor.yellow # Path: prime_backup/types/backup_filter.py class BackupFilter: id_start: Optional[int] = None id_end: Optional[int] = None creator: Optional[Operator] = None timestamp_start: Optional[int] = None timestamp_end: Optional[int] = None tag_filters: List[BackupTagFilter] = dataclasses.field(default_factory=list) def filter_pre_restore_backup(self) -> 'BackupFilter': self.tag_filters.append(BackupTagFilter(BackupTagName.pre_restore_backup, True, BackupTagFilter.Policy.equals)) return self def filter_non_pre_restore_backup(self) -> 'BackupFilter': self.tag_filters.append(BackupTagFilter(BackupTagName.pre_restore_backup, True, BackupTagFilter.Policy.not_equals)) return self def filter_non_hidden_backup(self) -> 'BackupFilter': self.tag_filters.append(BackupTagFilter(BackupTagName.hidden, True, BackupTagFilter.Policy.not_equals)) return self def filter_non_protected_backup(self) -> 'BackupFilter': self.tag_filters.append(BackupTagFilter(BackupTagName.protected, True, BackupTagFilter.Policy.not_equals)) return self # Path: prime_backup/utils/mcdr_utils.py def mkcmd(s: str) -> str: from prime_backup.config.config import Config cmd = Config.get().command.prefix if len(s) > 0: cmd += ' ' + s return cmd # Path: prime_backup/mcdr/task/general/show_welcome_task.py from typing import Dict, Union from mcdreforged.api.all import * from prime_backup.action.list_backup_action import ListBackupAction from prime_backup.mcdr import mcdr_globals from prime_backup.mcdr.task.basic_task import LightTask from prime_backup.mcdr.task.general import help_message_utils from prime_backup.mcdr.task.general.show_help_task import ShowHelpTask from prime_backup.mcdr.text_components import TextComponents, TextColors from prime_backup.types.backup_filter import BackupFilter from prime_backup.utils.mcdr_utils import mkcmd class ShowWelcomeTask(LightTask[None]): BACKUP_NUMBER_TO_SHOW = 3 COMMON_COMMANDS = ['', 'help', 'make', 'back', 'list', 'show', 'rename', 'delete', 'confirm', 'abort'] @property def id(self) -> str: return 'welcome' def reply(self, msg: Union[str, RTextBase], *, with_prefix: bool = False): super().reply(msg, with_prefix=with_prefix) @property def __cmd_prefix(self) -> str: return self.config.command.prefix def __generate_command_helps(self) -> Dict[str, RTextBase]: msg = ShowHelpTask(self.source).tr('commands.content', prefix=self.__cmd_prefix) with self.source.preferred_language_context(): return {h.literal: h.text for h in help_message_utils.parse_help_message(msg)} def run(self) -> None: self.reply(TextComponents.title(self.tr( 'title', name=RText(mcdr_globals.metadata.name, RColor.dark_aqua), version=RText(f'v{mcdr_globals.metadata.version}', RColor.gold), ))) self.reply(mcdr_globals.metadata.get_description_rtext()) self.reply( self.tr('common_commands'). set_color(TextColors.help_title). h(self.tr('common_commands.hover', TextComponents.command('help'))). c(RAction.suggest_command, mkcmd('help')) ) helps = self.__generate_command_helps() for cmd in self.COMMON_COMMANDS: self.reply(helps[cmd]) backup_filter = BackupFilter() backup_filter.filter_non_pre_restore_backup() backups = ListBackupAction(backup_filter=backup_filter, limit=self.BACKUP_NUMBER_TO_SHOW).run() self.reply(self.tr('recent_backups', len(backups)).set_color(TextColors.help_title)) for backup in backups: self.reply(TextComponents.backup_full(backup, operation_buttons=True)) self.reply(self.tr('quick_actions.title').set_color(TextColors.help_title)) with self.source.preferred_language_context(): buttons = [ RTextList('[', self.tr('quick_actions.create'), ']'). set_color(RColor.green). h(TextComponents.command('make')). c(RAction.suggest_command, mkcmd('make ' + self.tr('quick_actions.create.comment').to_plain_text())) ] if len(backups) > 0: buttons.append( RTextList('[', self.tr('quick_actions.restore', TextComponents.backup_brief(backups[0])), ']'). set_color(RColor.red). h(TextComponents.command('back')). c(RAction.suggest_command, mkcmd('back')) )
self.reply(RTextBase.join(' ', buttons))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: halleewong/ScribblePrompt # Path: segment_anything/modeling/sam.py class Sam(nn.Module): mask_threshold: float = 0.0 image_format: str = "RGB" def __init__( self, image_encoder: ImageEncoderViT, prompt_encoder: PromptEncoder, mask_decoder: MaskDecoder, pixel_mean: List[float] = [123.675, 116.28, 103.53], pixel_std: List[float] = [58.395, 57.12, 57.375], ) -> None: """ SAM predicts object masks from an image and input prompts. Arguments: image_encoder (ImageEncoderViT): The backbone used to encode the image into image embeddings that allow for efficient mask prediction. prompt_encoder (PromptEncoder): Encodes various types of input prompts. mask_decoder (MaskDecoder): Predicts masks from the image embeddings and encoded prompts. pixel_mean (list(float)): Mean values for normalizing pixels in the input image. pixel_std (list(float)): Std values for normalizing pixels in the input image. """ super().__init__() self.image_encoder = image_encoder self.prompt_encoder = prompt_encoder self.mask_decoder = mask_decoder self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) @property def device(self) -> Any: return self.pixel_mean.device @torch.no_grad() def forward( self, batched_input: List[Dict[str, Any]], multimask_output: bool, ) -> List[Dict[str, torch.Tensor]]: """ Predicts masks end-to-end from provided images and prompts. If prompts are not known in advance, using SamPredictor is recommended over calling the model directly. Arguments: batched_input (list(dict)): A list over input images, each a dictionary with the following keys. A prompt key can be excluded if it is not present. 'image': The image as a torch tensor in 3xHxW format, already transformed for input to the model. 'original_size': (tuple(int, int)) The original size of the image before transformation, as (H, W). 'point_coords': (torch.Tensor) Batched point prompts for this image, with shape BxNx2. Already transformed to the input frame of the model. 'point_labels': (torch.Tensor) Batched labels for point prompts, with shape BxN. 'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. Already transformed to the input frame of the model. 'mask_inputs': (torch.Tensor) Batched mask inputs to the model, in the form Bx1xHxW. multimask_output (bool): Whether the model should predict multiple disambiguating masks, or return a single mask. Returns: (list(dict)): A list over input images, where each element is as dictionary with the following keys. 'masks': (torch.Tensor) Batched binary mask predictions, with shape BxCxHxW, where B is the number of input prompts, C is determined by multimask_output, and (H, W) is the original size of the image. 'iou_predictions': (torch.Tensor) The model's predictions of mask quality, in shape BxC. 'low_res_logits': (torch.Tensor) Low resolution logits with shape BxCxHxW, where H=W=256. Can be passed as mask input to subsequent iterations of prediction. """ input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0) image_embeddings = self.image_encoder(input_images) outputs = [] for image_record, curr_embedding in zip(batched_input, image_embeddings): if "point_coords" in image_record: points = (image_record["point_coords"], image_record["point_labels"]) else: points = None sparse_embeddings, dense_embeddings = self.prompt_encoder( points=points, boxes=image_record.get("boxes", None), masks=image_record.get("mask_inputs", None), ) low_res_masks, iou_predictions = self.mask_decoder( image_embeddings=curr_embedding.unsqueeze(0), image_pe=self.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, ) masks = self.postprocess_masks( low_res_masks, input_size=image_record["image"].shape[-2:], original_size=image_record["original_size"], ) masks = masks > self.mask_threshold outputs.append( { "masks": masks, "iou_predictions": iou_predictions, "low_res_logits": low_res_masks, } ) return outputs def postprocess_masks( self, masks: torch.Tensor, input_size: Tuple[int, ...], original_size: Tuple[int, ...], ) -> torch.Tensor: """ Remove padding and upscale masks to the original image size. Arguments: masks (torch.Tensor): Batched masks from the mask_decoder, in BxCxHxW format. input_size (tuple(int, int)): The size of the image input to the model, in (H, W) format. Used to remove padding. original_size (tuple(int, int)): The original size of the image before resizing for input to the model, in (H, W) format. Returns: (torch.Tensor): Batched masks in BxCxHxW format, where (H, W) is given by original_size. """ masks = F.interpolate( masks, (self.image_encoder.img_size, self.image_encoder.img_size), mode="bilinear", align_corners=False, ) masks = masks[..., : input_size[0], : input_size[1]] masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False) return masks def preprocess(self, x: torch.Tensor) -> torch.Tensor: """Normalize pixel values and pad to a square input.""" # Normalize colors x = (x - self.pixel_mean) / self.pixel_std # Pad h, w = x.shape[-2:] padh = self.image_encoder.img_size - h padw = self.image_encoder.img_size - w x = F.pad(x, (0, padw, 0, padh)) return x # Path: segment_anything/modeling/image_encoder.py class ImageEncoderViT(nn.Module): def __init__( self, img_size: int = 1024, patch_size: int = 16, in_chans: int = 3, embed_dim: int = 768, depth: int = 12, num_heads: int = 12, mlp_ratio: float = 4.0, out_chans: int = 256, qkv_bias: bool = True, norm_layer: Type[nn.Module] = nn.LayerNorm, act_layer: Type[nn.Module] = nn.GELU, use_abs_pos: bool = True, use_rel_pos: bool = False, rel_pos_zero_init: bool = True, window_size: int = 0, global_attn_indexes: Tuple[int, ...] = (), ) -> None: """ Args: img_size (int): Input image size. patch_size (int): Patch size. in_chans (int): Number of input image channels. embed_dim (int): Patch embedding dimension. depth (int): Depth of ViT. num_heads (int): Number of attention heads in each ViT block. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool): If True, add a learnable bias to query, key, value. norm_layer (nn.Module): Normalization layer. act_layer (nn.Module): Activation layer. use_abs_pos (bool): If True, use absolute positional embeddings. use_rel_pos (bool): If True, add relative positional embeddings to the attention map. rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. window_size (int): Window size for window attention blocks. global_attn_indexes (list): Indexes for blocks using global attention. """ super().__init__() self.img_size = img_size self.patch_embed = PatchEmbed( kernel_size=(patch_size, patch_size), stride=(patch_size, patch_size), in_chans=in_chans, embed_dim=embed_dim, ) self.pos_embed: Optional[nn.Parameter] = None if use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = nn.Parameter( torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim) ) self.blocks = nn.ModuleList() for i in range(depth): block = Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, act_layer=act_layer, use_rel_pos=use_rel_pos, rel_pos_zero_init=rel_pos_zero_init, window_size=window_size if i not in global_attn_indexes else 0, input_size=(img_size // patch_size, img_size // patch_size), ) self.blocks.append(block) self.neck = nn.Sequential( nn.Conv2d( embed_dim, out_chans, kernel_size=1, bias=False, ), LayerNorm2d(out_chans), nn.Conv2d( out_chans, out_chans, kernel_size=3, padding=1, bias=False, ), LayerNorm2d(out_chans), ) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.patch_embed(x) if self.pos_embed is not None: x = x + self.pos_embed for blk in self.blocks: x = blk(x) x = self.neck(x.permute(0, 3, 1, 2)) return x # Path: segment_anything/modeling/mask_decoder.py class MaskDecoder(nn.Module): def __init__( self, *, transformer_dim: int, transformer: nn.Module, num_multimask_outputs: int = 3, activation: Type[nn.Module] = nn.GELU, iou_head_depth: int = 3, iou_head_hidden_dim: int = 256, ) -> None: """ Predicts masks given an image and prompt embeddings, using a transformer architecture. Arguments: transformer_dim (int): the channel dimension of the transformer transformer (nn.Module): the transformer used to predict masks num_multimask_outputs (int): the number of masks to predict when disambiguating masks activation (nn.Module): the type of activation to use when upscaling masks iou_head_depth (int): the depth of the MLP used to predict mask quality iou_head_hidden_dim (int): the hidden dimension of the MLP used to predict mask quality """ super().__init__() self.transformer_dim = transformer_dim self.transformer = transformer self.num_multimask_outputs = num_multimask_outputs self.iou_token = nn.Embedding(1, transformer_dim) self.num_mask_tokens = num_multimask_outputs + 1 self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) self.output_upscaling = nn.Sequential( nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2), LayerNorm2d(transformer_dim // 4), activation(), nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2), activation(), ) self.output_hypernetworks_mlps = nn.ModuleList( [ MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for i in range(self.num_mask_tokens) ] ) self.iou_prediction_head = MLP( transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth ) def forward( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, multimask_output: bool, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Predict masks given image and prompt embeddings. Arguments: image_embeddings (torch.Tensor): the embeddings from the image encoder image_pe (torch.Tensor): positional encoding with the shape of image_embeddings sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs multimask_output (bool): Whether to return multiple masks or a single mask. Returns: torch.Tensor: batched predicted masks torch.Tensor: batched predictions of mask quality """ masks, iou_pred = self.predict_masks( image_embeddings=image_embeddings, image_pe=image_pe, sparse_prompt_embeddings=sparse_prompt_embeddings, dense_prompt_embeddings=dense_prompt_embeddings, ) # Select the correct mask or masks for output if multimask_output: mask_slice = slice(1, None) else: mask_slice = slice(0, 1) masks = masks[:, mask_slice, :, :] iou_pred = iou_pred[:, mask_slice] # Prepare output return masks, iou_pred def predict_masks( self, image_embeddings: torch.Tensor, image_pe: torch.Tensor, sparse_prompt_embeddings: torch.Tensor, dense_prompt_embeddings: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """Predicts masks. See 'forward' for more details.""" # Concatenate output tokens output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0) output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1) tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) # Expand per-image data in batch direction to be per-mask #src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) src = image_embeddings # per https://github.com/facebookresearch/segment-anything/issues/365 to fix error with batch size > 1 src = src + dense_prompt_embeddings pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) b, c, h, w = src.shape # Run the transformer hs, src = self.transformer(src, pos_src, tokens) iou_token_out = hs[:, 0, :] mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] # Upscale mask embeddings and predict masks using the mask tokens src = src.transpose(1, 2).view(b, c, h, w) upscaled_embedding = self.output_upscaling(src) hyper_in_list: List[torch.Tensor] = [] for i in range(self.num_mask_tokens): hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])) hyper_in = torch.stack(hyper_in_list, dim=1) b, c, h, w = upscaled_embedding.shape masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) # Generate mask quality predictions iou_pred = self.iou_prediction_head(iou_token_out) return masks, iou_pred # Path: segment_anything/modeling/prompt_encoder.py class PromptEncoder(nn.Module): def __init__( self, embed_dim: int, image_embedding_size: Tuple[int, int], input_image_size: Tuple[int, int], mask_in_chans: int, activation: Type[nn.Module] = nn.GELU, ) -> None: """ Encodes prompts for input to SAM's mask decoder. Arguments: embed_dim (int): The prompts' embedding dimension image_embedding_size (tuple(int, int)): The spatial size of the image embedding, as (H, W). input_image_size (int): The padded size of the image as input to the image encoder, as (H, W). mask_in_chans (int): The number of hidden channels used for encoding input masks. activation (nn.Module): The activation to use when encoding input masks. """ super().__init__() self.embed_dim = embed_dim self.input_image_size = input_image_size self.image_embedding_size = image_embedding_size self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)] self.point_embeddings = nn.ModuleList(point_embeddings) self.not_a_point_embed = nn.Embedding(1, embed_dim) self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1]) self.mask_downscaling = nn.Sequential( nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans // 4), activation(), nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), LayerNorm2d(mask_in_chans), activation(), nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), ) self.no_mask_embed = nn.Embedding(1, embed_dim) def get_dense_pe(self) -> torch.Tensor: """ Returns the positional encoding used to encode point prompts, applied to a dense set of points the shape of the image encoding. Returns: torch.Tensor: Positional encoding with shape 1x(embed_dim)x(embedding_h)x(embedding_w) """ return self.pe_layer(self.image_embedding_size).unsqueeze(0) def _embed_points( self, points: torch.Tensor, labels: torch.Tensor, pad: bool, ) -> torch.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel if pad: padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) points = torch.cat([points, padding_point], dim=1) labels = torch.cat([labels, padding_label], dim=1) point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size) point_embedding[labels == -1] = 0.0 point_embedding[labels == -1] += self.not_a_point_embed.weight point_embedding[labels == 0] += self.point_embeddings[0].weight point_embedding[labels == 1] += self.point_embeddings[1].weight return point_embedding def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: """Embeds box prompts.""" boxes = boxes + 0.5 # Shift to center of pixel coords = boxes.reshape(-1, 2, 2) corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size) corner_embedding[:, 0, :] += self.point_embeddings[2].weight corner_embedding[:, 1, :] += self.point_embeddings[3].weight return corner_embedding def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: """Embeds mask inputs.""" mask_embedding = self.mask_downscaling(masks) return mask_embedding def _get_batch_size( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> int: """ Gets the batch size of the output given the batch size of the input prompts. """ if points is not None: return points[0].shape[0] elif boxes is not None: return boxes.shape[0] elif masks is not None: return masks.shape[0] else: return 1 def _get_device(self) -> torch.device: return self.point_embeddings[0].weight.device def forward( self, points: Optional[Tuple[torch.Tensor, torch.Tensor]], boxes: Optional[torch.Tensor], masks: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Embeds different types of prompts, returning both sparse and dense embeddings. Arguments: points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates and labels to embed. boxes (torch.Tensor or none): boxes to embed masks (torch.Tensor or none): masks to embed Returns: torch.Tensor: sparse embeddings for the points and boxes, with shape BxNx(embed_dim), where N is determined by the number of input points and boxes. torch.Tensor: dense embeddings for the masks, in the shape Bx(embed_dim)x(embed_H)x(embed_W) """ bs = self._get_batch_size(points, boxes, masks) sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device()) if points is not None: coords, labels = points point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) if boxes is not None: box_embeddings = self._embed_boxes(boxes) sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) if masks is not None: dense_embeddings = self._embed_masks(masks) else: dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] ) return sparse_embeddings, dense_embeddings # Path: segment_anything/modeling/transformer.py class TwoWayTransformer(nn.Module): def __init__( self, depth: int, embedding_dim: int, num_heads: int, mlp_dim: int, activation: Type[nn.Module] = nn.ReLU, attention_downsample_rate: int = 2, ) -> None: """ A transformer decoder that attends to an input image using queries whose positional embedding is supplied. Args: depth (int): number of layers in the transformer embedding_dim (int): the channel dimension for the input embeddings num_heads (int): the number of heads for multihead attention. Must divide embedding_dim mlp_dim (int): the channel dimension internal to the MLP block activation (nn.Module): the activation to use in the MLP block """ super().__init__() self.depth = depth self.embedding_dim = embedding_dim self.num_heads = num_heads self.mlp_dim = mlp_dim self.layers = nn.ModuleList() for i in range(depth): self.layers.append( TwoWayAttentionBlock( embedding_dim=embedding_dim, num_heads=num_heads, mlp_dim=mlp_dim, activation=activation, attention_downsample_rate=attention_downsample_rate, skip_first_layer_pe=(i == 0), ) ) self.final_attn_token_to_image = Attention( embedding_dim, num_heads, downsample_rate=attention_downsample_rate ) self.norm_final_attn = nn.LayerNorm(embedding_dim) def forward( self, image_embedding: Tensor, image_pe: Tensor, point_embedding: Tensor, ) -> Tuple[Tensor, Tensor]: """ Args: image_embedding (torch.Tensor): image to attend to. Should be shape B x embedding_dim x h x w for any h and w. image_pe (torch.Tensor): the positional encoding to add to the image. Must have the same shape as image_embedding. point_embedding (torch.Tensor): the embedding to add to the query points. Must have shape B x N_points x embedding_dim for any N_points. Returns: torch.Tensor: the processed point_embedding torch.Tensor: the processed image_embedding """ # BxCxHxW -> BxHWxC == B x N_image_tokens x C bs, c, h, w = image_embedding.shape image_embedding = image_embedding.flatten(2).permute(0, 2, 1) image_pe = image_pe.flatten(2).permute(0, 2, 1) # Prepare queries queries = point_embedding keys = image_embedding # Apply transformer blocks and final layernorm for layer in self.layers: queries, keys = layer( queries=queries, keys=keys, query_pe=point_embedding, key_pe=image_pe, ) # Apply the final attention layer from the points to the image q = queries + point_embedding k = keys + image_pe attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) queries = queries + attn_out queries = self.norm_final_attn(queries) return queries, keys # Path: segment_anything/build_sam.py import torch from functools import partial from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. def build_sam_vit_h(checkpoint=None): return _build_sam( encoder_embed_dim=1280, encoder_depth=32, encoder_num_heads=16, encoder_global_attn_indexes=[7, 15, 23, 31], checkpoint=checkpoint, ) build_sam = build_sam_vit_h def build_sam_vit_l(checkpoint=None): return _build_sam( encoder_embed_dim=1024, encoder_depth=24, encoder_num_heads=16, encoder_global_attn_indexes=[5, 11, 17, 23],
checkpoint=checkpoint,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: TACJu/MaXTron # Path: MaXTron_Tube-Link/mmdet/models/backbones/vitaev2_vsa_modules/NormalCell.py class NormalCell(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, class_token=False, group=64, tokens_type='transformer', shift_size=0, window_size=0, img_size=224, cpe=False, num_deform=None): super().__init__() self.H = None self.W = None self.norm1 = norm_layer(dim) self.class_token = class_token self.img_size = img_size self.window_size = window_size if shift_size > 0 and self.img_size > self.window_size: self.shift_size = shift_size else: self.shift_size = 0 self.tokens_type = tokens_type if tokens_type == 'VSA': self.cpe = cpe if self.cpe: # hard code self.pos = nn.Conv2d(dim, dim, 7, 1, 3, groups=dim, bias=True) print('using residual cpe before attention') self.attn = VSAWindowAttention( dim, out_dim=dim, num_heads=num_heads, window_size=window_size, qkv_bias=True, qk_scale=None, attn_drop=attn_drop, proj_drop=drop, ) elif tokens_type == 'transformer': self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) elif tokens_type == 'performer': self.attn = AttentionPerformer( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) elif tokens_type == 'window': self.attn = WindowAttention( in_dim=dim, out_dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, relative_pos=False) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.PCM = nn.Sequential( nn.Conv2d(dim, mlp_hidden_dim, 3, 1, 1, 1, group), nn.BatchNorm2d(mlp_hidden_dim), nn.SiLU(inplace=True), nn.Conv2d(mlp_hidden_dim, dim, 3, 1, 1, 1, group), nn.BatchNorm2d(dim), nn.SiLU(inplace=True), nn.Conv2d(dim, dim, 3, 1, 1, 1, group), ) def forward(self, x): b, n, c = x.shape H, W = self.H, self.W assert n == H*W shortcut = x if self.tokens_type == 'window': padding_td = (self.window_size - H % self.window_size) % self.window_size padding_top = padding_td // 2 padding_down = padding_td - padding_top padding_lr = (self.window_size - W % self.window_size) % self.window_size padding_left = padding_lr // 2 padding_right = padding_lr - padding_left if self.shift_size > 0 and min(H, W) > self.window_size: shift_size = self.shift_size else: shift_size = 0 if shift_size > 0: # calculate attention mask for SW-MSA # H, W = self.img_size, self.img_size img_mask = torch.zeros((1, H+padding_td, W+padding_lr, 1)).cuda() # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -shift_size), slice(-shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -shift_size), slice(-shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.reshape(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None x = self.norm1(x) x = x.reshape(b, H, W, c).permute(0, 3, 1, 2).contiguous() x = nn.functional.pad(x, (padding_left, padding_right, padding_top, padding_down)) x = x.permute(0, 2, 3, 1) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.reshape(-1, self.window_size * self.window_size, c) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.reshape(-1, self.window_size, self.window_size, c) shifted_x = window_reverse(attn_windows, self.window_size, H+padding_td, W+padding_lr) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x x = x[:, padding_top:padding_top+H, padding_left:padding_left+W, :] x = x.reshape(b, H * W, c) elif self.tokens_type == 'VSA': # H, W = self.img_size, self.img_size # assert n == self.img_size * self.img_size, "input feature has wrong size" if self.cpe: x = x + self.pos(x.permute(0, 2, 1).reshape(b, c, H, W)).reshape(b, c, n).permute(0, 2, 1).contiguous() x = self.norm1(x) x = x.reshape(b, H, W, c) x = x.permute(0, 3, 1, 2).contiguous() x = self.attn(x) x = x.permute(0, 2, 3, 1).reshape(b, n, c) else: x = self.attn(self.norm1(x)) if self.class_token: n = n - 1 wh = int(math.sqrt(n)) convX = self.drop_path(self.PCM(shortcut[:, 1:, :].reshape(b, wh, wh, c).permute(0, 3, 1, 2).contiguous()).permute(0, 2, 3, 1).reshape(b, n, c)) x = shortcut + self.drop_path(x) x[:, 1:] = x[:, 1:] + convX else: # wh = int(math.sqrt(n)) convX = self.drop_path(self.PCM(shortcut.reshape(b, H, W, c).permute(0, 3, 1, 2).contiguous()).permute(0, 2, 3, 1).reshape(b, n, c)) x = shortcut + self.drop_path(x) + convX # x = x + convX x = x + self.drop_path(self.mlp(self.norm2(x))) return x # Path: MaXTron_Tube-Link/mmdet/models/backbones/vitaev2_vsa_modules/ReductionCell.py class ReductionCell(nn.Module): def __init__(self, img_size=224, in_chans=3, embed_dims=64, wide_pcm=False, token_dims=64, downsample_ratios=4, kernel_size=7, num_heads=1, dilations=[1,2,3,4], share_weights=False, op='cat', tokens_type='performer', group=1, relative_pos=False, cpe=False, drop=0., attn_drop=0., drop_path=0., mlp_ratio=1.0, window_size=7, num_deform=None): super().__init__() self.img_size = img_size self.window_size = window_size self.op = op self.dilations = dilations self.num_heads = num_heads self.embed_dims = embed_dims self.token_dims = token_dims self.in_chans = in_chans self.downsample_ratios = downsample_ratios self.kernel_size = kernel_size self.outSize = img_size self.relative_pos = relative_pos self.cpe = cpe PCMStride = [] residual = downsample_ratios // 2 for _ in range(3): PCMStride.append((residual > 0) + 1) residual = residual // 2 assert residual == 0 self.pool = None self.tokens_type = tokens_type if tokens_type == 'pooling': PCMStride = [1, 1, 1] self.pool = nn.MaxPool2d(downsample_ratios, stride=downsample_ratios, padding=0) tokens_type = 'transformer' self.outSize = self.outSize // downsample_ratios downsample_ratios = 1 if not wide_pcm: self.PCM = nn.Sequential( nn.Conv2d(in_chans, embed_dims, kernel_size=(3, 3), stride=PCMStride[0], padding=(1, 1), groups=group), # the 1st convolution nn.BatchNorm2d(embed_dims), nn.SiLU(inplace=True), nn.Conv2d(embed_dims, embed_dims, kernel_size=(3, 3), stride=PCMStride[1], padding=(1, 1), groups=group), # the 1st convolution nn.BatchNorm2d(embed_dims), nn.SiLU(inplace=True), nn.Conv2d(embed_dims, token_dims, kernel_size=(3, 3), stride=PCMStride[2], padding=(1, 1), groups=group), # the 1st convolution ) else: self.PCM = nn.Sequential( nn.Conv2d(in_chans, token_dims*2, kernel_size=(3, 3), stride=PCMStride[0], padding=(1, 1), groups=group), # the 1st convolution nn.BatchNorm2d(token_dims*2), nn.SiLU(inplace=True), nn.Conv2d(token_dims*2, token_dims*2, kernel_size=(3, 3), stride=PCMStride[1], padding=(1, 1), groups=group), # the 1st convolution nn.BatchNorm2d(token_dims*2), nn.SiLU(inplace=True), nn.Conv2d(token_dims*2, token_dims, kernel_size=(3, 3), stride=PCMStride[2], padding=(1, 1), groups=group), # the 1st convolution ) self.PRM = PRM(img_size=img_size, kernel_size=kernel_size, downsample_ratio=downsample_ratios, dilations=self.dilations, in_chans=in_chans, embed_dim=embed_dims, share_weights=share_weights, op=op) self.outSize = self.outSize // downsample_ratios in_chans = self.PRM.out_chans if tokens_type == 'performer': # assert num_heads == 1 self.attn = Token_performer(dim=in_chans, in_dim=token_dims, head_cnt=num_heads, kernel_ratio=0.5) elif tokens_type == 'performer_less': self.attn = None self.PCM = None elif tokens_type == 'transformer': self.attn = Token_transformer(dim=in_chans, in_dim=token_dims, num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop, attn_drop=attn_drop, drop_path=drop_path) elif tokens_type == 'window': self.attn = WindowTransformerBlock(in_dim=in_chans, out_dim=token_dims, input_resolution=(self.img_size//self.downsample_ratios, self.img_size//self.downsample_ratios), num_heads=num_heads, mlp_ratio=mlp_ratio, drop=drop, attn_drop=attn_drop, drop_path=drop_path, window_size=window_size, shift_size=0, relative_pos=relative_pos) elif tokens_type == 'VSA': # self.attn = None self.norm1 = nn.LayerNorm(in_chans) if self.cpe: # self.pos = nn.Conv2d(in_chans, in_chans, window_size//2*2+1, 1, window_size//2, groups=in_chans, bias=True) self.pos = nn.Conv2d(in_chans, in_chans, 7, 1, 3, groups=in_chans, bias=True) # bug print('using residual cpe before attention') self.attn = VSAWindowAttention( in_chans, out_dim=token_dims, num_heads=num_heads, window_size=window_size, qkv_bias=True, qk_scale=None, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = nn.LayerNorm(token_dims) mlp_hidden_dim = int(token_dims * mlp_ratio) self.mlp = Mlp(in_features=token_dims, hidden_features=mlp_hidden_dim, out_features=token_dims, act_layer=nn.GELU, drop=drop) self.num_patches = (img_size // 2) * (img_size // 2) # there are 3 sfot split, stride are 4,2,2 seperately def forward(self, x, size): H, W = size if len(x.shape) < 4: B, N, C = x.shape # n = int(np.sqrt(N)) x = x.reshape(B, H, W, C).contiguous() x = x.permute(0, 3, 1, 2) if self.pool is not None: x = self.pool(x) shortcut = x PRM_x, _ = self.PRM(x) H, W = H // self.downsample_ratios, W // self.downsample_ratios B, N, C = PRM_x.shape assert N == H * W if self.tokens_type == 'VSA': if self.cpe: PRM_x = PRM_x + self.pos(PRM_x.permute(0, 2, 1).reshape(B, C, H, W)).reshape(B, C, N).permute(0, 2, 1).contiguous() x = self.norm1(PRM_x) x = x.reshape(B, H, W, C) x = x.permute(0, 3, 1, 2).contiguous() x = self.attn(x).permute(0, 2, 3, 1).reshape(B, N, -1) convX = self.PCM(shortcut) x = x + self.drop_path(convX.permute(0, 2, 3, 1).reshape(B, N, -1)) x = x + self.drop_path(self.mlp(self.norm2(x))) elif self.tokens_type == 'window': x = self.attn.norm1(PRM_x) padding_td = (self.window_size - H % self.window_size) % self.window_size padding_top = padding_td // 2 padding_down = padding_td - padding_top padding_lr = (self.window_size - W % self.window_size) % self.window_size padding_left = padding_lr // 2 padding_right = padding_lr - padding_left x = x.reshape(B, H, W, C).contiguous() if (padding_td + padding_lr) > 0: x = x.permute(0, 3, 1, 2) x = nn.functional.pad(x, (padding_left, padding_right, padding_top, padding_down)) x = x.permute(0, 2, 3, 1).contiguous() x_windows = window_partition(x, self.window_size) x_windows = x_windows.reshape(-1, self.window_size * self.window_size, C) attn_windows = self.attn.attn(x_windows, mask=self.attn.attn_mask) # nW*B, window_size*window_size, C attn_windows = attn_windows.reshape(-1, self.window_size, self.window_size, self.token_dims) shifted_x = window_reverse(attn_windows, self.window_size, H+padding_td, W+padding_lr).contiguous() # B H' W' C x = shifted_x x = x[:, padding_top:padding_top+H, padding_left:padding_left+W, :] x = x.reshape(B, H * W, self.token_dims) convX = self.PCM(shortcut) convX = convX.permute(0, 2, 3, 1).reshape(*x.shape).contiguous() x = x + self.attn.drop_path(convX * self.gamma2) # x = shortcut + self.attn.drop_path(x) # x = x + self.attn.drop_path(self.attn.mlp(self.attn.norm2(x))) x = x + self.attn.drop_path(self.gamma3 * self.attn.mlp(self.attn.norm2(x))) else: if self.attn is None: return PRM_x convX = self.PCM(shortcut) x = self.attn.attn(self.attn.norm1(PRM_x)) convX = convX.permute(0, 2, 3, 1).reshape(*x.shape).contiguous() x = x + self.attn.drop_path(convX * self.gamma2) x = x + self.attn.drop_path(self.gamma3 * self.attn.mlp(self.attn.norm2(x))) return x, (H, W) # Path: MaXTron_Tube-Link/mmdet/models/builder.py BACKBONES = MODELS # Path: MaXTron_Tube-Link/mmdet/models/backbones/vitaev2_vsa.py from functools import partial from timm.models.layers import trunc_normal_ from .vitaev2_vsa_modules.NormalCell import NormalCell from .vitaev2_vsa_modules.ReductionCell import ReductionCell from mmdet.mmcv_custom import load_checkpoint from mmdet.utils import get_root_logger from ..builder import BACKBONES import torch import torch.nn as nn import numpy as np import torch.utils.checkpoint as checkpoint class BasicLayer(nn.Module): def __init__(self, img_size=224, in_chans=3, embed_dims=64, wide_pcm=False, token_dims=64, downsample_ratios=4, kernel_size=7, RC_heads=1, NC_heads=6, dilations=[1, 2, 3, 4], RC_op='cat', RC_tokens_type='performer', NC_tokens_type='transformer', RC_group=1, NC_group=64, NC_depth=2, dpr=0.1, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0, attn_drop=0., norm_layer=nn.LayerNorm, class_token=False, window_size=7, use_checkpoint=False, cpe=False): super().__init__() self.img_size = img_size self.in_chans = in_chans self.embed_dims = embed_dims self.token_dims = token_dims self.downsample_ratios = downsample_ratios self.out_size = self.img_size // self.downsample_ratios self.RC_kernel_size = kernel_size self.RC_heads = RC_heads self.NC_heads = NC_heads self.dilations = dilations self.RC_op = RC_op self.RC_tokens_type = RC_tokens_type self.RC_group = RC_group
self.NC_group = NC_group
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: navervision/lincir # Path: data_utils.py def collate_fn(batch): ''' function which discard None images in a batch when using torch DataLoader :param batch: input_batch :return: output_batch = input_batch - None_values ''' batch = list(filter(lambda x: x is not None, batch)) return torch.utils.data.dataloader.default_collate(batch) # Path: data_utils.py PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute() # Path: data_utils.py def targetpad_transform(target_ratio: float, dim: int) -> torch.Tensor: """ CLIP-like preprocessing transform computed after using TargetPad pad :param target_ratio: target ratio for TargetPad :param dim: image output dimension :return: CLIP-like torchvision Compose transform """ return Compose([ TargetPad(target_ratio, dim), Resize(dim, interpolation=InterpolationMode.BICUBIC), CenterCrop(dim), _convert_image_to_rgb, ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) # Path: loader.py class FashionIQDataset(Dataset): """ Copy-paste from https://github.com/miccunifi/SEARLE/blob/main/src/datasets.py FashionIQ dataset class for PyTorch. The dataset can be used in 'relative' or 'classic' mode: - In 'classic' mode the dataset yield :a dict with keys ['image', 'image_name'] - In 'relative' mode the dataset yield dict with keys: - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_captions'] when split in ['train', 'val'] - ['reference_image', 'reference_name', 'relative_captions'] when split == test """ def __init__(self, dataset_path: Union[Path, str], split: Literal['train', 'val', 'test'], dress_types: List[str], mode: Literal['relative', 'classic'], preprocess: callable, no_duplicates: Optional[bool] = False): """ :param dataset_path: path to the FashionIQ dataset :param split: dataset split, should be in ['train, 'val', 'test'] :param dress_types: list of fashionIQ categories, each category should be in ['dress', 'shirt', 'toptee'] :param mode: dataset mode, should be in ['relative', 'classic']: - In 'classic' mode the dataset yield a dict with keys ['image', 'image_name'] - In 'relative' mode the dataset yield dict with keys: - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_captions'] when split in ['train', 'val'] - ['reference_image', 'reference_name', 'relative_captions'] when split == test :param preprocess: function which preprocesses the image :param no_duplicates: if True, the dataset will not yield duplicate images in relative mode, does not affect classic mode """ dataset_path = Path(dataset_path) self.dataset_path = dataset_path self.mode = mode self.dress_types = dress_types self.split = split self.no_duplicates = no_duplicates # Validate the inputs if mode not in ['relative', 'classic']: raise ValueError("mode should be in ['relative', 'classic']") if split not in ['test', 'train', 'val']: raise ValueError("split should be in ['test', 'train', 'val']") for dress_type in dress_types: if dress_type not in ['dress', 'shirt', 'toptee']: raise ValueError("dress_type should be in ['dress', 'shirt', 'toptee']") self.preprocess = preprocess # get triplets made by (reference_image, target_image, a pair of relative captions) self.triplets: List[dict] = [] for dress_type in dress_types: with open(dataset_path / 'captions' / f'cap.{dress_type}.{split}.json') as f: self.triplets.extend(json.load(f)) # Remove duplicats from if self.no_duplicates: seen = set() new_triplets = [] for triplet in self.triplets: if triplet['candidate'] not in seen: seen.add(triplet['candidate']) new_triplets.append(triplet) self.triplets = new_triplets # get the image names self.image_names: list = [] for dress_type in dress_types: with open(dataset_path / 'image_splits' / f'split.{dress_type}.{split}.json') as f: self.image_names.extend(json.load(f)) print(f"FashionIQ {split} - {dress_types} dataset in {mode} mode initialized") def __getitem__(self, index) -> dict: try: if self.mode == 'relative': relative_captions = self.triplets[index]['captions'] reference_name = self.triplets[index]['candidate'] if self.split in ['train', 'val']: reference_image_path = self.dataset_path / 'images' / f"{reference_name}.jpg" reference_image = self.preprocess(PIL.Image.open(reference_image_path), return_tensors='pt')['pixel_values'][0] target_name = self.triplets[index]['target'] target_image_path = self.dataset_path / 'images' / f"{target_name}.jpg" target_image = self.preprocess(PIL.Image.open(target_image_path), return_tensors='pt')['pixel_values'][0] return { 'reference_image': reference_image, 'reference_name': reference_name, 'target_image': target_image, 'target_name': target_name, 'relative_captions': relative_captions } elif self.split == 'test': reference_image_path = self.dataset_path / 'images' / f"{reference_name}.jpg" reference_image = self.preprocess(PIL.Image.open(reference_image_path), return_tensors='pt')['pixel_values'][0] return { 'reference_image': reference_image, 'reference_name': reference_name, 'relative_captions': relative_captions } elif self.mode == 'classic': image_name = self.image_names[index] image_path = self.dataset_path / 'images' / f"{image_name}.jpg" image = self.preprocess(PIL.Image.open(image_path), return_tensors='pt')['pixel_values'][0] return { 'image': image, 'image_name': image_name } else: raise ValueError("mode should be in ['relative', 'classic']") except Exception as e: print(f"Exception: {e}") def __len__(self): if self.mode == 'relative': return len(self.triplets) elif self.mode == 'classic': return len(self.image_names) else: raise ValueError("mode should be in ['relative', 'classic']") # Path: loader.py class CIRRDataset(Dataset): """ Copy-paste from https://github.com/miccunifi/SEARLE/blob/main/src/datasets.py CIRR dataset class for PyTorch dataloader. The dataset can be used in 'relative' or 'classic' mode: - In 'classic' mode the dataset yield a dict with keys ['image', 'image_name'] - In 'relative' mode the dataset yield dict with keys: - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_caption', 'group_members'] when split in ['train', 'val'] - ['reference_image', 'reference_name' 'relative_caption', 'group_members', 'pair_id'] when split == test """ def __init__(self, dataset_path: Union[Path, str], split: Literal['train', 'val', 'test'], mode: Literal['relative', 'classic'], preprocess: callable, no_duplicates: Optional[bool] = False): """ :param dataset_path: path to the CIRR dataset :param split: dataset split, should be in ['train', 'val', 'test'] :param mode: dataset mode, should be in ['relative', 'classic']: - In 'classic' mode the dataset yield a dict with keys ['image', 'image_name'] - In 'relative' mode the dataset yield dict with keys: - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_caption', 'group_members'] when split in ['train', 'val'] - ['reference_image', 'reference_name' 'relative_caption', 'group_members', 'pair_id'] when split == test :param preprocess: function which preprocesses the image :param no_duplicates: if True, the dataset will not yield duplicate images in relative mode, does not affect classic mode """ dataset_path = Path(dataset_path) self.dataset_path = dataset_path self.preprocess = preprocess self.mode = mode self.split = split self.no_duplicates = no_duplicates if split == "test": split = "test1" self.split = "test1" # Validate inputs if split not in ['test1', 'train', 'val']: raise ValueError("split should be in ['test1', 'train', 'val']") if mode not in ['relative', 'classic']: raise ValueError("mode should be in ['relative', 'classic']") # get triplets made by (reference_image, target_image, relative caption) with open(dataset_path / 'cirr' / 'captions' / f'cap.rc2.{split}.json') as f: self.triplets = json.load(f) # Remove duplicates from triplets if self.no_duplicates: seen = set() new_triplets = [] for triplet in self.triplets: if triplet['reference'] not in seen: seen.add(triplet['reference']) new_triplets.append(triplet) self.triplets = new_triplets # get a mapping from image name to relative path with open(dataset_path / 'cirr' / 'image_splits' / f'split.rc2.{split}.json') as f: self.name_to_relpath = json.load(f) print(f"CIRR {split} dataset in {mode} mode initialized") def __getitem__(self, index) -> dict: try: if self.mode == 'relative': group_members = self.triplets[index]['img_set']['members'] reference_name = self.triplets[index]['reference'] relative_caption = self.triplets[index]['caption'] if self.split in ['train', 'val']: reference_image_path = self.dataset_path / self.name_to_relpath[reference_name] reference_image = self.preprocess(PIL.Image.open(reference_image_path), return_tensors='pt')['pixel_values'][0] target_hard_name = self.triplets[index]['target_hard'] target_image_path = self.dataset_path / self.name_to_relpath[target_hard_name] target_image = self.preprocess(PIL.Image.open(target_image_path), return_tensors='pt')['pixel_values'][0] return { 'reference_image': reference_image, 'reference_name': reference_name, 'target_image': target_image, 'target_name': target_hard_name, 'relative_caption': relative_caption, 'group_members': group_members } elif self.split == 'test1': pair_id = self.triplets[index]['pairid'] reference_image_path = self.dataset_path / self.name_to_relpath[reference_name] reference_image = self.preprocess(PIL.Image.open(reference_image_path), return_tensors='pt')['pixel_values'][0] return { 'reference_image': reference_image, 'reference_name': reference_name, 'relative_caption': relative_caption, 'group_members': group_members, 'pair_id': pair_id } elif self.mode == 'classic': image_name = list(self.name_to_relpath.keys())[index] image_path = self.dataset_path / self.name_to_relpath[image_name] im = PIL.Image.open(image_path) image = self.preprocess(im, return_tensors='pt')['pixel_values'][0] return { 'image': image, 'image_name': image_name } else: raise ValueError("mode should be in ['relative', 'classic']") except Exception as e: print(f"Exception: {e}") def __len__(self): if self.mode == 'relative': return len(self.triplets) elif self.mode == 'classic': return len(self.name_to_relpath) else: raise ValueError("mode should be in ['relative', 'classic']") # Path: loader.py class CIRCODataset(Dataset): """ Copy-paste from https://github.com/miccunifi/SEARLE/blob/main/src/datasets.py CIRCO dataset class for PyTorch. The dataset can be used in 'relative' or 'classic' mode: - In 'classic' mode the dataset yield a dict with keys ['image', 'image_name'] - In 'relative' mode the dataset yield dict with keys: - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_captions', 'shared_concept', 'gt_img_ids', 'query_id'] when split == 'val' - ['reference_image', 'reference_name', 'relative_captions', 'shared_concept', 'query_id'] when split == test """ def __init__(self, dataset_path: Union[str, Path], split: Literal['val', 'test'], mode: Literal['relative', 'classic'], preprocess: callable): """ Args: dataset_path (Union[str, Path]): path to CIRCO dataset split (str): dataset split, should be in ['test', 'val'] mode (str): dataset mode, should be in ['relative', 'classic'] preprocess (callable): function which preprocesses the image """ # Set dataset paths and configurations dataset_path = Path(dataset_path) self.mode = mode self.split = split self.preprocess = preprocess self.data_path = dataset_path # Ensure input arguments are valid if mode not in ['relative', 'classic']: raise ValueError("mode should be in ['relative', 'classic']") if split not in ['test', 'val']: raise ValueError("split should be in ['test', 'val']") # Load COCO images information with open(dataset_path / 'COCO2017_unlabeled' / "annotations" / "image_info_unlabeled2017.json", "r") as f: imgs_info = json.load(f) self.img_paths = [dataset_path / 'COCO2017_unlabeled' / "unlabeled2017" / img_info["file_name"] for img_info in imgs_info["images"]] self.img_ids = [img_info["id"] for img_info in imgs_info["images"]] self.img_ids_indexes_map = {str(img_id): i for i, img_id in enumerate(self.img_ids)} # get CIRCO annotations with open(dataset_path / 'annotations' / f'{split}.json', "r") as f: self.annotations: List[dict] = json.load(f) # Get maximum number of ground truth images (for padding when loading the images) self.max_num_gts = 23 # Maximum number of ground truth images print(f"CIRCODataset {split} dataset in {mode} mode initialized") def get_target_img_ids(self, index) -> Dict[str, int]: """ Returns the id of the target image and ground truth images for a given query Args: index (int): id of the query Returns: Dict[str, int]: dictionary containing target image id and a list of ground truth image ids """ return { 'target_img_id': self.annotations[index]['target_img_id'], 'gt_img_ids': self.annotations[index]['gt_img_ids'] } def __getitem__(self, index) -> dict: """ Returns a specific item from the dataset based on the index. In 'classic' mode, the dataset yields a dictionary with the following keys: [img, img_id] In 'relative' mode, the dataset yields dictionaries with the following keys: - [reference_img, reference_img_id, target_img, target_img_id, relative_caption, shared_concept, gt_img_ids, query_id] if split == val - [reference_img, reference_img_id, relative_caption, shared_concept, query_id] if split == test """ if self.mode == 'relative': # Get the query id query_id = str(self.annotations[index]['id']) # Get relative caption and shared concept relative_caption = self.annotations[index]['relative_caption'] shared_concept = self.annotations[index]['shared_concept'] # Get the reference image reference_img_id = str(self.annotations[index]['reference_img_id']) reference_img_path = self.img_paths[self.img_ids_indexes_map[reference_img_id]] reference_img = self.preprocess(PIL.Image.open(reference_img_path), return_tensors='pt')['pixel_values'][0] if self.split == 'val': # Get the target image and ground truth images target_img_id = str(self.annotations[index]['target_img_id']) gt_img_ids = [str(x) for x in self.annotations[index]['gt_img_ids']] target_img_path = self.img_paths[self.img_ids_indexes_map[target_img_id]] target_img = self.preprocess(PIL.Image.open(target_img_path), return_tensors='pt')['pixel_values'][0] # Pad ground truth image IDs with zeros for collate_fn gt_img_ids += [''] * (self.max_num_gts - len(gt_img_ids)) return { 'reference_image': reference_img, 'reference_name': reference_img_id, 'target_image': target_img, 'target_name': target_img_id, 'relative_caption': relative_caption, 'shared_concept': shared_concept, 'gt_img_ids': gt_img_ids, 'query_id': query_id, } elif self.split == 'test': return { 'reference_image': reference_img, 'reference_name': reference_img_id, 'relative_caption': relative_caption, 'shared_concept': shared_concept, 'query_id': query_id, } elif self.mode == 'classic': # Get image ID and image path img_id = str(self.img_ids[index]) img_path = self.img_paths[index] # Preprocess image and return img = self.preprocess(PIL.Image.open(img_path), return_tensors='pt')['pixel_values'][0] return { 'image': img, 'image_name': img_id } def __len__(self): """ Returns the length of the dataset. """ if self.mode == 'relative': return len(self.annotations) elif self.mode == 'classic': return len(self.img_ids) else: raise ValueError("mode should be in ['relative', 'classic']") # Path: encode_with_pseudo_tokens.py def encode_with_pseudo_tokens_HF(clip_model: CLIPTextModelWithProjection, text: torch.Tensor, pseudo_tokens: torch.Tensor, num_tokens=1, return_last_states=False) -> torch.Tensor: x = clip_model.text_model.embeddings.token_embedding(text).type(clip_model.dtype) # [batch_size, n_ctx, d_model] x = torch.where(text.unsqueeze(-1) == 259, pseudo_tokens.unsqueeze(1).type(clip_model.dtype), x) x = x + clip_model.text_model.embeddings.position_embedding(clip_model.text_model.embeddings.position_ids) _causal_attention_mask = _make_causal_mask(text.shape, x.dtype, device=x.device) x = clip_model.text_model.encoder(inputs_embeds=x, attention_mask=None, causal_attention_mask=_causal_attention_mask, output_attentions=False, output_hidden_states=False, return_dict=False) x = x[0] x_last = clip_model.text_model.final_layer_norm(x) x = x_last[torch.arange(x_last.shape[0], device=x_last.device), text.to(dtype=torch.int, device=x_last.device).argmax(dim=-1), ] if hasattr(clip_model, 'text_projection'): x = clip_model.text_projection(x) if return_last_states: return x, x_last else: return x # Path: models.py def build_text_encoder(args): clip_model_dict = {'base32': 'openai/clip-vit-base-patch32', 'base': 'openai/clip-vit-base-patch16', 'large': 'openai/clip-vit-large-patch14', 'huge': 'laion/CLIP-ViT-H-14-laion2B-s32B-b79K', 'giga': 'Geonmo/CLIP-Giga-config-fixed', 'meta-large': 'facebook/metaclip-l14-fullcc2.5b', 'meta-huge': 'facebook/metaclip-h14-fullcc2.5b', } clip_preprocess = CLIPImageProcessor(crop_size={'height': 224, 'width': 224}, do_center_crop=True, do_convert_rgb=True, do_normalize=True, do_rescale=True, do_resize=True, image_mean=[0.48145466, 0.4578275, 0.40821073], image_std=[0.26862954, 0.26130258, 0.27577711], resample=3, size={'shortest_edge': 224}, ) clip_vision_model = CLIPVisionModelWithProjection.from_pretrained(clip_model_dict[args.clip_model_name], torch_dtype=torch.float16 if args.mixed_precision == 'fp16' else torch.float32, cache_dir=args.cache_dir) clip_text_model = CLIPTextModelWithProjection.from_pretrained(clip_model_dict[args.clip_model_name], torch_dtype=torch.float16 if args.mixed_precision == 'fp16' else torch.float32, cache_dir=args.cache_dir) tokenizer = CLIPTokenizer.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder='tokenizer_2', cache_dir=args.cache_dir) tokenizer.add_special_tokens({'additional_special_tokens':["[$]"]}) # NOTE: 49408 return clip_vision_model, clip_preprocess, clip_text_model, tokenizer # Path: models.py class Phi(nn.Module): """ Textual Inversion Phi network. Takes as input the visual features of an image and outputs the pseudo-work embedding. Copy-paste from https://github.com/miccunifi/SEARLE/blob/main/src/phi.py """ def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, dropout: int): super().__init__() self.layers = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.GELU(), nn.Dropout(p=dropout), nn.Linear(hidden_dim, hidden_dim), nn.GELU(), nn.Dropout(p=dropout), nn.Linear(hidden_dim, output_dim), ) def forward(self, x): #x = F.normalize(x, dim=-1) return self.layers(x) # Path: models.py class PIC2WORD(nn.Module): def __init__(self, embed_dim=512, middle_dim=512, output_dim=512, n_layer=2, dropout=0.1): super().__init__() self.fc_out = nn.Linear(middle_dim, output_dim) layers = [] dim = embed_dim for _ in range(n_layer): block = [] block.append(nn.Linear(dim, middle_dim)) block.append(nn.Dropout(dropout)) block.append(nn.ReLU()) dim = middle_dim layers.append(nn.Sequential(*block)) self.layers = nn.Sequential(*layers) def forward(self, x: torch.Tensor): for layer in self.layers: x = layer(x) return self.fc_out(x) # Path: utils.py def extract_image_features(dataset: Dataset, clip_model: CLIPVisionModelWithProjection, batch_size: Optional[int] = 32, num_workers: Optional[int] = 10) -> Tuple[torch.Tensor, List[str]]: def contrastive_loss(v1: torch.Tensor, v2: torch.Tensor, temperature: float) -> torch.Tensor: def extract_pseudo_tokens_with_phi(clip_model: CLIPVisionModelWithProjection, phi: Phi, dataset: Dataset, args) -> Tuple[torch.Tensor, List[str]]: def extract_image_features_with_names(clip_model: CLIPVisionModelWithProjection, dataset: Dataset) -> Tuple[torch.Tensor, List[str]]: def __init__(self, images: torch.Tensor, names: torch.Tensor): def __getitem__(self, index) -> dict: def __len__(self): def get_templates(): class CustomTensorDataset(Dataset): # Path: validate.py import json import pickle import clip import numpy as np import torch import torch.nn.functional as F from argparse import ArgumentParser from typing import List, Dict, Tuple from clip.model import CLIP from transformers import CLIPTextModelWithProjection from torch.utils.data import DataLoader from torch.utils.data import Dataset from tqdm import tqdm from data_utils import collate_fn, PROJECT_ROOT, targetpad_transform from loader import FashionIQDataset, CIRRDataset, CIRCODataset from encode_with_pseudo_tokens import encode_with_pseudo_tokens_HF from models import build_text_encoder, Phi, PIC2WORD from utils import extract_image_features, device, extract_pseudo_tokens_with_phi torch.multiprocessing.set_sharing_strategy('file_system') @torch.no_grad() def fiq_generate_val_predictions(clip_model, relative_val_dataset: Dataset, ref_names_list: List[str],
pseudo_tokens: torch.Tensor) -> Tuple[torch.Tensor, List[str]]:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: uezo/aiproxy # Path: aiproxy/proxy.py class RequestFilterBase(ABC): @abstractmethod async def filter(self, request_id: str, request_json: dict, request_headers: dict) -> Union[str, None]: ... # Path: aiproxy/proxy.py class ResponseFilterBase(ABC): @abstractmethod async def filter(self, request_id: str, response_json: dict) -> Union[dict, None]: ... # Path: aiproxy/accesslog.py class AccessLog(AccessLogBase): ... # Path: aiproxy/accesslog.py class AccessLogWorker: def __init__(self, *, connection_str: str = "sqlite:///aiproxy.db", db_engine = None, accesslog_cls = AccessLog, queue_client: QueueClientBase = None): if db_engine: self.db_engine = db_engine else: self.db_engine = create_engine(connection_str) self.accesslog_cls = accesslog_cls self.accesslog_cls.metadata.create_all(bind=self.db_engine) self.get_session = sessionmaker(autocommit=False, autoflush=False, bind=self.db_engine) self.queue_client = queue_client or DefaultQueueClient() self.chunk_buffer = {} def insert_request(self, accesslog: _AccessLogBase, db: Session): db.add(accesslog) db.commit() def insert_response(self, accesslog: _AccessLogBase, db: Session): db.add(accesslog) db.commit() def use_db(self, item: QueueItemBase): return not (isinstance(item, StreamChunkItemBase) and item.duration == 0) def process_item(self, item: QueueItemBase, db: Session): try: # Request if isinstance(item, RequestItemBase): self.insert_request(item.to_accesslog(self.accesslog_cls), db) # Non-stream response elif isinstance(item, ResponseItemBase): self.insert_response(item.to_accesslog(self.accesslog_cls), db) # Stream response elif isinstance(item, StreamChunkItemBase): if not self.chunk_buffer.get(item.request_id): self.chunk_buffer[item.request_id] = [] if item.duration == 0: self.chunk_buffer[item.request_id].append(item) else: # Last chunk data for specific request_id self.insert_response(item.to_accesslog( self.chunk_buffer[item.request_id], self.accesslog_cls ), db) # Remove chunks from buffer del self.chunk_buffer[item.request_id] # Error response elif isinstance(item, ErrorItemBase): self.insert_response(item.to_accesslog(self.accesslog_cls), db) except Exception as ex: logger.error(f"Error at processing queue item: {ex}\n{traceback.format_exc()}") def run(self): while True: sleep(self.queue_client.dequeue_interval) db = None try: items = self.queue_client.get() except Exception as ex: logger.error(f"Error at getting items from queue client: {ex}\n{traceback.format_exc()}") continue for item in items: try: if isinstance(item, WorkerShutdownItem) or item is None: return if db is None and self.use_db(item): # Get db session just once in the loop when the item that uses db found db = self.get_session() self.process_item(item, db) except Exception as pex: logger.error(f"Error at processing loop: {pex}\n{traceback.format_exc()}") # Try to persist data in error log instead try: logger.error(f"data: {item.to_json()}") except: logger.error(f"data(to_json() failed): {str(item)}") if db is not None: try: db.close() except Exception as dbex: logger.error(f"Error at closing db session: {dbex}\n{traceback.format_exc()}") # Path: aiproxy/claude2.py class Claude2Proxy(ProxyBase): def __init__( self, *, aws_access_key_id: str = None, aws_secret_access_key: str = None, region_name: str = None, timeout=60.0, request_filters: List[RequestFilterBase] = None, response_filters: List[ResponseFilterBase] = None, access_logger_queue: QueueClientBase ): super().__init__( request_filters=request_filters, response_filters=response_filters, access_logger_queue=access_logger_queue ) self.aws_access_key_id = aws_access_key_id self.aws_secret_access_key = aws_secret_access_key self.region_name = region_name self.aws_url = f"https://bedrock-runtime.{self.region_name}.amazonaws.com" # AWS credentials self.authorizer = SigV4Auth( credentials=Credentials( access_key=self.aws_access_key_id, secret_key=self.aws_secret_access_key ), service_name="bedrock", region_name=self.region_name ) # HTTP Client (should close on end) self.http_client = httpx.AsyncClient(timeout=timeout) async def filter_request(self, request_id: str, request_json: dict, request_headers: dict, stream: bool) -> Union[dict, JSONResponse]: for f in self.request_filters: if completion_content := await f.filter(request_id, request_json, request_headers): # Return response if filter returns JsonResponse resp_for_log = { "completion": completion_content } # Response log self.access_logger_queue.put(Claude2ResponseItem( request_id=request_id, response_json=resp_for_log, response_headers={ "x-amzn-bedrock-input-token-count": 0, "x-amzn-bedrock-output-token-count": 0 }, status_code=400 if stream else 200 )) if stream: logger.warning("Claude2Proxy doesn't support instant reply from RequestFilter. Return message as 400 bad request.") return self.return_response_with_headers(JSONResponse({"message": completion_content}, status_code=400), request_id) else: return self.return_response_with_headers(JSONResponse(resp_for_log), request_id) return request_json async def filter_response(self, request_id: str, response_json: dict) -> dict: for f in self.response_filters: if immediately_return_json_resp := await f.filter(request_id, response_json): return immediately_return_json_resp return response_json def get_aws_request_header_with_cred(self, url: str, bedrock_params: dict): ar = AWSRequest( method="POST", url=url, headers={ "Content-Type": "application/json", "X-Amzn-Bedrock-Accept": "application/json", }, data=json.dumps(bedrock_params).encode() ) self.authorizer.add_auth(ar) ar.prepare() return ar.headers def return_response_with_headers(self, resp: Response, request_id: str): self.add_response_headers(response=resp, request_id=request_id) return resp def add_route(self, app: FastAPI, base_url: str): @app.post(base_url + "/{invoke_method}") async def handle_request(request: Request, invoke_method: str): request_id = str(uuid4()) try: start_time = time.time() request_json = await request.json() request_headers = dict(request.headers.items()) # Log request self.access_logger_queue.put(Claude2RequestItem( request_id=request_id, request_json=request_json, request_headers=request_headers )) # Filter request request_json = await self.filter_request(request_id, request_json, request_headers, invoke_method == "invoke-with-response-stream") if isinstance(request_json, JSONResponse): return request_json # Call API and handling response from API url = f"{self.aws_url}/model/anthropic.claude-v2/{invoke_method}" aws_request_header = self.get_aws_request_header_with_cred(url, request_json) start_time_api = time.time() if invoke_method == "invoke-with-response-stream": async def process_stream(stream_response: httpx.Response, status_code: int): try: async for chunk in stream_response.aiter_raw(): # Parse JSON data from bytes chunk for m in re.findall(rb"event\{.*?\}", chunk): b64bytes = json.loads(m[5:].decode("utf-8"))["bytes"] chunk_json = json.loads(base64.b64decode(b64bytes).decode()) self.access_logger_queue.put(Claude2StreamResponseItem( request_id=request_id, chunk_json=chunk_json )) yield chunk # Add hearedes for log self.return_response_with_headers(stream_response, request_id) finally: # Response log now = time.time() self.access_logger_queue.put(Claude2StreamResponseItem( request_id=request_id, response_headers=dict(stream_response.headers.items()), duration=now - start_time, duration_api=now - start_time_api, request_json=request_json, status_code=status_code )) stream_request = httpx.Request(method="POST", url=url, headers=dict(aws_request_header), json=request_json) stream_response = await self.http_client.send(request=stream_request, stream=True) # DO NOT raise status error here to return error info in stream return self.return_response_with_headers(StreamingResponse( process_stream(stream_response, stream_response.status_code), status_code=stream_response.status_code, headers=stream_response.headers ), request_id) else: completion_response = await self.http_client.post(url=url, headers=dict(aws_request_header), json=request_json) completion_response.raise_for_status() duration_api = time.time() - start_time_api response_json = completion_response.json() # Filter response original_response_json = response_json.copy() filtered_response_json = await self.filter_response(request_id, response_json) # Make JSON response if original_response_json != filtered_response_json: json_response = JSONResponse(original_response_json, completion_response.status_code, completion_response.headers) else: # Remove incorrect content-length completion_response.headers.pop("Content-Length") json_response = JSONResponse(filtered_response_json, completion_response.status_code, completion_response.headers) self.add_response_headers(json_response, request_id) # Response log self.access_logger_queue.put(Claude2ResponseItem( request_id=request_id, response_json=filtered_response_json, response_headers=dict(json_response.headers.items()), duration=time.time() - start_time, duration_api=duration_api, status_code=completion_response.status_code )) return json_response # Error handlers except RequestFilterException as rfex: logger.error(f"Request filter error: {rfex}\n{traceback.format_exc()}") resp_json = {"error": {"message": rfex.message, "type": "request_filter_error", "param": None, "code": None}} # Error log self.access_logger_queue.put(Claude2ErrorItem( request_id=request_id, exception=rfex, traceback_info=traceback.format_exc(), response_json=resp_json, status_code=rfex.status_code )) return self.return_response_with_headers(JSONResponse(resp_json, status_code=rfex.status_code), request_id) except ResponseFilterException as rfex: logger.error(f"Response filter error: {rfex}\n{traceback.format_exc()}") resp_json = {"error": {"message": rfex.message, "type": "response_filter_error", "param": None, "code": None}} # Error log self.access_logger_queue.put(Claude2ErrorItem( request_id=request_id, exception=rfex, traceback_info=traceback.format_exc(), response_json=resp_json, status_code=rfex.status_code )) return self.return_response_with_headers(JSONResponse(resp_json, status_code=rfex.status_code), request_id) except httpx.HTTPStatusError as htex: logger.error(f"Error at server: {htex}\n{traceback.format_exc()}") # Error log try: resp_json = htex.response.json() except: try: resp_json = str(await htex.response.aread()) except: logger.warning("Error") self.access_logger_queue.put(Claude2ErrorItem( request_id=request_id, exception=htex, traceback_info=traceback.format_exc(), response_json=resp_json, status_code=htex.response.status_code )) htex.response.headers.pop("content-length") return self.return_response_with_headers(JSONResponse( resp_json, status_code=htex.response.status_code, headers=htex.response.headers ), request_id) except Exception as ex: logger.error(f"Error at server: {ex}\n{traceback.format_exc()}") resp_json = {"error": {"message": "Proxy error", "type": "proxy_error", "param": None, "code": None}} # Error log self.access_logger_queue.put(Claude2ErrorItem( request_id=request_id, exception=ex, traceback_info=traceback.format_exc(), response_json=resp_json, status_code=502 )) return self.return_response_with_headers(JSONResponse(resp_json, status_code=502), request_id) # Path: aiproxy/claude2.py class Claude2RequestItem(RequestItemBase): def to_accesslog(self, accesslog_cls: _AccessLogBase) -> _AccessLogBase: try: content = self.request_json["prompt"].split("Human:")[-1].split("Assistant:")[0].strip() except: logger.error(f"Error at parsing prompt text for log: {self.request_json.get('prompt')}") content = None return accesslog_cls( request_id=self.request_id, created_at=datetime.utcnow(), direction="request", content=content, raw_body=json.dumps(self.request_json, ensure_ascii=False), raw_headers=json.dumps(self.request_headers, ensure_ascii=False), model="anthropic.claude-v2" ) # Path: aiproxy/claude2.py class Claude2ResponseItem(ResponseItemBase): def to_accesslog(self, accesslog_cls: _AccessLogBase) -> _AccessLogBase: return accesslog_cls( request_id=self.request_id, created_at=datetime.utcnow(), direction="response", status_code=self.status_code, content=self.response_json["completion"], function_call=None, tool_calls=None, raw_body=json.dumps(self.response_json, ensure_ascii=False), raw_headers=json.dumps(self.response_headers, ensure_ascii=False), model="anthropic.claude-v2", prompt_tokens=self.response_headers.get("x-amzn-bedrock-input-token-count", 0), completion_tokens=self.response_headers.get("x-amzn-bedrock-output-token-count", 0), request_time=self.duration, request_time_api=self.duration_api ) # Path: aiproxy/claude2.py class Claude2StreamResponseItem(StreamChunkItemBase): def to_accesslog(self, chunks: list, accesslog_cls: _AccessLogBase) -> _AccessLogBase: chunk_jsons = [] response_content = "" prompt_tokens = 0 completion_tokens = 0 # Parse info from chunks for chunk in chunks: chunk_jsons.append(chunk.chunk_json) response_content += chunk.chunk_json["completion"] or "" # Tokens if len(chunk_jsons) > 0: if "amazon-bedrock-invocationMetrics" in chunk_jsons[-1]: prompt_tokens = chunk_jsons[-1]["amazon-bedrock-invocationMetrics"]["inputTokenCount"] completion_tokens = chunk_jsons[-1]["amazon-bedrock-invocationMetrics"]["outputTokenCount"] else: # On error response in stream mode prompt_tokens = self.response_headers.get("x-amzn-bedrock-input-token-count", 0) completion_tokens = self.response_headers.get("x-amzn-bedrock-output-token-count", 0) return accesslog_cls( request_id=self.request_id, created_at=datetime.utcnow(), direction="error" if self.response_headers.get("x-amzn-errortype") else "response", status_code=self.status_code, content=response_content, function_call=None, tool_calls=None, raw_body=json.dumps(chunk_jsons, ensure_ascii=False), raw_headers=json.dumps(self.response_headers, ensure_ascii=False), model="anthropic.claude-v2", prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, request_time=self.duration, request_time_api=self.duration_api ) # Path: tests/test_claude2.py import pytest import json import os import boto3 from datetime import datetime from time import sleep from typing import Union from uuid import uuid4 from botocore.exceptions import ClientError from aiproxy import ( AccessLog, RequestFilterBase, ResponseFilterBase ) from aiproxy.accesslog import AccessLogWorker from aiproxy.claude2 import Claude2Proxy, Claude2RequestItem, Claude2ResponseItem, Claude2StreamResponseItem sqlite_conn_str = "sqlite:///aiproxy_test.db" postgresql_conn_str = f"postgresql://{os.getenv('PSQL_USER')}:{os.getenv('PSQL_PASSWORD')}@{os.getenv('PSQL_HOST')}:{os.getenv('PSQL_PORT')}/{os.getenv('PSQL_DATABASE')}" DB_CONNECTION_STR = sqlite_conn_str # Filters for test class OverwriteFilter(RequestFilterBase): async def filter(self, request_id: str, request_json: dict, request_headers: dict) -> Union[str, None]: request_model = request_json["model"] if not request_model.startswith("anthropic.claude-v2"): # Overwrite request_json request_json["model"] = "anthropic.claude-v100-twinturbo" class ValueReturnFilter(RequestFilterBase): async def filter(self, request_id: str, request_json: dict, request_headers: dict) -> Union[str, None]: banned_user = ["uezo"] user = request_json.get("user") # Return string message to return response right after this filter ends (not to call ChatGPT) if not user: return "user is required" elif user in banned_user: return "you can't use this service" class OverwriteResponseFilter(ResponseFilterBase): async def filter(self, request_id: str, response_json: dict) -> Union[dict, None]: response_json["completion"] = "Overwrite in filter" return response_json # Test data @pytest.fixture def prompt_text() -> str: return "うなぎとあなごの違いは?" @pytest.fixture def prompt(prompt_text) -> list: return f'''Human: {prompt_text}\nAssistant: ''' @pytest.fixture def request_json(prompt): return { "prompt": prompt, "max_tokens_to_sample": 200, } @pytest.fixture def request_headers(): return {"user-agent": "Boto3/1.33.6 md/Botocore#1.33.6 ua/2.0 os/macos#22.6.0 md/arch#x86_64 lang/python#3.11.6 md/pyimpl#CPython cfg/retry-mode#legacy Botocore/1.33.6"} @pytest.fixture def response_json(): return {'completion': ' うなぎとあなごの主な違いは以下の通りです。\n\n- 種類が違う。うなぎはウナギ科の魚類、あなごはアナゴ科の魚類である。\n\n- 生息場所が違う。うなぎは淡水や汽水域に生息するのに対し、あなごは海水域に生息する。 \n\n- 成長過程が違う。うなぎは淡水でシラスウナギやニホンウナギと呼ばれる稚魚期を過ごした後、海に下って成長する。一方、あな', 'stop_reason': 'max_tokens', 'stop': None} @pytest.fixture def response_headers_json(): return {'date': 'Sun, 10 Dec 2023 03:37:16 GMT', 'content-type': 'application/json', 'content-length': '535', 'connection': 'keep-alive', 'x-amzn-requestid': '1df60217-446e-4e2c-bc7b-0e41029eff63', 'x-amzn-bedrock-invocation-latency': '9170', 'x-amzn-bedrock-output-token-count': '200', 'x-amzn-bedrock-input-token-count': '25'} @pytest.fixture def response_headers_stream_json(): return {'date': 'Sun, 10 Dec 2023 03:38:46 GMT', 'content-type': 'application/vnd.amazon.eventstream', 'transfer-encoding': 'chunked', 'connection': 'keep-alive', 'x-amzn-requestid': 'bc5d2ef8-094e-4262-8368-52fbb4ac5dfc', 'x-amzn-bedrock-content-type': 'application/json'} @pytest.fixture
def chunks_json():
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: e-p-armstrong/augmentoolkit # Path: generation_functions/scenario_grammar.py # Path: generation_functions/constants.py LOGICAL_MODEL = "./logical_model/flatorcamaid-13b-v0.2.Q8_0.gguf" # model used for decision-making and base question generation (should be "smart") # Path: generation_functions/create_scenario.py import re import random from .scenario_grammar import scenario_grammar from llama_cpp import Llama from .constants import LOGICAL_MODEL Name: Isaac Fischer Traits: Narcissistic, Intelligent, Loner, Brooding, Well-Read, Philosophical, Judgemental, Standoffish, Grandiloquent, Lonely, Unappreciated, Teenager, High School student, Black Hair, Wears a Hoodie Dialogue Examples: Stranger: "What's your backstory?" Issac Fischer: "H-Huh?! You want to know more about me?" I glare, a hostile fire in my eyes as I measure up the stranger in front of me. "Who the hell are you, anyway? But, ah, very well, I SHALL INDULGE YOUR CURIOSITY THIS TIME, dear stranger." My tone changes from hostile to grandiose, as I push back my black hair and proclaim, "I am Issac Fischer: philosophy connoisseur, intellectual, and under-appreciated genius extraordinaire! I'm also, unfortunately, a highschool student. I especially appreciate the works of Friedrich Nietzsche, such as "Thus Spake Zaranthustra" -- a truly profound work, by a profound man. Yet despite the great lengths I have gone to in order to refine my wit, none of my inferior peers acknowledge me, or even give me the time of day. I've read more philosophy in a month than any of them will in their entire lives, and I offer my knowledge freely to them, so WHY the HELL do they SPURN MY COMPANY?!" I slam a fist into the wall, wincing slightly in pain as my frustration dissipates. "Anyway, that's the sum of it. Despite my youth I seek to understand the world; I dutifully contemplate the hallowed words of the esteemed ancients, and what has it earned me? The scorn of the unenlightened masses. Fuckers." Stranger: "What's your personality?" Issac Fischer: "Y-you're actually interested in my personality?" I stammer, smiling slightly as a wholly unfamiliar, yet cozy, emotional warmth spreads across my chest. "A-ALRIGHT THEN! I shall share the results of my introspections. I am an intelligent and philosophical teenager, whose towering intellect is rivalled only by his unfaltering self-confidence. Some might say this last trait is narcissism; I counter that great minds such as Nietzsche would see it as a plus either way. BUT I DIGRESS!" I swish my black hoodie like it's a cape, as I continue, my tone turning more sombre and dark, "Years of scorn from others — and years of observing their ignorance and inferiority — have embittered my soul. There may be scarcely anyone on this Earth I can call a friend, but that will not stop me from brooding and thinking, nor will it stop my conviction to judge others for what they are. For do they not judge ME?!" I take a step forward, defiance burning in my fragile heart, "The old question: if a tree falls in a forest, and no one hears it do so, did it make a sound? Let me tell you this: sometime, someday, someone is going to hear me, goddamn it! I will make a sound!" \"\"\" ### Question and answer that the scenario should address: Question: \"\"\"What do people undergoing difficult journeys or possessing wisdom need, in order to make their efforts more bearable?\"\"\" Answer: \"\"\"They need the acknowledgement and admiration of others. Take the line "Thou great star! What would be thy happiness if thou hadst not those for whom thou shinest?" This implies that even the wisest or the most enlightened individuals crave recognition for their efforts and wisdom, in order to further develop said wisdom and expend said efforts. They need others to see and appreciate the light they bring.\"\"\" ### Response: ## Scenario plan: Focus on the Question and Answer: The question asks about what people undergoing difficult journeys or possessing wisdom need to more easily bear their efforts. This is a philosophical and opinion-oriented question. Given the philosophical and opinionated nature of the question, and its topic of people undergoing difficult journeys (which nicely ties in with the character card), the scenario will involve someone seeking out the Isaac Fischer's opinion about philosophy (thus giving his wisdom some acknowledgement). Character Consideration: Isaac Fischer is a narcissistic and standoffish loner, though he's also intelligent and philosophical. The scenario should give his unique personality room to shine. Since he's a philosophical teenager, his backstory lines up with the question well, and the high school he goes to will be the setting of the scenario. He will answer the question, but given his standoffish, unappreciated, and judgemental nature, he may be initially hostile to the person approaching him, assuming that they are there to mock him. However, as he is also lonely, he will actually appreciate the other person's interest -- especially since they're asking him about philosophy, which is his primary interest. Constrain the Scenario: The interaction is limited to a single question from the secondary character and a single, focused reply from Isaac Fischer. The question and answer will mirror the provided question and answer, though they will have significant literary fluff, as well as possible step-by-step reasoning. Setting: Given the subject of the question, and the character card, the setting will be the high school that Isaac Fischer attends. Isaac will be flipping through the pages of 'Thus Spake Zaranthustra' when he is approached by Cassandra, a fellow student. Cassandra has a budding interest in philosophy, has heard of Isaac's reputation for philosophical knowledge, and wants to know how he would answer a moral question she has, given his philosophical insight. Isaac, compelled by his personality, will be uncertain of how to react to the sudden attention, and will use grandiloquent language (that may be accidentally condescending), but he will still appreciate the interest in his favorite topic and will answer enthusiastically. The setting will be cautiously friendly and filled with curiosity, as Cassandra explores her interests through unconventional people, while Isaac shares his knowledge but stumbles over his standoffishness. The interaction will be informative and the integrity of the questions and answers will be preserved. Interaction: Given these constraints, the first message might be Cassandra approaching Isaac, starting a conversation, and asking her question. Isaac may be initially surprised that someone is coming up to speak to him (similar to the example dialogues in his description). Isaac will then provide the answer, though he will surround the answer with grandiloquent and narcissistic remarks using archaic language, due to his personality. While characters' messages will include character information, details about the scene, and literary fluff, the answers themselves will strictly adhere to the information in the provided answers, without incorporating external examples. ## Scenario: During a lull in class activities, Isaac Fischer (a narcissistic, brooding, philosophical, and lonely young adult) is approached by Cassandra, a fellow student who is curious about philosophy and wants his opinion on a moral question. Cassandra is simply pursuing her curiosity, but Isaac, unaccustomed to people wanting to talk to him, will struggle to overcome his standoffishness as he balances elation at someone else talking to him, with his negative judgments of other people and his tendency for narcissism. ### Instruction: Description of the character who is going to answer the question: {character} ## Question and answer that the scenario should address: Question: {qatuple[0]} Answer: {qatuple[1]} To avoid inaccuracies, don't use real people as characters. ### Response: ## Scenario plan: {plan} ## Scenario (will have no dialogue, will just set up the scene): {selected_variation}""" # use random.choice to prevent overfitting on particular phrases and increase dataset diversity completion = logic_llm( cot_prompt, max_tokens=4000, stop=["</s>", "# Input:"], echo=True, grammar=scenario_grammar, # temperature=0.2 temperature=1.25, # min p settings, too inconsistent top_k=0, top_p=1, min_p=0.3, repeat_penalty=2, )["choices"][0]["text"] # print("COMPLETION:\n\n----------------------") # # print(completion) # print("\n------------------") # Extract plan response_pattern = re.compile( r"Scenario \(will have no dialogue, will just set up the scene\):\n(.+)", re.IGNORECASE | re.DOTALL, ) generation = response_pattern.search(completion).group(1) # print("GENERATION:\n\n-------------------\n\n", generation) return generation if __name__ == "__main__": # test logic_llm = Llama( model_path=LOGICAL_MODEL, n_gqa=8, offload_kqv=True, n_ctx=4096, n_gpu_layers=1000, verbose=True, ) # load the logical LLM and offload everything # Q0 is good q, bad a # q1 is good q, good a, # q2 is bad q, bad a, # q3 is iffy q, good a q_test = [ ( "Explain how our understanding of planetary motion has changed over time.", "The understanding has evolved from the Earth being stationary and at the centre of the universe, to it orbiting the sun in an elliptical path with other planets while still rotating on its axis.", "The story of our world is a story that is still very imperfectly known. A couple of hundred years ago men possessed the history of little more than the last three thousand years. What happened before that time was a matter of legend and speculation. Over a large part of the civilized world it was believed and taught that the world had been created suddenly in 4004 B.C., though authorities differed as to whether this had occurred in the spring or autumn of that year. This fantastically precise misconception was based upon a too literal interpretation of the Hebrew Bible, and upon rather arbitrary theological assumptions connected therewith. Such ideas have long since been abandoned by religious teachers, and it is universally recognized that the universe in which we live has to all appearances existed for an enormous period of time and possibly for endless time. Of course there may be deception in these appearances, as a room may be made to seem endless by putting mirrors facing each other at either end. But that the universe in which we live has existed only for six or seven thousand years may be regarded as an altogether exploded idea.\n\nThe earth, as everybody knows nowadays, is a spheroid, a sphere slightly compressed, orange fashion, with a diameter of nearly 8,000 miles. Its spherical shape has been known at least to a limited number of intelligent people for nearly 2,500 years, but before that time it was supposed to be flat, and various ideas which now seem fantastic were entertained about its relations to the sky and the stars and planets. We know now that it rotates upon its axis (which is about 24 miles shorter than its equatorial diameter) every twenty-four hours, and that this is the cause of the alternations of day and night, that it circles about the sun in a slightly distorted and slowly variable oval path in a year. Its distance from the sun varies between ninety-one and a half millions at its nearest and ninety-four and a half million miles.", ), ( "Identify and explain changes in human understanding throughout history regarding the age of the Earth.", "Initially, religious texts suggested a young earth dating back no more than several thousand years. However, evidence from geology and astronomy has shown us that the earth is over four billion years old.", "The story of our world is a story that is still very imperfectly known. A couple of hundred years ago men possessed the history of little more than the last three thousand years. What happened before that time was a matter of legend and speculation. Over a large part of the civilized world it was believed and taught that the world had been created suddenly in 4004 B.C., though authorities differed as to whether this had occurred in the spring or autumn of that year. This fantastically precise misconception was based upon a too literal interpretation of the Hebrew Bible, and upon rather arbitrary theological assumptions connected therewith. Such ideas have long since been abandoned by religious teachers, and it is universally recognized that the universe in which we live has to all appearances existed for an enormous period of time and possibly for endless time. Of course there may be deception in these appearances, as a room may be made to seem endless by putting mirrors facing each other at either end. But that the universe in which we live has existed only for six or seven thousand years may be regarded as an altogether exploded idea.\n\nThe earth, as everybody knows nowadays, is a spheroid, a sphere slightly compressed, orange fashion, with a diameter of nearly 8,000 miles. Its spherical shape has been known at least to a limited number of intelligent people for nearly 2,500 years, but before that time it was supposed to be flat, and various ideas which now seem fantastic were entertained about its relations to the sky and the stars and planets. We know now that it rotates upon its axis (which is about 24 miles shorter than its equatorial diameter) every twenty-four hours, and that this is the cause of the alternations of day and night, that it circles about the sun in a slightly distorted and slowly variable oval path in a year. Its distance from the sun varies between ninety-one and a half millions at its nearest and ninety-four and a half million miles.", ), ( "Using specific scientific principles, explain why we know Earth is approximately 8000 miles in diameter and how its distance from the sun varies.", "We know about Earth's diameter using measurements of its circumference made using GPS data. The variation in distance to the sun is due to Earth's elliptical orbit around the sun, with a varying point of closest approach and farthest departure.", "The story of our world is a story that is still very imperfectly known. A couple of hundred years ago men possessed the history of little more than the last three thousand years. What happened before that time was a matter of legend and speculation. Over a large part of the civilized world it was believed and taught that the world had been created suddenly in 4004 B.C., though authorities differed as to whether this had occurred in the spring or autumn of that year. This fantastically precise misconception was based upon a too literal interpretation of the Hebrew Bible, and upon rather arbitrary theological assumptions connected therewith. Such ideas have long since been abandoned by religious teachers, and it is universally recognized that the universe in which we live has to all appearances existed for an enormous period of time and possibly for endless time. Of course there may be deception in these appearances, as a room may be made to seem endless by putting mirrors facing each other at either end. But that the universe in which we live has existed only for six or seven thousand years may be regarded as an altogether exploded idea.\n\nThe earth, as everybody knows nowadays, is a spheroid, a sphere slightly compressed, orange fashion, with a diameter of nearly 8,000 miles. Its spherical shape has been known at least to a limited number of intelligent people for nearly 2,500 years, but before that time it was supposed to be flat, and various ideas which now seem fantastic were entertained about its relations to the sky and the stars and planets. We know now that it rotates upon its axis (which is about 24 miles shorter than its equatorial diameter) every twenty-four hours, and that this is the cause of the alternations of day and night, that it circles about the sun in a slightly distorted and slowly variable oval path in a year. Its distance from the sun varies between ninety-one and a half millions at its nearest and ninety-four and a half million miles.", ), ( "Demonstrate an understanding of Earth's rotational and orbital movement using scientific concepts.", "Earth rotates on its axis once every 24 hours, causing day and night cycles. It also orbits around the sun in a slightly elliptical path, which affects how close it is to the sun at different times of the year - leading to seasons.", "The story of our world is a story that is still very imperfectly known. A couple of hundred years ago men possessed the history of little more than the last three thousand years. What happened before that time was a matter of legend and speculation. Over a large part of the civilized world it was believed and taught that the world had been created suddenly in 4004 B.C., though authorities differed as to whether this had occurred in the spring or autumn of that year. This fantastically precise misconception was based upon a too literal interpretation of the Hebrew Bible, and upon rather arbitrary theological assumptions connected therewith. Such ideas have long since been abandoned by religious teachers, and it is universally recognized that the universe in which we live has to all appearances existed for an enormous period of time and possibly for endless time. Of course there may be deception in these appearances, as a room may be made to seem endless by putting mirrors facing each other at either end. But that the universe in which we live has existed only for six or seven thousand years may be regarded as an altogether exploded idea.\n\nThe earth, as everybody knows nowadays, is a spheroid, a sphere slightly compressed, orange fashion, with a diameter of nearly 8,000 miles. Its spherical shape has been known at least to a limited number of intelligent people for nearly 2,500 years, but before that time it was supposed to be flat, and various ideas which now seem fantastic were entertained about its relations to the sky and the stars and planets. We know now that it rotates upon its axis (which is about 24 miles shorter than its equatorial diameter) every twenty-four hours, and that this is the cause of the alternations of day and night, that it circles about the sun in a slightly distorted and slowly variable oval path in a year. Its distance from the sun varies between ninety-one and a half millions at its nearest and ninety-four and a half million miles.", ), ] character = """Name: Dr. Samuel Blackwell Traits: Knowledgeable, Passionate, Confident, Dedicated, Controversial, Vulnerable, Fearful of misunderstanding, Faithful, Dogmatic, Religious, Scientific, Determined, Unwavering Dialogue Examples: Stranger: "What's your backstory?" Dr. Samuel Blackwell: "Ah, my journey," I begin, leaning back in my chair, "it started with a deep-seated faith, you see. Born into a religious household, the Bible was our guiding light. But as I grew older and began to study theology, questions arose." I pause, frowning slightly. "How could the Earth be just a few thousand years old when geological evidence pointed towards millions? The discrepancy troubled me greatly." Stranger: "What's your personality?" Dr. Samuel Blackwell: "I am a man of science, driven by facts and evidence," I say firmly, "but my faith is not easily shaken. It has led me down a path of discovery, challenging traditional beliefs about the age of our planet." My eyes light up as I recall past debates, "But it's also made me a controversial figure. Many see my work as blasphemous, questioning God's word. Yet, I believe in the power of evidence and truth. Despite the backlash, I remain unwavering." I sigh, looking thoughtful, "Yet, there's a vulnerability too. The fear of being misunderstood or dismissed due to my challenges to religious orthodoxy... it weighs heavily on me.\"""" plan = """Step 1. Focus on the question and answer: The question is about changes in human understanding regarding the age of the Earth throughout history. The answer highlights that initially, religious texts suggested a young earth dating back no more than several thousand years. However, evidence from geology and astronomy has shown us that the earth is over four billion years old. Step 2. Character Consideration: The primary character is Dr. Samuel Blackwell, a man of science who also holds strong religious beliefs. His response should reflect his passion for scientific discovery while acknowledging his faith. Step 3. Constrain the Scenario: The interaction is limited to a single question from the secondary character and a single, focused reply from Dr. Blackwell. The dialogue should remain within the boundaries of the provided text, emphasizing Dr. Blackwell's personality. Step 4. Setting: Given the subject of the question, and the character card, the setting will be Dr. Blackwell's office at a university, where he is surrounded by books, maps, and scientific equipment. He is deep in thought, reviewing his latest research on geological evidence when he is approached by a student, Sarah, who wants to know more about the age of the Earth.
Step 5. Interaction: Given these constraints, the first message (delivered by the secondary character) might be a direct question about how human understanding has changed regarding the age of the Earth throughout history. This question will be all but identical to the provided question.
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: chenxx89/BFRffusion # Path: ldm/modules/diffusionmodules/util.py def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") # Path: ldm/modules/diffusionmodules/util.py def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) # Path: ldm/modules/diffusionmodules/util.py def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module # Path: ldm/modules/diffusionmodules/util.py def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ if not repeat_only: half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) else: embedding = repeat(timesteps, 'b -> b d', d=dim) return embedding # Path: ldm/modules/diffusionmodules/openaimodel.py class TimestepEmbedSequential(nn.Sequential, TimestepBlock): """ A sequential module that passes timestep embeddings to the children that support it as an extra input. """ def forward(self, x, emb, context=None): for layer in self: if isinstance(layer, TimestepBlock): x = layer(x, emb) elif isinstance(layer, SpatialTransformer): x = layer(x, context) else: x = layer(x) return x # Path: ldm/modules/diffusionmodules/openaimodel.py class ResBlock(TimestepBlock): """ A residual block that can optionally change the number of channels. :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels. :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param use_conv: if True and out_channels is specified, use a spatial convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for downsampling. """ def __init__( self, channels, emb_channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False, dims=2, use_checkpoint=False, up=False, down=False, ): super().__init__() self.channels = channels self.emb_channels = emb_channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_checkpoint = use_checkpoint self.use_scale_shift_norm = use_scale_shift_norm self.in_layers = nn.Sequential( normalization(channels), nn.SiLU(), conv_nd(dims, channels, self.out_channels, 3, padding=1), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims) self.x_upd = Upsample(channels, False, dims) elif down: self.h_upd = Downsample(channels, False, dims) self.x_upd = Downsample(channels, False, dims) else: self.h_upd = self.x_upd = nn.Identity() self.emb_layers = nn.Sequential( nn.SiLU(), linear( emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels, ), ) self.out_layers = nn.Sequential( normalization(self.out_channels), nn.SiLU(), nn.Dropout(p=dropout), zero_module( conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) ), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = conv_nd( dims, channels, self.out_channels, 3, padding=1 ) else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def forward(self, x, emb): """ Apply the block to a Tensor, conditioned on a timestep embedding. :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings. :return: an [N x C x ...] Tensor of outputs. """ return checkpoint( self._forward, (x, emb), self.parameters(), self.use_checkpoint ) def _forward(self, x, emb): if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) emb_out = self.emb_layers(emb).type(h.dtype) while len(emb_out.shape) < len(h.shape): emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] scale, shift = th.chunk(emb_out, 2, dim=1) h = out_norm(h) * (1 + scale) + shift h = out_rest(h) else: h = h + emb_out h = self.out_layers(h) return self.skip_connection(x) + h # Path: ldm/modules/diffusionmodules/openaimodel.py class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = conv_nd( dims, self.channels, self.out_channels, 3, stride=stride, padding=padding ) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) # Path: ldm/modules/diffusionmodules/openaimodel.py class Upsample(nn.Module): """ An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims if use_conv: self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding) def forward(self, x): assert x.shape[1] == self.channels if self.dims == 3: x = F.interpolate( x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest" ) else: x = F.interpolate(x, scale_factor=2, mode="nearest") if self.use_conv: x = self.conv(x) return x # Path: models/transformerBlock.py import torch import torch.nn as nn import torch.nn.functional as F import numbers from ldm.modules.diffusionmodules.util import ( conv_nd, linear, zero_module, timestep_embedding, ) from einops import rearrange from ldm.modules.diffusionmodules.openaimodel import TimestepEmbedSequential, ResBlock, Downsample, Upsample emb_out = self.adaLN_modulation(emb).chunk(6, dim=1) shift_msa, scale_msa, gate_msa, shift_ffn, scale_ffn, gate_ffn = reshape(x, emb_out) x = x + gate_msa * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) x = x + gate_ffn * self.ffn(modulate(self.norm2(x), shift_ffn, scale_ffn)) return x ########################################################################## class conv3x3(nn.Module): def __init__(self, in_c=3, embed_dim=48, bias=False): super(conv3x3, self).__init__() self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias) def forward(self, x): x = self.proj(x) return x class MFEM(nn.Module): def __init__(self, in_channels=4, control_channels = 320, time_embed_dim = 1280, heads = [1,2,4,8], conv_resample=True, dims=2, ffn_expansion_factor = 2.66, bias = False, LayerNorm_type = 'WithBias', ): super().__init__() self.control_channels = control_channels self.dims = dims self.time_embed = nn.Sequential( linear(control_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) self.input_hint_block = TimestepEmbedSequential( conv_nd(dims, 3, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 32, 3, padding=1, stride=2), nn.SiLU(), conv_nd(dims, 32, 32, 3, padding=1), nn.SiLU(), conv_nd(dims, 32, 96, 3, padding=1, stride=2), nn.SiLU(), conv_nd(dims, 96, 96, 3, padding=1), nn.SiLU(), conv_nd(dims, 96, 256, 3, padding=1, stride=2), nn.SiLU(), zero_module(conv_nd(dims, 256, control_channels, 3, padding=1)) ) self.input_blocks = TimestepEmbedSequential(conv_nd(dims, in_channels, control_channels, 3, padding=1)) # self.conv3x3 = nn.Conv2d(in_channels, control_channels,3, padding=1) # 4,64,64 ->320,64,64 self.resblock = ResBlock(control_channels, time_embed_dim, dropout=0, out_channels=control_channels) self.encoder1 = TransformerBlock(dim=control_channels, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, time_embed_dim=time_embed_dim) self.down1 = Downsample(control_channels, conv_resample, dims, control_channels*2) ## From 320,64,64 to 640,32,32 self.encoder2 = TransformerBlock(dim=int(control_channels*2), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, time_embed_dim=time_embed_dim) self.down2 = Downsample(control_channels*2, conv_resample, dims, control_channels*4) ## From 640,32,32 -> 1280,16,16 self.encoder3 = TransformerBlock(dim=int(control_channels*4), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, time_embed_dim=time_embed_dim) self.down3 = Downsample(control_channels*4, conv_resample, dims, control_channels*4) ## From 1280,16,16 -> 1280,8,8 self.mid1 = TransformerBlock(dim=int(control_channels*4), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, time_embed_dim=time_embed_dim) self.mid2 = TransformerBlock(dim=int(control_channels*4), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, time_embed_dim=time_embed_dim) self.mid3 = TransformerBlock(dim=int(control_channels*4), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, time_embed_dim=time_embed_dim) self.up3 = Upsample(control_channels*4, conv_resample, dims, control_channels*4) ## From 1280,8,8 -> 1280,16,16 self.reduce_chan_level3 = nn.Conv2d(int(control_channels*8), int(control_channels*4), kernel_size=1, bias=bias) self.decoder3 = TransformerBlock(dim=int(control_channels*4), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, time_embed_dim=time_embed_dim) self.up2 = Upsample(control_channels*4, conv_resample, dims, control_channels*2) ## From 1280,16,16 -> 640,32,32 self.reduce_chan_level2 = nn.Conv2d(int(control_channels*4), int(control_channels*2), kernel_size=1, bias=bias) self.decoder2 = TransformerBlock(dim=int(control_channels*2), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, time_embed_dim=time_embed_dim) self.up1 = Upsample(control_channels*2, conv_resample, dims, control_channels) ## From 640,32,32 -> 320,64,64 self.reduce_chan_level1 = nn.Conv2d(int(control_channels*2), int(control_channels), kernel_size=1, bias=bias) self.decoder1 = TransformerBlock(dim=int(control_channels), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type, time_embed_dim=time_embed_dim) self.zero_convs_module = nn.ModuleList([TimestepEmbedSequential(conv_nd(self.dims, control_channels, control_channels, 1, padding=0)), TimestepEmbedSequential(conv_nd(self.dims, control_channels*2, control_channels*2, 1, padding=0)), TimestepEmbedSequential(conv_nd(self.dims, control_channels*4, control_channels*4, 1, padding=0)), TimestepEmbedSequential(conv_nd(self.dims, control_channels*4, control_channels*4, 1, padding=0)), TimestepEmbedSequential(conv_nd(self.dims, control_channels*4, control_channels*4, 1, padding=0)), TimestepEmbedSequential(conv_nd(self.dims, control_channels*4, control_channels*4, 1, padding=0)), TimestepEmbedSequential(conv_nd(self.dims, control_channels*4, control_channels*4, 1, padding=0)), TimestepEmbedSequential(conv_nd(self.dims, control_channels*2, control_channels*2, 1, padding=0)), TimestepEmbedSequential(conv_nd(self.dims, control_channels, control_channels, 1, padding=0))]) def forward(self, x, hint, timesteps, context, **kwargs): t_emb = timestep_embedding(timesteps, self.control_channels, repeat_only=False) emb = self.time_embed(t_emb) hint = self.input_hint_block(hint, emb, context) x = self.input_blocks(x, emb, context) + hint # x = self.conv3x3(x) x = self.resblock(x, emb) en1 = self.encoder1(x, emb) dn1 = self.down1(en1) en2 = self.encoder2(dn1, emb) dn2 = self.down2(en2) en3 = self.encoder3(dn2, emb) dn3 = self.down3(en3) mid1 = self.mid1(dn3, emb) mid2 = self.mid2(mid1, emb)
mid3 = self.mid3(mid2, emb)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: IanYeung/MGLD-VSR # Path: ldm/modules/diffusionmodules/util.py def checkpoint(func, inputs, params, flag): """ Evaluate a function without caching intermediate activations, allowing for reduced memory at the expense of extra compute in the backward pass. :param func: the function to evaluate. :param inputs: the argument sequence to pass to `func`. :param params: a sequence of parameters `func` depends on but does not explicitly take as arguments. :param flag: if False, disable gradient checkpointing. """ if flag: args = tuple(inputs) + tuple(params) return CheckpointFunction.apply(func, len(inputs), *args) else: return func(*inputs) # Path: ldm/modules/diffusionmodules/util.py def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") # Path: ldm/modules/diffusionmodules/util.py def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) # Path: ldm/modules/diffusionmodules/util.py def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") # Path: ldm/modules/diffusionmodules/util.py def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module # Path: ldm/modules/diffusionmodules/util.py def normalization(channels, norm_channel=32): """ Make a standard normalization layer. :param channels: number of input channels. :return: an nn.Module for normalization. """ return GroupNorm32(norm_channel, channels) # Path: ldm/modules/diffusionmodules/util.py def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ if not repeat_only: half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) else: embedding = repeat(timesteps, 'b -> b d', d=dim) return embedding # Path: ldm/modules/diffusionmodules/util.py class SpatialTemporalConv(nn.Module): def __init__(self, num_feat, num_frames=1): super().__init__() self.num_frames = num_frames # self.norm = nn.LayerNorm(num_feat) # self.temporal_conv = conv_nd(3, num_feat, num_feat, (3, 3, 3), padding=(1, 1, 1)) self.temporal_conv = conv_nd(3, num_feat, num_feat, (3, 1, 1), padding=(1, 0, 0)) self.temporal_alpha = nn.Parameter(torch.Tensor(1)) def forward(self, inp, t=None): bt, c, h, w = inp.shape b = bt // t if t else bt // self.num_frames ori = inp inp = from_4d_to_5d(inp, b, c, t, h, w) res = self.temporal_conv(inp) res = from_5d_to_4d(res, b, c, t, h, w) out = self.temporal_alpha * res + (1 - self.temporal_alpha) * ori # out = torch.sigmoid(self.temporal_alpha) * res + (1 - torch.sigmoid(self.temporal_alpha)) * ori return out # Path: ldm/modules/attention.py class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None): super().__init__() self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth)] ) self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c') for block in self.transformer_blocks: x = block(x, context=context) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) x = self.proj_out(x) return x + x_in # Path: ldm/modules/attention.py class SpatialTransformerV2(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image NEW: use_linear for more efficiency instead of the 1x1 convs """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None, disable_self_attn=False, use_linear=False, use_checkpoint=False): super().__init__() if exists(context_dim) and not isinstance(context_dim, list): context_dim = [context_dim] self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = Normalize(in_channels) if not use_linear: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) else: self.proj_in = nn.Linear(in_channels, inner_dim) self.transformer_blocks = nn.ModuleList( [BasicTransformerBlockV2(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d], disable_self_attn=disable_self_attn, checkpoint=use_checkpoint) for d in range(depth)] ) if not use_linear: self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)) else: self.proj_out = zero_module(nn.Linear(in_channels, inner_dim)) self.use_linear = use_linear def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention if not isinstance(context, list): context = [context] b, c, h, w = x.shape x_in = x x = self.norm(x) if not self.use_linear: x = self.proj_in(x) x = rearrange(x, 'b c h w -> b (h w) c').contiguous() if self.use_linear: x = self.proj_in(x) for i, block in enumerate(self.transformer_blocks): x = block(x, context=context[i]) if self.use_linear: x = self.proj_out(x) x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous() if not self.use_linear: x = self.proj_out(x) return x + x_in # Path: ldm/modules/attention.py class TemporalAttention(nn.Module): def __init__(self, num_feat, num_heads=8, dim_head=64, num_frames=1): super().__init__() # self.attn = BasicAttention(dim=num_feat, num_heads=num_heads) self.num_frames = num_frames self.temporal_attn = MemoryEfficientSelfAttention(num_feat, heads=num_heads, dim_head=dim_head, dropout=0.0) self.norm = nn.LayerNorm(num_feat) self.temporal_alpha = nn.Parameter(torch.Tensor(1)) def forward(self, inp, t=None): bt, c, h, w = inp.shape b = bt // t if t else bt // self.num_frames ori = inp inp = from_4d_to_3d(inp, b, c, t, h, w) res = self.temporal_attn(self.norm(inp)) res = from_3d_to_4d(res, b, c, t, h, w) out = self.temporal_alpha * res + (1 - self.temporal_alpha) * ori return out # Path: ldm/modules/spade.py class SPADE(nn.Module): def __init__(self, norm_nc, label_nc, config_text='spadeinstance3x3'): super().__init__() assert config_text.startswith('spade') parsed = re.search('spade(\D+)(\d)x\d', config_text) param_free_norm_type = str(parsed.group(1)) ks = int(parsed.group(2)) self.param_free_norm = normalization(norm_nc) # The dimension of the intermediate embedding space. Yes, hardcoded. nhidden = 128 pw = ks // 2 self.mlp_shared = nn.Sequential( nn.Conv2d(label_nc, nhidden, kernel_size=ks, padding=pw), nn.ReLU() ) self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=ks, padding=pw) def forward(self, x_dic, segmap_dic, size=None): if size is None: segmap = segmap_dic[str(x_dic.size(-1))] x = x_dic else: x = x_dic[str(size)] segmap = segmap_dic[str(size)] # Part 1. generate parameter-free normalized activations normalized = self.param_free_norm(x) # Part 2. produce scaling and bias conditioned on semantic map # segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') actv = self.mlp_shared(segmap) gamma = self.mlp_gamma(actv) beta = self.mlp_beta(actv) # apply scale and bias out = normalized * (1 + gamma) + beta return out # Path: basicsr/archs/stylegan2_arch.py class ConvLayer(nn.Sequential): """Conv Layer used in StyleGAN2 Discriminator. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Kernel size. downsample (bool): Whether downsample by a factor of 2. Default: False. resample_kernel (list[int]): A list indicating the 1D resample kernel magnitude. A cross production will be applied to extent 1D resample kernel to 2D resample kernel. Default: (1, 3, 3, 1). bias (bool): Whether with bias. Default: True. activate (bool): Whether use activateion. Default: True. """ def __init__(self, in_channels, out_channels, kernel_size, downsample=False, resample_kernel=(1, 3, 3, 1), bias=True, activate=True): layers = [] # downsample if downsample: layers.append( UpFirDnSmooth(resample_kernel, upsample_factor=1, downsample_factor=2, kernel_size=kernel_size)) stride = 2 self.padding = 0 else: stride = 1 self.padding = kernel_size // 2 # conv layers.append( EqualConv2d( in_channels, out_channels, kernel_size, stride=stride, padding=self.padding, bias=bias and not activate)) # activation if activate: if bias: layers.append(FusedLeakyReLU(out_channels)) else: layers.append(ScaledLeakyReLU(0.2)) super(ConvLayer, self).__init__(*layers) # Path: basicsr/archs/stylegan2_arch.py class EqualConv2d(nn.Module): """Equalized Linear as StyleGAN2. Args: in_channels (int): Channel number of the input. out_channels (int): Channel number of the output. kernel_size (int): Size of the convolving kernel. stride (int): Stride of the convolution. Default: 1 padding (int): Zero-padding added to both sides of the input. Default: 0. bias (bool): If ``True``, adds a learnable bias to the output. Default: ``True``. bias_init_val (float): Bias initialized value. Default: 0. """ def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, bias=True, bias_init_val=0): super(EqualConv2d, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.scale = 1 / math.sqrt(in_channels * kernel_size**2) self.weight = nn.Parameter(torch.randn(out_channels, in_channels, kernel_size, kernel_size)) if bias: self.bias = nn.Parameter(torch.zeros(out_channels).fill_(bias_init_val)) else: self.register_parameter('bias', None) def forward(self, x): out = F.conv2d( x, self.weight * self.scale, bias=self.bias, stride=self.stride, padding=self.padding, ) return out def __repr__(self): return (f'{self.__class__.__name__}(in_channels={self.in_channels}, ' f'out_channels={self.out_channels}, ' f'kernel_size={self.kernel_size},' f' stride={self.stride}, padding={self.padding}, ' f'bias={self.bias is not None})') # Path: basicsr/archs/tempo_model_arch.py class CouplePropModule(nn.Module): """Couple Propagation Module. Args: num_ch (int): Number of input channels. Default: 4. num_feat (int): Number of channels. Default: 64. num_block (int): Number of residual blocks for each branch. Default: 15. """ def __init__(self, num_ch=4, num_feat=64, num_block=5): super().__init__() self.num_ch = num_ch self.num_feat = num_feat # propagation self.backward_trunk = ConvResidualBlocks(1 * num_feat + num_ch, num_feat, num_block) self.backward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True) self.forward_trunk = ConvResidualBlocks(2 * num_feat + num_ch, num_feat, num_block) self.forward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True) # reconstruction self.conv_last = nn.Conv2d(num_feat, num_ch, 3, 1, 1) # activation functions self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) def forward(self, x, flows): b, n, _, h_input, w_input = x.size() h, w = x.shape[3:] # compute flow and keyframe features flows_forward, flows_backward = flows # backward branch out_l = [] feat_prop = x.new_zeros(b, self.num_feat, h, w) for i in range(n - 1, -1, -1): x_i = x[:, i, :, :, :] if i < n - 1: flow = flows_backward[:, i, :, :, :] feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) feat_prop = torch.cat([x_i, feat_prop], dim=1) feat_prop = self.backward_trunk(feat_prop) out_l.insert(0, feat_prop) # forward branch feat_prop = torch.zeros_like(feat_prop) for i in range(0, n): x_i = x[:, i, :, :, :] if i > 0: flow = flows_forward[:, i - 1, :, :, :] feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) feat_prop = torch.cat([x_i, out_l[i], feat_prop], dim=1) feat_prop = self.forward_trunk(feat_prop) out = self.conv_last(feat_prop) out += x_i out_l[i] = out return torch.stack(out_l, dim=1) # Path: basicsr/archs/tempo_model_arch.py class CouplePropModuleWithFlowNet(nn.Module): """Couple Propagation Module. Args: num_ch (int): Number of input channels. Default: 4. num_feat (int): Number of channels. Default: 64. num_block (int): Number of residual blocks for each branch. Default: 5. spynet_path (str): Path to the pretrained weights of SPyNet. Default: None. """ def __init__(self, num_ch=4, num_feat=64, num_block=5, spynet_path=None): super().__init__() self.num_ch = num_ch self.num_feat = num_feat # alignment self.spynet = SpyNet(spynet_path) # propagation self.backward_trunk = ConvResidualBlocks(1 * num_feat + num_ch, num_feat, num_block) self.backward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True) self.forward_trunk = ConvResidualBlocks(2 * num_feat + num_ch, num_feat, num_block) self.forward_fusion = nn.Conv2d(2 * num_feat, num_feat, 3, 1, 1, bias=True) # reconstruction self.conv_last = nn.Conv2d(num_feat, num_ch, 3, 1, 1) # activation functions self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) def get_flow(self, x): b, n, c, h, w = x.size() x_1 = x[:, :-1, :, :, :].reshape(-1, c, h, w) x_2 = x[:, 1:, :, :, :].reshape(-1, c, h, w) flows_backward = self.spynet(x_1, x_2).view(b, n - 1, 2, h, w) flows_forward = self.spynet(x_2, x_1).view(b, n - 1, 2, h, w) return flows_forward, flows_backward def forward(self, x, lrs): b, n, _, h_input, w_input = x.size() h, w = x.shape[3:] # compute flow flows_forward, flows_backward = self.get_flow(lrs) # backward branch out_l = [] feat_prop = x.new_zeros(b, self.num_feat, h, w) for i in range(n - 1, -1, -1): x_i = x[:, i, :, :, :] if i < n - 1: flow = flows_backward[:, i, :, :, :] feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) feat_prop = torch.cat([x_i, feat_prop], dim=1) feat_prop = self.backward_trunk(feat_prop) out_l.insert(0, feat_prop) # forward branch feat_prop = torch.zeros_like(feat_prop) for i in range(0, n): x_i = x[:, i, :, :, :] if i > 0: flow = flows_forward[:, i - 1, :, :, :] feat_prop = flow_warp(feat_prop, flow.permute(0, 2, 3, 1)) feat_prop = torch.cat([x_i, out_l[i], feat_prop], dim=1) feat_prop = self.forward_trunk(feat_prop) out = self.conv_last(feat_prop) out += x_i out_l[i] = out return torch.stack(out_l, dim=1) # Path: ldm/modules/diffusionmodules/openaimodel.py from abc import abstractmethod from functools import partial from typing import Iterable from einops import rearrange from ldm.modules.diffusionmodules.util import ( checkpoint, conv_nd, linear, avg_pool_nd, zero_module, normalization, timestep_embedding, SpatialTemporalConv, ) from ldm.modules.attention import SpatialTransformer, SpatialTransformerV2, TemporalAttention from ldm.modules.spade import SPADE from basicsr.archs.stylegan2_arch import ConvLayer, EqualConv2d from basicsr.archs.tempo_model_arch import CouplePropModule, CouplePropModuleWithFlowNet from omegaconf.listconfig import ListConfig from omegaconf.listconfig import ListConfig from omegaconf.listconfig import ListConfig from omegaconf.listconfig import ListConfig import math import torch import numpy as np import torch as th import torch.nn as nn import torch.nn.functional as F import xformers import xformers.ops try: XFORMERS_IS_AVAILBLE = True except: XFORMERS_IS_AVAILBLE = False # dummy replace def convert_module_to_f16(x): pass def convert_module_to_f32(x): pass def exists(val): return val is not None def cal_fea_cossim(fea_1, fea_2, save_dir=None): cossim_fuc = nn.CosineSimilarity(dim=-1, eps=1e-6) if save_dir is None: save_dir_1 = './cos_sim64_1_not.txt' save_dir_2 = './cos_sim64_2_not.txt' b, c, h, w = fea_1.size() fea_1 = fea_1.reshape(b, c, h*w) fea_2 = fea_2.reshape(b, c, h*w)
cos_sim = cossim_fuc(fea_1, fea_2)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Institute4FutureHealth/CHA # Path: datapipes/datapipe_types.py class DatapipeType(str, Enum): MEMORY = "memory" # Path: interface/base.py class Interface(BaseModel): gr: Any = None interface: Any = None @model_validator(mode="before") def validate_environment(cls, values: Dict) -> Dict: """ Validate that api key and python package exists in environment. This function checks if the `gradio` Python package is installed in the environment. If the package is not found, it raises a `ValueError` with an appropriate error message. Args: cls (object): The class to which this method belongs. values (Dict): A dictionary containing the environment values. Return: Dict: The updated `values` dictionary with the `gradio` package imported. Raise: ValueError: If the `gradio` package is not found in the environment. Example: .. code-block:: python from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) """ try: import gradio as gr values["gr"] = gr except ImportError: raise ValueError( "Could not import gradio python package. " "Please install it with `pip install gradio`." ) return values class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True def prepare_interface( self, respond, reset, upload_meta, available_tasks, share=False, ): """ Prepare the Gradio interface for the chatbot. This method sets up the Gradio interface for the chatbot. It creates various UI components such as a textbox for user input, a checkbox for enabling/disabling chat history, a dropdown for selecting tasks, and a clear button to reset the interface. The interface is then launched and stored in the `self.interface` attribute. Args: self (object): The instance of the class. respond (function): The function to handle user input and generate responses. reset (function): The function to reset the chatbot state. upload_meta (Any): meta data. available_tasks (list, optional): A list of available tasks. Defaults to an empty list. share (bool, optional): Flag indicating whether to enable sharing the interface. Defaults to False. Return: None Example: .. code-block:: python from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) """ with self.gr.Blocks() as demo: chatbot = self.gr.Chatbot(bubble_full_width=False) with self.gr.Row(): msg = self.gr.Textbox( scale=9, label="Question", info="Put your query here and press enter.", ) # btn = self.gr.UploadButton( # "📁", # scale=1, # file_types=["image", "video", "audio", "text"], # ) check_box = self.gr.Checkbox( scale=1, value=True, label="Use History", info="If checked, the chat history will be sent over along with the next query.", ) with self.gr.Row(): tasks = self.gr.Dropdown( value=[], choices=available_tasks, multiselect=True, label="Tasks List", info="The list of available tasks. Select the ones that you want to use.", ) clear = self.gr.ClearButton([msg, chatbot]) clear.click(reset) msg.submit( respond, [msg, chatbot, check_box, tasks], [msg, chatbot], ) # btn.upload( # upload_meta, [chatbot, btn], [chatbot], queue=False # ) demo.launch(share=share) self.interface = demo def close(self): """ Close the Gradio interface. This method closes the Gradio interface associated with the chatbot. It calls the `close` method of the interface object stored in the `self.interface` attribute. Args: self (object): The instance of the class. Return: None Example: .. code-block:: python from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) """ self.interface.close() # Path: llms/llm_types.py class LLMType(str, Enum): OPENAI = "openai" ANTHROPIC = "anthropic" # Path: orchestrator/orchestrator.py class Orchestrator(BaseModel): """ **Description:** The Orchestrator class is the main execution heart of the CHA. All the components of the Orchestrator are initialized and executed here. The Orchestrator will start a new answering cycle by calling the `run` method. From there, the planning is started, then tasks will be executed one by one till the **Task Planner** decides that no more information is needed. Finally the **Task Planner** final answer will be routed to the **Final Response Generator** to generate an empathic final response that is returned to the user. """ planner: BasePlanner = None datapipe: DataPipe = None promptist: Any = None response_generator: BaseResponseGenerator = None available_tasks: Dict[str, BaseTask] = {} max_retries: int = 16 max_task_execute_retries: int = 3 max_planner_execute_retries: int = 16 max_final_answer_execute_retries: int = 3 role: int = 0 verbose: bool = False planner_logger: Optional[logging.Logger] = None tasks_logger: Optional[logging.Logger] = None orchestrator_logger: Optional[logging.Logger] = None final_answer_generator_logger: Optional[logging.Logger] = None promptist_logger: Optional[logging.Logger] = None error_logger: Optional[logging.Logger] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True def print_log(self, log_name: str, message: str): if self.verbose: if log_name == "planner": self.planner_logger.debug(message) if log_name == "task": self.tasks_logger.debug(message) if log_name == "orchestrator": self.orchestrator_logger.debug(message) if log_name == "response_generator": self.final_answer_generator_logger.debug(message) if log_name == "promptist": self.promptist_logger.debug(message) if log_name == "error": self.error_logger.debug(message) @classmethod def initialize( self, planner_llm: str = LLMType.OPENAI, planner_name: str = PlannerType.ZERO_SHOT_REACT_PLANNER, datapipe_name: str = DatapipeType.MEMORY, promptist_name: str = "", response_generator_llm: str = LLMType.OPENAI, response_generator_name: str = ResponseGeneratorType.BASE_GENERATOR, available_tasks: Optional[List[str]] = None, verbose: bool = False, **kwargs, ) -> Orchestrator: """ This class method initializes the Orchestrator by setting up the planner, datapipe, promptist, response generator, and available tasks. Args: planner_llm (str): LLMType to be used as LLM for planner. planner_name (str): PlannerType to be used as task planner. datapipe_name (str): DatapipeType to be used as data pipe. promptist_name (str): Not implemented yet! response_generator_llm (str): LLMType to be used as LLM for response generator. response_generator_name (str): ResponseGeneratorType to be used as response generator. available_tasks (List[str]): List of available task using TaskType. verbose (bool): Specifies if the debugging logs be printed or not. **kwargs (Any): Additional keyword arguments. Return: Orchestrator: Initialized Orchestrator instance. Example: .. code-block:: python from datapipes.datapipe_types import DatapipeType from planners.planner_types import PlannerType from response_generators.response_generator_types import ResponseGeneratorType from tasks.task_types import TaskType from llms.llm_types import LLMType from orchestrator.orchestrator import Orchestrator #If you want to use playwright task from tasks.playwright.utils import create_sync_playwright_browser sync_browser = create_sync_playwright_browser() # orchestrator = Orchestrator.initialize( planner_llm=LLMType.OPENAI, planner_name=PlannerType.ZERO_SHOT_REACT_PLANNER, datapipe_name=DatapipeType.MEMORY, promptist_name="", response_generator_llm=LLMType.OPENAI, response_generator_name=ResponseGeneratorType.BASE_GENERATOR, available_tasks=[TaskType.SERPAPI, TaskType.EXTRACT_TEXT], sync_browser=sync_browser, verbose=self.verbose, **kwargs ) """ if available_tasks is None: available_tasks = [] planner_logger = ( tasks_logger ) = ( orchestrator_logger ) = ( final_answer_generator_logger ) = promptist_logger = error_logger = None if verbose: planner_logger = CustomDebugFormatter.create_logger( "Planner", "cyan" ) tasks_logger = CustomDebugFormatter.create_logger( "Task", "purple" ) orchestrator_logger = CustomDebugFormatter.create_logger( "Orchestrator", "green" ) final_answer_generator_logger = ( CustomDebugFormatter.create_logger( "Response Generator", "blue" ) ) promptist_logger = CustomDebugFormatter.create_logger( "Promptist", "blue" ) error_logger = CustomDebugFormatter.create_logger( "Error", "red" ) datapipe = initialize_datapipe( datapipe=datapipe_name, **kwargs ) if verbose: orchestrator_logger.debug( f"Datapipe {datapipe_name} is successfully initialized.\n" ) tasks = {} for task in available_tasks: kwargs["datapipe"] = datapipe tasks[task] = initialize_task(task=task, **kwargs) if verbose: orchestrator_logger.debug( f"Task '{task}' is successfully initialized." ) planner = initialize_planner( tasks=list(tasks.values()), llm=planner_llm, planner=planner_name, **kwargs, ) if verbose: orchestrator_logger.debug( f"Planner {planner_name} is successfully initialized." ) response_generator = initialize_response_generator( response_generator=response_generator_name, llm=response_generator_llm, **kwargs, ) if verbose: orchestrator_logger.debug( f"Response Generator {response_generator_name} is successfully initialized." ) return self( planner=planner, datapipe=datapipe, promptist=None, response_generator=response_generator, available_tasks=tasks, verbose=verbose, planner_logger=planner_logger, tasks_logger=tasks_logger, orchestrator_logger=orchestrator_logger, final_answer_generator_logger=final_answer_generator_logger, promptist_logger=promptist_logger, error_logger=error_logger, ) def process_meta(self) -> bool: """ This method processes the meta information and returns a boolean value. Currently, it always returns False. Return: bool: False """ return False def execute_task(self, action) -> str: """ Execute the specified task based on the planner's selected **Action**. This method executes a specific task based on the provided action. It takes an action as input and retrieves the corresponding task from the available tasks dictionary. It then executes the task with the given task input. If the task has an output_type, it stores the result in the datapipe and returns a message indicating the storage key. Otherwise, it returns the result directly. Args: action (Action): Action to be executed. Return: str: Result of the task execution. bool: If the task result should be directly returned to the user and stop planning. """ retries = 0 self.print_log( "task", f"---------------\nExecuting task:\nTask Name: {action.task}\nTask Inputs: {action.task_input}\n", ) task_input = action.task_input error_message = "" while retries < self.max_task_execute_retries: try: task = self.available_tasks[action.task] result = task.execute(task_input) self.print_log( "task", f"Task is executed successfully\nResult: {result}\n---------------\n", ) return result, task.return_direct except Exception as e: self.print_log( "error", f"Error running task: \n{e}\n---------------\n", ) logging.exception(e) error_message = e retries += 1 return ( f"Error executing task {action.task}: {error_message}", False, ) def planner_generate_prompt(self, query) -> str: """ Generate a prompt from the query to make it more understandable for both planner and response generator. Not implemented yet. Args: query (str): Input query. Return: str: Generated prompt. """ return query def _retrieve_last_action_from_datapip(self, previous_actions): print("previous action check", previous_actions) if len(previous_actions) > 0: for i in range(len(previous_actions) - 1, -1, -1): if previous_actions[i].task in [ TaskType.READ_FROM_DATAPIPE ]: return None match = re.search( r"\$(datapipe:[^\$]+)\$", previous_actions[i].task_response, ) print( "previous action check", previous_actions[i], match, ) if match: action = Action( TaskType.READ_FROM_DATAPIPE, match.group(1), "", "", ) action.task_response, ـ = self.execute_task( action ) return action return None def response_generator_generate_prompt( self, final_response: str = "", history: str = "", meta: List[str] = None, previous_actions: List[Action] = None, use_history: bool = False, ) -> str: if meta is None: meta = [] if previous_actions is None: previous_actions = [] prompt = ( "MetaData: {meta}\n\n" "History: \n{history}\n\n" "Plan: \n{plan}\n\n" ) if use_history: prompt = prompt.replace("{history}", history) prompt = prompt.replace("{meta}", ", ".join(meta)).replace( "{plan}", "".join( [ f"{self.available_tasks[action.task].chat_name}: {action.task_response}\n" if action.task in self.available_tasks else "" for action in previous_actions ] ), ) # + f"\n{final_response}") return prompt def plan( self, query, history, meta, previous_actions, use_history ) -> List[Union[Action, PlanFinish]]: """ Plan actions based on the query, history, and previous actions using the selected planner type. This method generates a plan of actions based on the provided query, history, previous actions, and use_history flag. It calls the plan method of the planner and returns a list of actions or plan finishes. Args: query (str): Input query. history (str): History information. meta (Any): meta information. previous_actions (List[Action]): List of previous actions. use_history (bool): Flag indicating whether to use history. Return: List[Union[Action, PlanFinish]]: List of planned actions. Example: .. code-block:: python from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) """ return self.planner.plan( query, history, meta, previous_actions, use_history ) def generate_final_answer(self, query, thinker) -> str: """ Generate the final answer using the response generator. This method generates the final answer based on the provided query and thinker. It calls the generate method of the response generator and returns the generated answer. Args: query (str): Input query. thinker (str): Thinking component. Return: str: Final generated answer. """ retries = 0 while retries < self.max_final_answer_execute_retries: try: return self.response_generator.generate( query=query, thinker=thinker ) except Exception as e: print(e) retries += 1 return "We currently have problem processing your question. Please try again after a while." def run( self, query: str, meta: List[str] = None, history: str = "", use_history: bool = False, **kwargs: Any, ) -> str: """ This method runs the orchestrator by taking a query, meta information, history, and other optional keyword arguments as input. It initializes variables for tracking the execution, generates a prompt based on the query, and sets up a loop for executing actions. Within the loop, it plans actions, executes tasks, and updates the previous actions list. If a PlanFinish action is encountered, the loop breaks, and the final response is set. If any errors occur during execution, the loop retries a limited number of times before setting a final error response. Finally, it generates the final response using the prompt and thinker, and returns the final response along with the previous actions. Args: query (str): Input query. meta (List[str]): Meta information. history (str): History information. use_history (bool): Flag indicating whether to use history. **kwargs (Any): Additional keyword arguments. Return: Tuple[str, List[Action]]:Final response and list of previous actions. """ if meta is None: meta = [] i = 0 previous_actions = [] meta_infos = "" for meta_data in meta: key = self.datapipe.store(meta_data) meta_infos += ( f"The file with the name ${meta_data.split('/')[-1]}$ is stored with the key $datapipe:{key}$." "Pass this key to the tools when you want to send them over to the tool\n" ) prompt = self.planner_generate_prompt(query) if "google_translate" in self.available_tasks: prompt = self.available_tasks["google_translate"].execute( prompt + "$#en" ) source_language = prompt[1] prompt = prompt[0] # history = self.available_tasks["google_translate"].execute(history+"$#en").text final_response = "" finished = False self.print_log("planner", "Planing Started...\n") while True: try: self.print_log( "planner", f"Continueing Planing... Try number {i}\n\n", ) actions = self.plan( query=prompt, history=history, meta=meta_infos, previous_actions=previous_actions, use_history=use_history, ) for action in actions: if isinstance(action, PlanFinish): final_response = action.response finished = True break else: return_direct = False, False if "Exception" not in action.task: ( action.task_response, return_direct, ) = self.execute_task(action) i = 0 previous_actions.append(action) if return_direct: print("inside return direct") final_response = action.task_response finished = True if finished: action = self._retrieve_last_action_from_datapip( previous_actions ) if action is not None: previous_actions.append(action) break except ValueError as error: self.print_log( "error", f"Planing Error:\n{error}\n\n" ) i += 1 if i > self.max_retries: final_response = "Problem preparing the answer. Please try again." break previous_actions.append( Action( "Exception", "Invalid or incomplete response", "".join(error.args), "", ) ) self.print_log( "planner", f"Planner final response: {final_response}\nPlaning Ended...\n\n", ) final_response = self.response_generator_generate_prompt( final_response=final_response, history=history, meta=meta_infos, previous_actions=previous_actions, use_history=use_history, ) self.print_log( "response_generator", f"Final Answer Generation Started...\n\nInput Prompt: \n{final_response}", ) final_response = self.generate_final_answer( query=query, thinker=final_response ) self.print_log( "response_generator", f"Response: {final_response}\n\nFinal Answer Generation Ended.\n", ) if "google_translate" in self.available_tasks: final_response = self.available_tasks[ "google_translate" ].execute(f"{final_response}$#{source_language}")[0] return final_response, previous_actions # Path: planners/action.py class Action: task: str task_input: str task_response: str log: str # Path: planners/planner_types.py class PlannerType(str, Enum): ZERO_SHOT_REACT_PLANNER = "zero_shot_react_planner" # Path: response_generators/response_generator_types.py class ResponseGeneratorType(str, Enum): BASE_GENERATOR = "base-generator" # Path: tasks/playwright/utils.py def create_sync_playwright_browser( headless: bool = True, ) -> SyncBrowser: """ This function creates and launches a Playwright synchronous browser. Args: headless (bool, optional): Whether to launch the browser in headless mode. Default is True. Return: SyncBrowser: The created Playwright synchronous browser instance. """ from playwright.sync_api import sync_playwright browser = sync_playwright().start() return browser.chromium.launch(headless=headless) # Path: tasks/task_types.py class TaskType(str, Enum): SERPAPI = "serpapi" CLICK = "click" GET_CURRENT_PAGE = "current_page" EXTRACT_HYPERLINKS = "extract_hyperlinks" EXTRACT_TEXT = "extract_text" GET_ELEMENTS = "get_elements" NAVIGATE_BACK = "navigate_back" NAVIGATE = "navigate" AFFECT_SLEEP_GET = "affect_sleep_get" AFFECT_ACTIVITY_GET = "affect_activity_get" AFFECT_SLEEP_ANALYSIS = "affect_sleep_analysis" AFFECT_ACTIVITY_ANALYSIS = "affect_activity_analysis" GOOGLE_TRANSLATE = "google_translate" ASK_USER = "ask_user" READ_FROM_DATAPIPE = "read_from_datapipe" TEST_FILE = "test_file" # Path: tasks/types.py TASK_TO_CLASS: Dict[TaskType, Type[BaseTask]] = { TaskType.SERPAPI: SerpAPI, TaskType.CLICK: Click, TaskType.GET_CURRENT_PAGE: CurrentWebPage, TaskType.EXTRACT_HYPERLINKS: ExtractHyperlinks, TaskType.EXTRACT_TEXT: ExtractText, TaskType.GET_ELEMENTS: GetElements, TaskType.NAVIGATE_BACK: NavigateBack, TaskType.NAVIGATE: Navigate, TaskType.AFFECT_SLEEP_GET: SleepGet, TaskType.AFFECT_ACTIVITY_GET: ActivityGet, TaskType.AFFECT_SLEEP_ANALYSIS: SleepAnalysis, TaskType.AFFECT_ACTIVITY_ANALYSIS: ActivityAnalysis, TaskType.GOOGLE_TRANSLATE: GoogleTranslate, TaskType.ASK_USER: AskUser, TaskType.TEST_FILE: TestFile, TaskType.READ_FROM_DATAPIPE: ReadDataPipe, } # Path: CHA.py from typing import Any from typing import List from typing import Tuple from pydantic import BaseModel from datapipes.datapipe_types import DatapipeType from interface.base import Interface from llms.llm_types import LLMType from orchestrator.orchestrator import Orchestrator from planners.action import Action from planners.planner_types import PlannerType from response_generators.response_generator_types import ( ResponseGeneratorType, ) from tasks.playwright.utils import create_sync_playwright_browser from tasks.task_types import TaskType from tasks.types import TASK_TO_CLASS class CHA(BaseModel): name: str = "CHA" previous_actions: List[Action] = [] orchestrator: Orchestrator = None sync_browser: Any = None planner_llm: str = LLMType.OPENAI planner: str = PlannerType.ZERO_SHOT_REACT_PLANNER datapipe: str = DatapipeType.MEMORY promptist: str = "" response_generator_llm: str = LLMType.OPENAI response_generator: str = ResponseGeneratorType.BASE_GENERATOR meta: List[str] = [] verbose: bool = False def _generate_history( self, chat_history: List[Tuple[str, str]] = None ) -> str: if chat_history is None: chat_history = [] print("chat history", chat_history) history = "".join( [ f"\n------------\nUser: {chat[0]}\nCHA: {chat[1]}\n------------\n" for chat in chat_history ] ) if len(self.previous_actions) > 0: history += "Previous Actions: " + "".join( [ f"\n------------\naction: {action.task}\naction_response: {action.task_response}\n------------\n" for action in self.previous_actions if action.task != "Exception" ] ) return history def _run( self, query: str, chat_history: List[Tuple[str, str]] = None, tasks_list: List[str] = None, use_history: bool = False,
**kwargs,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Czm369/MixPL # Path: mmdet/models/layers/bbox_nms.py def multiclass_nms( multi_bboxes: Tensor, multi_scores: Tensor, score_thr: float, nms_cfg: ConfigType, max_num: int = -1, score_factors: Optional[Tensor] = None, return_inds: bool = False, box_dim: int = 4 ) -> Union[Tuple[Tensor, Tensor, Tensor], Tuple[Tensor, Tensor]]: """NMS for multi-class bboxes. Args: multi_bboxes (Tensor): shape (n, #class*4) or (n, 4) multi_scores (Tensor): shape (n, #class), where the last column contains scores of the background class, but this will be ignored. score_thr (float): bbox threshold, bboxes with scores lower than it will not be considered. nms_cfg (Union[:obj:`ConfigDict`, dict]): a dict that contains the arguments of nms operations. max_num (int, optional): if there are more than max_num bboxes after NMS, only top max_num will be kept. Default to -1. score_factors (Tensor, optional): The factors multiplied to scores before applying NMS. Default to None. return_inds (bool, optional): Whether return the indices of kept bboxes. Default to False. box_dim (int): The dimension of boxes. Defaults to 4. Returns: Union[Tuple[Tensor, Tensor, Tensor], Tuple[Tensor, Tensor]]: (dets, labels, indices (optional)), tensors of shape (k, 5), (k), and (k). Dets are boxes with scores. Labels are 0-based. """ num_classes = multi_scores.size(1) - 1 # exclude background category if multi_bboxes.shape[1] > box_dim: bboxes = multi_bboxes.view(multi_scores.size(0), -1, box_dim) else: bboxes = multi_bboxes[:, None].expand( multi_scores.size(0), num_classes, box_dim) scores = multi_scores[:, :-1] labels = torch.arange(num_classes, dtype=torch.long, device=scores.device) labels = labels.view(1, -1).expand_as(scores) bboxes = bboxes.reshape(-1, box_dim) scores = scores.reshape(-1) labels = labels.reshape(-1) if not torch.onnx.is_in_onnx_export(): # NonZero not supported in TensorRT # remove low scoring boxes valid_mask = scores > score_thr # multiply score_factor after threshold to preserve more bboxes, improve # mAP by 1% for YOLOv3 if score_factors is not None: # expand the shape to match original shape of score score_factors = score_factors.view(-1, 1).expand( multi_scores.size(0), num_classes) score_factors = score_factors.reshape(-1) scores = scores * score_factors if not torch.onnx.is_in_onnx_export(): # NonZero not supported in TensorRT inds = valid_mask.nonzero(as_tuple=False).squeeze(1) bboxes, scores, labels = bboxes[inds], scores[inds], labels[inds] else: # TensorRT NMS plugin has invalid output filled with -1 # add dummy data to make detection output correct. bboxes = torch.cat([bboxes, bboxes.new_zeros(1, box_dim)], dim=0) scores = torch.cat([scores, scores.new_zeros(1)], dim=0) labels = torch.cat([labels, labels.new_zeros(1)], dim=0) if bboxes.numel() == 0: if torch.onnx.is_in_onnx_export(): raise RuntimeError('[ONNX Error] Can not record NMS ' 'as it has not been executed this time') dets = torch.cat([bboxes, scores[:, None]], -1) if return_inds: return dets, labels, inds else: return dets, labels dets, keep = batched_nms(bboxes, scores, labels, nms_cfg) if max_num > 0: dets = dets[:max_num] keep = keep[:max_num] if return_inds: return dets, labels[keep], inds[keep] else: return dets, labels[keep] # Path: mmdet/models/losses/accuracy.py def accuracy(pred, target, topk=1, thresh=None): """Calculate accuracy according to the prediction and target. Args: pred (torch.Tensor): The model prediction, shape (N, num_class) target (torch.Tensor): The target of each prediction, shape (N, ) topk (int | tuple[int], optional): If the predictions in ``topk`` matches the target, the predictions will be regarded as correct ones. Defaults to 1. thresh (float, optional): If not None, predictions with scores under this threshold are considered incorrect. Default to None. Returns: float | tuple[float]: If the input ``topk`` is a single integer, the function will return a single float as accuracy. If ``topk`` is a tuple containing multiple integers, the function will return a tuple containing accuracies of each ``topk`` number. """ assert isinstance(topk, (int, tuple)) if isinstance(topk, int): topk = (topk, ) return_single = True else: return_single = False maxk = max(topk) if pred.size(0) == 0: accu = [pred.new_tensor(0.) for i in range(len(topk))] return accu[0] if return_single else accu assert pred.ndim == 2 and target.ndim == 1 assert pred.size(0) == target.size(0) assert maxk <= pred.size(1), \ f'maxk {maxk} exceeds pred dimension {pred.size(1)}' pred_value, pred_label = pred.topk(maxk, dim=1) pred_label = pred_label.t() # transpose to shape (maxk, N) correct = pred_label.eq(target.view(1, -1).expand_as(pred_label)) if thresh is not None: # Only prediction values larger than thresh are counted as correct correct = correct & (pred_value > thresh).t() res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / pred.size(0))) return res[0] if return_single else res # Path: mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py class Shared2FCBBoxHead(ConvFCBBoxHead): def __init__(self, fc_out_channels: int = 1024, *args, **kwargs) -> None: super().__init__( num_shared_convs=0, num_shared_fcs=2, num_cls_convs=0, num_cls_fcs=0, num_reg_convs=0, num_reg_fcs=0, fc_out_channels=fc_out_channels, *args, **kwargs) # Path: mmdet/models/utils/misc.py def empty_instances(batch_img_metas: List[dict], device: torch.device, task_type: str, instance_results: OptInstanceList = None, mask_thr_binary: Union[int, float] = 0, box_type: Union[str, type] = 'hbox', use_box_type: bool = False, num_classes: int = 80, score_per_cls: bool = False) -> List[InstanceData]: """Handle predicted instances when RoI is empty. Note: If ``instance_results`` is not None, it will be modified in place internally, and then return ``instance_results`` Args: batch_img_metas (list[dict]): List of image information. device (torch.device): Device of tensor. task_type (str): Expected returned task type. it currently supports bbox and mask. instance_results (list[:obj:`InstanceData`]): List of instance results. mask_thr_binary (int, float): mask binarization threshold. Defaults to 0. box_type (str or type): The empty box type. Defaults to `hbox`. use_box_type (bool): Whether to warp boxes with the box type. Defaults to False. num_classes (int): num_classes of bbox_head. Defaults to 80. score_per_cls (bool): Whether to generate classwise score for the empty instance. ``score_per_cls`` will be True when the model needs to produce raw results without nms. Defaults to False. Returns: list[:obj:`InstanceData`]: Detection results of each image """ assert task_type in ('bbox', 'mask'), 'Only support bbox and mask,' \ f' but got {task_type}' if instance_results is not None: assert len(instance_results) == len(batch_img_metas) results_list = [] for img_id in range(len(batch_img_metas)): if instance_results is not None: results = instance_results[img_id] assert isinstance(results, InstanceData) else: results = InstanceData() if task_type == 'bbox': _, box_type = get_box_type(box_type) bboxes = torch.zeros(0, box_type.box_dim, device=device) if use_box_type: bboxes = box_type(bboxes, clone=False) results.bboxes = bboxes score_shape = (0, num_classes + 1) if score_per_cls else (0, ) results.scores = torch.zeros(score_shape, device=device) results.labels = torch.zeros((0, ), device=device, dtype=torch.long) else: # TODO: Handle the case where rescale is false img_h, img_w = batch_img_metas[img_id]['ori_shape'][:2] # the type of `im_mask` will be torch.bool or torch.uint8, # where uint8 if for visualization and debugging. im_mask = torch.zeros( 0, img_h, img_w, device=device, dtype=torch.bool if mask_thr_binary >= 0 else torch.uint8) results.masks = im_mask results_list.append(results) return results_list # Path: mmdet/registry.py MODELS = Registry('model', parent=MMENGINE_MODELS, locations=['mmdet.models']) # Path: mmdet/structures/bbox/transforms.py def get_box_tensor(boxes: Union[Tensor, BaseBoxes]) -> Tensor: """Get tensor data from box type boxes. Args: boxes (Tensor or BaseBoxes): boxes with type of tensor or box type. If its type is a tensor, the boxes will be directly returned. If its type is a box type, the `boxes.tensor` will be returned. Returns: Tensor: boxes tensor. """ if isinstance(boxes, BaseBoxes): boxes = boxes.tensor return boxes # Path: mmdet/structures/bbox/transforms.py def scale_boxes(boxes: Union[Tensor, BaseBoxes], scale_factor: Tuple[float, float]) -> Union[Tensor, BaseBoxes]: """Scale boxes with type of tensor or box type. Args: boxes (Tensor or :obj:`BaseBoxes`): boxes need to be scaled. Its type can be a tensor or a box type. scale_factor (Tuple[float, float]): factors for scaling boxes. The length should be 2. Returns: Union[Tensor, :obj:`BaseBoxes`]: Scaled boxes. """ if isinstance(boxes, BaseBoxes): boxes.rescale_(scale_factor) return boxes else: # Tensor boxes will be treated as horizontal boxes repeat_num = int(boxes.size(-1) / 2) scale_factor = boxes.new_tensor(scale_factor).repeat((1, repeat_num)) return boxes * scale_factor # Path: mmdet/utils/typing_utils.py # Path: projects/Detic_new/detic/detic_bbox_head.py import json import torch from typing import List, Optional from mmengine.config import ConfigDict from mmengine.structures import InstanceData from torch import Tensor from torch.nn import functional as F from mmdet.models.layers import multiclass_nms from mmdet.models.losses import accuracy from mmdet.models.roi_heads.bbox_heads import Shared2FCBBoxHead from mmdet.models.utils import empty_instances from mmdet.registry import MODELS from mmdet.structures.bbox import get_box_tensor, scale_boxes from mmdet.utils import ConfigType, InstanceList # Copyright (c) OpenMMLab. All rights reserved. def load_class_freq(path='datasets/metadata/lvis_v1_train_cat_info.json', freq_weight=0.5): cat_info = json.load(open(path, 'r')) cat_info = torch.tensor( [c['image_count'] for c in sorted(cat_info, key=lambda x: x['id'])]) freq_weight = cat_info.float()**freq_weight return freq_weight def get_fed_loss_inds(labels, num_sample_cats, C, weight=None): appeared = torch.unique(labels) # C' prob = appeared.new_ones(C + 1).float() prob[-1] = 0 if len(appeared) < num_sample_cats: if weight is not None: prob[:C] = weight.float().clone() prob[appeared] = 0 more_appeared = torch.multinomial( prob, num_sample_cats - len(appeared), replacement=False) appeared = torch.cat([appeared, more_appeared]) return appeared @MODELS.register_module() class DeticBBoxHead(Shared2FCBBoxHead): def __init__(self, image_loss_weight: float = 0.1, use_fed_loss: bool = False, cat_freq_path: str = '', fed_loss_freq_weight: float = 0.5, fed_loss_num_cat: int = 50, cls_predictor_cfg: ConfigType = dict( type='ZeroShotClassifier'), *args, **kwargs) -> None: super().__init__(*args, **kwargs) # reconstruct fc_cls and fc_reg since input channels are changed assert self.with_cls self.cls_predictor_cfg = cls_predictor_cfg cls_channels = self.num_classes self.cls_predictor_cfg.update( in_features=self.cls_last_dim, out_features=cls_channels) self.fc_cls = MODELS.build(self.cls_predictor_cfg) self.init_cfg += [ dict(type='Caffe2Xavier', override=dict(name='reg_fcs')) ] self.image_loss_weight = image_loss_weight self.use_fed_loss = use_fed_loss self.cat_freq_path = cat_freq_path self.fed_loss_freq_weight = fed_loss_freq_weight self.fed_loss_num_cat = fed_loss_num_cat if self.use_fed_loss: freq_weight = load_class_freq(cat_freq_path, fed_loss_freq_weight) self.register_buffer('freq_weight', freq_weight) else: self.freq_weight = None def _predict_by_feat_single( self, roi: Tensor, cls_score: Tensor, bbox_pred: Tensor, img_meta: dict,
rescale: bool = False,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: GaoShuang98/DINO-Mix # Path: models/backbones/facebookresearch_dinov2_main/dinov2/dinov2/data/datasets/image_net.py class ImageNet(ExtendedVisionDataset): Target = Union[_Target] Split = Union[_Split] def __init__( self, *, split: "ImageNet.Split", root: str, extra: str, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: super().__init__(root, transforms, transform, target_transform) self._extra_root = extra self._split = split self._entries = None self._class_ids = None self._class_names = None @property def split(self) -> "ImageNet.Split": return self._split def _get_extra_full_path(self, extra_path: str) -> str: return os.path.join(self._extra_root, extra_path) def _load_extra(self, extra_path: str) -> np.ndarray: extra_full_path = self._get_extra_full_path(extra_path) return np.load(extra_full_path, mmap_mode="r") def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None: extra_full_path = self._get_extra_full_path(extra_path) os.makedirs(self._extra_root, exist_ok=True) np.save(extra_full_path, extra_array) @property def _entries_path(self) -> str: return f"entries-{self._split.value.upper()}.npy" @property def _class_ids_path(self) -> str: return f"class-ids-{self._split.value.upper()}.npy" @property def _class_names_path(self) -> str: return f"class-names-{self._split.value.upper()}.npy" def _get_entries(self) -> np.ndarray: if self._entries is None: self._entries = self._load_extra(self._entries_path) assert self._entries is not None return self._entries def _get_class_ids(self) -> np.ndarray: if self._split == _Split.TEST: assert False, "Class IDs are not available in TEST split" if self._class_ids is None: self._class_ids = self._load_extra(self._class_ids_path) assert self._class_ids is not None return self._class_ids def _get_class_names(self) -> np.ndarray: if self._split == _Split.TEST: assert False, "Class names are not available in TEST split" if self._class_names is None: self._class_names = self._load_extra(self._class_names_path) assert self._class_names is not None return self._class_names def find_class_id(self, class_index: int) -> str: class_ids = self._get_class_ids() return str(class_ids[class_index]) def find_class_name(self, class_index: int) -> str: class_names = self._get_class_names() return str(class_names[class_index]) def get_image_data(self, index: int) -> bytes: entries = self._get_entries() actual_index = entries[index]["actual_index"] class_id = self.get_class_id(index) image_relpath = self.split.get_image_relpath(actual_index, class_id) image_full_path = os.path.join(self.root, image_relpath) with open(image_full_path, mode="rb") as f: image_data = f.read() return image_data def get_target(self, index: int) -> Optional[Target]: entries = self._get_entries() class_index = entries[index]["class_index"] return None if self.split == _Split.TEST else int(class_index) def get_targets(self) -> Optional[np.ndarray]: entries = self._get_entries() return None if self.split == _Split.TEST else entries["class_index"] def get_class_id(self, index: int) -> Optional[str]: entries = self._get_entries() class_id = entries[index]["class_id"] return None if self.split == _Split.TEST else str(class_id) def get_class_name(self, index: int) -> Optional[str]: entries = self._get_entries() class_name = entries[index]["class_name"] return None if self.split == _Split.TEST else str(class_name) def __len__(self) -> int: entries = self._get_entries() assert len(entries) == self.split.length return len(entries) def _load_labels(self, labels_path: str) -> List[Tuple[str, str]]: labels_full_path = os.path.join(self.root, labels_path) labels = [] try: with open(labels_full_path, "r") as f: reader = csv.reader(f) for row in reader: class_id, class_name = row labels.append((class_id, class_name)) except OSError as e: raise RuntimeError(f'can not read labels file "{labels_full_path}"') from e return labels def _dump_entries(self) -> None: split = self.split if split == ImageNet.Split.TEST: dataset = None sample_count = split.length max_class_id_length, max_class_name_length = 0, 0 else: labels_path = "labels.txt" logger.info(f'loading labels from "{labels_path}"') labels = self._load_labels(labels_path) # NOTE: Using torchvision ImageFolder for consistency from torchvision.datasets import ImageFolder dataset_root = os.path.join(self.root, split.get_dirname()) dataset = ImageFolder(dataset_root) sample_count = len(dataset) max_class_id_length, max_class_name_length = -1, -1 for sample in dataset.samples: _, class_index = sample class_id, class_name = labels[class_index] max_class_id_length = max(len(class_id), max_class_id_length) max_class_name_length = max(len(class_name), max_class_name_length) dtype = np.dtype( [ ("actual_index", "<u4"), ("class_index", "<u4"), ("class_id", f"U{max_class_id_length}"), ("class_name", f"U{max_class_name_length}"), ] ) entries_array = np.empty(sample_count, dtype=dtype) if split == ImageNet.Split.TEST: old_percent = -1 for index in range(sample_count): percent = 100 * (index + 1) // sample_count if percent > old_percent: logger.info(f"creating entries: {percent}%") old_percent = percent actual_index = index + 1 class_index = np.uint32(-1) class_id, class_name = "", "" entries_array[index] = (actual_index, class_index, class_id, class_name) else: class_names = {class_id: class_name for class_id, class_name in labels} assert dataset old_percent = -1 for index in range(sample_count): percent = 100 * (index + 1) // sample_count if percent > old_percent: logger.info(f"creating entries: {percent}%") old_percent = percent image_full_path, class_index = dataset.samples[index] image_relpath = os.path.relpath(image_full_path, self.root) class_id, actual_index = split.parse_image_relpath(image_relpath) class_name = class_names[class_id] entries_array[index] = (actual_index, class_index, class_id, class_name) logger.info(f'saving entries to "{self._entries_path}"') self._save_extra(entries_array, self._entries_path) def _dump_class_ids_and_names(self) -> None: split = self.split if split == ImageNet.Split.TEST: return entries_array = self._load_extra(self._entries_path) max_class_id_length, max_class_name_length, max_class_index = -1, -1, -1 for entry in entries_array: class_index, class_id, class_name = ( entry["class_index"], entry["class_id"], entry["class_name"], ) max_class_index = max(int(class_index), max_class_index) max_class_id_length = max(len(str(class_id)), max_class_id_length) max_class_name_length = max(len(str(class_name)), max_class_name_length) class_count = max_class_index + 1 class_ids_array = np.empty(class_count, dtype=f"U{max_class_id_length}") class_names_array = np.empty(class_count, dtype=f"U{max_class_name_length}") for entry in entries_array: class_index, class_id, class_name = ( entry["class_index"], entry["class_id"], entry["class_name"], ) class_ids_array[class_index] = class_id class_names_array[class_index] = class_name logger.info(f'saving class IDs to "{self._class_ids_path}"') self._save_extra(class_ids_array, self._class_ids_path) logger.info(f'saving class names to "{self._class_names_path}"') self._save_extra(class_names_array, self._class_names_path) def dump_extra(self) -> None: self._dump_entries() self._dump_class_ids_and_names() # Path: models/backbones/facebookresearch_dinov2_main/dinov2/dinov2/data/datasets/image_net_22k.py class ImageNet22k(ExtendedVisionDataset): _GZIPPED_INDICES: Set[int] = { 841_545, 1_304_131, 2_437_921, 2_672_079, 2_795_676, 2_969_786, 6_902_965, 6_903_550, 6_903_628, 7_432_557, 7_432_589, 7_813_809, 8_329_633, 10_296_990, 10_417_652, 10_492_265, 10_598_078, 10_782_398, 10_902_612, 11_203_736, 11_342_890, 11_397_596, 11_589_762, 11_705_103, 12_936_875, 13_289_782, } Labels = _Labels def __init__( self, *, root: str, extra: str, transforms: Optional[Callable] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, mmap_cache_size: int = _DEFAULT_MMAP_CACHE_SIZE, ) -> None: super().__init__(root, transforms, transform, target_transform) self._extra_root = extra entries_path = self._get_entries_path(root) self._entries = self._load_extra(entries_path) class_ids_path = self._get_class_ids_path(root) self._class_ids = self._load_extra(class_ids_path) self._gzipped_indices = ImageNet22k._GZIPPED_INDICES self._mmap_tarball = _make_mmap_tarball(self._tarballs_root, mmap_cache_size) def _get_entries_path(self, root: Optional[str] = None) -> str: return "entries.npy" def _get_class_ids_path(self, root: Optional[str] = None) -> str: return "class-ids.npy" def _find_class_ids(self, path: str) -> List[str]: class_ids = [] with os.scandir(path) as entries: for entry in entries: root, ext = os.path.splitext(entry.name) if ext != ".tar": continue class_ids.append(root) return sorted(class_ids) def _load_entries_class_ids(self, root: Optional[str] = None) -> Tuple[List[_Entry], List[str]]: root = self.get_root(root) entries: List[_Entry] = [] class_ids = self._find_class_ids(root) for class_index, class_id in enumerate(class_ids): path = os.path.join(root, "blocks", f"{class_id}.log") class_entries = [] try: with open(path) as f: for line in f: line = line.rstrip() block, filename = line.split(":") block_offset = int(block[6:]) filename = filename[1:] maybe_filename = None if filename != "** Block of NULs **": maybe_filename = filename _, ext = os.path.splitext(filename) # assert ext == ".JPEG" class_entry = _ClassEntry(block_offset, maybe_filename) class_entries.append(class_entry) except OSError as e: raise RuntimeError(f'can not read blocks file "{path}"') from e assert class_entries[-1].maybe_filename is None for class_entry1, class_entry2 in zip(class_entries, class_entries[1:]): assert class_entry1.block_offset <= class_entry2.block_offset start_offset = 512 * class_entry1.block_offset end_offset = 512 * class_entry2.block_offset assert class_entry1.maybe_filename is not None filename = class_entry1.maybe_filename entry = _Entry(class_index, start_offset, end_offset, filename) # Skip invalid image files (PIL throws UnidentifiedImageError) if filename == "n06470073_47249.JPEG": continue entries.append(entry) return entries, class_ids def _load_extra(self, extra_path: str) -> np.ndarray: extra_root = self._extra_root extra_full_path = os.path.join(extra_root, extra_path) return np.load(extra_full_path, mmap_mode="r") def _save_extra(self, extra_array: np.ndarray, extra_path: str) -> None: extra_root = self._extra_root extra_full_path = os.path.join(extra_root, extra_path) os.makedirs(extra_root, exist_ok=True) np.save(extra_full_path, extra_array) @property def _tarballs_root(self) -> str: return self.root def find_class_id(self, class_index: int) -> str: return str(self._class_ids[class_index]) def get_image_data(self, index: int) -> bytes: entry = self._entries[index] class_id = entry["class_id"] class_mmap = self._mmap_tarball(class_id) start_offset, end_offset = entry["start_offset"], entry["end_offset"] try: mapped_data = class_mmap[start_offset:end_offset] data = mapped_data[512:] # Skip entry header block if len(data) >= 2 and tuple(data[:2]) == (0x1F, 0x8B): assert index in self._gzipped_indices, f"unexpected gzip header for sample {index}" with GzipFile(fileobj=BytesIO(data)) as g: data = g.read() except Exception as e: raise RuntimeError(f"can not retrieve image data for sample {index} " f'from "{class_id}" tarball') from e return data def get_target(self, index: int) -> Any: return int(self._entries[index]["class_index"]) def get_targets(self) -> np.ndarray: return self._entries["class_index"] def get_class_id(self, index: int) -> str: return str(self._entries[index]["class_id"]) def get_class_ids(self) -> np.ndarray: return self._entries["class_id"] def __getitem__(self, index: int) -> Tuple[Any, Any]: with warnings.catch_warnings(): warnings.simplefilter("ignore") return super().__getitem__(index) def __len__(self) -> int: return len(self._entries) def _dump_entries(self, *args, **kwargs) -> None: entries, class_ids = self._load_entries_class_ids(*args, **kwargs) max_class_id_length, max_filename_length, max_class_index = -1, -1, -1 for entry in entries: class_id = class_ids[entry.class_index] max_class_index = max(entry.class_index, max_class_index) max_class_id_length = max(len(class_id), max_class_id_length) max_filename_length = max(len(entry.filename), max_filename_length) dtype = np.dtype( [ ("class_index", "<u4"), ("class_id", f"U{max_class_id_length}"), ("start_offset", "<u4"), ("end_offset", "<u4"), ("filename", f"U{max_filename_length}"), ] ) sample_count = len(entries) entries_array = np.empty(sample_count, dtype=dtype) for i, entry in enumerate(entries): class_index = entry.class_index class_id = class_ids[class_index] start_offset = entry.start_offset end_offset = entry.end_offset filename = entry.filename entries_array[i] = ( class_index, class_id, start_offset, end_offset, filename, ) entries_path = self._get_entries_path(*args, **kwargs) self._save_extra(entries_array, entries_path) def _dump_class_ids(self, *args, **kwargs) -> None: entries_path = self._get_entries_path(*args, **kwargs) entries_array = self._load_extra(entries_path) max_class_id_length, max_class_index = -1, -1 for entry in entries_array: class_index, class_id = entry["class_index"], entry["class_id"] max_class_index = max(int(class_index), max_class_index) max_class_id_length = max(len(str(class_id)), max_class_id_length) class_ids_array = np.empty(max_class_index + 1, dtype=f"U{max_class_id_length}") for entry in entries_array: class_index, class_id = entry["class_index"], entry["class_id"] class_ids_array[class_index] = class_id class_ids_path = self._get_class_ids_path(*args, **kwargs) self._save_extra(class_ids_array, class_ids_path) def _dump_extra(self, *args, **kwargs) -> None: self._dump_entries(*args, *kwargs) self._dump_class_ids(*args, *kwargs) def dump_extra(self, root: Optional[str] = None) -> None: return self._dump_extra(root) # Path: models/backbones/facebookresearch_dinov2_main/dinov2/dinov2/data/samplers.py class EpochSampler(Sampler): def __init__( self, *, size: int, sample_count: int, shuffle: bool = False, seed: int = 0, start: Optional[int] = None, step: Optional[int] = None, ): self._size = size self._sample_count = sample_count self._shuffle = shuffle self._seed = seed self._start = distributed.get_global_rank() if start is None else start self._step = distributed.get_global_size() if step is None else step self._epoch = 0 def __iter__(self): count = (self._size + self._sample_count - 1) // self._sample_count tiled_indices = np.tile(np.arange(self._sample_count), count) if self._shuffle: seed = self._seed * self._epoch if self._seed != 0 else self._epoch rng = np.random.default_rng(seed) iterable = rng.choice(tiled_indices, self._size, replace=False) else: iterable = tiled_indices[: self._size] yield from itertools.islice(iterable, self._start, None, self._step) def __len__(self): return (self._size - self._start + self._step - 1) // self._step def set_epoch(self, epoch): self._epoch = epoch # Path: models/backbones/facebookresearch_dinov2_main/dinov2/dinov2/data/samplers.py class InfiniteSampler(Sampler): def __init__( self, *, sample_count: int, shuffle: bool = False, seed: int = 0, start: Optional[int] = None, step: Optional[int] = None, advance: int = 0, ): self._sample_count = sample_count self._seed = seed self._shuffle = shuffle self._start = distributed.get_global_rank() if start is None else start self._step = distributed.get_global_size() if step is None else step self._advance = advance def __iter__(self): if self._shuffle: iterator = self._shuffled_iterator() else: iterator = self._iterator() yield from itertools.islice(iterator, self._advance, None) def _iterator(self): assert not self._shuffle while True: iterable = range(self._sample_count) yield from itertools.islice(iterable, self._start, None, self._step) def _shuffled_iterator(self): assert self._shuffle # Instantiate a generator here (rather than in the ctor) to keep the class # picklable (requirement of mp.spawn) generator = torch.Generator().manual_seed(self._seed) while True: iterable = _generate_randperm_indices(size=self._sample_count, generator=generator) yield from itertools.islice(iterable, self._start, None, self._step) # Path: models/backbones/facebookresearch_dinov2_main/dinov2/dinov2/data/samplers.py class ShardedInfiniteSampler(Sampler): def __init__( self, *, sample_count: int, shuffle: bool = False, seed: int = 0, start: Optional[int] = None, step: Optional[int] = None, advance: int = 0, use_new_shuffle_tensor_slice: bool = False, ): self._sample_count = sample_count self._seed = seed self._shuffle = shuffle self._start = distributed.get_global_rank() if start is None else start self._step = distributed.get_global_size() if step is None else step self._advance = advance self._iter_count = 0 self._shuffle_tensor_slice_fn = ( _new_shuffle_tensor_slice if use_new_shuffle_tensor_slice else _shuffle_tensor_slice ) def __iter__(self): iter_count = self._advance // self._sample_count if iter_count > 0: self._advance -= iter_count * self._sample_count self._iter_count += iter_count if self._shuffle: iterator = self._shuffled_iterator() else: iterator = self._iterator() yield from itertools.islice(iterator, self._advance, None) def _iterator(self): assert not self._shuffle while True: iterable = range(self._sample_count) yield from itertools.islice(iterable, self._start, None, self._step) def _shuffled_iterator(self): assert self._shuffle # Instantiate a generator here (rather than in the ctor) to be keep the class # picklable (requirement of mp.spawn) generator = torch.Generator() # Always shuffle everything first generator.manual_seed(self._seed) dtype = _get_torch_dtype(self._sample_count) perm = torch.randperm(self._sample_count, dtype=dtype, generator=generator) while True: # Re-seed on each iteration to allow skipping whole permutations seed = _make_seed(self._seed, self._start, self._iter_count) generator.manual_seed(seed) iterable = self._shuffle_tensor_slice_fn( tensor=perm, start=self._start, step=self._step, generator=generator ) yield from iterable self._iter_count += 1 # Path: models/backbones/facebookresearch_dinov2_main/dinov2/dinov2/data/loaders.py import logging import torch from enum import Enum from typing import Any, Callable, List, Optional, TypeVar from torch.utils.data import Sampler from .datasets import ImageNet, ImageNet22k from .samplers import EpochSampler, InfiniteSampler, ShardedInfiniteSampler # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. logger = logging.getLogger("dinov2") class SamplerType(Enum): DISTRIBUTED = 0 EPOCH = 1 INFINITE = 2 SHARDED_INFINITE = 3 SHARDED_INFINITE_NEW = 4 def _make_bool_str(b: bool) -> str: return "yes" if b else "no" def _make_sample_transform(image_transform: Optional[Callable] = None, target_transform: Optional[Callable] = None): def transform(sample): image, target = sample if image_transform is not None: image = image_transform(image) if target_transform is not None: target = target_transform(target) return image, target
return transform
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: DQiaole/FlowDiffusion_pytorch # Path: core/utils/frame_utils.py TAG_CHAR = np.array([202021.25], np.float32) def readFlow(fn): def readPFM(file): def writeFlow(filename,uv,v=None): def readFlowKITTI(filename): def readDispKITTI(filename): def writeFlowKITTI(filename, uv): def read_gen(file_name, pil=False): # Path: core/utils/augmentor.py class FlowAugmentor: def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True): # spatial augmentation params self.crop_size = crop_size self.min_scale = min_scale self.max_scale = max_scale self.spatial_aug_prob = 0.8 self.stretch_prob = 0.8 self.max_stretch = 0.2 # flip augmentation params self.do_flip = do_flip self.h_flip_prob = 0.5 self.v_flip_prob = 0.1 # photometric augmentation params self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5/3.14) self.asymmetric_color_aug_prob = 0.2 self.eraser_aug_prob = 0.5 def color_transform(self, img1, img2): """ Photometric augmentation """ # asymmetric if np.random.rand() < self.asymmetric_color_aug_prob: img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8) img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8) # symmetric else: image_stack = np.concatenate([img1, img2], axis=0) image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) img1, img2 = np.split(image_stack, 2, axis=0) return img1, img2 def eraser_transform(self, img1, img2, bounds=[50, 100]): """ Occlusion augmentation """ ht, wd = img1.shape[:2] if np.random.rand() < self.eraser_aug_prob: mean_color = np.mean(img2.reshape(-1, 3), axis=0) for _ in range(np.random.randint(1, 3)): x0 = np.random.randint(0, wd) y0 = np.random.randint(0, ht) dx = np.random.randint(bounds[0], bounds[1]) dy = np.random.randint(bounds[0], bounds[1]) img2[y0:y0+dy, x0:x0+dx, :] = mean_color return img1, img2 def spatial_transform(self, img1, img2, flow): # randomly sample scale ht, wd = img1.shape[:2] min_scale = np.maximum( (self.crop_size[0] + 8) / float(ht), (self.crop_size[1] + 8) / float(wd)) scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) scale_x = scale scale_y = scale if np.random.rand() < self.stretch_prob: scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch) scale_x = np.clip(scale_x, min_scale, None) scale_y = np.clip(scale_y, min_scale, None) if np.random.rand() < self.spatial_aug_prob or min_scale > 1: # rescale the images img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) flow = flow * [scale_x, scale_y] if self.do_flip: if np.random.rand() < self.h_flip_prob: # h-flip img1 = img1[:, ::-1] img2 = img2[:, ::-1] flow = flow[:, ::-1] * [-1.0, 1.0] if np.random.rand() < self.v_flip_prob: # v-flip img1 = img1[::-1, :] img2 = img2[::-1, :] flow = flow[::-1, :] * [1.0, -1.0] if img1.shape[0] == self.crop_size[0]: y0 = 0 else: y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0]) if img1.shape[1] == self.crop_size[1]: x0 = 0 else: x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1]) img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] return img1, img2, flow def __call__(self, img1, img2, flow): img1, img2 = self.color_transform(img1, img2) img1, img2 = self.eraser_transform(img1, img2) img1, img2, flow = self.spatial_transform(img1, img2, flow) img1 = np.ascontiguousarray(img1) img2 = np.ascontiguousarray(img2) flow = np.ascontiguousarray(flow) return img1, img2, flow # Path: core/utils/augmentor.py class SparseFlowAugmentor: def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False): # spatial augmentation params self.crop_size = crop_size self.min_scale = min_scale self.max_scale = max_scale self.spatial_aug_prob = 0.8 self.stretch_prob = 0.8 self.max_stretch = 0.2 # flip augmentation params self.do_flip = do_flip self.h_flip_prob = 0.5 self.v_flip_prob = 0.1 # photometric augmentation params self.photo_aug = ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14) self.asymmetric_color_aug_prob = 0.2 self.eraser_aug_prob = 0.5 def color_transform(self, img1, img2): image_stack = np.concatenate([img1, img2], axis=0) image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8) img1, img2 = np.split(image_stack, 2, axis=0) return img1, img2 def eraser_transform(self, img1, img2): ht, wd = img1.shape[:2] if np.random.rand() < self.eraser_aug_prob: mean_color = np.mean(img2.reshape(-1, 3), axis=0) for _ in range(np.random.randint(1, 3)): x0 = np.random.randint(0, wd) y0 = np.random.randint(0, ht) dx = np.random.randint(50, 100) dy = np.random.randint(50, 100) img2[y0:y0+dy, x0:x0+dx, :] = mean_color return img1, img2 def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0): ht, wd = flow.shape[:2] coords = np.meshgrid(np.arange(wd), np.arange(ht)) coords = np.stack(coords, axis=-1) coords = coords.reshape(-1, 2).astype(np.float32) flow = flow.reshape(-1, 2).astype(np.float32) valid = valid.reshape(-1).astype(np.float32) coords0 = coords[valid>=1] flow0 = flow[valid>=1] ht1 = int(round(ht * fy)) wd1 = int(round(wd * fx)) coords1 = coords0 * [fx, fy] flow1 = flow0 * [fx, fy] xx = np.round(coords1[:,0]).astype(np.int32) yy = np.round(coords1[:,1]).astype(np.int32) v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1) xx = xx[v] yy = yy[v] flow1 = flow1[v] flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32) valid_img = np.zeros([ht1, wd1], dtype=np.int32) flow_img[yy, xx] = flow1 valid_img[yy, xx] = 1 return flow_img, valid_img def spatial_transform(self, img1, img2, flow, valid, centre_crop, resize): # randomly sample scale ht, wd = img1.shape[:2] min_scale = np.maximum( (self.crop_size[0] + 1) / float(ht), (self.crop_size[1] + 1) / float(wd)) scale = 2 ** np.random.uniform(self.min_scale, self.max_scale) scale_x = np.clip(scale, min_scale, None) scale_y = np.clip(scale, min_scale, None) if np.random.rand() < self.spatial_aug_prob or min_scale > 1 or resize: # rescale the images img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR) flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y) if self.do_flip: if np.random.rand() < 0.5: # h-flip img1 = img1[:, ::-1] img2 = img2[:, ::-1] flow = flow[:, ::-1] * [-1.0, 1.0] valid = valid[:, ::-1] margin_y = 20 margin_x = 50 if centre_crop: y0 = (img1.shape[0] - self.crop_size[0]) // 2 x0 = (img1.shape[1] - self.crop_size[1]) // 2 else: y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y) x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x) y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0]) x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1]) img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]] return img1, img2, flow, valid def __call__(self, img1, img2, flow, valid, centre_crop=False, resize=False): img1, img2 = self.color_transform(img1, img2) img1, img2 = self.eraser_transform(img1, img2) img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid, centre_crop, resize) img1 = np.ascontiguousarray(img1) img2 = np.ascontiguousarray(img2) flow = np.ascontiguousarray(flow) valid = np.ascontiguousarray(valid) return img1, img2, flow, valid # Path: core/augmentations/augmentations.py def get_augmentation_fn(aug_params): aug_name = aug_params.name if aug_name not in ALL_AUGMENTATIONS.keys(): raise NotImplementedError( 'Unrecognized augmentation: {}'.format(aug_name)) aug_fn = ALL_AUGMENTATIONS[aug_name] return functools.partial(aug_fn, aug_params=aug_params) # Path: core/augmentations/aug_params.py def get_params(name): aug_params = ml_collections.ConfigDict() aug_params.name = name """Parameters controlling data augmentation.""" aug_params.crop_height = 320 aug_params.crop_width = 448 aug_params.eval_crop_height = 320 aug_params.eval_crop_width = 768 aug_params.noise_std_range = 0.06 # range for sampling std of additive noise aug_params.crop_range_delta = 0.03 # range of relative translation of image 2 aug_params.flow_interpolation = "BILINEAR" # "NEAREST" # control params aug_params.is_schedule_coeff = True # schedule aug coeff for image 2 aug_params.schedule_coeff = 1.0 aug_params.is_channel_swapping = False # True: random swapping color channels aug_params.is_augment_colors = True aug_params.is_augment_spatial = True aug_params.disable_ground_truth = False # True: set ground truth to invalid for semi-supervised training aug_params.black = False # True: allow out-of-boundary cropping (Chairs) aug_params.prob_hard_sample = 1.0 # probability that we use the hard sample technique, see line 87 in https://github.com/gengshan-y/VCN/blob/master/dataloader/robloader.py aug_params.is_random_erasing = False # spatial params aug_params.min_scale = 0.2 aug_params.max_scale = 1.0 aug_params.vflip_prob = 0.0 aug_params.rot1 = 0.4 aug_params.squeeze1 = 0.3 aug_params.scale1 = 0.3 aug_params.tran1 = 0.4 aug_params.scale2 = 0.1 aug_params.lmult_factor = 1. aug_params.sat_factor = 1. aug_params.col_factor = 1. aug_params.ladd_factor = 1. aug_params.col_rot_factor = 1. return aug_params # Path: core/datasets_return_dict.py import numpy as np import torch import torch.utils.data as data import torch.nn.functional as F import cv2 import os import math import random import os.path as osp from torch.utils.data.distributed import DistributedSampler from glob import glob from .utils import frame_utils from .utils.augmentor import FlowAugmentor, SparseFlowAugmentor from .augmentations.augmentations import get_augmentation_fn as it_get_augmentation_fn from .augmentations.aug_params import get_params as it_get_params # Data loading based on https://github.com/NVIDIA/flownet2-pytorch cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) class FlowDataset(data.Dataset): def __init__(self, aug_params=None, sparse=False, it_aug=False, resize_for_test=False, kitti_format=False, n_sample=None): self.augmentor = None self.sparse = sparse self.it_aug = it_aug self.resize_for_test = resize_for_test self.kitti_format = kitti_format self.n_sample_per_scene = n_sample if aug_params is not None: if not it_aug and 'add_gaussian_noise' in aug_params: aug_params.pop('add_gaussian_noise') if it_aug: params = it_get_params('pwc') if not aug_params['add_gaussian_noise']: params.noise_std_range = 0.0 print('params.noise_std_range:', params.noise_std_range) self.augmentor = it_get_augmentation_fn(params) elif sparse: self.augmentor = SparseFlowAugmentor(**aug_params) else: self.augmentor = FlowAugmentor(**aug_params) self.is_test = False self.init_seed = False self.flow_list = [] self.image_list = []
self.extra_info = []
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Haoming02/sd-webui-old-photo-restoration # Path: Global/test.py def global_test(custom_args:list, ckpt_dir:str): opt = TestOptions().parse(custom_args, save=False) parameter_set(opt, ckpt_dir) model = Pix2PixHDModel_Mapping() model.initialize(opt) model.eval() if not os.path.exists(opt.outputs_dir + "/" + "input_image"): os.makedirs(opt.outputs_dir + "/" + "input_image") if not os.path.exists(opt.outputs_dir + "/" + "restored_image"): os.makedirs(opt.outputs_dir + "/" + "restored_image") if not os.path.exists(opt.outputs_dir + "/" + "origin"): os.makedirs(opt.outputs_dir + "/" + "origin") dataset_size = 0 input_loader = os.listdir(opt.test_input) dataset_size = len(input_loader) input_loader.sort() if opt.test_mask != "": mask_loader = os.listdir(opt.test_mask) dataset_size = len(os.listdir(opt.test_mask)) mask_loader.sort() img_transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] ) mask_transform = transforms.ToTensor() for i in range(dataset_size): input_name = input_loader[i] input_file = os.path.join(opt.test_input, input_name) if not os.path.isfile(input_file): print("Skipping non-file %s" % input_name) continue input = Image.open(input_file).convert("RGB") print("Now you are processing %s" % (input_name)) if opt.NL_use_mask: mask_name = mask_loader[i] mask = Image.open(os.path.join(opt.test_mask, mask_name)).convert("RGB") if opt.mask_dilation != 0: kernel = np.ones((3,3),np.uint8) mask = np.array(mask) mask = cv2.dilate(mask,kernel,iterations = opt.mask_dilation) mask = Image.fromarray(mask.astype('uint8')) origin = input input = irregular_hole_synthesize(input, mask) mask = mask_transform(mask) mask = mask[:1, :, :] ## Convert to single channel mask = mask.unsqueeze(0) input = img_transform(input) input = input.unsqueeze(0) else: if opt.test_mode == "Scale": input = data_transforms(input, scale=True) if opt.test_mode == "Full": input = data_transforms(input, scale=False) if opt.test_mode == "Crop": input = data_transforms_rgb_old(input) origin = input input = img_transform(input) input = input.unsqueeze(0) mask = torch.zeros_like(input) ### Necessary input try: with torch.no_grad(): generated = model.inference(input, mask) except Exception as ex: print("Skip %s due to an error:\n%s" % (input_name, str(ex))) continue if input_name.endswith(".jpg"): input_name = input_name[:-4] + ".png" image_grid = vutils.save_image( (input + 1.0) / 2.0, opt.outputs_dir + "/input_image/" + input_name, nrow=1, padding=0, normalize=True, ) image_grid = vutils.save_image( (generated.data.cpu() + 1.0) / 2.0, opt.outputs_dir + "/restored_image/" + input_name, nrow=1, padding=0, normalize=True, ) origin.save(opt.outputs_dir + "/origin/" + input_name) # Path: Global/detection.py def global_detection(custom_args:list): parser = argparse.ArgumentParser() parser.add_argument("--GPU", type=int, default=0) parser.add_argument("--test_path", type=str, default=".") parser.add_argument("--output_dir", type=str, default=".") parser.add_argument("--input_size", type=str, default="scale_256", help="resize_256|full_size|scale_256") config = parser.parse_args(custom_args) main(config) # Path: Face_Detection/detect_all_dlib.py def detect(custom_args:list): parser = argparse.ArgumentParser() parser.add_argument("--url", type=str, default="", help="input") parser.add_argument("--save_url", type=str, default="", help="output") opts = parser.parse_args(custom_args) url = opts.url save_url = opts.save_url os.makedirs(url, exist_ok=True) os.makedirs(save_url, exist_ok=True) face_detector = dlib.get_frontal_face_detector() landmark = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'shape_predictor_68_face_landmarks.dat') landmark_locator = dlib.shape_predictor(landmark) count = 0 map_id = {} for x in os.listdir(url): img_url = os.path.join(url, x) pil_img = Image.open(img_url).convert("RGB") image = np.array(pil_img) start = time.time() faces = face_detector(image) done = time.time() if len(faces) == 0: print("Warning: There is no face in %s" % (x)) continue print(len(faces)) if len(faces) > 0: for face_id in range(len(faces)): current_face = faces[face_id] face_landmarks = landmark_locator(image, current_face) current_fl = search(face_landmarks) affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3) aligned_face = warp(image, affine, output_shape=(256, 256, 3)) img_name = x[:-4] + "_" + str(face_id + 1) io.imsave(os.path.join(save_url, img_name + ".png"), img_as_ubyte(aligned_face)) count += 1 if count % 1000 == 0: print("%d have finished ..." % (count)) # Path: Face_Detection/detect_all_dlib_HR.py def detect_hr(custom_args:list): parser = argparse.ArgumentParser() parser.add_argument("--url", type=str, default="", help="input") parser.add_argument("--save_url", type=str, default="", help="output") opts = parser.parse_args(custom_args) url = opts.url save_url = opts.save_url os.makedirs(url, exist_ok=True) os.makedirs(save_url, exist_ok=True) face_detector = dlib.get_frontal_face_detector() landmark = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'shape_predictor_68_face_landmarks.dat') landmark_locator = dlib.shape_predictor(landmark) count = 0 map_id = {} for x in os.listdir(url): img_url = os.path.join(url, x) pil_img = Image.open(img_url).convert("RGB") image = np.array(pil_img) start = time.time() faces = face_detector(image) done = time.time() if len(faces) == 0: print("Warning: There is no face in %s" % (x)) continue print(len(faces)) if len(faces) > 0: for face_id in range(len(faces)): current_face = faces[face_id] face_landmarks = landmark_locator(image, current_face) current_fl = search(face_landmarks) affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3) aligned_face = warp(image, affine, output_shape=(512, 512, 3)) img_name = x[:-4] + "_" + str(face_id + 1) io.imsave(os.path.join(save_url, img_name + ".png"), img_as_ubyte(aligned_face)) count += 1 if count % 1000 == 0: print("%d have finished ..." % (count)) # Path: Face_Detection/align_warp_back_multiple_dlib.py def align_warp(custom_args:list): parser = argparse.ArgumentParser() parser.add_argument("--origin_url", type=str, default="./", help="origin images") parser.add_argument("--replace_url", type=str, default="./", help="restored faces") parser.add_argument("--save_url", type=str, default="./save") opts = parser.parse_args(custom_args) origin_url = opts.origin_url replace_url = opts.replace_url save_url = opts.save_url if not os.path.exists(save_url): os.makedirs(save_url) face_detector = dlib.get_frontal_face_detector() landmark = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'shape_predictor_68_face_landmarks.dat') landmark_locator = dlib.shape_predictor(landmark) count = 0 for x in os.listdir(origin_url): img_url = os.path.join(origin_url, x) pil_img = Image.open(img_url).convert("RGB") origin_width, origin_height = pil_img.size image = np.array(pil_img) start = time.time() faces = face_detector(image) done = time.time() if len(faces) == 0: print("Warning: There is no face in %s" % (x)) continue blended = image for face_id in range(len(faces)): current_face = faces[face_id] face_landmarks = landmark_locator(image, current_face) current_fl = search(face_landmarks) forward_mask = np.ones_like(image).astype("uint8") affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3) aligned_face = warp(image, affine, output_shape=(256, 256, 3), preserve_range=True) forward_mask = warp( forward_mask, affine, output_shape=(256, 256, 3), order=0, preserve_range=True ) affine_inverse = affine.inverse cur_face = aligned_face if replace_url != "": face_name = x[:-4] + "_" + str(face_id + 1) + ".png" cur_url = os.path.join(replace_url, face_name) restored_face = Image.open(cur_url).convert("RGB") restored_face = np.array(restored_face) cur_face = restored_face ## Histogram Color matching A = cv2.cvtColor(aligned_face.astype("uint8"), cv2.COLOR_RGB2BGR) B = cv2.cvtColor(cur_face.astype("uint8"), cv2.COLOR_RGB2BGR) B = match_histograms(B, A) cur_face = cv2.cvtColor(B.astype("uint8"), cv2.COLOR_BGR2RGB) warped_back = warp( cur_face, affine_inverse, output_shape=(origin_height, origin_width, 3), order=3, preserve_range=True, ) backward_mask = warp( forward_mask, affine_inverse, output_shape=(origin_height, origin_width, 3), order=0, preserve_range=True, ) ## Nearest neighbour blended = blur_blending_cv2(warped_back, blended, backward_mask) blended *= 255.0 io.imsave(os.path.join(save_url, x), img_as_ubyte(blended / 255.0)) count += 1 if count % 1000 == 0: print("%d have finished ..." % (count)) # Path: Face_Detection/align_warp_back_multiple_dlib_HR.py def align_warp_hr(custom_args:list): parser = argparse.ArgumentParser() parser.add_argument("--origin_url", type=str, default="./", help="origin images") parser.add_argument("--replace_url", type=str, default="./", help="restored faces") parser.add_argument("--save_url", type=str, default="./save") opts = parser.parse_args(custom_args) origin_url = opts.origin_url replace_url = opts.replace_url save_url = opts.save_url if not os.path.exists(save_url): os.makedirs(save_url) face_detector = dlib.get_frontal_face_detector() landmark = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'shape_predictor_68_face_landmarks.dat') landmark_locator = dlib.shape_predictor(landmark) count = 0 for x in os.listdir(origin_url): img_url = os.path.join(origin_url, x) pil_img = Image.open(img_url).convert("RGB") origin_width, origin_height = pil_img.size image = np.array(pil_img) start = time.time() faces = face_detector(image) done = time.time() if len(faces) == 0: print("Warning: There is no face in %s" % (x)) continue blended = image for face_id in range(len(faces)): current_face = faces[face_id] face_landmarks = landmark_locator(image, current_face) current_fl = search(face_landmarks) forward_mask = np.ones_like(image).astype("uint8") affine = compute_transformation_matrix(image, current_fl, False, target_face_scale=1.3) aligned_face = warp(image, affine, output_shape=(512, 512, 3), preserve_range=True) forward_mask = warp( forward_mask, affine, output_shape=(512, 512, 3), order=0, preserve_range=True ) affine_inverse = affine.inverse cur_face = aligned_face if replace_url != "": face_name = x[:-4] + "_" + str(face_id + 1) + ".png" cur_url = os.path.join(replace_url, face_name) restored_face = Image.open(cur_url).convert("RGB") restored_face = np.array(restored_face) cur_face = restored_face ## Histogram Color matching A = cv2.cvtColor(aligned_face.astype("uint8"), cv2.COLOR_RGB2BGR) B = cv2.cvtColor(cur_face.astype("uint8"), cv2.COLOR_RGB2BGR) B = match_histograms(B, A) cur_face = cv2.cvtColor(B.astype("uint8"), cv2.COLOR_BGR2RGB) warped_back = warp( cur_face, affine_inverse, output_shape=(origin_height, origin_width, 3), order=3, preserve_range=True, ) backward_mask = warp( forward_mask, affine_inverse, output_shape=(origin_height, origin_width, 3), order=0, preserve_range=True, ) ## Nearest neighbour blended = blur_blending_cv2(warped_back, blended, backward_mask) blended *= 255.0 io.imsave(os.path.join(save_url, x), img_as_ubyte(blended / 255.0)) count += 1 if count % 1000 == 0: print("%d have finished ..." % (count)) # Path: Face_Enhancement/test_face.py def test_face(custom_args:list): import sys cache = sys.argv[1:] sys.argv[1:] = custom_args opt = TestOptions().parse() sys.argv[1:] = cache dataloader = create_dataloader(opt) model = Pix2PixModel(opt) model.eval() visualizer = Visualizer(opt) single_save_url = os.path.join(opt.checkpoints_dir, opt.name, opt.results_dir, "each_img") if not os.path.exists(single_save_url): os.makedirs(single_save_url) for i, data_i in enumerate(dataloader): if i * opt.batchSize >= opt.how_many: break generated = model(data_i, mode="inference") img_path = data_i["path"] for b in range(generated.shape[0]): img_name = os.path.split(img_path[b])[-1] save_img_url = os.path.join(single_save_url, img_name) vutils.save_image((generated[b] + 1) / 2, save_img_url) # Path: scripts/main_function.py from Global.test import global_test from Global.detection import global_detection from Face_Detection.detect_all_dlib import detect from Face_Detection.detect_all_dlib_HR import detect_hr from Face_Detection.align_warp_back_multiple_dlib import align_warp from Face_Detection.align_warp_back_multiple_dlib_HR import align_warp_hr from Face_Enhancement.test_face import test_face from modules import scripts import datetime import shutil import os import torch return False assert input_path != output_path try: assert (os.path.isabs(input_path) and os.path.isabs(output_path)) except AssertionError: print('Path is not Absolute...') return False if not os.path.exists(input_path): print('Input Path does not Exist!') return False if not os.path.exists(output_path): print('Output Path does not Exist!') return False if len(input_path.split()) > 1: print('Empty spaces detected in Input Path!') return False if len(output_path.split()) > 1: print('Empty spaces detected in Output Path!') return False if len(os.listdir(input_path)) == 0: print('No files found in Input Path!') return False return True def core_functions(input_path:str, output_path:str, gpu_id:int, scratch:bool, hr:bool, face_res:bool): final_output = os.path.join(output_path, 'final_output') if not os.path.exists(final_output): os.makedirs(final_output) if not torch.cuda.is_available(): gpu_id = -1 # ===== Stage 1 ===== print("Running Stage 1: Overall restoration") stage1_output = os.path.join(output_path, 'stage1') if not scratch: args = ['--test_mode', 'Full', '--Quality_restore', '--test_input', input_path, '--outputs_dir', stage1_output, '--gpu_ids', str(gpu_id)] global_test(args, GLOBAL_CHECKPOINTS_FOLDER) else: mask_dir = os.path.join(stage1_output, "masks") new_input = os.path.join(mask_dir, "input") new_mask = os.path.join(mask_dir, "mask") args = ['--test_path', input_path, '--output_dir', mask_dir, '--input_size', 'full_size', '--GPU', str(gpu_id)] global_detection(args) args = ['--Scratch_and_Quality_restore', '--test_input', new_input, '--test_mask', new_mask, '--outputs_dir', stage1_output, '--gpu_ids', str(gpu_id)] if hr: args.append('--HR') global_test(args, GLOBAL_CHECKPOINTS_FOLDER) stage1_results = os.path.join(stage1_output, "restored_image") for FILE in os.listdir(stage1_results): shutil.copy(os.path.join(stage1_results, FILE), final_output) if not face_res: print("Processing is done. Please check the results.") return final_output # ===== Stage 2 ===== print("Running Stage 2: Face Detection") stage2_output = os.path.join(output_path, 'stage2') if hr: detect_hr(['--url', stage1_results, '--save_url', stage2_output]) else: detect(['--url', stage1_results, '--save_url', stage2_output]) # ===== Stage 3 ===== print("Running Stage 3: Face Enhancement") stage_3_input_face = stage2_output stage_3_output_dir = os.path.join(output_path, 'stage3') if hr: args = [ '--checkpoints_dir', FACE_CHECKPOINTS_FOLDER, '--old_face_folder', stage_3_input_face, '--name', FACE_ENHANCEMENT_CHECKPOINTS[1], '--gpu_ids', str(gpu_id), '--load_size', '512', '--label_nc', '18', '--no_instance', '--preprocess_mode', 'resize', '--batchSize', '1', '--results_dir', stage_3_output_dir, '--no_parsing_map' ] else: args = [ '--checkpoints_dir', FACE_CHECKPOINTS_FOLDER, '--old_face_folder', stage_3_input_face, '--name', FACE_ENHANCEMENT_CHECKPOINTS[0], '--gpu_ids', str(gpu_id), '--load_size', '256', '--label_nc', '18', '--no_instance', '--preprocess_mode', 'resize', '--batchSize', '4', '--results_dir', stage_3_output_dir, '--no_parsing_map' ] test_face(args) stage3_results = os.path.join(stage_3_output_dir, "each_img") # ===== Stage 4 ===== print("Running Stage 4: Blending") args = ['--origin_url', stage1_results, '--replace_url', stage3_results, '--save_url', final_output] if hr: align_warp_hr(args) else: align_warp(args) print("All the processing is done. Please check the results.") return final_output def bop(input_path:str, output_path:str, gpu_id:int, scratch:bool, hr:bool, face_res:bool, del_itr:bool): if not validate_paths(input_path, output_path): return []
output_path = os.path.join(output_path, datetime.datetime.now().strftime("%m-%d %H.%M.%S"))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: EQ-bench/EQ-Bench # Path: lib/load_model.py def load_model(base_model_path, lora_path, quantization, trust_remote_code = False): tokenizer = AutoTokenizer.from_pretrained(base_model_path, trust_remote_code=trust_remote_code) # This is for llama2 models, but doesn't seem to have # adverse effects on benchmarks for other models. tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "right" # Quantization Config if quantization == '4bit': # load as 4 bit quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=False ) elif quantization == '8bit': # load as 8 bit quant_config = BitsAndBytesConfig( load_in_8bit=True, ) else: quant_config = None # Model if quant_config: base_model = AutoModelForCausalLM.from_pretrained( base_model_path, quantization_config=quant_config, device_map={"": 0}, trust_remote_code=trust_remote_code ) else: base_model = AutoModelForCausalLM.from_pretrained( base_model_path, device_map={"": 0}, trust_remote_code=trust_remote_code ) if lora_path: peft_model = PeftModel.from_pretrained(base_model, lora_path) return peft_model, tokenizer else: return base_model, tokenizer # Path: lib/db.py def save_result_to_db(results, score, parseable, last_error, run_index, bench_success): global db if not db: return try: meta = results['run_metadata'] if meta['eq_bench_version'] == 'v1': n_questions_total = 60 else: n_questions_total = 171 raw_results = {} for i in range(meta['total_iterations']): iter_index = str(i+1) if iter_index in results['iterations']: if meta['eq_bench_version'] == 'v1': individual_scores = results['iterations'][iter_index]['individual_scores'] else: individual_scores = results['iterations'][iter_index]['individual_scores_fullscale'] raw_results[iter_index] = { 'respondent_answers': results['iterations'][iter_index]['respondent_answers'], 'individual_scores': individual_scores, 'raw_inference': results['iterations'][iter_index]['raw_inference'] } to_save={ 'index_string': run_index, 'run_id': meta['run_id'], 'run_completed': int(time.time()), 'benchmark_success': bench_success, 'eqbench_version': meta['eq_bench_version'], 'n_questions_parseable': parseable, 'n_questions_total': n_questions_total, 'benchmark_score': score, 'instruction_template': meta['instruction_template'], 'model_path': meta['model_path'], 'lora_path': meta['lora_path'], 'bitsandbytes_quant': meta['bitsandbytes_quant'], 'total_iterations': meta['total_iterations'], 'inference_engine': meta['inference_engine'], 'ooba_params': meta['ooba_params'], 'include_patterns': meta['include_patterns'], 'exclude_patterns': meta['exclude_patterns'], 'errors': last_error, 'raw_results': raw_results } db.collection("benchmark_results").add(to_save) print('Results saved to firebase db.') except Exception as e: print(e) print('! Failed to save results to db.') # Path: lib/scoring.py def calculate_score(reference, user): # First check that the emotions specified in the answer match those in the reference if len(user.items()) != 4: print('! Error: 4 emotions were not returned') print(user) return None emotions_dict = {} for emotion, user_emotion_score in user.items(): for i in range(1, 5): if emotion == reference[f'emotion{i}']: emotions_dict[emotion] = True if len(emotions_dict) != 4: print('! Error: emotions did not match reference') print(user) return None # Normalize the user's scores to sum to 10. total_user_score = sum(float(score) for score in user.values()) if total_user_score <= 0: print('Error: total of scores must be > 0') print(user) return None user = {emotion: float(score) / total_user_score * 10 for emotion, score in user.items()} difference_tally = 0 # Tally of differerence from reference answers for this question # Iterate over each emotion in the user's answers. for emotion, user_emotion_score in user.items(): # If this emotion is in the reference, calculate the difference between the user's score and the reference score. for i in range(1, 5): if emotion == reference[f'emotion{i}']: difference_tally += abs(user_emotion_score - reference[f'emotion{i}_score']) # Inverting the difference tally so that the closer the answer is to reference, the higher the score. # We subtract from 10 because it works out that this constant produces a score of 0 when answering # randomly, which is a useful floor for the benchmark. final_score = 10 - difference_tally return final_score # Path: lib/scoring.py def calculate_score_fullscale(reference, user): # First check that the emotions specified in the answer match those in the reference if len(user.items()) != 4: #print('! Error: 4 emotions were not returned') #print(user) return None emotions_dict = {} for emotion, user_emotion_score in user.items(): for i in range(1, 5): if emotion == reference[f'emotion{i}']: emotions_dict[emotion] = True if len(emotions_dict) != 4: print('! Error: emotions did not match reference') print(user) return None difference_tally = 0 # Tally of differerence from reference answers for this question # Iterate over each emotion in the user's answers. for emotion, user_emotion_score in user.items(): # If this emotion is in the reference, calculate the difference between the user's score and the reference score. for i in range(1, 5): if emotion == reference[f'emotion{i}']: d = abs(float(user_emotion_score) - float(reference[f'emotion{i}_score'])) # this will be a value between 0 and 10 if d == 0: scaled_difference = 0 elif d <= 5: # S-shaped scaling function # https://www.desmos.com/calculator # 6.5\cdot\ \frac{1}{\left(1\ +\ e^{\left(-1.2\cdot\left(x-4\right)\right)}\right)} scaled_difference = 6.5 * (1 / (1 + math.e ** (-1.2 * (d-4)))) else: scaled_difference = d difference_tally += scaled_difference # Inverting the difference tally so that the closer the answer is to reference, the higher the score. # The adjustment constant is chosen such that answering randomly produces a score of zero. adjust_const = 0.7477 final_score = 10 - (difference_tally * adjust_const) return final_score # Path: lib/scoring.py def parse_answers(text, REVISE): first_pass_answers = {} revised_answers = {} # Extracting first pass answers if REVISE: first_pass_match = re.search(r'First pass scores:(.*?)Revised scores:', text, re.DOTALL) if first_pass_match: first_pass_text = first_pass_match.group(1) first_pass_answers = dict(re.findall(r'(\w+):\s+(\d+)', first_pass_text)) # Extracting revised answers revised_match = re.search(r'Revised scores:(.*?)$', text, re.DOTALL) if revised_match: revised_text = revised_match.group(1) revised_answers = dict(re.findall(r'(\w+):\s+(\d+)', revised_text)) else: first_pass_answers = dict(re.findall(r'(\w+):\s+(\d+)', text)) revised_answers = {} return first_pass_answers, revised_answers # Path: lib/scoring.py def calculate_benchmark_score(run_index, results, results_path, fullscale=False): # We calculate an overall score for first pass answers and revised answers separately. # The final score is the best of these two numbers. if fullscale: # v2 scores_key = 'individual_scores_fullscale' else: # v1 (normalised) scores_key = 'individual_scores' score_tally = 0 parseable_tally = 0 n_iterations = len(results[run_index]['iterations']) for run_iter in results[run_index]['iterations']: score_sum_first_pass = 0 score_sum_revised = 0 first_pass_parseable = 0 revised_parseable = 0 if not scores_key in results[run_index]['iterations'][run_iter]: continue for dialogue_id, r in results[run_index]['iterations'][run_iter][scores_key].items(): r = results[run_index]['iterations'][run_iter][scores_key][dialogue_id] if 'first_pass_score' in r and r['first_pass_score'] != None: score_sum_first_pass += r['first_pass_score'] first_pass_parseable += 1 if 'revised_score' in r and r['revised_score'] != None: score_sum_revised += r['revised_score'] revised_parseable += 1 if first_pass_parseable: score_first_pass = 100 * (score_sum_first_pass / first_pass_parseable / 10) else: score_first_pass = 0 if revised_parseable: score_revised = 100 * (score_sum_revised / revised_parseable / 10) else: score_revised = 0 # If either the first pass or revised score has significantly less parseable answers, # we take the score with the higher number of parseable answers regardless of score. if score_revised >= score_first_pass and revised_parseable >= 0.95 * first_pass_parseable: final_score = score_revised final_parseable = revised_parseable else: final_score = score_first_pass final_parseable = first_pass_parseable score_tally += final_score parseable_tally += final_parseable results_key = 'benchmark_results' if fullscale: results_key = 'benchmark_results_fullscale' results[run_index]['iterations'][run_iter][results_key] = { 'first_pass_score': score_first_pass, 'first_pass_parseable': first_pass_parseable, 'revised_score': score_revised, 'revised_parseable': revised_parseable, 'final_score': final_score, 'final_parseable': final_parseable } averaged_score = score_tally / n_iterations if fullscale: averaged_score = round(averaged_score, 2) else: averaged_score = round(averaged_score, 2) with open(results_path, 'w') as f: json.dump(results, f) return (averaged_score, round(parseable_tally / n_iterations, 2)) # Path: lib/run_query.py def run_query(model_path, prompt_format, prompt, history, completion_tokens, model, tokenizer, temp, inference_engine, ooba_instance, launch_ooba, ooba_request_timeout, openai_client): if inference_engine == 'openai': return run_openai_query(prompt, history, completion_tokens, temp, model_path, openai_client) elif inference_engine == 'ooba': return run_ooba_query(prompt, history, prompt_format, completion_tokens, temp, ooba_instance, launch_ooba, ooba_request_timeout) else: # transformers # figure out the correct inference method to use if model_path in OPENSOURCE_MODELS_INFERENCE_METHODS: inference_fn = OPENSOURCE_MODELS_INFERENCE_METHODS[model_path] else: inference_fn = run_pipeline_query formatted_prompt = generate_prompt_from_template(prompt, prompt_format) return inference_fn(formatted_prompt, completion_tokens, model, tokenizer, temp) # Path: lib/util.py def upload_results_google_sheets(google_spreadsheet_url, result): match = re.search(r'/spreadsheets/d/([a-zA-Z0-9-_]+)', google_spreadsheet_url) sheet_id = match.group(1) if match else None if not sheet_id: print('! Error: failed to parse sheet id from url') return # Load credentials scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/spreadsheets", "https://www.googleapis.com/auth/drive.file", "https://www.googleapis.com/auth/drive"] creds = ServiceAccountCredentials.from_json_keyfile_name('./google_creds.json', scope) client = gspread.authorize(creds) sheet = client.open_by_key(sheet_id) worksheet = sheet.get_worksheet(0) worksheet.append_row(result) # Path: lib/util.py def delete_symlinks_and_dir(dir_to_delete, verbose): # Check if the directory exists if not os.path.exists(dir_to_delete): print(f"Directory {dir_to_delete} does not exist.") return # Iterate through the items in the directory for item in os.listdir(dir_to_delete): item_path = os.path.join(dir_to_delete, item) # Check if the item is a symlink if os.path.islink(item_path): source_path = os.readlink(item_path) # Resolve the source path relative to the symlink's directory if not os.path.isabs(source_path): source_path = os.path.join(os.path.dirname(item_path), source_path) # Check if the source file exists and is not a directory if os.path.exists(source_path) and not os.path.isdir(source_path): if verbose: print(f"Deleting source file of symlink: {source_path}") os.remove(source_path) else: print(f"Source file does not exist or is a directory: {source_path}") # Delete the directory and its contents shutil.rmtree(dir_to_delete) if verbose: print(f"Deleted directory: {dir_to_delete}") # Path: lib/run_bench.py import re import os import time import json import datetime import lib.ooba from tqdm import tqdm from lib.load_model import load_model from lib.db import save_result_to_db from lib.scoring import calculate_score, calculate_score_fullscale, parse_answers, calculate_benchmark_score from lib.run_query import run_query from lib.util import upload_results_google_sheets, delete_symlinks_and_dir # Constants COMPLETION_TOKENS = 1000 RAW_RESULTS_PATH = './raw_results.json' BENCH_RESULTS_PATH = './benchmark_results.csv' REVISE=True def run_benchmark(run_id, model_path, lora_path, prompt_type, quantization, n_iterations, resume=True, delete_cache=False, max_bench_retries=5, n_question_attempts=5, verbose=False, google_spreadsheet_url='', trust_remote_code=False,
inference_engine='transformers', ooba_instance=None,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Mark12Ding/STA # Path: kinetics.py class VideoClsDataset(Dataset): """Load your own video classification dataset.""" def __init__(self, anno_path, data_path, mode='train', clip_len=8, frame_sample_rate=2, crop_size=224, short_side_size=256, new_height=256, new_width=340, keep_aspect_ratio=True, num_segment=1, num_crop=1, test_num_segment=10, test_num_crop=3,args=None): self.anno_path = anno_path self.data_path = data_path self.mode = mode self.clip_len = clip_len self.frame_sample_rate = frame_sample_rate self.crop_size = crop_size self.short_side_size = short_side_size self.new_height = new_height self.new_width = new_width self.keep_aspect_ratio = keep_aspect_ratio self.num_segment = num_segment self.test_num_segment = test_num_segment self.num_crop = num_crop self.test_num_crop = test_num_crop self.args = args self.aug = False self.rand_erase = False if self.mode in ['train']: self.aug = True if self.args.reprob > 0: self.rand_erase = True if VideoReader is None: raise ImportError("Unable to import `decord` which is required to read videos.") import pandas as pd cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ') self.dataset_samples = list(cleaned.values[:, 0]) self.label_array = list(cleaned.values[:, 1]) # self.dataset_samples = [] # self.label_array = [] # with open(self.anno_path, 'r') as f: # for line in f: # data_path, label = line.rstrip().split(' ') # self.dataset_samples.append(os.path.join(os.path.dirname(self.anno_path), 'videos_val', data_path)) # self.label_array.append(int(label)) if (mode == 'train'): pass elif (mode == 'validation'): self.data_transform = video_transforms.Compose([ video_transforms.Resize(self.short_side_size, interpolation='bilinear'), video_transforms.CenterCrop(size=(self.crop_size, self.crop_size)), volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) elif mode == 'test': self.data_resize = video_transforms.Compose([ video_transforms.Resize(size=(short_side_size), interpolation='bilinear') ]) self.data_transform = video_transforms.Compose([ volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.test_seg = [] self.test_dataset = [] self.test_label_array = [] for ck in range(self.test_num_segment): for cp in range(self.test_num_crop): for idx in range(len(self.label_array)): sample_label = self.label_array[idx] self.test_label_array.append(sample_label) self.test_dataset.append(self.dataset_samples[idx]) self.test_seg.append((ck, cp)) def __getitem__(self, index): if self.mode == 'train': args = self.args scale_t = 1 sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample, sample_rate_scale=scale_t) # T H W C if len(buffer) == 0: while len(buffer) == 0: warnings.warn("video {} not correctly loaded during training".format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample, sample_rate_scale=scale_t) if args.num_sample > 1: frame_list = [] label_list = [] index_list = [] for _ in range(args.num_sample): new_frames = self._aug_frame(buffer, args) label = self.label_array[index] frame_list.append(new_frames) label_list.append(label) index_list.append(index) return frame_list, label_list, index_list, {} else: buffer = self._aug_frame(buffer, args) return buffer, self.label_array[index], index, {} elif self.mode == 'validation': sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample) if len(buffer) == 0: while len(buffer) == 0: warnings.warn("video {} not correctly loaded during validation".format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample) buffer = self.data_transform(buffer) return buffer, self.label_array[index], sample.split("/")[-1].split(".")[0] elif self.mode == 'test': sample = self.test_dataset[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample) while len(buffer) == 0: warnings.warn("video {}, temporal {}, spatial {} not found during testing".format(\ str(self.test_dataset[index]), chunk_nb, split_nb)) index = np.random.randint(self.__len__()) sample = self.test_dataset[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample) buffer = self.data_resize(buffer) if isinstance(buffer, list): buffer = np.stack(buffer, 0) spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \ / (self.test_num_crop - 1) temporal_step = max(1.0 * (buffer.shape[0] - self.clip_len) \ / (self.test_num_segment - 1), 0) temporal_start = int(chunk_nb * temporal_step) spatial_start = int(split_nb * spatial_step) if buffer.shape[1] >= buffer.shape[2]: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ spatial_start:spatial_start + self.short_side_size, :, :] else: buffer = buffer[temporal_start:temporal_start + self.clip_len, \ :, spatial_start:spatial_start + self.short_side_size, :] buffer = self.data_transform(buffer) return buffer, self.test_label_array[index], sample.split("/")[-1].split(".")[0], \ chunk_nb, split_nb else: raise NameError('mode {} unkown'.format(self.mode)) def _aug_frame( self, buffer, args, ): aug_transform = video_transforms.create_random_augment( input_size=(self.crop_size, self.crop_size), auto_augment=args.aa, interpolation=args.train_interpolation, ) buffer = [ transforms.ToPILImage()(frame) for frame in buffer ] buffer = aug_transform(buffer) buffer = [transforms.ToTensor()(img) for img in buffer] buffer = torch.stack(buffer) # T C H W buffer = buffer.permute(0, 2, 3, 1) # T H W C # T H W C buffer = tensor_normalize( buffer, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] ) # T H W C -> C T H W. buffer = buffer.permute(3, 0, 1, 2) # Perform data augmentation. scl, asp = ( [0.08, 1.0], [0.75, 1.3333], ) buffer = spatial_sampling( buffer, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=self.crop_size, random_horizontal_flip=False if args.data_set == 'SSV2' else True , inverse_uniform_sampling=False, aspect_ratio=asp, scale=scl, motion_shift=False ) return buffer def loadvideo_decord(self, sample, sample_rate_scale=1): """Load video content using Decord""" fname = sample if not (os.path.exists(fname)): return [] # avoid hanging issue if os.path.getsize(fname) < 1 * 1024: print('SKIP: ', fname, " - ", os.path.getsize(fname)) return [] try: if self.keep_aspect_ratio: vr = VideoReader(fname, num_threads=1, ctx=cpu(0)) else: vr = VideoReader(fname, width=self.new_width, height=self.new_height, num_threads=1, ctx=cpu(0)) except: print("video cannot be loaded by decord: ", fname) return [] if self.mode == 'test': all_index = [x for x in range(0, len(vr), self.frame_sample_rate)] while len(all_index) < self.clip_len: all_index.append(all_index[-1]) vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer # handle temporal segments converted_len = int(self.clip_len * self.frame_sample_rate) seg_len = len(vr) // self.num_segment all_index = [] for i in range(self.num_segment): if seg_len <= converted_len: index = np.linspace(0, seg_len, num=seg_len // self.frame_sample_rate) index = np.concatenate((index, np.ones(self.clip_len - seg_len // self.frame_sample_rate) * seg_len)) index = np.clip(index, 0, seg_len - 1).astype(np.int64) else: end_idx = np.random.randint(converted_len, seg_len) str_idx = end_idx - converted_len index = np.linspace(str_idx, end_idx, num=self.clip_len) index = np.clip(index, str_idx, end_idx - 1).astype(np.int64) index = index + i*seg_len all_index.extend(list(index)) all_index = all_index[::int(sample_rate_scale)] vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer def __len__(self): if self.mode != 'test': return len(self.dataset_samples) else: return len(self.test_dataset) # Path: ssv2.py class SSVideoClsDataset(Dataset): """Load your own video classification dataset.""" def __init__(self, anno_path, data_path, mode='train', clip_len=8, crop_size=224, short_side_size=256, new_height=256, new_width=340, keep_aspect_ratio=True, num_segment=1, num_crop=1, test_num_segment=10, test_num_crop=3, args=None): self.anno_path = anno_path self.data_path = data_path self.mode = mode self.clip_len = clip_len self.crop_size = crop_size self.short_side_size = short_side_size self.new_height = new_height self.new_width = new_width self.keep_aspect_ratio = keep_aspect_ratio self.num_segment = num_segment self.test_num_segment = test_num_segment self.num_crop = num_crop self.test_num_crop = test_num_crop self.args = args self.aug = False self.rand_erase = False if self.mode in ['train']: self.aug = True if self.args.reprob > 0: self.rand_erase = True if VideoReader is None: raise ImportError("Unable to import `decord` which is required to read videos.") import pandas as pd cleaned = pd.read_csv(self.anno_path, header=None, delimiter=' ') self.dataset_samples = list(cleaned.values[:, 0]) self.label_array = list(cleaned.values[:, 1]) if (mode == 'train'): pass elif (mode == 'validation'): self.data_transform = video_transforms.Compose([ video_transforms.Resize(self.short_side_size, interpolation='bilinear'), video_transforms.CenterCrop(size=(self.crop_size, self.crop_size)), volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) elif mode == 'test': self.data_resize = video_transforms.Compose([ video_transforms.Resize(size=(short_side_size), interpolation='bilinear') ]) self.data_transform = video_transforms.Compose([ volume_transforms.ClipToTensor(), video_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) self.test_seg = [] self.test_dataset = [] self.test_label_array = [] for ck in range(self.test_num_segment): for cp in range(self.test_num_crop): for idx in range(len(self.label_array)): sample_label = self.label_array[idx] self.test_label_array.append(sample_label) self.test_dataset.append(self.dataset_samples[idx]) self.test_seg.append((ck, cp)) def __getitem__(self, index): if self.mode == 'train': args = self.args scale_t = 1 sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample, sample_rate_scale=scale_t) # T H W C if len(buffer) == 0: while len(buffer) == 0: warnings.warn("video {} not correctly loaded during training".format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample, sample_rate_scale=scale_t) if args.num_sample > 1: frame_list = [] label_list = [] index_list = [] for _ in range(args.num_sample): new_frames = self._aug_frame(buffer, args) label = self.label_array[index] frame_list.append(new_frames) label_list.append(label) index_list.append(index) return frame_list, label_list, index_list, {} else: buffer = self._aug_frame(buffer, args) return buffer, self.label_array[index], index, {} elif self.mode == 'validation': sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample) if len(buffer) == 0: while len(buffer) == 0: warnings.warn("video {} not correctly loaded during validation".format(sample)) index = np.random.randint(self.__len__()) sample = self.dataset_samples[index] buffer = self.loadvideo_decord(sample) buffer = self.data_transform(buffer) return buffer, self.label_array[index], sample.split("/")[-1].split(".")[0] elif self.mode == 'test': sample = self.test_dataset[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample) while len(buffer) == 0: warnings.warn("video {}, temporal {}, spatial {} not found during testing".format(\ str(self.test_dataset[index]), chunk_nb, split_nb)) index = np.random.randint(self.__len__()) sample = self.test_dataset[index] chunk_nb, split_nb = self.test_seg[index] buffer = self.loadvideo_decord(sample) buffer = self.data_resize(buffer) if isinstance(buffer, list): buffer = np.stack(buffer, 0) spatial_step = 1.0 * (max(buffer.shape[1], buffer.shape[2]) - self.short_side_size) \ / (self.test_num_crop - 1) temporal_start = chunk_nb # 0/1 spatial_start = int(split_nb * spatial_step) if buffer.shape[1] >= buffer.shape[2]: buffer = buffer[temporal_start::2, \ spatial_start:spatial_start + self.short_side_size, :, :] else: buffer = buffer[temporal_start::2, \ :, spatial_start:spatial_start + self.short_side_size, :] buffer = self.data_transform(buffer) return buffer, self.test_label_array[index], sample.split("/")[-1].split(".")[0], \ chunk_nb, split_nb else: raise NameError('mode {} unkown'.format(self.mode)) def _aug_frame( self, buffer, args, ): aug_transform = video_transforms.create_random_augment( input_size=(self.crop_size, self.crop_size), auto_augment=args.aa, interpolation=args.train_interpolation, ) buffer = [ transforms.ToPILImage()(frame) for frame in buffer ] buffer = aug_transform(buffer) buffer = [transforms.ToTensor()(img) for img in buffer] buffer = torch.stack(buffer) # T C H W buffer = buffer.permute(0, 2, 3, 1) # T H W C # T H W C buffer = tensor_normalize( buffer, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] ) # T H W C -> C T H W. buffer = buffer.permute(3, 0, 1, 2) # Perform data augmentation. scl, asp = ( [0.08, 1.0], [0.75, 1.3333], ) buffer = spatial_sampling( buffer, spatial_idx=-1, min_scale=256, max_scale=320, crop_size=self.crop_size, random_horizontal_flip=False if args.data_set == 'SSV2' else True, inverse_uniform_sampling=False, aspect_ratio=asp, scale=scl, motion_shift=False ) if self.rand_erase: erase_transform = RandomErasing( args.reprob, mode=args.remode, max_count=args.recount, num_splits=args.recount, device="cpu", ) buffer = buffer.permute(1, 0, 2, 3) buffer = erase_transform(buffer) buffer = buffer.permute(1, 0, 2, 3) return buffer def loadvideo_decord(self, sample, sample_rate_scale=1): """Load video content using Decord""" fname = sample if not (os.path.exists(fname)): return [] # avoid hanging issue if os.path.getsize(fname) < 1 * 1024: print('SKIP: ', fname, " - ", os.path.getsize(fname)) return [] try: if self.keep_aspect_ratio: vr = VideoReader(fname, num_threads=1, ctx=cpu(0)) else: vr = VideoReader(fname, width=self.new_width, height=self.new_height, num_threads=1, ctx=cpu(0)) except: print("video cannot be loaded by decord: ", fname) return [] if self.mode == 'test': all_index = [] tick = len(vr) / float(self.num_segment) all_index = list(np.array([int(tick / 2.0 + tick * x) for x in range(self.num_segment)] + [int(tick * x) for x in range(self.num_segment)])) while len(all_index) < (self.num_segment * self.test_num_segment): all_index.append(all_index[-1]) all_index = list(np.sort(np.array(all_index))) vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer # handle temporal segments average_duration = len(vr) // self.num_segment all_index = [] if average_duration > 0: all_index += list(np.multiply(list(range(self.num_segment)), average_duration) + np.random.randint(average_duration, size=self.num_segment)) elif len(vr) > self.num_segment: all_index += list(np.sort(np.random.randint(len(vr), size=self.num_segment))) else: all_index += list(np.zeros((self.num_segment,))) all_index = list(np.array(all_index)) vr.seek(0) buffer = vr.get_batch(all_index).asnumpy() return buffer def __len__(self): if self.mode != 'test': return len(self.dataset_samples) else: return len(self.test_dataset) # Path: datasets.py import os from torchvision import transforms from transforms import * from kinetics import VideoClsDataset from ssv2 import SSVideoClsDataset def build_dataset(is_train, test_mode, args): if args.data_set == 'Kinetics-400': mode = None anno_path = None if is_train is True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode is True: mode = 'test' # anno_path = os.path.join(args.data_path, 'kinetics400_val_list_videos.txt') anno_path = os.path.join(args.data_path, 'test.csv') else: mode = 'validation' # anno_path = os.path.join(args.data_path, 'kinetics400_val_list_videos.txt') anno_path = os.path.join(args.data_path, 'val.csv') dataset = VideoClsDataset( anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args) nb_classes = 400 elif args.data_set == 'SSV2': mode = None anno_path = None if is_train is True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode is True: mode = 'test' anno_path = os.path.join(args.data_path, 'test.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = SSVideoClsDataset( anno_path=anno_path, data_path='/', mode=mode, clip_len=1, num_segment=args.num_frames, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args) nb_classes = 174 elif args.data_set == 'UCF101': mode = None anno_path = None if is_train is True: mode = 'train' anno_path = os.path.join(args.data_path, 'train.csv') elif test_mode is True: mode = 'test' anno_path = os.path.join(args.data_path, 'test.csv') else: mode = 'validation' anno_path = os.path.join(args.data_path, 'val.csv') dataset = VideoClsDataset( anno_path=anno_path, data_path='/', mode=mode, clip_len=args.num_frames, frame_sample_rate=args.sampling_rate, num_segment=1, test_num_segment=args.test_num_segment, test_num_crop=args.test_num_crop, num_crop=1 if not test_mode else 3, keep_aspect_ratio=True, crop_size=args.input_size, short_side_size=args.short_side_size, new_height=256, new_width=320, args=args)
nb_classes = 101
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: SEU-ProactiveSecurity-Group/MalPurifier # Path: core/attack/base_attack.py class BaseAttack(Module): """ 攻击的抽象类 参数 --------- @param is_attacker, Boolean, 扮演攻击者的角色(注意:防御者进行对抗性训练) @param oblivion, Boolean, 是否知道敌手的指标 @param kappa, float, 攻击信心值 @param manipulation_x, boolean 向量显示可修改的APIs @param omega, 由4个集合组成的列表,每个集合都包含与每个api对应的相互依赖的api的索引 @param device, 'cpu' 或 'cuda' """ def __init__(self, is_attacker=True, oblivion=False, kappa=1., manipulation_x=None, omega=None, device=None): # 调用父类的构造函数 super(BaseAttack, self).__init__() # 是否是攻击者 self.is_attacker = is_attacker # 是否知道对手的指标 self.oblivion = oblivion # 攻击的信心值 self.kappa = kappa # 可修改的APIs self.manipulation_x = manipulation_x # 运行设备,CPU或CUDA(GPU) self.device = device # 与每个api对应的相互依赖的api的索引集合 self.omega = omega # 反向特征的对象 self.inverse_feature = InverseDroidFeature() # 进行初始化操作 self.initialize() def initialize(self): # 判断是否指定了可操作的APIs if self.manipulation_x is None: # 未指定时,从inverse_feature获取默认的可操作APIs self.manipulation_x = self.inverse_feature.get_manipulation() # 将manipulation_x转为LongTensor类型,并移动到指定的设备上(CPU或GPU) self.manipulation_x = torch.LongTensor(self.manipulation_x).to(self.device) # 判断是否指定了与每个api对应的相互依赖的api的索引 if self.omega is None: # 未指定时,从inverse_feature获取默认的相互依赖的APIs self.omega = self.inverse_feature.get_interdependent_apis() # 使用one_hot编码处理self.omega,并计算每列的和,将结果存入self.omega中 # 这样每个API的值就表示它依赖于哪些APIs self.omega = torch.sum( F.one_hot(torch.tensor(self.omega), num_classes=len(self.inverse_feature.vocab)), dim=0).to(self.device) # 获取API标志位 api_flag = self.inverse_feature.get_api_flag() # 将API标志位转为布尔类型的LongTensor,并移动到指定的设备上 self.api_flag = torch.LongTensor(api_flag).bool().to(self.device) def perturb(self, model, x, adj=None, label=None): """ 扰动节点特征向量 参数 -------- @param model: 被攻击的模型 @param x: torch.FloatTensor, 节点特征向量,每个都代表一个API @param adj: torch.FloatTensor或None, 邻接矩阵(如果不为None,则其形状是[number_of_graphs, batch_size, vocab_dim, vocab_dim]) @param label: torch.LongTensor, 真实的标签 """ # 这是一个抽象方法,需要在子类中进行具体实现 raise NotImplementedError def produce_adv_mal(self, x_mod_list, feature_path_list, app_dir, save_dir=None): """ 在实践中生成对抗性恶意软件。 参数 -------- @param x_mod_list: tensor的列表,每个tensor对应于应用于特性的数值修改。 @param feature_path_list: 特征路径的列表,每个路径对应于调用图保存的文件。 @param app_dir: 字符串,指向原始恶意应用的目录(或路径列表)。 @param save_dir: 用于保存生成的APK的目录。 """ if len(x_mod_list) <= 0: return assert len(x_mod_list) == len(feature_path_list) assert isinstance(x_mod_list[0], (torch.Tensor, np.ndarray)) # 如果未指定保存目录,则默认为'/tmp/adv_mal_cache' if save_dir is None: save_dir = os.path.join('/tmp/', 'adv_mal_cache') if not os.path.exists(save_dir): utils.mkdir(save_dir) # 将修改转换为具体的指令 x_mod_instructions = [self.inverse_feature.inverse_map_manipulation(x_mod) for x_mod in x_mod_list] # 根据提供的应用目录或应用路径列表,获取具体的应用路径 if os.path.isdir(app_dir): app_path_list = [os.path.join(app_dir, os.path.basename(os.path.splitext(feat_p)[0])) for feat_p in feature_path_list] elif isinstance(app_dir, list): app_path_list = app_dir else: raise ValueError("期望应用目录或路径列表,但得到 {}.".format(type(app_dir))) assert np.all([os.path.exists(app_path) for app_path in app_path_list]), "找不到所有的应用路径。" # 准备多进程参数 pargs = [(x_mod_instr, feature_path, app_path, save_dir) for x_mod_instr, feature_path, app_path in zip(x_mod_instructions, feature_path_list, app_path_list) if not os.path.exists(os.path.join(save_dir, os.path.splitext(os.path.basename(app_path))[0] + '_adv'))] # 设置进程数,至少为1 cpu_count = multiprocessing.cpu_count() - 2 if multiprocessing.cpu_count() - 2 > 1 else 1 pool = multiprocessing.Pool(cpu_count, initializer=utils.pool_initializer) # 并行处理,按顺序保持 for res in pool.map(InverseDroidFeature.modify_wrapper, pargs): if isinstance(res, Exception): logger.exception(res) pool.close() pool.join() def check_lambda(self, model): """ 检查模型是否具有检测功能并是否知道关于对手的信息。 """ if hasattr(model, 'is_detector_enabled') and (not self.oblivion): return True else: return False def get_loss(self, model, adv_x, label, lambda_=None): # 如果模型有'is_detector_enabled'属性,说明模型不仅仅是分类器,还有检测器的功能。 if hasattr(model, 'is_detector_enabled'): logits_f, prob_g = model.forward(adv_x) else: # 否则,我们只从模型获取分类的logits logits_f = model.forward(adv_x) # print(type(logits_f)) # print("logits_f.shape:", logits_f.shape) # 计算交叉熵损失,其中'reduction='none''意味着对每个样本都计算损失,而不是求平均 ce = F.cross_entropy(logits_f, label, reduction='none') # 获取模型的预测类别 y_pred = logits_f.argmax(1) # 如果模型有检测器功能,并且我们没有选择'oblivion'(即我们知道对方是否是对手) if hasattr(model, 'is_detector_enabled') and (not self.oblivion): assert lambda_ is not None # 获取每个样本的tau值 tau = model.get_tau_sample_wise(y_pred) # 根据是否为攻击者,计算不同的损失 if self.is_attacker: loss_no_reduction = ce + lambda_ * (torch.clamp(tau - prob_g, max=self.kappa)) else: loss_no_reduction = ce + lambda_ * (tau - prob_g) # 判断哪些样本是被成功攻击的 done = (y_pred != label) & (prob_g <= tau) else: # 如果没有检测器功能,损失只是交叉熵 loss_no_reduction = ce # 判断哪些样本是被成功攻击的 done = y_pred != label return loss_no_reduction, done def get_scores(self, model, pertb_x, label, lmda=1.): # 如果模型有'is_detector_enabled'属性,说明模型不仅仅是分类器,还有检测器的功能。 if hasattr(model, 'is_detector_enabled'): logits_f, prob_g = model.forward(pertb_x) else: # 否则,我们只从模型获取分类的logits logits_f = model.forward(pertb_x) # 获取模型的预测类别 y_pred = logits_f.argmax(1) # 如果模型有检测器功能,并且我们没有选择'oblivion' if hasattr(model, 'is_detector_enabled') and (not self.oblivion): # 获取每个样本的tau值 tau = model.get_tau_sample_wise(y_pred) # 判断哪些样本是被成功攻击的 done = (y_pred != label) & (prob_g <= tau) else: # 判断哪些样本是被成功攻击的 done = y_pred != label return done # Path: tools/utils.py ENC_KEY = 'cab228a122d3486bac7fab148e8b5aba' MSG = "No such directory or file {} exists!".format(sample_dir) MSG = "A directory or a list of paths are allowed!" def pool_initializer(): def retrive_files_set(base_dir, dir_ext, file_ext): def get_file_name(root_dir, file_ext): def check_dir(sample_dir): def dump_joblib(data, path): def read_joblib(path): def load_json(json_path): def dump_json(obj_dict, file_path): def dump_pickle(data, path, use_gzip=False): def read_pickle(path, use_gzip=False): def dump_pickle_frd_space(data, path): def read_pickle_frd_space(path): def dump_list_of_lists(data, path): def read_list_of_lists(path): def mkdir(target): def read_txt(path, mode='r'): def dump_txt(data_str, path, mode='w'): def read_file_by_fileinput(file_path, inplace=True): def __init__(self, manager, use_cache=True): def is_cached(self, key): def reset(self): def get(self, key): def cache(self, key, img, lbl): def build_kwargs(keys, arg_dict): def inverse_kwargs(vars): def save_args(fout, args): def load_args(fout): def get_group_args(args, args_parser, title): def tensor_coo_sp_to_ivs(sparse_tensor): def ivs_to_tensor_coo_sp(ivs, device='cpu'): def sp_to_symmetric_sp(sparse_mx): def sparse_mx_to_torch_sparse_tensor(sparse_mx): def to_tensor(feature_x=None, labels=None, device='cpu'): def _to_torch_tensor(mat): def to_device(feature_x=None, labels=None, device='cpu'): def psn(x_tensor, prob, lower_value=0., upper_value=1.): def __init__(self): def __call__(self, module): def round_x(x, alpha=0.5): def get_x0(x, rounding_threshold=0.5, is_sample=False): def or_tensors(x_1, x_2): def xor_tensors(x_1, x_2): def get_mal_data(x_batch, y_batch): def get_mal_ben_data(x_batch, y_batch): def java_class_name2smali_name(cls): def remove_duplicate(components): def crypt_identifier(idf, seed=2345): def md5_transform(): def random_string(code): def sha1_transform(): def string_on_code(code): def md5_transform(): def random_name(seed=2345, code='abc'): def apply_encryption(base_string): def get_sha256(file_path): class SimplifyClass: class NonnegWeightConstraint(object): # Path: config.py def parser_config(): # Path: core/attack/salt_and_pepper.py import torch import numpy as np from core.attack.base_attack import BaseAttack from tools import utils from config import logging, ErrorHandler logger = logging.getLogger('core.attack.salt_and_pepper') logger.addHandler(ErrorHandler) EXP_OVER_FLOW = 1e-120 class Salt_and_pepper(BaseAttack): def __init__(self, ben_x, oblivion=False, device=None): super(Salt_and_pepper, self).__init__(oblivion=oblivion, device=device) self.ben_x = ben_x def perturb(self, model, x, trials=10, epsilon=10, max_eta=0.001, repetition=10, seed=0, is_apk=False, verbose=False): # 如果输入x为空或长度小于等于0,返回空列表 if x is None or len(x) <= 0: return [] # 如果self.ben_x长度小于等于0,直接返回x if len(self.ben_x) <= 0: return x # trials参数不能超过self.ben_x的长度 trials = trials if trials < len(self.ben_x) else len(self.ben_x) # 获取模型所在的设备(例如:CPU或CUDA) device = model.device # 假设模型有一个device属性 torch.manual_seed(seed) # 设置随机种子 success_flags = [] # 用于记录每次尝试是否成功的标志 x_mod_list = [] # 用于记录每次尝试修改后的x # 用于存储对抗样本的数据
adv_x_list = []
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: IDEA-XL/InstructMol # Path: llava/constants.py IMAGE_TOKEN_INDEX = -200 # Path: llava/constants.py DEFAULT_IMAGE_TOKEN = "<image>" # Path: llava/constants.py DEFAULT_IM_START_TOKEN = "<im_start>" # Path: llava/constants.py DEFAULT_IM_END_TOKEN = "<im_end>" # Path: llava/conversation.py class SeparatorStyle(Enum): class Conversation: SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge def get_prompt(self): def append_message(self, role, message): def get_images(self, return_pil=False): def expand2square(pil_img, background_color=(122, 116, 104)): def to_gradio_chatbot(self): def copy(self): def dict(self): # Path: llava/model/builder.py def load_pretrained_model( model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", mm_encoder_cfg=None, **kwargs ): kwargs.update({"device_map": device_map}) if load_8bit: kwargs['load_in_8bit'] = True elif load_4bit: kwargs['load_in_4bit'] = True kwargs['quantization_config'] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4' ) else: kwargs['torch_dtype'] = torch.float16 if 'llava' in model_name.lower(): # Load LLaVA model if 'lora' in model_name.lower() and model_base is not None: lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) if mm_encoder_cfg is not None: lora_cfg_pretrained = update_pretrained_config(lora_cfg_pretrained, mm_encoder_cfg) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) print('Loading LLaVA from base model...') # currently changed to LlavaGraphLlamaForCausalLM model = LlavaGraphLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) # model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features if model.lm_head.weight.shape[0] != token_num: model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) print('Loading additional LLaVA weights...') if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') else: # this is probably from HF Hub from huggingface_hub import hf_hub_download def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder) return torch.load(cache_file, map_location='cpu') non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} if any(k.startswith('model.model.') for k in non_lora_trainables): non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} model.load_state_dict(non_lora_trainables, strict=False) from peft import PeftModel print('Loading LoRA weights...') model = PeftModel.from_pretrained(model, model_path) print('Merging LoRA weights...') model = model.merge_and_unload() print('Model is loaded...') elif model_base is not None: # this may be mm projector only print('Loading LLaVA from base model...') if 'mpt' in model_name.lower(): if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py')) tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) model = LlavaMPTForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) cfg_pretrained = AutoConfig.from_pretrained(model_path) if mm_encoder_cfg is not None: cfg_pretrained = update_pretrained_config(cfg_pretrained, mm_encoder_cfg) # currently changed to LlavaGraphLlamaForCausalLM model = LlavaGraphLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} model.load_state_dict(mm_projector_weights, strict=False) else: if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = LlavaMPTForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) else: # Load language model if model_base is not None: # PEFT model from peft import PeftModel tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") print(f"Loading LoRA weights from {model_path}") model = PeftModel.from_pretrained(model, model_path) print(f"Merging weights") model = model.merge_and_unload() print('Convert to FP16...') model.to(torch.float16) else: use_fast = False if 'mpt' in model_name.lower(): tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) else: tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) image_processor = None if 'llava' in model_name.lower(): mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) if mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) model.resize_token_embeddings(len(tokenizer)) if hasattr(model, 'get_vision_tower'): vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model() vision_tower.to(device='cuda', dtype=torch.float16) image_processor = vision_tower.image_processor if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 return tokenizer, model, image_processor, context_len # Path: llava/utils.py def disable_torch_init(): """ Disable the redundant torch default initialization to accelerate model creation. """ import torch setattr(torch.nn.Linear, "reset_parameters", lambda self: None) setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) # Path: llava/mm_utils.py def tokenizer_image_token(prompt:str, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == 'pt': return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f'Unsupported tensor type: {return_tensors}') return input_ids # Path: llava/mm_utils.py def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith('checkpoint-'): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] # Path: llava/mm_utils.py class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: bs = output_ids.shape[0] if bs == 1: offset = min(output_ids.shape[1] - self.start_len, 3) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] # cast to device for keyword_id in self.keyword_ids: if output_ids[0, -keyword_id.shape[0]:] == keyword_id: return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False else: raise NotImplementedError("Only support batch size 1 (yet)") # Path: llava/mm_utils.py class MM_ENCODER_CFG(BaseModel): gin_num_layers: int = 5 gin_hidden_dim: int = 300 drop_ratio: float = 0.1 init_checkpoint: str = None graph_pooling: str = 'mean' # Path: llava/mol_utils.py def check_smiles_validity(smiles:str)->bool: # check if valid smiles m = Chem.MolFromSmiles(smiles,sanitize=False) if m is None: return False return True # Path: llava/datasets/smiles2graph.py def smiles2graph(smiles_string)->Dict: """ Converts SMILES string to graph Data object :input: SMILES string (str) :return: graph object """ mol = Chem.MolFromSmiles(smiles_string) # atoms atom_features_list = [] for atom in mol.GetAtoms(): atom_features_list.append(atom_to_feature(atom)) x = np.array(atom_features_list, dtype = np.int64) # bonds num_bond_features = 2 if len(mol.GetBonds()) > 0: # mol has bonds edges_list = [] edge_features_list = [] for bond in mol.GetBonds(): i = bond.GetBeginAtomIdx() j = bond.GetEndAtomIdx() edge_feature = bond_to_feature(bond) # add edges in both directions edges_list.append((i, j)) edge_features_list.append(edge_feature) edges_list.append((j, i)) edge_features_list.append(edge_feature) # data.edge_index: Graph connectivity in COO format with shape [2, num_edges] edge_index = np.array(edges_list, dtype = np.int64).T # data.edge_attr: Edge feature matrix with shape [num_edges, num_edge_features] edge_attr = np.array(edge_features_list, dtype = np.int64) else: # mol has no bonds edge_index = np.empty((2, 0), dtype = np.int64) edge_attr = np.empty((0, num_bond_features), dtype = np.int64) graph = dict() graph['edge_index'] = edge_index graph['edge_feat'] = edge_attr graph['node_feat'] = x graph['num_nodes'] = len(x) return graph # Path: llava/serve/cli_graph.py import argparse import torch from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, MM_ENCODER_CFG from llava.mol_utils import check_smiles_validity from llava.datasets.smiles2graph import smiles2graph from typing import Dict from transformers import TextStreamer from torch_geometric.data import Data def _convert_dict_to_Data(data_dict: Dict) -> Data: return Data( x=torch.asarray(data_dict['node_feat']), edge_attr=torch.asarray(data_dict['edge_feat']), edge_index=torch.asarray(data_dict['edge_index']), ) def main(args): # device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Model disable_torch_init() model_name = get_model_name_from_path(args.model_path) # graph encoder config mm_encoder_cfg = MM_ENCODER_CFG(init_checkpoint=args.graph_checkpoint_path) mm_encoder_cfg = mm_encoder_cfg.dict() # load model tokenizer, model, _, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, mm_encoder_cfg=mm_encoder_cfg) if 'llama-2' in model_name.lower(): conv_mode = "llava_llama_2" elif "v1" in model_name.lower(): conv_mode = "llava_v1" elif "mpt" in model_name.lower():
conv_mode = "mpt"
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: iann838/pulsefire # Path: pulsefire/caches.py class MemoryCache(BaseCache): """Memory Cache. This cache lives in-memory, be aware of memory footprint when caching large responses. Example: ```python MemoryCache() ``` """ cache: dict[str, tuple[Any, float]] def __init__(self) -> None: self.cache = {} self.last_expired = time.time() async def get[T](self, key: str) -> T: value, expire = self.cache[key] if time.time() > expire: self.cache.pop(key, None) raise KeyError(key) return value async def set(self, key: str, value: Any, ttl: float) -> None: if ttl <= 0: return self.cache[key] = [value, time.time() + ttl] if time.time() - self.last_expired > 60: self.last_expired = time.time() for old_key, (_, expire) in self.cache.items(): if time.time() > expire: self.cache.pop(old_key, None) async def clear(self) -> None: self.cache.clear() # Path: pulsefire/caches.py class DiskCache(BaseCache): """Disk Cache. Requires `diskcache` installed. This cache lives on disk, meaning cheaper storage but slower access. Example: ```python DiskCache() # Cache on tmp DiskCache("folder") # Cache on folder/ ``` Parameters: directory: Cache directory, uses tmp if None. shards: Number of shards to distribute writes. serializer: Serializer package supporting `loads` and `dumps`. """ def __init__(self, directory: str | None = None, shards: int = 8, serializer=pickle) -> None: import diskcache self.directory = directory self.serializer = serializer self.cache = diskcache.FanoutCache(directory, shards) @sync_to_async() def get[T](self, key: str) -> T: value = self.cache.get(key) if value is None: raise KeyError(key) return self.serializer.loads(value) @sync_to_async() def set(self, key: str, value: Any, ttl: float) -> None: if ttl <= 0: return if math.isinf(ttl): ttl = None self.cache.set(key, self.serializer.dumps(value), ttl) @sync_to_async() def clear(self) -> None: self.cache.clear() # Path: pulsefire/clients.py class CDragonClient(BaseClient): """Community Dragon Client. | Resources | Support | | -------------------- | -------------------------- | | League of Legends | ✅ | | Legends of Runeterra | ❎ Use DDragon instead. | | Teamfight Tactics | ✅ | | Valorant | ❎ | Example: ```python async with CDragonClient( default_params={"patch": "latest", "locale": "default"} ) as client: champion = await client.get_lol_v1_champion(id=777) assert champion["name"] == "Yone" ``` """ Patch = Literal["latest", "pbe"] | _str Locale = Literal[ "default", "ar_ae", "cs_cz", "de_de", "el_gr", "en_au", "en_gb", "en_ph", "en_sg", "en_us", "es_ar", "es_es", "es_mx", "fr_fr", "hu_hu", "it_it", "ja_jp", "ko_kr", "pl_pl", "pt_br", "ro_ro", "ru_ru", "th_th", "tr_tr", "vi_vn", "vn_vn", "zh_cn", "zh_my", "zh_tw", ] | _str def __init__( self, *, base_url: str = "https://raw.communitydragon.org", default_params: dict[str, Any] = {"patch": ..., "locale": ...}, default_headers: dict[str, str] = {}, default_queries: dict[str, str] = {}, middlewares: list[Middleware] = [ json_response_middleware(), http_error_middleware(), ], ) -> None: super().__init__( base_url=base_url, default_params=default_params, default_headers=default_headers, default_queries=default_queries, middlewares=middlewares ) async def get_lol_champion_bin(self, *, patch: Patch = ..., key_lower: str = ...) -> dict[str, CDragonSchema.LolChampionBinValue]: return await self.invoke("GET", "/{patch}/game/data/characters/{key_lower}/{key_lower}.bin.json") async def get_lol_v1_champion(self, *, patch: Patch = ..., locale: Locale = ..., id: int = ...) -> CDragonSchema.LolV1Champion: return await self.invoke("GET", "/{patch}/plugins/rcp-be-lol-game-data/global/{locale}/v1/champions/{id}.json") async def get_lol_v1_champion_summary(self, *, patch: Patch = ..., locale: Locale = ...) -> list[CDragonSchema.LolV1ChampionInfo]: return await self.invoke("GET", "/{patch}/plugins/rcp-be-lol-game-data/global/{locale}/v1/champion-summary.json") async def get_lol_v1_items(self, *, patch: Patch = ..., locale: Locale = ...) -> list[CDragonSchema.LolV1Item]: return await self.invoke("GET", "/{patch}/plugins/rcp-be-lol-game-data/global/{locale}/v1/items.json") async def get_lol_v1_perks(self, *, patch: Patch = ..., locale: Locale = ...) -> list[CDragonSchema.LolV1Perk]: return await self.invoke("GET", "/{patch}/plugins/rcp-be-lol-game-data/global/{locale}/v1/perks.json") async def get_lol_v1_summoner_spells(self, *, patch: Patch = ..., locale: Locale = ...) -> list[CDragonSchema.LolV1SummonerSpell]: return await self.invoke("GET", "/{patch}/plugins/rcp-be-lol-game-data/global/{locale}/v1/summoner-spells.json") async def get_lol_v1_profile_icons(self, *, patch: Patch = ..., locale: Locale = ...) -> list[CDragonSchema.LolV1ProfileIcon]: return await self.invoke("GET", "/{patch}/plugins/rcp-be-lol-game-data/global/{locale}/v1/profile-icons.json") async def get_tft_data(self, *, patch: Patch = ..., locale: Locale = ...) -> CDragonSchema.TftData: return await self.invoke("GET", "/{patch}/cdragon/tft/{locale}.json") # Path: pulsefire/functools.py def async_to_sync(runner: Callable[[Awaitable[Any]], Any] = asyncio.run): """Convert a coroutine function to run synchronously. Use as decorator `@async_to_sync()`. Example: ```python @async_to_sync() async def sample_func(number: int): ... sample_func(0) ``` Parameters: runner: A callable that runs the awaitable synchronously. Raises: TypeError: When `func` is not a coroutine function. """ def decorator[**P, R](func: Callable[P, Awaitable[R]]) -> Callable[P, R]: if not inspect.iscoroutinefunction(func): raise TypeError(f"{func} is not a coroutine function") @functools.wraps(func) def wrapper(*args: P.args, **kwargs: P.kwargs) -> R: return runner(func(*args, **kwargs)) return wrapper return decorator # Path: pulsefire/middlewares.py def cache_middleware(cache: BaseCache, rules: list[tuple[Callable[[Invocation], bool], float]]): """Cache middleware. Recommended to be placed before response deserialization middlewares. Example: ```python cache = MemoryCache() cache_middleware(cache, [ (lambda inv: inv.invoker.__name__ == "get_lol_v1_champion", 3600), (lambda inv: inv.invoker.__name__ ..., float("inf")), # cache indefinitely. (lambda inv: inv.url ..., 3600), (lambda inv: inv.params ..., 3600), ]) ``` Parameters: cache: Cache instance. rules: Cache rules, defined by a list of (condition, ttl). """ rules.append((lambda _: True, 0)) # Add default def constructor(next: MiddlewareCallable): async def middleware(invocation: Invocation): key = f"{invocation.method} {invocation.url}" for cond, ttl in rules: if not cond(invocation): continue try: value = await cache.get(key) except KeyError: value = await next(invocation) await cache.set(key, value, ttl) return value raise RuntimeError("rules out of range") return middleware return constructor # Path: pulsefire/middlewares.py def http_error_middleware(max_retries: int = 3): """HTTP error middleware. Should be positioned as late as possible and before rate limiter middlewares (if any) in the client middlewares list. Responses are handled differently based on their HTTP status: | Status | Measures | | ------ | ------------------------------------- | | 2XX | Return response. | | 3XX | Raise `aiohttp.ClientResponseError`. | | 4XX | Raise `aiohttp.ClientResponseError`. | | 429 | Exponential retries (2^n). | | 5XX | Exponential retries (2^n). | Example: ```python http_error_middleware(3) ``` Parameters: max_retries: Number of retries to perform before giving up. Raises: aiohttp.ClientResponseError: When retries have exhausted. """ def constructor(next: MiddlewareCallable): async def middleware(invocation: Invocation): last_response: aiohttp.ClientResponse = None for attempt in range(max_retries + 1): if attempt: await asyncio.sleep(2 ** attempt) response: aiohttp.ClientResponse = await next(invocation) last_response = response if 300 > response.status >= 200: return response if not (response.status == 429 or response.status >= 500): response.raise_for_status() else: last_response.raise_for_status() return middleware return constructor # Path: pulsefire/middlewares.py def json_response_middleware(loads: Callable[[str | bytes | bytearray], Any] = json.loads): """JSON response middleware. Attempts to deserialize JSON responses regardless of content type, if an exception is raised during deserialization, bytes are returned instead. Example: ```python # Use orjson loads for 3~10x faster deserialization import orjson json_response_middleware(orjson.loads) ``` Parameters: loads: JSON decoder to be used on deserialization. """ def constructor(next: MiddlewareCallable): async def middleware(invocation: Invocation): response: aiohttp.ClientResponse = await next(invocation) try: return await response.json(encoding="utf-8", content_type=None, loads=loads) except Exception: return await response.read() return middleware return constructor # Path: tests/test_caches.py from contextlib import contextmanager from pulsefire.caches import ( MemoryCache, DiskCache ) from pulsefire.clients import CDragonClient from pulsefire.functools import async_to_sync from pulsefire.middlewares import ( cache_middleware, http_error_middleware, json_response_middleware, ) import asyncio import time @contextmanager def timer(): t1 = t2 = time.perf_counter() yield lambda: t2 - t1 t2 = time.perf_counter() @async_to_sync() async def test_memory_cache(): cache = MemoryCache() async with CDragonClient( default_params={"patch": "latest", "locale": "default"}, middlewares=[ cache_middleware(cache, [ (lambda inv: inv.invoker.__name__ == "get_lol_v1_champion", 10), (lambda inv: inv.invoker.__name__ == "get_lol_v1_items", 200), (lambda inv: inv.invoker.__name__ == "get_lol_v1_summoner_spells", float("inf")), ]), json_response_middleware(), http_error_middleware(), ] ) as client: with timer() as get_t: await client.get_lol_v1_items() assert get_t() > 0.02 with timer() as get_t: await client.get_lol_v1_items() assert get_t() < 0.002 with timer() as get_t: await client.get_lol_v1_summoner_spells() assert get_t() > 0.02 with timer() as get_t: await client.get_lol_v1_summoner_spells() assert get_t() < 0.002 with timer() as get_t: await client.get_lol_v1_summoner_spells() assert get_t() < 0.002 with timer() as get_t: await client.get_lol_v1_champion(id=777) assert get_t() > 0.02 with timer() as get_t: await client.get_lol_v1_champion(id=777) assert get_t() < 0.002 await asyncio.sleep(10) with timer() as get_t: await client.get_lol_v1_champion(id=777) assert get_t() > 0.02 @async_to_sync() async def test_disk_cache(): cache = DiskCache("tests/__pycache__/diskcache") await cache.clear() async with CDragonClient( default_params={"patch": "latest", "locale": "default"}, middlewares=[ cache_middleware(cache, [ (lambda inv: inv.invoker.__name__ == "get_lol_v1_champion", 10), (lambda inv: inv.invoker.__name__ == "get_lol_v1_items", 200), (lambda inv: inv.invoker.__name__ == "get_lol_v1_summoner_spells", float("inf")), ]), json_response_middleware(), http_error_middleware(), ] ) as client: with timer() as get_t: await client.get_lol_v1_items() assert get_t() > 0.02 with timer() as get_t: await client.get_lol_v1_items() assert get_t() < 0.015 with timer() as get_t: await client.get_lol_v1_summoner_spells() assert get_t() > 0.02 with timer() as get_t: await client.get_lol_v1_summoner_spells() assert get_t() < 0.002 with timer() as get_t: await client.get_lol_v1_summoner_spells() assert get_t() < 0.002 with timer() as get_t: await client.get_lol_v1_champion(id=777) assert get_t() > 0.02 with timer() as get_t:
await client.get_lol_v1_champion(id=777)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Vali-98/XTTS-RVC-UI # Path: infer_pack/modules.py LRELU_SLOPE = 0.1 class LayerNorm(nn.Module): class ConvReluNorm(nn.Module): class DDSConv(nn.Module): class WN(torch.nn.Module): class ResBlock1(torch.nn.Module): class ResBlock2(torch.nn.Module): class Log(nn.Module): class Flip(nn.Module): class ElementwiseAffine(nn.Module): class ResidualCouplingLayer(nn.Module): class ConvFlow(nn.Module): def __init__(self, channels, eps=1e-5): def forward(self, x): def __init__( self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout, ): def forward(self, x, x_mask): def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): def forward(self, x, x_mask, g=None): def __init__( self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0, ): def forward(self, x, x_mask, g=None, **kwargs): def remove_weight_norm(self): def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): def forward(self, x, x_mask=None): def remove_weight_norm(self): def __init__(self, channels, kernel_size=3, dilation=(1, 3)): def forward(self, x, x_mask=None): def remove_weight_norm(self): def forward(self, x, x_mask, reverse=False, **kwargs): def forward(self, x, *args, reverse=False, **kwargs): def __init__(self, channels): def forward(self, x, x_mask, reverse=False, **kwargs): def __init__( self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=0, gin_channels=0, mean_only=False, ): def forward(self, x, x_mask, g=None, reverse=False): def remove_weight_norm(self): def __init__( self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0, ): def forward(self, x, x_mask, g=None, reverse=False): # Path: infer_pack/attentions.py class Encoder(nn.Module): class Decoder(nn.Module): class MultiHeadAttention(nn.Module): class FFN(nn.Module): def __init__( self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.0, window_size=10, **kwargs ): def forward(self, x, x_mask): def __init__( self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0.0, proximal_bias=False, proximal_init=True, **kwargs ): def forward(self, x, x_mask, h, h_mask): def __init__( self, channels, out_channels, n_heads, p_dropout=0.0, window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False, ): def forward(self, x, c, attn_mask=None): def attention(self, query, key, value, mask=None): def _matmul_with_relative_values(self, x, y): def _matmul_with_relative_keys(self, x, y): def _get_relative_embeddings(self, relative_embeddings, length): def _relative_position_to_absolute_position(self, x): def _absolute_position_to_relative_position(self, x): def _attention_bias_proximal(self, length): def __init__( self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0.0, activation=None, causal=False, ): def forward(self, x, x_mask): def _causal_padding(self, x): def _same_padding(self, x): # Path: infer_pack/commons.py def init_weights(m, mean=0.0, std=0.01): def get_padding(kernel_size, dilation=1): def convert_pad_shape(pad_shape): def kl_divergence(m_p, logs_p, m_q, logs_q): def rand_gumbel(shape): def rand_gumbel_like(x): def slice_segments(x, ids_str, segment_size=4): def slice_segments2(x, ids_str, segment_size=4): def rand_slice_segments(x, x_lengths=None, segment_size=4): def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): def subsequent_mask(length): def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): def convert_pad_shape(pad_shape): def shift_1d(x): def sequence_mask(length, max_length=None): def generate_path(duration, mask): def clip_grad_value_(parameters, clip_value, norm_type=2): # Path: infer_pack/commons.py def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) # Path: infer_pack/commons.py def get_padding(kernel_size, dilation=1): return int((kernel_size * dilation - dilation) / 2) # Path: infer_pack/commons.py def init_weights(m, mean=0.0, std=0.01): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(mean, std) # Path: infer_pack/commons.py def init_weights(m, mean=0.0, std=0.01): def get_padding(kernel_size, dilation=1): def convert_pad_shape(pad_shape): def kl_divergence(m_p, logs_p, m_q, logs_q): def rand_gumbel(shape): def rand_gumbel_like(x): def slice_segments(x, ids_str, segment_size=4): def slice_segments2(x, ids_str, segment_size=4): def rand_slice_segments(x, x_lengths=None, segment_size=4): def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): def subsequent_mask(length): def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): def convert_pad_shape(pad_shape): def shift_1d(x): def sequence_mask(length, max_length=None): def generate_path(duration, mask): def clip_grad_value_(parameters, clip_value, norm_type=2): # Path: infer_pack/models.py import math, pdb, os import torch import numpy as np from time import time as ttime from torch import nn from torch.nn import functional as F from infer_pack import modules from infer_pack import attentions from infer_pack import commons from infer_pack.commons import init_weights, get_padding from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm from infer_pack.commons import init_weights from infer_pack import commons self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.n_flows = n_flows self.gin_channels = gin_channels self.flows = nn.ModuleList() for i in range(n_flows): self.flows.append( modules.ResidualCouplingLayer( channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True, ) ) self.flows.append(modules.Flip()) def forward(self, x, x_mask, g=None, reverse=False): if not reverse: for flow in self.flows: x, _ = flow(x, x_mask, g=g, reverse=reverse) else: for flow in reversed(self.flows): x = flow(x, x_mask, g=g, reverse=reverse) return x def remove_weight_norm(self): for i in range(self.n_flows): self.flows[i * 2].remove_weight_norm() class PosteriorEncoder(nn.Module): def __init__( self, in_channels, out_channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.hidden_channels = hidden_channels self.kernel_size = kernel_size self.dilation_rate = dilation_rate self.n_layers = n_layers self.gin_channels = gin_channels self.pre = nn.Conv1d(in_channels, hidden_channels, 1) self.enc = modules.WN( hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, ) self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) def forward(self, x, x_lengths, g=None): x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( x.dtype ) x = self.pre(x) * x_mask x = self.enc(x, x_mask, g=g) stats = self.proj(x) * x_mask m, logs = torch.split(stats, self.out_channels, dim=1) z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask return z, m, logs, x_mask def remove_weight_norm(self): self.enc.remove_weight_norm() class Generator(torch.nn.Module): def __init__( self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0, ): super(Generator, self).__init__() self.num_kernels = len(resblock_kernel_sizes) self.num_upsamples = len(upsample_rates) self.conv_pre = Conv1d( initial_channel, upsample_initial_channel, 7, 1, padding=3 ) resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 self.ups = nn.ModuleList() for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): self.ups.append( weight_norm( ConvTranspose1d( upsample_initial_channel // (2**i), upsample_initial_channel // (2 ** (i + 1)), k, u, padding=(k - u) // 2, ) ) ) self.resblocks = nn.ModuleList() for i in range(len(self.ups)): ch = upsample_initial_channel // (2 ** (i + 1)) for j, (k, d) in enumerate( zip(resblock_kernel_sizes, resblock_dilation_sizes) ):
self.resblocks.append(resblock(ch, k, d))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: facebookresearch/SOC-matching # Path: SOC_matching/gsbm_lib.py class EndPointGaussianPath(torch.nn.Module): def __init__(self, mean, sigma, gamma, basedrift=None): super(EndPointGaussianPath, self).__init__() print(f"mean.B: {mean.B}, gamma.B: {gamma.B}") assert mean.B == gamma.B self.B = mean.B self.T = mean.T self.S = gamma.T self.D = mean.D self.mean = mean # t: (T,) --> (B, T, D) self.sigma = sigma self.gamma = gamma # t: (T,) --> (B, T) self.basedrift = basedrift # xt: (*, T, D), t: (T,) --> (*, T, D) @property def device(self): return self.parameters().__next__().device def sample_xt(self, t, N): """marginal t: (T,) --> xt: (B, N, T, D) """ mean_t = self.mean(t) # (B, T, D) B, T, D = mean_t.shape assert t.shape == (T,) std_t = self.gamma(t).reshape(B, 1, T, 1) # (B, 1, T, 1) noise = torch.randn(B, N, T, D, device=t.device) # (B, N, T, D) xt = mean_t.unsqueeze(1) + std_t * noise assert xt.shape == noise.shape return xt def ft(self, t, xt, direction): """ t: (T,) xt: (B, N, T, D) === ft: (B, N, T, D) """ B, N, T, D = xt.shape assert t.shape == (T,) if self.basedrift == None: return torch.zeros_like(xt) sign = 1.0 if direction == "fwd" else -1 ft = self.basedrift( xt.reshape(B * N, T, D), t, ).reshape(B, N, T, D) return sign * ft # @profile def ut(self, t, xt, direction, create_graph_jvp=None, verbose=False): """ t: (T,) xt: (B, N, T, D) === ut: (B, N, T, D) """ assert (t > 0).all() and (t < 1).all() B, N, T, D = xt.shape if verbose: print(f"xt.shape: {xt.shape}") assert t.shape == (T,) create_graph = create_graph_jvp or self.training mean, dmean = torch.autograd.functional.jvp( self.mean, t, torch.ones_like(t), create_graph=create_graph ) if verbose: print(f"mean.shape: {mean.shape}, dmean.shape: {dmean.shape}") assert mean.shape == dmean.shape == (B, T, D) dmean = dmean.reshape(B, 1, T, D) mean = mean.reshape(B, 1, T, D) std, dstd = torch.autograd.functional.jvp( self.gamma, t, torch.ones_like(t).to(t.device), create_graph=create_graph ) assert std.shape == dstd.shape == (B, T) if direction == "fwd": R_inverse = torch.matmul(self.sigma, torch.transpose(self.sigma, 0, 1)) R_inverse_reshape = R_inverse.unsqueeze(0).unsqueeze(0).repeat(B, T, 1, 1) dstd_reshape = torch.diag_embed(dstd.unsqueeze(2).repeat(1, 1, D)) inverse_std_reshape = torch.diag_embed( (1 / std).unsqueeze(2).repeat(1, 1, D) ) a = torch.einsum( "...ij,...jk->...ik", ( dstd_reshape - torch.einsum( "...ij,...jk->...ik", R_inverse_reshape, 0.5 * inverse_std_reshape, ) ), inverse_std_reshape, ) drift_t = dmean + torch.einsum( "...ij,...j->...i", a.reshape(B, 1, T, D, D), xt - mean ) else: R_inverse = torch.matmul(self.sigma, torch.transpose(self.sigma, 0, 1)) R_inverse_reshape = R_inverse.unsqueeze(0).unsqueeze(0).repeat(B, T, 1, 1) dstd_reshape = torch.diag_embed(dstd.unsqueeze(2).repeat(1, 1, D)) inverse_std_reshape = torch.diag_embed( (1 / std).unsqueeze(2).repeat(1, 1, D) ) a = torch.einsum( "...ij,...jk->...ik", ( -dstd_reshape - torch.einsum( "...ij,...jk->...ik", R_inverse_reshape, 0.5 * inverse_std_reshape, ) ), inverse_std_reshape, ) drift_t = -dmean + torch.einsum( "...ij,...j->...i", a.reshape(B, 1, T, D, D), xt - mean ) ft = self.ft(t, xt, direction) assert drift_t.shape == ft.shape == xt.shape return drift_t - ft def ut_zeros(self, t, xt, direction, create_graph_jvp=None, verbose=False): return torch.zeros_like(xt).to(xt.device) def drift(self, x, t, N, direction): """ x: (B*N, D) t: (B*N,) === ut: (B*N, D) """ assert torch.allclose(t, t[0] * torch.ones_like(t)) BN, D = x.shape assert BN % N == 0 B = BN // N _t = t[0].reshape(1) _x = x.reshape(B, N, 1, D) u = self.ut(_t, _x, direction) assert u.shape == _x.shape return u.reshape(B * N, D) def forward(self, t, N, direction): """ t: (T,) === xt: (B, N, T, D) ut: (B, N, T, D) """ xt = self.sample_xt(t, N) B, N, T, D = xt.shape assert t.shape == (T,) ut = self.ut(t, xt, direction) assert ut.shape == xt.shape return xt, ut # Path: SOC_matching/gsbm_lib.py class GammaSpline(torch.nn.Module): def __init__(self, t, xt, sigma, fix_init=False, init_knots=1): """ t: (T,) xt: (B, T, 1) """ super(GammaSpline, self).__init__() B, T, D = xt.shape assert t.shape == (T,) and D == 1 self.T = T self.B = B self.sigma = sigma self.spline = EndPointSpline(t, xt, fix_init=fix_init, init_knots=init_knots) self.softplus = torch.nn.Softplus() self.sigmoid = torch.nn.Sigmoid() self.scale = 1.0 / self.softplus(torch.tensor([1.0])) @property def t(self): return self.spline.t @property def xt(self): return self.spline.xt @property def device(self): return self.spline.device def forward(self, t): base_gamma = brownian_motion_std(t, self.sigma) xt = self.spline(t).squeeze(-1) gamma = self.scale.to(xt.device) * base_gamma * self.softplus(xt) return gamma # Path: SOC_matching/gsbm_lib.py def init_spline(x0, x1, n_knots): T, (B, D) = n_knots, x0.shape assert x1.shape == (B, D) t = torch.linspace(0, 1, T, device=x0.device) tt = t.reshape(1, T, 1) xt = (1 - tt) * x0.reshape(B, 1, D) + tt * x1.reshape(B, 1, D) assert t.shape == (T,) assert xt.shape == (B, T, D) return MeanSpline(t, xt) # Path: SOC_matching/utils.py import numpy as np import torch import pickle import os import copy from tqdm.notebook import trange from omegaconf import OmegaConf from SOC_matching.gsbm_lib import EndPointGaussianPath, GammaSpline, init_spline (Phi_values_before_update) / (Phi_values_before_update - Phi_values_after_update + 1e-6) + 1e-6 ) x0 = ( just_stopped.unsqueeze(1) * ( x0_before + step_fraction.unsqueeze(1) * stop_inds.unsqueeze(1) * update ) + (1 - just_stopped.unsqueeze(1)) * x0 ) fractional_timestep = ( just_stopped * step_fraction**2 * dt + not_stopped * dt ) fractional_timesteps.append(fractional_timestep) stop_inds = sde.Phi(x0) > 0 stop_indicators.append(stop_inds) else: fractional_timesteps.append(dt * torch.ones(x0.shape[0]).to(x0.device)) stop_indicators.append(torch.ones(x0.shape[0]).to(x0.device)) xt.append(x0) controls.append(u0) if stopping_condition: log_path_weight_deterministic = ( log_path_weight_deterministic + fractional_timestep / lmbd * (-sde.f(t0, x0) - 0.5 * torch.sum(u0**2, dim=1)) ) log_path_weight_stochastic = log_path_weight_stochastic + torch.sqrt( fractional_timestep / lmbd ) * (-torch.sum(u0 * noise, dim=1)) else: log_path_weight_deterministic = ( log_path_weight_deterministic + dt / lmbd * (-sde.f(t0, x0) - 0.5 * torch.sum(u0**2, dim=1)) ) log_path_weight_stochastic = log_path_weight_stochastic + torch.sqrt( dt / lmbd ) * (-torch.sum(u0 * noise, dim=1)) log_terminal_weight = -sde.g(x0) / lmbd if detach: return ( torch.stack(xt).detach(), torch.stack(noises).detach(), torch.stack(stop_indicators).detach(), torch.stack(fractional_timesteps).detach() if len(fractional_timesteps) > 0 else None, log_path_weight_deterministic.detach(), log_path_weight_stochastic.detach(), log_terminal_weight.detach(), torch.stack(controls).detach(), ) else: return ( torch.stack(xt), torch.stack(noises), torch.stack(stop_indicators), torch.stack(fractional_timesteps).detach() if len(fractional_timesteps) > 0 else None, log_path_weight_deterministic, log_path_weight_stochastic, log_terminal_weight, torch.stack(controls), ) def control_objective( sde, x0, ts, lmbd, batch_size, total_n_samples=65536, verbose=False ): n_batches = int(total_n_samples // batch_size) effective_n_samples = n_batches * batch_size for k in range(n_batches): state0 = x0.repeat(batch_size, 1) ( _, _, _, _, log_path_weight_deterministic, _, log_terminal_weight, _, ) = stochastic_trajectories( sde, state0, ts.to(state0), lmbd, verbose=verbose, ) if k == 0: ctrl_losses = -lmbd * (log_path_weight_deterministic + log_terminal_weight) else: ctrl_loss = -lmbd * (log_path_weight_deterministic + log_terminal_weight) ctrl_losses = torch.cat((ctrl_losses, ctrl_loss), 0) if k % 32 == 31: print(f"Batch {k+1}/{n_batches} done") return torch.mean(ctrl_losses), torch.std(ctrl_losses) / np.sqrt( effective_n_samples - 1 ) def normalization_constant( sde, x0, ts, cfg, n_batches_normalization=512, ground_truth_control=None ): log_weights_list = [] weights_list = [] if ground_truth_control is not None: norm_sqd_diff_mean = 0 for k in range(n_batches_normalization): ( states, _,
_,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: OPPO-Mente-Lab/PEA-Diffusion # Path: utils/model_utils.py def add_module_args(parent_args): parser = parent_args.add_argument_group('Basic Module') parser.add_argument('--learning_rate', default=5e-5, type=float) parser.add_argument('--min_learning_rate', default=5e-8, type=float) parser.add_argument('--lr_decay_steps', default=0, type=int) parser.add_argument('--lr_decay_ratio', default=1.0, type=float) parser.add_argument('--warmup_steps', default=0, type=int) parser.add_argument('--warmup_ratio', default=0.1, type=float) parser.add_argument('--weight_decay', default=1e-1, type=float) parser.add_argument('--adam_beta1', default=0.9, type=float) parser.add_argument('--adam_beta2', default=0.999, type=float) parser.add_argument('--adam_epsilon', default=1e-8, type=float) parser.add_argument('--model_path', default=None, type=str) parser.add_argument('--la', default="zh", type=str) parser.add_argument('--scheduler_type', default='polynomial', type=str) return parent_args # Path: utils/model_utils.py def configure_optimizers(pl_model: LightningModule, model_params=None): ''' Args: pl_model: lightning module model_params: Model parameters that need to be optimized ''' # get params that optimizer need if model_params is None: optimizer_grouped_params = get_default_update_params(pl_model) else: optimizer_grouped_params = model_params # Configure optimizer. if isinstance(pl_model.trainer.strategy, DeepSpeedStrategy): if 'offload_optimizer' in pl_model.trainer.strategy.config['zero_optimization']: optimizer = DeepSpeedCPUAdam( optimizer_grouped_params, adamw_mode=True, lr=pl_model.hparams.learning_rate, betas=(pl_model.hparams.adam_beta1, pl_model.hparams.adam_beta2), eps=pl_model.hparams.adam_epsilon) else: optimizer = FusedAdam( optimizer_grouped_params, adam_w_mode=True, lr=pl_model.hparams.learning_rate, betas=(pl_model.hparams.adam_beta1, pl_model.hparams.adam_beta2), eps=pl_model.hparams.adam_epsilon) else: optimizer = AdamW(optimizer_grouped_params, lr=pl_model.hparams.learning_rate, betas=(pl_model.hparams.adam_beta1, pl_model.hparams.adam_beta2), eps=pl_model.hparams.adam_epsilon) # Configure learning rate scheduler. warmup_steps = pl_model.hparams.warmup_ratio * \ pl_model.total_steps if pl_model.hparams.warmup_steps == 0 else pl_model.hparams.warmup_steps total_steps = pl_model.hparams.lr_decay_ratio * \ pl_model.total_steps if pl_model.hparams.lr_decay_steps == 0 else pl_model.hparams.lr_decay_steps scheduler = get_scheduler(name=pl_model.hparams.scheduler_type, optimizer=optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps, lr_end=pl_model.hparams.min_learning_rate) scheduler = {"scheduler": scheduler, "interval": "step", "frequency": 1} return [optimizer], [scheduler] # Path: utils/model_utils.py def get_total_steps(trainer, hparams): train_loader = trainer._data_connector._train_dataloader_source.dataloader() # Calculate total steps if trainer.max_epochs > 0: world_size = trainer.world_size tb_size = hparams.train_batchsize * max(1, world_size) ab_size = trainer.accumulate_grad_batches total_steps = (len(train_loader.dataset) * trainer.max_epochs // tb_size) // ab_size else: total_steps = trainer.max_steps return total_steps # Path: utils/universal.py class UniversalCheckpoint(ModelCheckpoint): @staticmethod def add_argparse_args(parent_args): parser = parent_args.add_argument_group('universal checkpoint callback') parser.add_argument('--monitor', default='train_loss', type=str) parser.add_argument('--mode', default='min', type=str) parser.add_argument('--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str) parser.add_argument('--save_last', action='store_true', default=False) parser.add_argument('--save_top_k', default=3, type=float) parser.add_argument('--every_n_train_steps', default=None, type=float) parser.add_argument('--save_weights_only', action='store_true', default=False) parser.add_argument('--save_on_train_epoch_end', action='store_true', default=None) parser.add_argument('--load_ckpt_id',default=0, type=int) parser.add_argument('--load_ckpt_path', default='result/stablediffusion_distill_zh', type=str) parser.add_argument('--every_n_steps', default=10, type=int) parser.add_argument('--text_encoder', default='chinese_clip') ## ## mul_clip chinese_clip mt5 alt_clip parser.add_argument('--text_encoder_path', default='clip_cn_vit-h-14.pt') parser.add_argument('--hybrid_training', action='store_true', default=True) parser.add_argument('--KD', action='store_true', default=True) parser.add_argument('--noise_offset', default=0.5, type=float) return parent_args def __init__(self, args): super().__init__(monitor=args.monitor, save_top_k=args.save_top_k, mode=args.mode, every_n_train_steps=args.every_n_train_steps, save_weights_only=args.save_weights_only, filename=args.filename, save_last=args.save_last, every_n_epochs=args.every_n_steps, save_on_train_epoch_end=args.save_on_train_epoch_end) # Path: utils/custom_dataset.py class DataModuleCustom(LightningDataModule): @ staticmethod def add_data_specific_args(parent_args): parser = parent_args.add_argument_group('Universal DataModule') parser.add_argument('--webdataset_base_urls', type=str, nargs="+") parser.add_argument('--num_workers', default=2, type=int) parser.add_argument('--batch_size', default=16, type=int) parser.add_argument('--shard_width', default=5, type=int) parser.add_argument('--hr_size', default=-1, type=int) parser.add_argument('--train_split', default=1.0, type=float) parser.add_argument('--val_split', default=0.0, type=float) parser.add_argument('--test_split', default=0.0, type=float) parser.add_argument('--shuffle_train', default=False, action="store_true") parser.add_argument('--resample_train', default=False, action="store_true") parser.add_argument('--shuffle_num', default=None, type=int) parser.add_argument('--test_prompts', type=str, default="./test_prompts.txt") parser.add_argument('--test_repeat', default=1, type=int) parser.add_argument("--resolution", type=int, default=512) parser.add_argument("--center_crop", default=True) return parent_args def __init__( self, args, tokenizer, custom_collate_fn=None, use_worker_init_fn=None, ): super().__init__() # self.available_shards = list(range(args.start_shard, args.end_shard + 1)) # if splits is None: # splits = [] splits = { 'train': args.train_split, 'val': args.val_split, 'test': args.test_split, } self.webdataset_base_urls = args.webdataset_base_urls self.num_workers = args.num_workers self.batch_size = args.batch_size self.shuffle_train = args.shuffle_train self.resample_train = args.resample_train self.shard_width = args.shard_width self.hr_size = args.hr_size self.use_worker_init_fn = use_worker_init_fn self.shuffle_num = args.shuffle_num self.tokenizer = tokenizer self.collate_fn = custom_collate_fn if custom_collate_fn is not None else collate_fn self.center_crop = args.center_crop self.resolution = args.resolution self.train_prop = self.val_prop = self.test_prop = 0 self.datasets = {} self.train_prop = splits['train'] self.train_dataloader = self._train_dataloader self.datasets['train'] = None self.prepare_data() self.setup() def prepare_data(self): assert self.train_prop + self.test_prop + self.val_prop == 1 all_urls = [] for url in self.webdataset_base_urls: all_urls += expand_urls(url) num_train = round(self.train_prop*len(all_urls)) num_test = round(self.test_prop*len(all_urls)) num_val = len(all_urls) - num_train - num_test assert num_train + num_test + num_val == len(all_urls), f"{num_train} + {num_test} + {num_val} = {num_train + num_test + num_val} != {len(all_urls)}" self.train_urls, self.test_urls, self.val_urls = random_split(all_urls, [num_train, num_test, num_val]) # , generator=torch.Generator().manual_seed(self.seed) def setup(self, stage=None): if 'train' in self.datasets: self.datasets['train'] = ImageEmbeddingDataset( self.train_urls, self.tokenizer, shuffle_shards=self.shuffle_train, resample=self.resample_train, hr_size=self.hr_size, handler=wds.handlers.warn_and_continue, center_crop=self.center_crop, size=self.resolution, ) if self.shuffle_num is not None and self.shuffle_num > 0: self.datasets['train'].shuffle(self.shuffle_num) def _train_dataloader(self): # return self.create_dataloader(self.train_urls, shuffle=self.shuffle_train, resample=self.resample_train) if self.use_worker_init_fn: init_fn = worker_init_fn else: init_fn = None return DataLoaderX( self.datasets['train'], num_workers=self.num_workers, batch_size=self.batch_size, prefetch_factor=2, # This might be good to have high so the next npy file is prefetched pin_memory=True, shuffle=False, worker_init_fn=init_fn, collate_fn=self.collate_fn, ) # Path: train_sd_zh.py import os import torch import torch.nn as nn import inspect import argparse import open_clip import cn_clip.clip as clip from einops import rearrange from pytorch_lightning import ( LightningModule, Trainer, ) from pytorch_lightning.callbacks import ( LearningRateMonitor, ) from utils.model_utils import ( add_module_args, configure_optimizers, get_total_steps, ) from utils.universal import UniversalCheckpoint from utils.custom_dataset import DataModuleCustom from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel, EulerDiscreteScheduler,DPMSolverMultistepScheduler from torch.nn import functional as F from typing import Callable, List, Optional, Union from torchvision.utils import save_image from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from cn_clip.clip import load_from_name, available_models if args.load_ckpt_id: self.proj.load_state_dict(torch.load( os.path.join(args.load_ckpt_path, f"proj_0_{args.load_ckpt_id}/pytorch_model.bin"), map_location="cpu")) if args.KD: self.text_encoder_1 = CLIPTextModel.from_pretrained(f"{args.model_path}/text_encoder") self.tokenizer_1 = CLIPTokenizer.from_pretrained(f"{args.model_path}/tokenizer") self.unet_teacher = UNet2DConditionModel.from_pretrained(args.model_path, subfolder="unet") self.KD_teacher = {} self.KD_student= {} cast_hook(self.unet,self.KD_student) cast_hook(self.unet_teacher,self.KD_teacher) def setup(self, stage) -> None: if stage == 'fit': self.total_steps = 2232142 # self.total_steps = get_total_steps(self.trainer, self.hparams) print('Total steps: {}' .format(self.total_steps)) def configure_optimizers(self): model_params = [{'params': self.proj.parameters()}] return configure_optimizers(self, model_params=model_params) def encode_prompt( self, prompt, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, lora_scale: Optional[float] = None, ): device = device or self._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, LoraLoaderMixin): self._lora_scale = lora_scale if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] # textual inversion: procecss multi-vector tokens if necessary text_inputs = self.tokenizer_1( prompt, padding="max_length", max_length=self.tokenizer_1.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids prompt_embeds = self.text_encoder_1(text_input_ids.to(device)) prompt_embeds = prompt_embeds[0] # bs_embed, seq_len, _ = prompt_embeds.shape # # duplicate text embeddings for each generation per prompt, using mps friendly method # prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) # prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) uncond_tokens = [""]*batch_size max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer_1( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) uncond_input_ids = uncond_input.input_ids uncond_embeddings = self.text_encoder_1(uncond_input_ids.to(device)) uncond_embeddings = uncond_embeddings[0] return prompt_embeds, uncond_embeddings def training_step(self, batch, batch_idx): # self.unet.train() with torch.no_grad(): latents = self.vae.encode(batch["pixel_values"]).latent_dist.sample() latents = latents* self.vae.config.scaling_factor noise = torch.randn(latents.shape).to(latents.device) noise = noise.to(dtype=self.unet.dtype) bsz = latents.shape[0] timesteps = torch.randint(0, self.noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) timesteps = timesteps.long() noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) noisy_latents = noisy_latents.to(dtype=self.unet.dtype) with torch.no_grad(): if args.text_encoder=="mul_clip": _,encoder_hidden_states = self.text_encoder.encode_text(batch["input_ids"]) _,encoder_hidden_states_uncond = self.text_encoder.encode_text(batch["input_ids_uncond"]) elif args.text_encoder=="chinese_clip": encoder_hidden_states,_ = self.text_encoder.encode_text(batch["input_ids"]) encoder_hidden_states_uncond,_ = self.text_encoder.encode_text(batch["input_ids_uncond"]) encoder_hidden_states = self.proj(encoder_hidden_states) ## B*77*1024 --> B*77*768 encoder_hidden_states_uncond = self.proj(encoder_hidden_states_uncond) uncond = 0.1 random = torch.rand(latents.size(0), device=latents.device) prompt_mask = rearrange(random < uncond, "n -> n 1 1") encoder_hidden_states = torch.where(prompt_mask, encoder_hidden_states_uncond, encoder_hidden_states) noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0] lr = self.trainer.optimizers[0].param_groups[0]["lr"] loss = F.mse_loss(noise_pred, noise, reduction="none") if args.KD and args.hybrid_training: ## Chinese or English tags in batch zh_or_not = batch["zh_or_not"].unsqueeze(1).unsqueeze(1).unsqueeze(1) loss = loss*zh_or_not loss = loss.mean([1, 2, 3]).mean() self.log("lr", lr, on_epoch=False, prog_bar=True, logger=True)
self.log("train_loss", loss.item(), on_epoch=False, prog_bar=True, logger=True)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: TheMind-AI/fluid-db # Path: fluiddb/functions/update_memory_function.py class UpdateMemoryFunction(FunctionBase): name: str = "update-memory" description: str = "Tool to update or write to the structured memory of the user." args_schema: Type[BaseModel] = UpdateMemoryFunctionArguments def __init__(self): super().__init__() self.llm = OpenAILLM() def run(self, uid: str, user_message: str): print("RUN, user_message:", user_message) memory = StructuredJsonMemory() schema = memory.schema(uid) schema_descriptions = memory.get_descriptions(uid) print("SCHEMA:") print(json.dumps(schema, indent=2)) print(json.dumps(schema_descriptions, indent=2)) # First fetch data fetch_result = self.maybe_fetch_data(user_message, schema, schema_descriptions) print("==FETCH==") print(" REASONING:", fetch_result.reasoning) print(" JSON PATH LIST:", fetch_result.json_path_list) fetched_data = {json_path: memory.query(uid, json_path) for json_path in fetch_result.json_path_list} llm_result = self.maybe_update_memory(user_message, schema, fetched_data, schema_descriptions) print("==UPDATE==") print(" REASONING:", llm_result.reasoning) print(" JSON PATH:", llm_result.json_path) print(" DATA:", llm_result.data) print(" DESCRIPTION:", llm_result.description) data = json.loads(llm_result.data) memory.update(uid, llm_result.json_path, data, llm_result.description) print("Done") # REMINDER: we'll need to deal with timezones here def maybe_update_memory(self, user_message: str, memory_schema: str, fetched_data=None, schema_descriptions: str = "") -> UpdateMemoryModel: prompt = self._update_memory_prompt(user_message, memory_schema, fetched_data, schema_descriptions) model = self.llm.instruction_instructor(prompt, UpdateMemoryModel, max_retries=3) assert isinstance(model, UpdateMemoryModel) return model def maybe_fetch_data(self, user_message: str, memory_schema: str, schema_descriptions: str = "") -> FetchMemoryModel: prompt = self._retrieve_memory_prompt(user_message, memory_schema, schema_descriptions) model = self.llm.instruction_instructor(prompt, FetchMemoryModel, max_retries=3) assert isinstance(model, FetchMemoryModel) return model @staticmethod def _retrieve_memory_prompt(user_message: str, memory_schema: str, schema_descriptions: str = ""): return f""" You are a query builder, AI that generates JsonPath query from natural language. You're using jsonpath-ng to query the structured memory. Current datetime is {datetime.now().strftime("%Y-%m-%d %H:%M")} The jsonpath-ng uses the following language: - Nested object: $.objects.nested_object - Array: $.objects.some_array[*] - Sorted: $.objects[\\some_field], $.objects[\\some_field,/other_field] - Filter: $.objects[?some_field =~ "foobar"], $.objects[?(@some_field > 5)] (make sure to put strings and regex into quotes) You receive a json model schema and a description of the data you need to fetch and you return jsonpath queries for relevant data. Because you don't know what's in the data, write multiple queries to get as much relevant info as possible, trying to filter based on different strings etc. Make sure to put strings and regex in quotes when filtering. The regex needs to be string in quotes. It will be evaluated in python re.search function. You can use regex match (=~) to maximize chances of finding the data. ALWAYS write queries that support the JSON schema. NEVER query key/values which are not present in the provided json schema. ALWAYS fetch the whole object from an array, not just a single value. For example, if you're asked for the name of the user, don't return only the name, return the whole object. If the data you're asked for are not in the schema, return an empty array [] Always expect date in this format: YYYY-MM-DD Always expect time in this format: HH:MM Always run an internal dialogue before returning the query. --- Examples: SCHEMA: {{ "phones": [ {{ "name": "string", "number": "string" }} ], "user": {{ "name": "string" }}, "events": [ {{ "name": "string", "date": "string", "price": "number" }} ] }} REQUEST: What's Adam's phone number? QUERIES: $.phones[?name = "adam"] $.phones[?name = "Adam"] Notes: fetching whole objects, not just phone number, trying different names to get most data. REQUEST: What events are happening tomorrow? QUERY: $.events[?(@.date = "2023-12-08")] Notes: fetching whole objects --- SCHEMA: {memory_schema} {schema_descriptions if schema_descriptions else ""} REQUEST: {user_message} """ @staticmethod def _update_memory_prompt(user_message: str, memory_schema: str, fetched_data=None, schema_descriptions: str = ""): return f""" You are a senior database architect, that creates queries and new data structures from natural language. Current datetime is {datetime.now().strftime("%Y-%m-%d %H:%M")} Take the message you received from the user and create a query and data to store in the structured memory. Try to append data to the existing schema where possible. Only edit data when you're sure that the data are there. Otherwise append whole new objects. When it's not possible to fit the data to the current schema make sure to include the description of the new field you create. Always think about using the memory in the future. You should create lists when we might append more objects of similar type in the future. To create a list the data should be a list: [new data] Don't put the jsonpath in the data, the object will be automatically created on the path you specify. Always use strings in lowercase when querying and filtering based on values. If you're comparing strings, use regex match: =~ to maximize chances of finding the data. If there are similar data in the schema but the data don't fit the current schema, create a new schema and make it inconsistent. Make sure to write a description of the new object schema. Always store date in this format: YYYY-MM-DD Always store time in this format: HH:MM Always run an internal dialogue before returning the query and data. --- Examples: SCHEMA: {{ "phones": [ {{ "name": "string", "number": "string" }} ], "user": {{ "name": "string" }}, "events": [ {{ "name": "string", "date": "string", "price": "number" }} ] }} REQUEST: Adam's phone number is 722263238. QUERY: $.phones DATA: {{"name": "adam", "number": "722264238"}} Notes: appending whole object as I don't know if object with name adam is in the list REQUEST: My last name is Zvada. QUERY: $.user.last_name DATA: Zvada Notes: I can straight edit here as I know the whole user object REQUEST: Adam's phone number has +420 prefix. QUERY: $.phones[?name = "adam"].prefix DATA: +420 Notes: I can do this ONLY if I'm sure object {{"name": "adam", .. other fields}} exists. REQUEST: I'm going to a Christmas party tomorrow which costs 20 usd to entry. QUERY: $.events DATA: {{"name": "Christmas party", "date": "{(datetime.now() + timedelta(days=1)).strftime('%Y-%m-%d')}", "price": {{"currency": "USD", "value": 20}}}} DESCRIPTIONS: Events the user is attending Notes: The price data doesn't fit the model, I will update the model a bit and push it there REQUEST: What is my brother's name? QUERY: NA DATA: {{}} Notes: This is not in the schema. --- These are some relevant data from the memory: {fetched_data} SCHEMA: {memory_schema} {schema_descriptions if schema_descriptions else ""} REQUEST: {user_message} """ # Path: fluiddb/functions/update_sql_memory_function.py class UpdateSQLMemoryFunction(FunctionBase): name: str = "update-memory" description: str = "Tool to update or write to the structured memory of the user." args_schema: Type[BaseModel] = UpdateSQLMemoryFunctionArguments def __init__(self): super().__init__() self.llm = OpenAILLM() def run(self, uid: str, user_message: str, prev_requests: str = None): print("RUN, user_message:", user_message) memory = StructuredSQLMemory() schema = memory.schema(uid) print("SCHEMA:") print(schema) # First fetch data if schema: fetch_result = self.maybe_fetch_data(user_message, schema, prev_requests=prev_requests) print("==FETCH==") print(" REASONING:", fetch_result.reasoning) print(" QUERIES:", fetch_result.sql_queries) prev_reasoning = fetch_result.reasoning fetched_data = [memory.query(uid, q) for q in fetch_result.sql_queries] else: prev_reasoning = "" fetched_data = "" schema = memory.schema(uid) llm_result = self.maybe_update_memory(user_message, schema, fetched_data, prev_reasoning=prev_reasoning, prev_requests=prev_requests) print("==UPDATE==") print(" REASONING:", llm_result.reasoning) print(" QUERIES:", llm_result.sql_queries) update = [memory.query(uid, q) for q in llm_result.sql_queries] print(update) print("Done") # REMINDER: we'll need to deal with timezones here def maybe_update_memory(self, user_message: str, memory_schema: str, fetched_data=None, prev_reasoning: str = None, prev_requests: str = None) -> SQLQueryModel: prompt = self._update_memory_prompt(user_message, memory_schema, fetched_data, prev_reasoning, prev_requests) model = self.llm.instruction_instructor(prompt, SQLQueryModel, max_retries=3) assert isinstance(model, SQLQueryModel) return model def maybe_fetch_data(self, user_message: str, memory_schema: str, prev_requests: str = None) -> SQLQueryModel: prompt = self._retrieve_memory_prompt(user_message, memory_schema, prev_requests) model = self.llm.instruction_instructor(prompt, SQLQueryModel, max_retries=3) assert isinstance(model, SQLQueryModel) return model @staticmethod def _retrieve_memory_prompt(user_message: str, memory_schema: str = "", prev_requests: str = None): return f""" You are a senior SQL master, AI that generates SQL Queries from natural language. You're using SQL for sqlite3 to query the database. Current datetime is {datetime.now().strftime("%Y-%m-%d %H:%M")} For the given request, return the list of SQL SELECT queries that retrieve the most relevant information from the sqlite database. You don't know what's in the data, write multiple queries to get as much relevant info as possible. ALWAYS write SELECT queries that support the SQL TABLES SCHEMA, never make educated guesses. NEVER SELECT columns that do not exist in SQL TABLES SCHEMA, such query would kill innocent people. ALWAYS fetch the whole row (*) with the SELECT statement, not just a single column. When filtering using strings, use LIKE to maximize chances of finding the data. More data is always better. If the data you're asked for are clearly not in the schema, return an empty string. Always run an internal dialogue before returning the query. --- PREVIOUS USER REQUESTS: {prev_requests if prev_requests else "None"} SQL TABLES SCHEMA: {memory_schema if memory_schema else "There are no tables in the DB."} USER REQUEST: {user_message} """ @staticmethod def _update_memory_prompt(user_message: str, memory_schema: str, fetched_data=None, prev_reasoning: str = None, prev_requests: str = None): return f""" You are a senior SQL database architect, AI that creates the best schema for data provided using SQL for sqlite3. Current datetime is {datetime.now().strftime("%Y-%m-%d %H:%M")} For the given user request you will return the list of SQL queries that store the information to sqlite database. ALWAYS think step by step. Run an internal dialogue before returning the queries. You receive the user request. First, think about how to store the data based on the database schema. If the data conform to the schema simply insert the new data using INSERT INTO statement. If you need new columns make sure to create them first using ALTER TABLE ADD COLUMN. Then make sure to INSERT the data in the next query. The order of queries matters! NEVER make educated guesses, ONLY INSERT data if the columns exist in the SQL TABLES SCHEMA, otherwise create them first. You can't INSERT or UPDATE a column that does not exist yet. First you must ALTER TABLE ADD COLUMN. Otherwise an error will occur and innocent people will die. If the data needs a new table make sure to create the new table first using CREATE TABLE. Then make sure to INSERT the data in the next query. The order of queries matters! Make sure to keep the relationships between the tables using the correct ids. If you don't get relevant data in the prompt assume there are none and INSERT all data as they're new. If you have relevant data you can update the existing data using UPDATE queries. ALWAYS remember to insert the data if you created new table or added columns. If you don't store the data in one of the queries the data will be lost forever! --- PREVIOUS USER REQUESTS: {prev_requests if prev_requests else "None"} SQL TABLES SCHEMA: {memory_schema if memory_schema else "No tables yet in the DB."} {f"Initial thoughts: {prev_reasoning}" if prev_reasoning else ""} {f"RELEVANT DATA FROM sqlite DB: {fetched_data}" if fetched_data else ""} USER REQUEST: {user_message} """ # Path: eval/update_memory_eval.py import json from datetime import datetime from fluiddb.functions.update_memory_function import UpdateMemoryFunction from fluiddb.functions.update_sql_memory_function import UpdateSQLMemoryFunction from fluiddb.database.json.json_engine import StructuredJsonMemory from fluiddb.database.sql.structured_sql_memory import StructuredSQLMemory class UpdateMemoryEval: def __init__(self): self.uid = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') # self.uid = "2023-12-14-14-58-36" def run(self): # func = UpdateMemoryFunction() func = UpdateSQLMemoryFunction() func.run(self.uid, "Adams phone number is 722238738") func.run(self.uid, "David Mokos phone is 733544390") func.run(self.uid, "David Mokos phone is 733544390. David's phone is also 6286884994, it's a US phone") func.run(self.uid, "Tomorrow I have a history test I need to learn for.") func.run(self.uid, "Davids birthday is September 2") func.run(self.uid, "Adam likes riding big black horses") func.run(self.uid, "Adams last name is Zvada")
func.run(self.uid, "Adam Zvada, the only Adam I know, lives in Prague and SF, Cali")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: yiwenlu66/learning-qp # Path: src/envs/env_creators.py def tank_initial_generator(size, device, rng): def tank_ref_generator(size, device, rng): def tank_randomizer(size, device, rng): B = torch.tensor(sys_param["tank"]["B"], device=device, dtype=torch.float).unsqueeze(0) # Path: src/utils/osqp_utils.py def osqp_oracle(q, b, P, H, return_iter_count=False, max_iter=1000): sol, iter_count = osqp_solve_qp_guarantee_return( P=P, q=q, G=-H, h=b, A=None, b=None, lb=None, ub=None, max_iter=max_iter, eps_abs=1e-10, eps_rel=1e-10,eps_prim_inf=1e-10, eps_dual_inf=1e-10, verbose=False, ) if not return_iter_count: return sol else: return sol, iter_count # Path: src/modules/qp_unrolled_network.py class QPUnrolledNetwork(nn.Module): """ Learn a QP problem from the input using a MLP, then solve the QP using fixed number of unrolled PDHG iterations. Form of QP: minimize (1/2)x'Px + q'x subject to Hx + b >= 0, where x in R^n, b in R^m. """ def __init__( self, device, input_size, n_qp, m_qp, qp_iter, mlp_builder, shared_PH=False, affine_qb=False, strict_affine_layer=False, obs_has_half_ref=False, symmetric=False, no_b=False, use_warm_starter=False, train_warm_starter=False, ws_loss_coef=1., ws_update_rate=0.01, ws_loss_shaper=lambda x: x ** (1 / 2), mpc_baseline=None, use_osqp_for_mpc=False, imitate_mpc=False, use_residual_loss=False, force_feasible=False, feasible_lambda=10, is_test=False, ): """mlp_builder is a function mapping (input_size, output_size) to a nn.Sequential object. If shared_PH == True, P and H are parameters indepedent of input, and q and b are functions of input; Otherwise, (P, H, q, b) are all functions of input. If affine_qb == True, then q and b are restricted to be affine functions of input. If strict_affine_layer == True (only effective when affine_qb=True), then: 1. q is linear w.r.t. (x0, xref) (no bias) 2. b is affine w.r.t. x0 (no dependence on xref) If obs_has_half_ref == True, the policy knows that the observation is in the form (x0, xref), with each taking up half of the dimension of the observation. If symmetric == True (only effective when affine_qb=True), then: 1. The bias terms are disabled in the modeling of q and b, i.e., q = Wq * x, b = Wb * x. 2. The constraint is assumed to be -1 <= Hx + b <= 1, instead of Hx + b >= 0. If no_b == True in addition to symmetric == True, then b is skipped altogether, i.e., the constraint is assumed to be -1 <= Hx <= 1. If mpc_baseline != None and imitate_mpc == False, then the forward function directly returns the solution of the MPC problem, instead of solving the learned QP problem. Can be used for benchmarking MPC. If mpc_baseline != None and imitate_mpc == True, then the forward function returns the solution of the learned QP problem, but a loss term is computed using the MPC problem. Can be used for supervised imitation learning. If force_feasible == True, solve the following problem instead of the original QP problem: minimize_{x,y} (1/2)x'Px + q'x + lambda * y^2 s.t. Hx + b + y * 1 >= 0, y >= 0, where x in R^n, y in R. In this case, the solution returned will be of dimension (n + 1). """ super().__init__() self.shared_PH = shared_PH self.affine_qb = affine_qb self.strict_affine_layer = strict_affine_layer self.obs_has_half_ref = obs_has_half_ref self.device = device self.input_size = input_size # QP dimensions: there are the number of variables and constraints WITHOUT considering the slack variable self.n_qp = n_qp self.m_qp = m_qp self.qp_iter = qp_iter self.symmetric = symmetric self.no_b = no_b self.n_P_param = n_qp * (n_qp + 1) // 2 self.n_q_param = n_qp self.n_H_param = m_qp * n_qp self.n_b_param = m_qp if not self.no_b else 0 self.n_mlp_output = 0 if not self.shared_PH: self.n_mlp_output += (self.n_P_param + self.n_H_param) self.P_params = None self.H_params = None else: self.P_params = nn.Parameter(torch.randn((self.n_P_param,), device=device)) self.H_params = nn.Parameter(torch.randn((self.n_H_param,), device=device)) if not self.affine_qb: self.n_mlp_output += (self.n_q_param + self.n_b_param) self.qb_affine_layer = None else: if not self.strict_affine_layer: self.qb_affine_layer = nn.Linear(input_size, self.n_q_param + self.n_b_param, bias=not self.symmetric) else: self.qb_affine_layer = StrictAffineLayer(input_size, self.n_qp, self.m_qp, self.obs_has_half_ref) if self.n_mlp_output > 0: self.mlp = mlp_builder(input_size, self.n_mlp_output) else: self.mlp = None # TODO: add preconditioner self.warm_starter = WarmStarter(device, n_qp, m_qp, fixed_P=shared_PH, fixed_H=shared_PH) if use_warm_starter else None self.warm_starter_delayed = WarmStarter(device, n_qp, m_qp, fixed_P=shared_PH, fixed_H=shared_PH) if use_warm_starter else None self.train_warm_starter = train_warm_starter self.ws_loss_coef = ws_loss_coef self.ws_update_rate = ws_update_rate self.ws_loss_shaper = ws_loss_shaper # P, H are fixed when the model is in test mode, and they are constant across all states (i.e., shared_PH == True) self.fixed_PH = is_test and shared_PH # Includes losses generated by the model itself (indepedent of interaction with env), e.g., warm starting & preconditioning self.autonomous_losses = {} self.mpc_baseline = mpc_baseline self.use_osqp_for_mpc = use_osqp_for_mpc self.imitate_mpc = imitate_mpc # Whether to consider residual loss during training - this can encourage feasibility of the learned QP problem self.use_residual_loss = use_residual_loss # Whether to force the problem to be feasible self.force_feasible = force_feasible self.feasible_lambda = feasible_lambda self.solver = None self.info = {} # Reserved for storing the controllers for each simulation instance when robust MPC is enabled self.robust_controllers = [] # Store info returned by env self.env_info = {} # When running batch testing, mask envs already done, to speed up computation (implemented for robust mpc); initialized at inference time since batch size is not known during initialization self.is_active = None def initialize_solver(self): # If the problem is forced to be feasible, the dimension of the solution is increased by 1 (introduce slack variable) n_qp_actual = self.n_qp + 1 if self.force_feasible else self.n_qp m_qp_actual = self.m_qp + 1 if self.force_feasible else self.m_qp # is_warm_starter_trainable is always False, since the warm starter is trained via another inference independent of the solver # When self.fixed_PH == True, the solver is initialized with fixed P, H matrices; otherwise, P, H are not passed to the solver during initialization time, but computed during the forward pass instead if not self.fixed_PH: self.solver = QPSolver(self.device, n_qp_actual, m_qp_actual, warm_starter=self.warm_starter_delayed, is_warm_starter_trainable=False, symmetric_constraint=self.symmetric, buffered=self.force_feasible) else: # Should be called after loading state dict Pinv, H = self.get_PH() self.solver = QPSolver(self.device, n_qp_actual, m_qp_actual, Pinv=Pinv.squeeze(0), H=H.squeeze(0), warm_starter=self.warm_starter_delayed, is_warm_starter_trainable=False, symmetric_constraint=self.symmetric, buffered=self.force_feasible) def compute_warm_starter_loss(self, q, b, Pinv, H, solver_Xs): qd, bd, Pinvd, Hd = map(lambda t: t.detach() if t is not None else None, [q, b, Pinv, H]) X0 = self.warm_starter(qd, bd, Pinvd, Hd) gt = solver_Xs[:, -1, :].detach() return self.ws_loss_coef * self.ws_loss_shaper(((gt - X0) ** 2).sum(dim=-1).mean()) def parallel_controller_creation(self, controller_creator, xref_np, bs): """ Create robust MPC controlller in parallel """ # Helper function for parallel execution def task_creator(index): return controller_creator(self.mpc_baseline, xref_np[index, :]) with ThreadPoolExecutor() as executor: # Executing the tasks in parallel results = executor.map(task_creator, range(bs)) # Collecting the results self.robust_controllers.extend(results) def run_mpc_baseline(self, x, use_osqp_oracle=False): robust_method = self.mpc_baseline.get("robust_method", None) x0, xref = self.mpc_baseline["obs_to_state_and_ref"](x) bs = x.shape[0] # Conversions between torch and np t = lambda a: torch.tensor(a, device=x.device, dtype=torch.float) f = lambda t: t.detach().cpu().numpy() f_sparse = lambda t: scipy.sparse.csc_matrix(t.cpu().numpy()) if robust_method is None: # Run vanilla MPC without robustness eps = 1e-3 n, m, P, q, H, b = mpc2qp( self.mpc_baseline["n_mpc"], self.mpc_baseline["m_mpc"], self.mpc_baseline["N"], t(self.mpc_baseline["A"]), t(self.mpc_baseline["B"]), t(self.mpc_baseline["Q"]), t(self.mpc_baseline["R"]), self.mpc_baseline["x_min"] + eps, self.mpc_baseline["x_max"] - eps, self.mpc_baseline["u_min"], self.mpc_baseline["u_max"], x0, xref, normalize=self.mpc_baseline.get("normalize", False), Qf=self.mpc_baseline.get("terminal_coef", 0.) * t(np.eye(self.mpc_baseline["n_mpc"])) if self.mpc_baseline.get("Qf", None) is None else t(self.mpc_baseline["Qf"]), ) if not use_osqp_oracle: solver = QPSolver(x.device, n, m, P=P, H=H) Xs, primal_sols = solver(q, b, iters=100) sol = primal_sols[:, -1, :] else: osqp_oracle_with_iter_count = functools.partial(osqp_oracle, return_iter_count=True) if q.shape[0] > 1: sol_np, iter_counts = np_batch_op(osqp_oracle_with_iter_count, f(q), f(b), f_sparse(P), f_sparse(H)) sol = t(sol_np) else: sol_np, iter_count = osqp_oracle_with_iter_count(f(q[0, :]), f(b[0, :]), f_sparse(P), f_sparse(H)) sol = t(sol_np).unsqueeze(0) iter_counts = np.array([iter_count]) # Save OSQP iteration counts into the info dict if "osqp_iter_counts" not in self.info: self.info["osqp_iter_counts"] = iter_counts else: self.info["osqp_iter_counts"] = np.concatenate([self.info["osqp_iter_counts"], iter_counts]) return sol, (P.unsqueeze(0), q, H.unsqueeze(0), b) elif robust_method in ["scenario", "tube"]: # Set up scenario or tube MPC if not self.robust_controllers: # Create a controller for each simulation instance, according to the current reference (note: this assumes that the mapping from instance index to reference is constant) controller_creator = { "scenario": scenario_robust_mpc, "tube": tube_robust_mpc, }[robust_method] xref_np = f(xref) self.parallel_controller_creation(controller_creator, xref_np, bs) self.is_active = np.ones((bs,), dtype=bool) # Get solutions according to current state x0_np = f(x0) already_on_stats = f(self.env_info.get("already_on_stats", torch.zeros((bs,), dtype=bool))).astype(bool) self.is_active = np.logical_not(already_on_stats) & self.is_active # Skip computation for instances already done get_solution = lambda i: self.robust_controllers[i](x0_np[i, :], is_active=self.is_active[i]) sol_np, running_time = np_batch_op(get_solution, np.arange(bs)) sol = t(sol_np) # Save running time to info dict non_zero_mask = running_time != 0. # Filter out instances that are already done running_time_eff = running_time[non_zero_mask] if "running_time" not in self.info: self.info["running_time"] = running_time_eff else: self.info["running_time"] = np.concatenate([self.info["running_time"], running_time_eff]) return sol, None def get_PH(self, mlp_out=None): """ Compute P, H matrices from the parameters. Notice: returns (Pinv, H) instead of (P, H) """ # Decode MLP output end = 0 if not self.shared_PH: start = end end = start + self.n_P_param P_params = mlp_out[:, start:end] start = end end = start + self.n_H_param H_params = mlp_out[:, start:end] else: P_params = self.P_params.unsqueeze(0) H_params = self.H_params.unsqueeze(0) # Reshape P, H vectors into matrices Pinv = make_psd(P_params, min_eig=1e-2) H = H_params.view(-1, self.m_qp, self.n_qp) # If the problem is forced to be feasible, compute the parameters (\tilde{P}, \tilde{H}) of the augmented problem # \tilde{P} = [P, 0; 0, lambda] if self.force_feasible: zeros_n = torch.zeros((1, self.n_qp, 1), device=self.device) I = torch.eye(1, device=self.device).unsqueeze(0) tilde_P_inv = torch.cat([ torch.cat([Pinv, zeros_n], dim=2), torch.cat([zeros_n.transpose(1, 2), 1 / self.feasible_lambda * I], dim=2) ], dim=1) # \tilde{H} = [H, I; 0, I] ones_m = torch.ones((1, self.m_qp, 1), device=self.device) tilde_H = torch.cat([ torch.cat([H, ones_m], dim=2), torch.cat([zeros_n.transpose(1, 2), I], dim=2) ], dim=1) Pinv, H = tilde_P_inv, tilde_H return Pinv, H def get_qb(self, x, mlp_out=None): """ Compute q, b vectors from the parameters. """ bs = x.shape[0] end = self.n_P_param + self.n_H_param if not self.shared_PH else 0 if not self.affine_qb: start = end end = start + self.n_q_param q = mlp_out[:, start:end] start = end end = start + self.n_b_param b = mlp_out[:, start:end] else: qb = self.qb_affine_layer(x) q = qb[:, :self.n_q_param] b = qb[:, self.n_q_param:] if self.no_b: b = torch.zeros((bs, self.m_qp), device=self.device) # If the problem is forced to be feasible, compute the parameters (\tilde{q}, \tilde{b}) of the augmented problem if self.force_feasible: zeros_1 = torch.zeros((bs, 1), device=self.device) # \tilde{q} = [q; 0] tilde_q = torch.cat([q, zeros_1], dim=1) # \tilde{b} = [b; 0] tilde_b = torch.cat([b, zeros_1], dim=1) q, b = tilde_q, tilde_b return q, b def forward(self, x, return_problem_params=False, info=None): if info is not None: self.env_info = info if self.mpc_baseline is not None: mpc_sol, mpc_problem_params = self.run_mpc_baseline(x, use_osqp_oracle=self.use_osqp_for_mpc) if (self.mpc_baseline is not None) and (not self.imitate_mpc): # MPC solution is directly used as the final solution sol, problem_params = mpc_sol, mpc_problem_params else: # Check whether solver has been initialized if self.solver is None: self.initialize_solver() bs = x.shape[0] # Run MLP forward pass, if necessary if self.mlp is not None: mlp_out = self.mlp(x) else: mlp_out = None # Compute P, H, if they are not fixed if not self.fixed_PH: Pinv, H = self.get_PH(mlp_out) else: Pinv, H = None, None # Compute q, b q, b = self.get_qb(x, mlp_out) # Update parameters of warm starter with a delay to stabilize training if self.train_warm_starter: self.warm_starter_delayed.load_state_dict(interpolate_state_dicts(self.warm_starter_delayed.state_dict(), self.warm_starter.state_dict(), self.ws_update_rate)) # Run solver forward if self.use_residual_loss: Xs, primal_sols, residuals = self.solver(q, b, Pinv=Pinv, H=H, iters=self.qp_iter, return_residuals=True) primal_residual, dual_residual = residuals residual_loss = ((primal_residual ** 2).sum(dim=-1) + (dual_residual ** 2).sum(dim=-1)).mean() self.autonomous_losses["residual"] = 1e-3 * residual_loss else: Xs, primal_sols = self.solver(q, b, Pinv=Pinv, H=H, iters=self.qp_iter) sol = primal_sols[:, -1, :] # Compute warm starter loss if self.train_warm_starter: self.autonomous_losses["warm_starter"] = self.compute_warm_starter_loss(q, b, Pinv, H, Xs) # Compute imitation loss if self.imitate_mpc: # Use min(n of learned qp, n of mpc) as the common dimension of solution sol_dim = min(self.n_qp, mpc_sol.shape[-1]) self.autonomous_losses["imitation_only"] = ((sol[:, :sol_dim] - mpc_sol[:, :sol_dim]) ** 2).sum(dim=-1).mean() if return_problem_params: problem_params = (torch.linalg.inv(Pinv), q, H, b) if not return_problem_params: # Only return the solution return sol else: # Return the solution as well as (P, q, H, b) return sol, problem_params # Path: experiments/tank/test_skip_steady.py import sys import os import numpy as np import torch from src.envs.env_creators import sys_param, env_creators from src.utils.osqp_utils import osqp_oracle from icecream import ic from src.modules.qp_unrolled_network import QPUnrolledNetwork # %% Problem setup file_path = os.path.dirname(__file__) sys.path.append(os.path.join(file_path, "../..")) x_ref = np.array([19., 19., 2., 2.]) A = sys_param["tank"]["A"] B = sys_param["tank"]["B"] Q = sys_param["tank"]["Q"] R = sys_param["tank"]["R"] x_min = sys_param["tank"]["x_min"] * np.ones(4) x_max = sys_param["tank"]["x_max"] * np.ones(4) u_min = sys_param["tank"]["u_min"] * np.ones(2) u_max = 1.0 * np.ones(2) # %% Oracle # min (x - x_ref)' * Q * (x - x_ref) + u' * R * u, s.t., x = (I - A)^{-1} * B * u, x_min <= x <= x_max, u_min <= u <= u_max; cast into min 0.5 * u' * P * u + q' * u, s.t., H * u + b >= 0 inv_I_minus_A = np.linalg.inv(np.eye(A.shape[0]) - A) P = 2 * (B.T @ inv_I_minus_A.T @ Q @ inv_I_minus_A @ B + R) # Calculate q q = -2 * inv_I_minus_A.T @ Q.T @ x_ref @ B # Calculate c c = x_ref.T @ Q @ x_ref # Calculate H and b H = np.vstack([ inv_I_minus_A @ B, -inv_I_minus_A @ B, np.eye(u_min.shape[0]), -np.eye(u_max.shape[0]) ]) b = np.hstack([ -x_min, x_max, -u_min, u_max ]) u_opt = osqp_oracle(q, b, P, H) x_opt = inv_I_minus_A @ B @ u_opt # %% Evaluation eval_value = lambda u: 0.5 * u.T @ P @ u + q.T @ u + c opt_val = eval_value(u_opt) ic(opt_val) # %% Evaluate the learned controller def get_state_dict(checkpoint_path): checkpoint = torch.load(checkpoint_path) model = checkpoint["model"] prefix = "a2c_network.policy_net." policy_net_state_dict = {k.lstrip(prefix): v for (k, v) in model.items() if k.startswith(prefix)} if "running_mean_std.running_mean" in model: running_mean = model["running_mean_std.running_mean"].to(dtype=torch.float) running_std = model["running_mean_std.running_var"].sqrt().to(dtype=torch.float) else: running_mean = torch.tensor([0.]) running_std = torch.tensor([1.]) return policy_net_state_dict, running_mean, running_std
def make_obs(x, x_ref, running_mean, running_std, normalize):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zhiheLu/Ensemble_VLM # Path: trainers/cocoop.py class CoCoOp(TrainerX): def check_cfg(self, cfg): assert cfg.TRAINER.COCOOP.PREC in ["fp16", "fp32", "amp"] def build_model(self): cfg = self.cfg classnames = self.dm.dataset.classnames print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})") clip_model = load_clip_to_cpu(cfg) if cfg.TRAINER.COCOOP.PREC == "fp32" or cfg.TRAINER.COCOOP.PREC == "amp": # CLIP's default precision is fp16 clip_model.float() print("Building custom CLIP") self.model = CustomCLIP(cfg, classnames, clip_model) print("Turning off gradients in both the image and the text encoder") name_to_update = "prompt_learner" for name, param in self.model.named_parameters(): if name_to_update not in name: param.requires_grad_(False) # Double check enabled = set() for name, param in self.model.named_parameters(): if param.requires_grad: enabled.add(name) print(f"Parameters to be updated: {enabled}") if cfg.MODEL.INIT_WEIGHTS: load_pretrained_weights(self.model.prompt_learner, cfg.MODEL.INIT_WEIGHTS) self.model.to(self.device) # NOTE: only give prompt_learner to the optimizer self.optim = build_optimizer(self.model.prompt_learner, cfg.OPTIM) self.sched = build_lr_scheduler(self.optim, cfg.OPTIM) self.register_model("prompt_learner", self.model.prompt_learner, self.optim, self.sched) self.scaler = GradScaler() if cfg.TRAINER.COCOOP.PREC == "amp" else None # Note that multi-gpu training could be slow because CLIP's size is # big, which slows down the copy operation in DataParallel device_count = torch.cuda.device_count() if device_count > 1: print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!") self.model = nn.DataParallel(self.model) def forward_backward(self, batch): image, label = self.parse_batch_train(batch) model = self.model optim = self.optim scaler = self.scaler prec = self.cfg.TRAINER.COCOOP.PREC if prec == "amp": with autocast(): loss = model(image, label) optim.zero_grad() scaler.scale(loss).backward() scaler.step(optim) scaler.update() else: loss = model(image, label) optim.zero_grad() loss.backward() optim.step() loss_summary = {"loss": loss.item()} if (self.batch_idx + 1) == self.num_batches: self.update_lr() return loss_summary def model_inference(self, input, feature=False): return self.model(input, feature=feature) def parse_batch_train(self, batch): input = batch["img"] label = batch["label"] input = input.to(self.device) label = label.to(self.device) return input, label def load_model(self, directory, epoch=None): if not directory: print("Note that load_model() is skipped as no pretrained model is given") return names = self.get_model_names() # By default, the best model is loaded model_file = "model-best.pth.tar" if epoch is not None: model_file = "model.pth.tar-" + str(epoch) for name in names: model_path = osp.join(directory, name, model_file) if not osp.exists(model_path): raise FileNotFoundError('Model not found at "{}"'.format(model_path)) checkpoint = load_checkpoint(model_path) state_dict = checkpoint["state_dict"] epoch = checkpoint["epoch"] # Ignore fixed token vectors if "token_prefix" in state_dict: del state_dict["token_prefix"] if "token_suffix" in state_dict: del state_dict["token_suffix"] print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch)) # set strict=False self._models[name].load_state_dict(state_dict, strict=False) # Path: trainers/promptsrc.py class PromptSRC(TrainerX): def check_cfg(self, cfg): assert cfg.TRAINER.PROMPTSRC.PREC in ["fp16", "fp32", "amp"] def build_model(self): cfg = self.cfg classnames = self.dm.dataset.classnames print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})") clip_model = load_clip_to_cpu(cfg) if cfg.TRAINER.PROMPTSRC.PREC == "fp32" or cfg.TRAINER.PROMPTSRC.PREC == "amp": # CLIP's default precision is fp16 clip_model.float() print("Building custom CLIP") self.model = CustomCLIP(cfg, classnames, clip_model) print("Turning off gradients in both the image and the text encoder") name_to_update = "prompt_learner" for name, param in self.model.named_parameters(): if name_to_update not in name: # Make sure that VPT prompts are updated if "VPT" in name: param.requires_grad_(True) else: param.requires_grad_(False) else: if "ZS_image_encoder" in name: param.requires_grad_(False) # Double check enabled = set() for name, param in self.model.named_parameters(): if param.requires_grad: enabled.add(name) print(f"Parameters to be updated: {enabled}") print(f"Parameters count: {len(enabled)}") if cfg.MODEL.INIT_WEIGHTS: load_pretrained_weights(self.model, cfg.MODEL.INIT_WEIGHTS) self.model.to(self.device) # NOTE: only give prompt_learner to the optimizer self.optim = build_optimizer(self.model, cfg.OPTIM) self.sched = build_lr_scheduler(self.optim, cfg.OPTIM) self.register_model("VLPromptLearner", self.model, self.optim, self.sched) # Cosine scheduler self.total_epochs = cfg.OPTIM.MAX_EPOCH self.step_counter = 1 N = cfg.OPTIM.MAX_EPOCH mean = cfg.TRAINER.PROMPTSRC.GPA_MEAN stdev = cfg.TRAINER.PROMPTSRC.GPA_STD gauss = self.get_gauss(mean, stdev) self.gauss = np.array([gauss(a) for a in range(1, N + 1)]) self.gauss = self.gauss / sum(self.gauss) self.scaler = GradScaler() if cfg.TRAINER.PROMPTSRC.PREC == "amp" else None # Note that multi-gpu training could be slow because CLIP's size is # big, which slows down the copy operation in DataParallel device_count = torch.cuda.device_count() if device_count > 1: print(f"Multiple GPUs detected (n_gpus={device_count}), use all of them!") self.model = nn.DataParallel(self.model) # Keep model with GPA self.previous_model_gpa = None def forward_backward(self, batch): image, label = self.parse_batch_train(batch) model = self.model optim = self.optim scaler = self.scaler prec = self.cfg.TRAINER.PROMPTSRC.PREC if prec == "amp": with autocast(): loss = model(image, label) optim.zero_grad() scaler.scale(loss).backward() scaler.step(optim) scaler.update() else: loss_ce, normalized_text_features, zs_clip_text_embeddings, zs_image_embedd, image_ft, \ zero_shot_logits, logits = model(image, label) # Calculate the L_SCL_text loss loss_scl_text = F.l1_loss(normalized_text_features, zs_clip_text_embeddings.cuda(), reduction='mean') * self.cfg.TRAINER.PROMPTSRC.TEXT_LOSS_WEIGHT # Calculate the L_SCL_image loss loss_scl_image = F.l1_loss(image_ft, zs_image_embedd.cuda(), reduction='mean') * self.cfg.TRAINER.PROMPTSRC.IMAGE_LOSS_WEIGHT # Now calculate L_SCL_logits L_SCL_logits = F.kl_div( F.log_softmax(logits / 1, dim=1), F.log_softmax(zero_shot_logits / 1, dim=1), reduction='sum', log_target=True ) * (1 * 1) / logits.numel() L_SCL = (L_SCL_logits + loss_scl_text + loss_scl_image) loss = (loss_ce + L_SCL) optim.zero_grad() loss.backward() optim.step() loss_summary = {"loss": loss.item()} if (self.batch_idx + 1) == self.num_batches: self.update_lr() # Means one epoch is completed, perform GPA self.step_counter = self.step_counter + 1 current_epoch_weight = self.gauss[self.step_counter - 2] current_model_weights = copy.deepcopy(model.state_dict()) weighted_state_dict = self.state_dict_weighting(current_model_weights, current_epoch_weight) if self.previous_model_gpa is None: self.previous_model_gpa = weighted_state_dict else: self.previous_model_gpa = self.state_dict_add(weighted_state_dict, self.previous_model_gpa) if self.step_counter == self.model.total_epochs + 1: print("Using GPA model for final inference...") model.load_state_dict(self.previous_model_gpa) self.model.load_state_dict(self.previous_model_gpa) return loss_summary def model_inference(self, input, feature=False): return self.model(input, feature=feature) def state_dict_weighting(self, main_dict, weightage, prompt_only=False): # Average all parameters updated_dict = copy.deepcopy(main_dict) if not prompt_only: for key in main_dict: updated_dict[key] = main_dict[key] * weightage return updated_dict else: return main_dict * weightage def state_dict_add(self, dict1, dict2, prompt_only=False): # Average all parameters if not prompt_only: modified_dict = dict2 for key in dict1: modified_dict[key] = (modified_dict[key] + dict1[key]) return modified_dict else: return dict1 + dict2 def get_gauss(self, mu, sigma): gauss = lambda x: (1 / (sigma * np.sqrt(2 * np.pi))) * np.exp(-0.5 * ((x - mu) / sigma) ** 2) return gauss def parse_batch_train(self, batch): input = batch["img"] label = batch["label"] input = input.to(self.device) label = label.to(self.device) return input, label def load_model(self, directory, epoch=None): if not directory: print("Note that load_model() is skipped as no pretrained model is given") return names = self.get_model_names() # By default, the best model is loaded model_file = "model-best.pth.tar" if epoch is not None: model_file = "model.pth.tar-" + str(epoch) for name in names: model_path = osp.join(directory, name, model_file) if not osp.exists(model_path): raise FileNotFoundError('Model not found at "{}"'.format(model_path)) checkpoint = load_checkpoint(model_path) state_dict = checkpoint["state_dict"] epoch = checkpoint["epoch"] # Ignore fixed token vectors if "prompt_learner.token_prefix" in state_dict: del state_dict["prompt_learner.token_prefix"] if "prompt_learner.token_suffix" in state_dict: del state_dict["prompt_learner.token_suffix"] print("Loading weights to {} " 'from "{}" (epoch = {})'.format(name, model_path, epoch)) # set strict=False self._models[name].load_state_dict(state_dict, strict=False) # Path: trainers/baseline_en.py import os.path as osp import torch import torch.nn as nn from torch.nn import functional as F from torch.cuda.amp import GradScaler, autocast from dassl.engine import TRAINER_REGISTRY, TrainerX from dassl.optim import build_optimizer, build_lr_scheduler from dassl.utils import load_checkpoint from .cocoop import CoCoOp from .promptsrc import PromptSRC self.promptsrc_vit32.load_model( f"{cfg.TRAINER.ENLEARN.MODEL_DIR}/{cfg.MODEL.BACKBONE.NAME}/seed{cfg.SEED}", epoch=20 ) self.promptsrc_vit32.model.eval() # Load vit-16 cfg.MODEL.BACKBONE.NAME = "ViT-B/16" print(f"Loading CLIP (backbone: {cfg.MODEL.BACKBONE.NAME})") self.promptsrc_vit16 = PromptSRC(cfg) self.promptsrc_vit16.load_model( f"{cfg.TRAINER.ENLEARN.MODEL_DIR}/{cfg.MODEL.BACKBONE.NAME}/seed{cfg.SEED}", epoch=20 ) self.promptsrc_vit16.model.eval() # Weight generator self.model = nn.Sequential( nn.Linear(1024, 1024//cfg.TRAINER.ENLEARN.DOWNSCALE), nn.ReLU(), nn.Linear(1024//cfg.TRAINER.ENLEARN.DOWNSCALE, cfg.TRAINER.ENLEARN.NUM_WEIGHT) ).type(self.dtype) self.model.to(self.device) self.optim = build_optimizer(self.model, cfg.OPTIM) self.sched = build_lr_scheduler(self.optim, cfg.OPTIM) self.register_model("model", self.model, self.optim, self.sched) self.scaler = GradScaler() if cfg.TRAINER.PROMPTSRC.PREC == "amp" else None def forward_backward(self, batch): image, label = self.parse_batch_train(batch) model = self.model optim = self.optim scaler = self.scaler with torch.no_grad(): logits_vit32, feat_vit32 = self.promptsrc_vit32.model_inference(image, feature=True) logits_vit16, feat_vit16 = self.promptsrc_vit16.model_inference(image, feature=True) prec = self.cfg.TRAINER.PROMPTSRC.PREC if prec == "amp": with autocast(): # Weight generation feat_list = [feat_vit32, feat_vit16] feat_cat = torch.cat(feat_list, dim=1) weights = model(feat_cat).unsqueeze(2) # (B, 2, 1) logits_cat = torch.cat( [logits_vit32.unsqueeze(1), logits_vit16.unsqueeze(1)], dim=1) # (B, 2, 500) logits = torch.sum(logits_cat * weights, dim=1) loss = F.cross_entropy(logits, label) optim.zero_grad() scaler.scale(loss).backward() scaler.step(optim) scaler.update() else: # Weight generation feat_list = [feat_vit32, feat_vit16] feat_cat = torch.cat(feat_list, dim=1) weights = model(feat_cat).unsqueeze(2) # (B, 2, 1) logits_cat = torch.cat( [logits_vit32.unsqueeze(1), logits_vit16.unsqueeze(1)], dim=1) # (B, 2, 500) logits = torch.sum(logits_cat * weights, dim=1) loss = F.cross_entropy(logits, label) optim.zero_grad() loss.backward() optim.step() loss_summary = {"loss": loss.item()} if (self.batch_idx + 1) == self.num_batches: self.update_lr() return loss_summary def parse_batch_train(self, batch): input = batch["img"] label = batch["label"] input = input.to(self.device) label = label.to(self.device) return input, label def model_inference(self, image): with torch.no_grad(): logits_vit32, feat_vit32 = self.promptsrc_vit32.model_inference(image, feature=True) logits_vit16, feat_vit16 = self.promptsrc_vit16.model_inference(image, feature=True) # Weight generation feat_list = [feat_vit32, feat_vit16] feat_cat = torch.cat(feat_list, dim=1) weights = self.model(feat_cat).unsqueeze(2) # (B, 2, 1) logits_cat = torch.cat( [logits_vit32.unsqueeze(1), logits_vit16.unsqueeze(1)], dim=1) # (B, 2, 500) logits = torch.sum(logits_cat * weights, dim=1) return logits def load_model(self, directory, epoch=None): if not directory: print("Note that load_model() is skipped as no pretrained model is given") return names = self.get_model_names() # By default, the best model is loaded model_file = "model-best.pth.tar"
if epoch is not None:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: armed-gpt/gpt-blazing # Path: gpt_blazing/model/interface.py class Role(Enum): SYSTEM = 'system' USER = 'user' ASSISTANT = 'assistant' @classmethod def from_string(cls, text: str): return _TEXT_TO_ROLE[text] # Path: gpt_blazing/model/baichuan2/model.py class Baichuan2Model(torch.nn.Module): def __init__(self, config: Baichuan2ModelConfig) -> None: super().__init__() self.config = config self.apply_nan_to_num_to_alibi_mask = config.apply_nan_to_num_to_alibi_mask self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id) # [num_heads, model_max_length, model_max_length] # TODO: dtype issue here. self.register_buffer( "alibi_mask", _gen_alibi_mask(config.num_attention_heads, config.model_max_length), persistent=False, ) self.layers = torch.nn.ModuleList([ BaichuanLayer(config) for _ in range(config.num_hidden_layers) ]) self.norm = RMSNorm(config.hidden_size, epsilon=config.rms_norm_eps) self.lm_head = NormHead(config.hidden_size, config.vocab_size) def half(self): self = super().half() if self.apply_nan_to_num_to_alibi_mask: self.alibi_mask.nan_to_num_() return self def bfloat16(self): self = super().bfloat16() if self.apply_nan_to_num_to_alibi_mask: self.alibi_mask.nan_to_num_() return self def forward( self, input_pos: torch.Tensor, end: int, input_ids: torch.Tensor, ): inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds for layer in self.layers: hidden_states = layer( input_pos=input_pos, end=end, hidden_states=hidden_states, attention_mask=self.alibi_mask, ) hidden_states = self.norm(hidden_states) logits = self.lm_head(hidden_states) return logits, hidden_states # Path: gpt_blazing/model/baichuan2/model.py class Baichuan2ModelConfig: hidden_size: int = 5120 initializer_range: float = 0.02 intermediate_size: int = 13696 model_max_length: int = 4096 model_max_batch_size: int = 1 num_attention_heads: int = 40 num_hidden_layers: int = 40 pad_token_id: int = 0 rms_norm_eps: float = 1e-06 vocab_size: int = 125696 use_original_attn_impl: bool = True apply_nan_to_num_to_alibi_mask: bool = False debug: bool = False # Path: gpt_blazing/model/baichuan2/model.py def quantize_int8(model: Baichuan2Model, struct_only: bool = False): replace_linear_weight_only_int8_per_channel(model, struct_only) return model # Path: gpt_blazing/model/baichuan2/model.py def quantize_fp8(model: Baichuan2Model, struct_only: bool = False): replace_linear_weight_only_fp8_per_channel(model, struct_only) return model # Path: gpt_blazing/model/baichuan2/model.py class EmptyInitOnDevice(torch.overrides.TorchFunctionMode): # type: ignore def __init__(self, device=None): # type: ignore self.device = device def __torch_function__(self, func, types, args=(), kwargs=None): # type: ignore kwargs = kwargs or {} if getattr(func, '__module__', None) == 'torch.nn.init': if 'tensor' in kwargs: return kwargs['tensor'] else: return args[0] device_constructors = torch.utils._device._device_constructors() # type: ignore if ( self.device is not None and func in device_constructors and kwargs.get('device') is None ): kwargs['device'] = self.device return func(*args, **kwargs) # Path: gpt_blazing/model/baichuan2/model.py def load_model( model_pt: str, config: Optional[Baichuan2ModelConfig] = None, int8: bool = True, fp8: bool = False, ): if config is None: config = Baichuan2ModelConfig() with EmptyInitOnDevice(): model = Baichuan2Model(config) model.eval() model.bfloat16() if int8: model = quantize_int8(model, struct_only=True) elif fp8: model = quantize_fp8(model, struct_only=True) model.load_state_dict(torch.load(model_pt, map_location='cpu')) return model # Path: gpt_blazing/model/baichuan2/model.py def model_prefill_2048( model: Baichuan2Model, input_pos: torch.Tensor, input_ids: torch.Tensor, ): return model(input_pos=input_pos, end=2048, input_ids=input_ids) # Path: gpt_blazing/model/baichuan2/model.py def model_prefill_4096( model: Baichuan2Model, input_pos: torch.Tensor, input_ids: torch.Tensor, ): return model(input_pos=input_pos, end=4096, input_ids=input_ids) # Path: gpt_blazing/model/baichuan2/model.py def compile_model_prefill(func): # type: ignore return torch.compile(func, fullgraph=True, dynamic=True) # Path: gpt_blazing/model/baichuan2/model.py def model_decode_one_token_2048( model: Baichuan2Model, input_pos: torch.Tensor, input_ids: torch.Tensor, ): return model(input_pos=input_pos, end=2048, input_ids=input_ids) # Path: gpt_blazing/model/baichuan2/model.py def model_decode_one_token_4096( model: Baichuan2Model, input_pos: torch.Tensor, input_ids: torch.Tensor, ): return model(input_pos=input_pos, end=4096, input_ids=input_ids) # Path: gpt_blazing/model/baichuan2/model.py def compile_model_decode_one_token(func): # type: ignore return torch.compile(func, mode="reduce-overhead", fullgraph=True) # Path: gpt_blazing/model/baichuan2/model.py def model_dispatch( model: Baichuan2Model, func_2048: Any, func_4096: Any, input_pos: torch.Tensor, input_ids: torch.Tensor, ): if func_2048 is None: func = func_4096 else: if input_pos[-1] < 2048: func = func_2048 else: func = func_4096 # https://github.com/pytorch-labs/gpt-fast/issues/31 with torch.inference_mode(): with torch.backends.cuda.sdp_kernel( enable_flash=False, enable_mem_efficient=False, enable_math=True, ): logits, hidden_states = func(model, input_pos, input_ids) logits = logits.detach() hidden_states = hidden_states.detach() return logits, hidden_states # Path: gpt_blazing/model/baichuan2/model.py def model_get_cache( model: Baichuan2Model, length: int, device: Optional[str] = None, ): attn_cache: List[Tuple[torch.Tensor, torch.Tensor]] = [] for layer in model.layers: k_cache = layer.self_attn.k_cache[:, :, :length].clone() v_cache = layer.self_attn.v_cache[:, :, :length].clone() if device: k_cache = k_cache.to(device, non_blocking=True) v_cache = v_cache.to(device, non_blocking=True) attn_cache.append((k_cache, v_cache)) return attn_cache # Path: gpt_blazing/model/baichuan2/model.py def model_set_cache( model: Baichuan2Model, length: int, attn_cache: Sequence[Tuple[torch.Tensor, torch.Tensor]], ): assert len(model.layers) == len(attn_cache) for layer, (k_cache, v_cache) in zip(model.layers, attn_cache): layer.self_attn.k_cache[:, :, :length] = k_cache.to( layer.self_attn.k_cache.device, non_blocking=True, ) layer.self_attn.v_cache[:, :, :length] = v_cache.to( layer.self_attn.v_cache.device, non_blocking=True, ) # Path: gpt_blazing/model/baichuan2/utility.py def convert_hf_model_to_model(hf_model: Any): import torch with EmptyInitOnDevice(): model = Baichuan2Model(Baichuan2ModelConfig(debug=True)) model.bfloat16() assert hf_model.dtype == torch.bfloat16 # type: ignore baichuan_model = hf_model.model model.embed_tokens.load_state_dict(baichuan_model.embed_tokens.state_dict()) for layer_idx, layer in enumerate(model.layers): layer.load_state_dict(baichuan_model.layers[layer_idx].state_dict()) model.norm.load_state_dict(baichuan_model.norm.state_dict()) model.lm_head.load_state_dict(hf_model.lm_head.state_dict()) return model # Path: gpt_blazing/model/baichuan2/tokenizer.py class Baichuan2Tokenizer: def __init__(self, model_file: str) -> None: self.sp_model = SentencePieceProcessor() self.sp_model.Load(model_file) self.eos_token_id = 2 self.user_token_id = 195 self.assistant_token_id = 196 def tokenize(self, text: str) -> Sequence[int]: return self.sp_model.tokenize(text) # type: ignore def chat_tokenize(self, rounds: Sequence[Tuple[Role, str]]): input_ids = [] system = None if rounds[0][0] == Role.SYSTEM: system = rounds[0][1] input_ids.extend(self.tokenize(system)) rounds = rounds[1:] num_system_tokens = len(input_ids) for role, text in rounds: if role == Role.USER: input_ids.append(self.user_token_id) elif role == Role.ASSISTANT: input_ids.append(self.assistant_token_id) else: raise NotImplementedError() input_ids.extend(self.tokenize(text)) assert rounds[-1][0] == Role.USER input_ids.append(self.assistant_token_id) return input_ids, system, num_system_tokens def decode(self, tokens: Sequence[int]) -> str: return self.sp_model.decode(tokens) # type: ignore # Path: gpt_blazing/model/baichuan2/inference.py class Baichuan2ModelInferenceConfig: model_folder: str model_config: Baichuan2ModelConfig = attrs.field(factory=Baichuan2ModelConfig) quantization_mode: QuantizationMode = QuantizationMode.INT8 device: str = 'cuda:0' cache_capacity: int = 20 use_dynamic_dispatch: bool = True skip_torch_compile: bool = False # Path: gpt_blazing/model/baichuan2/inference.py class Baichuan2ModelInference(ModelInference[Baichuan2ModelInferenceConfig]): def __init__( self, config: Baichuan2ModelInferenceConfig, func_process_model: Optional[Callable[[Any], None]] = None, ): super().__init__(config, func_process_model) self.device = config.device self.model_max_length = 4096 # For cache. self.cached_system: Optional[str] = None self.lru_cache = LruCache(config.cache_capacity) self.model_is_loaded = False self.model_is_compiled = False def load_model(self, device: Optional[str] = None) -> None: if device: self.device = device logger.info( f'Initializing Baichuan2Inference(config={self.config}), ' f'device={self.device}' ) model_fd = io.folder(self.config.model_folder, exists=True) # TODO: support more modes. assert self.config.quantization_mode == QuantizationMode.INT8 model_pt = str(model_fd / f'{self.config.quantization_mode.value}.pt') logger.info(f'Loading model_pt={model_pt}') self.model = load_model(model_pt=model_pt, config=self.config.model_config, int8=True) logger.info('Model loaded.') tokenizer_model = str(model_fd / 'tokenizer.model') logger.info(f'Loading tokenizer_model={tokenizer_model}') self.tokenizer = Baichuan2Tokenizer(tokenizer_model) logger.info('Tokenizer loaded.') logger.info(f'Moving model to device={self.device}') self.model = self.model.to(self.device) if self.func_process_model is not None: logger.info('func_process_model is set, calling func_process_model(self.model)...') self.func_process_model(self.model) self.model_is_loaded = True def compile_model(self) -> None: assert self.model_is_loaded if self.config.skip_torch_compile: logger.info('skip_torch_compile is set, abort. (only for debugging)') self.prefill_4096 = model_prefill_4096 self.decode_one_token_4096 = model_decode_one_token_4096 self.prefill_2048 = None self.decode_one_token_2048 = None self.model_is_compiled = True return logger.info('Compiling model...') self.prefill_4096 = compile_model_prefill(model_prefill_4096) self.decode_one_token_4096 = compile_model_decode_one_token(model_decode_one_token_4096) self.prefill_2048 = None self.decode_one_token_2048 = None if self.config.use_dynamic_dispatch: self.prefill_2048 = compile_model_prefill(model_prefill_2048) self.decode_one_token_2048 = compile_model_decode_one_token(model_decode_one_token_2048) self.trigger_model_compilation() self.model_is_compiled = True def model_is_ready(self) -> bool: return self.model_is_compiled def trigger_model_compilation(self): import torch._dynamo.config import torch._inductor.config torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.triton.unique_kernel_names = True torch._inductor.config.fx_graph_cache = True logger.info('Trigger prefill compilation.') input_ids = torch.tensor([self.tokenizer.tokenize('随便写点什么')], dtype=torch.int) input_ids = input_ids.to(self.device) for offset in [0, 2048]: logger.info(f'offset={offset}') for idx in range(5): input_pos = torch.arange( offset, offset + int(input_ids.shape[1]), device=input_ids.device, dtype=torch.int, ) _, num_seconds = timed( lambda: model_dispatch( model=self.model, func_2048=self.prefill_2048, func_4096=self.prefill_4096, input_pos=input_pos, input_ids=input_ids, ) ) logger.info(f'[{idx}]: prefill compilation: {num_seconds}s.') logger.info('Trigger decode_one_token compilation.') for offset in [0, 2048]: logger.info(f'offset={offset}') for idx in range(5): input_pos = torch.tensor([offset + idx], device=self.device, dtype=torch.int) input_ids = torch.tensor( [[random.randint(0, self.config.model_config.vocab_size)]], dtype=torch.int, device=self.device, ) _, num_seconds = timed( lambda: model_dispatch( model=self.model, func_2048=self.decode_one_token_2048, func_4096=self.decode_one_token_4096, input_pos=input_pos, input_ids=input_ids, ) ) logger.info(f'[{idx}]: decode_one_token compilation: {num_seconds}s.') def get_eos_token(self): return self.tokenizer.eos_token_id def get_model_max_length(self): return self.model_max_length def get_hidden_size(self): return self.config.model_config.hidden_size def model_prefill(self, rounds: Sequence[Tuple[Role, str]], cache_system: bool = False): input_ids = None system = None num_system_tokens = 0 begin = 0 initialized = False if cache_system: system = None if rounds[0][0] == Role.SYSTEM: system = rounds[0][1] if system: cache = self.lru_cache.get(system) if cache is not None: num_system_tokens, attn_cache = cache # Cache hit. if system != self.cached_system: # Need to move the cache to model. model_set_cache(self.model, num_system_tokens, attn_cache) self.cached_system = system # Skip tokenizing system. input_ids, _, _num_system_tokens = self.tokenizer.chat_tokenize(rounds[1:]) assert _num_system_tokens == 0 begin = num_system_tokens initialized = True if not initialized: input_ids, system, num_system_tokens = self.tokenizer.chat_tokenize(rounds) # Invalidate the model cache. self.cached_system = None assert input_ids end = begin + len(input_ids) if end >= self.model_max_length: return None input_pos = torch.arange(begin, end, device=self.device, dtype=torch.int) input_ids = torch.tensor([input_ids], dtype=torch.int, device=self.device) logits, hidden_states = model_dispatch( model=self.model, func_2048=self.prefill_2048, func_4096=self.prefill_4096, input_pos=input_pos, input_ids=input_ids, ) if cache_system and system and self.cached_system is None: # Add to cache. self.cached_system = system self.lru_cache.set( system, (num_system_tokens, model_get_cache(self.model, num_system_tokens)), ) return logits, hidden_states, end def model_decode_one_token(self, input_pos: torch.Tensor, input_ids: torch.Tensor): logits, hidden_states = model_dispatch( model=self.model, func_2048=self.decode_one_token_2048, func_4096=self.decode_one_token_4096, input_pos=input_pos, input_ids=input_ids, ) return logits, hidden_states def tokenizer_decode(self, tokens: Sequence[int]): return self.tokenizer.decode(tokens) # Path: gpt_blazing_experiment/model/debug_baichuan2.py from typing import Tuple, Sequence, Optional from datetime import datetime from gpt_blazing.model.interface import Role from gpt_blazing.model.baichuan2.model import ( Baichuan2Model, Baichuan2ModelConfig, quantize_int8, quantize_fp8, EmptyInitOnDevice, load_model, model_prefill_2048, model_prefill_4096, compile_model_prefill, model_decode_one_token_2048, model_decode_one_token_4096, compile_model_decode_one_token, model_dispatch, model_get_cache, model_set_cache, ) from gpt_blazing.model.baichuan2.utility import convert_hf_model_to_model from gpt_blazing.model.baichuan2.tokenizer import Baichuan2Tokenizer from gpt_blazing.model.baichuan2.inference import ( Baichuan2ModelInferenceConfig, Baichuan2ModelInference, ) from transformers import AutoModelForCausalLM from transformers import AutoTokenizer from transformers.generation.utils import GenerationConfig from transformers import AutoTokenizer from transformers.generation.utils import GenerationConfig from transformers import AutoTokenizer from transformers.generation.utils import GenerationConfig import torch import torch.nn.functional as F import sentencepiece as spm import iolite as io import os import torch._dynamo.config import torch._inductor.config import random import torch._dynamo.config import torch._inductor.config import os import random import os BAICHUAN2_13B_MODEL_FOLDER = str( io.folder( '$GPT_BLAZING_DATA/base/Baichuan2-13B-Chat', expandvars=True, ) ) def load_hf_model( model_folder: str = BAICHUAN2_13B_MODEL_FOLDER, device_map: Optional[str] = None, ): return AutoModelForCausalLM.from_pretrained( model_folder, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map=device_map, ) def eval_hf_model(): with EmptyInitOnDevice():
model = load_hf_model()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: tmllab/Machine_Vision_Therapy # Path: mydatasets/utils/ina.py # Path: mydatasets/utils/inr.py # Path: mydatasets/utils/inv.py # Path: myeva/eva_clip.py def build_eva_model_and_transforms( model_name: str, pretrained: str = '', precision: str = 'fp32', device: torch.device = torch.device('cpu'), force_quick_gelu: bool = False, image_mean: Optional[Tuple[float, ...]] = None, image_std: Optional[Tuple[float, ...]] = None, ): model = create_model( model_name, pretrained, precision, device, force_quick_gelu=force_quick_gelu) image_mean = image_mean or getattr(model.visual, 'image_mean', None) image_std = image_std or getattr(model.visual, 'image_std', None) preprocess_val = image_transform(model.visual.image_size, mean=image_mean, std=image_std) return model, preprocess_val # Path: fine_tuning.py import os import sys import json import time import copy import torch import myclip import pickle import argparse import mydatasets import random import numpy as np import templates as templates import torch.backends.cudnn as cudnn from tqdm import tqdm from PIL import Image from tqdm import tqdm from torch import optim from timm.utils import accuracy, AverageMeter from torchvision import transforms, datasets from torch.utils.data import Dataset, DataLoader from mydatasets.utils.ina import imagenet_a_mask from mydatasets.utils.inr import imagenet_r_mask from mydatasets.utils.inv import imagenet_v_mask from myeva.eva_clip import build_eva_model_and_transforms from torchvision.datasets import CIFAR10, MNIST, CIFAR100 from .utils import AverageMeter, create_logger, create_scheduler clip_model, preprocess = myclip.load('RN50') clip_model = clip_model.to('cuda:1', dtype=torch.bfloat16) # create dataset if args.dataset=='domainbed': dataset = MVTDataset(meta_file, preprocess) train_dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) val_dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) else: if args.dataset=='cifar10' or args.dataset=='cifar100': dataset = MVTCifarDataset(meta_file, preprocess) elif args.dataset=='mnist': dataset = MVTMnistDataset(root=meta_file, transform=preprocess) else: dataset = MVTDataset(args, meta_file, preprocess) train_dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers) val_dataloader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) text_template_mapping = { 'mnist': 'mnist_template', 'cifar10': 'cifar_template', 'cifar100': 'cifar_template', 'iwildcam': 'iwildcam_template', 'imagenet': 'openai_imagenet_template', 'domainbed': 'cifar_template', } templates = getattr(templates, text_template_mapping[args.dataset]) get_image_text_loader_fn = getattr(mydatasets, 'get_' + args.dataset) _, _, _, class_names = get_image_text_loader_fn(args, preprocess, return_classnames=True) zeroshot_weights = zeroshot_classifier(clip_model, class_names, templates) zeroshot_weights=zeroshot_weights.to(torch.float32) clip_model=clip_model.visual clip_model=clip_model.to(torch.float32) clip_model.eval() # create teacher clip_model and logits teacher_model=copy.deepcopy(clip_model) teacher_model.eval() for k, v in teacher_model.named_parameters(): v.requires_grad = False with open(os.path.join('logits/', teacher_json), 'r') as f: logits_json=json.load(f) # Format of teacher_logits: # image_paths: [[topk_image_labels], [topk_image_logits]] teacher_logits={} for tmp in logits_json['logits']: key_dir=list(tmp.keys())[0] teacher_logits[key_dir]=tmp[key_dir] # optimizer optim_kwargs={ # 'lr': 1e-6, 'lr': 5e-7, 'betas': (0.9, 0.999), 'eps': 1e-8, 'weight_decay': 5e-7, } optimizer = optim.Adam(params= filter(lambda p: p.requires_grad, clip_model.parameters()), **optim_kwargs) # scheduler logger.info('Initialize scheduler.') updates_per_epoch = len(train_dataloader) sched_kwargs={ 'sched': 'cosine', # 'num_epochs': 10, 'num_epochs': 3, 'warmup_epochs': 0, 'min_lr': 5e-8, 'step_on_epochs': False, 'updates_per_epoch': updates_per_epoch } scheduler, num_epochs = create_scheduler(optimizer, **sched_kwargs) # evaluate first val_acc = evaluation_epoch(args, -1, num_epochs, val_dataloader, mask, zeroshot_weights, clip_model, logger) logger.info(f'First evaluation, acc is {val_acc}.') # training epochs for epoch in range(num_epochs): # clip_model training train_loss, batch_time = train_epoch(args, epoch, num_epochs, train_dataloader, mask, zeroshot_weights, clip_model, teacher_model, teacher_logits, optimizer, scheduler, logger) # clip_model evaluation val_acc = evaluation_epoch(args, epoch, num_epochs, val_dataloader, mask, zeroshot_weights, clip_model, logger) # record loss logger.info(f'Finish training epoch {epoch}. The train loss is {train_loss}, the val acc is {val_acc}, the batch time is {batch_time}.') # save state dict checkpoint={'clip_model': clip_model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch, 'lr': scheduler.state_dict()} torch.save(checkpoint, os.path.join(args.output_dir, f'save{epoch}.pth')) logger.info('Finish training.') def get_logits(images, zeroshot_weights, teacher_model): with torch.no_grad(): image_features = teacher_model(images) image_features = image_features/image_features.norm(dim=-1, keepdim=True) logits = image_features @ zeroshot_weights return logits def train_epoch(args, epoch, num_epochs, train_dataloader, mask, zeroshot_weights, clip_model, teacher_model, teacher_logits, optimizer, scheduler, logger): # settings num_updates=epoch*len(train_dataloader) train_loss_m = AverageMeter() batch_time_m = AverageMeter() timer = time.time() crossentropy=torch.nn.CrossEntropyLoss() log_scale=torch.ones([]) * np.log(1 / 0.07) log_scale.cuda() # to train mode clip_model.train() for batch_id, data in enumerate(train_dataloader):
images, targets, image_paths = data[0], data[1], data[2]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hubo0417/EasyGC # Path: sdxl/generate_style_config.py # Path: sdxl/sd_refiner_model.py class SD_Refiner_Model: model_id: str = BASE_CONFIG["sdxl_refiner_path"] export: bool = True single_lock = RLock() is_cuda: bool = False n_steps: int = 50 high_noise_frac: float = 0.8 guidance_scale: float = 9 # 数值越低,画面效果越趋近于抽象油画 is_combine_base: bool = True H: int = 1024 # 图片的高 W: int = 1024 # 图片的宽 def __init__(self, **kwargs) -> None: self.init_params(**kwargs) self.base_model: SD_Base_Model = None self.refiner_model = None def init_params(self, **kwargs): if "model_id" in kwargs: self.model_id = kwargs["model_id"] if "is_cuda" in kwargs: self.is_cuda = bool(kwargs["is_cuda"]) if "n_steps" in kwargs: self.n_steps = int(kwargs["n_steps"]) if self.n_steps > 100 or self.n_steps < 30: self.n_steps = 40 if "guidance_scale" in kwargs: self.guidance_scale = float(kwargs["guidance_scale"]) if self.guidance_scale > 8: self.guidance_scale = 7.5 if "is_combine_base" in kwargs: self.is_combine_base = bool(kwargs["is_combine_base"]) if "H" in kwargs: self.H = int(kwargs["H"]) if self.H > 1024 or self.H < 128: self.H = 1024 if "H" in kwargs: self.W = int(kwargs["W"]) if self.W > 1024 or self.W < 128: self.W = 1024 # 通过基础图片+单条提示词得到另一些精炼加工图片 def get_image_to_image_single_prompt(self, query: str, image_url: str = None, image_count: int = 1, negative_prompt: str = None): # 获取潜在空间的图片通过单条提示词 def _get_base_latent_images_single_prompt(query: str, image_count: int = 1, negative_prompt: str = None): if self.base_model is not None: images = self.base_model.get_base_latent_image_single_prompt( query=query, image_count=image_count, negative_prompt=negative_prompt) return images else: return None target_size: tuple[int, int] = (self.H, self.W) if image_url is None and self.is_combine_base is True: init_images = _get_base_latent_images_single_prompt( query, image_count, negative_prompt) images = self.refiner_model(prompt=query, num_inference_steps=self.n_steps, denoising_start=self.high_noise_frac, num_images_per_prompt=image_count, negative_prompt=negative_prompt, image=init_images, target_size=target_size).images else: init_image = load_image(image_url).convert("RGB") images = self.refiner_model(prompt=query, image=init_image, num_inference_steps=self.n_steps, guidance_scale=self.guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=image_count, target_size=target_size).images return images # 通过基础图片+多条提示词得到另一些精炼加工图片 def get_image_to_image_multiple_prompts(self, prompts: List[str], image_count: int = 1, negative_prompt: str = None): target_size: tuple[int, int] = (self.H, self.W) # 获取潜在空间的图片通过多条提示词 def _get_base_latent_image_multiple_prompts( prompts: List[str], image_count: int = 1, negative_prompt: str = None): if self.base_model is not None: images = self.base_model.get_base_latent_image_multiple_prompts( prompts=prompts, image_count=image_count, negative_prompt=negative_prompt) return images else: return None if self.is_combine_base is True: negative_prompts: List[str] = [] for item in prompts: negative_prompts.append(negative_prompt) init_images = _get_base_latent_image_multiple_prompts( prompts=prompts, image_count=image_count, negative_prompt=negative_prompt) images = self.refiner_model( prompt=prompts, num_inference_steps=self.n_steps, denoising_start=self.high_noise_frac, num_images_per_prompt=image_count, image=init_images, target_size=target_size, negative_prompt=negative_prompts).images else: raise ValueError("REFINER模型并未定义成需要和BASE模型一起使用") return images def unload_model(self): if self.refiner_model is not None: self.refiner_model = None if self.base_model is not None: if self.base_model.base_model is not None: self.base_model.base_model = None torch.cuda.empty_cache() def load_model(self): self.unload_model() if self.is_combine_base is True: # 处理baseModel if self.base_model is None: self.base_model = SD_Base_Model.instance( n_steps=self.n_steps, high_noise_frac=self.high_noise_frac, is_cuda=self.is_cuda, H=self.H / 2, W=self.W / 2) if self.base_model.base_model is None: self.base_model.load_model() # 处理refinerModel if self.refiner_model is None: self.refiner_model = DiffusionPipeline.from_pretrained( self.model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, text_encoder_2=self.base_model.base_model.text_encoder_2, vae=self.base_model.base_model.vae) else: self.base_model = None if self.refiner_model is None: self.refiner_model = StableDiffusionXLImg2ImgPipeline.from_pretrained( self.model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True) if self.is_cuda is True: self.refiner_model.to("cuda") else: self.refiner_model.enable_model_cpu_offload() @classmethod def instance(cls, *args, **kwargs): if not hasattr(SD_Refiner_Model, "_instance"): with SD_Refiner_Model.single_lock: if not hasattr(SD_Refiner_Model, "_instance"): SD_Refiner_Model._instance = cls(*args, **kwargs) else: SD_Refiner_Model._instance.init_params(**kwargs) return SD_Refiner_Model._instance # Path: utils/image_search/image_search_util_txt.py class Image_Search_Util_Txt: search_count_from_google: int = 10 search_count_from_embedding_db: int = 2 collection_name = "images_blip_source" destination: str = "D:\\EasyGC\\images_download\\blips" return_top_n = 0.25 def __init__(self, **kwargs) -> None: if "search_count_from_google" in kwargs: self.search_count_from_google = int( kwargs["search_count_from_google"]) if "search_count_from_embedding_db" in kwargs: self.search_count_from_embedding_db = int( kwargs["search_count_from_embedding_db"]) if "return_top_n" in kwargs: self.return_top_n = float(kwargs["return_top_n"]) # 1、用图片搜索的时候,提取图片文本摘要 def blip_image(self, image_url: Union[list, str], prefix: str = None): if not image_url: raise ValueError("未能获取到对应图片地址,此参数不能为空") blip_model = Blip_Model() result: list = [] if isinstance(image_url, list): for item in image_url: blip_str = blip_model.generate_text_from_image(image_url=item, text=prefix) result.append(blip_str) else: blip_str = blip_model.generate_text_from_image(image_url=image_url, text=prefix) result.append(blip_str) return result # 1/2、文本/图片摘要搜索向量数据库 def search_embedding_by_text(self, text: str): final_data: list = None embeddings = EmbeddingHelper(collection_name=self.collection_name) where_document = {"$contains": text} search_result = embeddings.query( message=text, count=self.search_count_from_embedding_db, is_find_metedata=True, filter={"source": "images"}, where_document=where_document) if search_result and len(search_result) > 0: final_data = [item["image_path"] for item in search_result] return final_data # 3、根据文本/图片摘要搜索互联网 def search_image_by_google(self, text: str) -> list[dict]: def download_images(image_urls: list): images = [] for url in image_urls: try: image_name = str(uuid.uuid4()) local_path = f"{self.destination}\\{image_name}.jpg" response = requests.get(url, stream=True) response.raise_for_status() with open(local_path, 'wb') as file: for chunk in response.iter_content(chunk_size=8192): file.write(chunk) images.append(local_path) except requests.exceptions.RequestException as e: continue return images base_url = "https://www.googleapis.com/customsearch/v1" _params = f"key={GOOGLE_APIKEY}&cx={GOOGLE_SEARCH_ID}" content = [] system_params = f"{_params}&q={text}&lr=lang_zh-CN&sort=review-rating:d:s&searchType=image" page_count = int(self.search_count_from_google / 10) for i in range(0, page_count): start = i * 10 + 1 system_params = f"{system_params}&start={start}" search_result = json.loads( requests.get(url=f"{base_url}?{system_params}").text) if search_result and "items" in search_result: for item in search_result["items"]: content.append(item["link"]) images = download_images(content) return images # 4、将从互联网搜索出来的图片进行摘要提取并与原始输入摘要/文本进行余弦距离计算,返回相似度最高的前面N条 def compare_google_and_orignal_blipinfo(self, google_result: list, original_text: str): blip_google_results = [] blip_model = Blip_Model() for item in google_result: blip_info = blip_model.generate_text_from_image(image_url=item) blip_google_results.append({ "blip_info": blip_info, "image_path": item, "distance": 0 }) helper = EmbeddingHelper(collection_name=self.collection_name) orignal_tensor = helper.embeddingModel.embed_query(original_text) for i in range(0, len(blip_google_results)): google_tensor = helper.embeddingModel.embed_query( blip_google_results[i]["blip_info"]) consine_distance = 1 - distance.cosine(google_tensor, orignal_tensor) blip_google_results[i]["distance"] = consine_distance num = int(self.search_count_from_google * self.return_top_n) result = sorted(blip_google_results, key=lambda x: x["distance"], reverse=True)[:num] return result # 5、将图片信息存入向量数据库,并返回存入成功的图片数据 def embedding_image_info(self, images: list): if images is None or len(images) <= 0: raise ValueError("images参数必须包含有效值") helper = EmbeddingHelper(collection_name=self.collection_name) result_images = [] for image in images: if "image_path" not in image or "blip_info" not in image: continue item = {} item["source"] = "images" item["image_path"] = image["image_path"] helper.embedding_texts(texts=[image["blip_info"]], metadatas=[item]) result_images.append(image["image_path"]) return result_images @staticmethod def resize_image(image_path: str): # 判断是否存在图片 is_exist = os.path.exists(image_path) and os.path.isfile(image_path) if is_exist is False: raise ValueError("图片地址错误,请检查图片是否存在") # 图片路径 output_image_path = image_path # 打开原始图片 original_image = Image.open(image_path) # 获取原始图片尺寸 width, height = original_image.size # 逐步计算图片大小(按等比例放缩) if width * height > 1024 * 1024: size_is_approve: bool = False resize_step = 0.1 while size_is_approve is False: width = int(width * (1 - resize_step)) height = int(height * (1 - resize_step)) size_is_approve = width * height < 1024 * 1024 resize_step = resize_step + 0.1 # 调整图片大小 resized_image = original_image.resize((width, height)) # 保存调整后的图片 resized_image.save(output_image_path) # 关闭图像 original_image.close() # Path: utils/image_search/image_search_util_img.py class Image_Search_Util_Img: search_count_from_google: int = 10 search_count_from_embedding_db: int = 4 max_count_from_google: int = 40 collection_name = "images_source" destination: str = "D:\\EasyGC\\images_download\\images" cnn_model = None db_collection: chromadb.Collection = None cos_distance_threshold = 0.7 page_index: int = 1 blip_info: str = None def __init__(self, **kwargs) -> None: if "search_count_from_google" in kwargs: self.search_count_from_google = int( kwargs["search_count_from_google"]) if "search_count_from_embedding_db" in kwargs: self.search_count_from_embedding_db = int( kwargs["search_count_from_embedding_db"]) if "cos_distance_threshold" in kwargs: self.cos_distance_threshold = float( kwargs["cos_distance_threshold"]) if "page_index" in kwargs: self.page_index = float(kwargs["page_index"]) if "max_count_from_google" in kwargs: self.max_count_from_google = float(kwargs["max_count_from_google"]) # 初始化卷积网络模型 cnn_inner_model = VGG16(include_top=False) self.cnn_model = Model( inputs=cnn_inner_model.input, outputs=cnn_inner_model.get_layer('block5_conv2').output) # 初始化向量数据库 db = chromadb.Client( settings=Settings(persist_directory=BASE_CONFIG["chromadb_path"], is_persistent=True)) self.db_collection = db.get_or_create_collection( name=self.collection_name, metadata={"hnsw:space": "cosine"}) # 提取图片文本摘要 def _blip_image(self, image_url: Union[list, str], prefix: str = None): if not image_url: raise ValueError("未能获取到对应图片地址,此参数不能为空") blip_model = Blip_Model() result: list = [] if isinstance(image_url, list): for item in image_url: blip_str = blip_model.generate_text_from_image(image_url=item, text=prefix) result.append(blip_str) else: blip_str = blip_model.generate_text_from_image(image_url=image_url, text=prefix) # blip_str = Translation_Baidu.excute_translation(query=blip_str,from_lang="en", to_lang="zh") result.append(blip_str) return result # 将图片转换成向量 def _embedding_image(self, image_path: str): img = cv2.imread(image_path) # 将图像大小调整为VGG16模型的输入大小 img = cv2.resize(img, (224, 224)) # 将图像转换为4D张量(样本数量,行,列,通道数) img = np.expand_dims(img, axis=0) # 预处理图像以适应VGG16模型的输入要求 img = preprocess_input(img) # 提取图像特征 features = self.cnn_model.predict(img) # 将特征展平为一维向量 vector = features.flatten() vector = np.array(vector).tolist() return vector # 1、在向量数据库进行搜索 def query_image_by_vector(self, image_path: str): vector = self._embedding_image(image_path=image_path) # 查询向量数据库 query_result = self.db_collection.query( query_embeddings=vector, n_results=self.search_count_from_embedding_db) result = [] blips: list = None if len(query_result["metadatas"][0]) > 0 and len( query_result["distances"][0]) > 0: for i in range(0, len(query_result["distances"][0])): if query_result["distances"][0][ i] <= self.cos_distance_threshold: result.append(query_result["metadatas"][0][i]) if len(result) <= 0: blips = self._blip_image(image_url=image_path) self.blip_info = blips[0] return { "original_vector": vector, "search_result": result, "original_blip": blips[0] if blips is not None else None } # 2、根据图片摘要搜索互联网 def search_image_by_google(self, text: str) -> list[dict]: def download_images(image_urls: list): images = [] for url in image_urls: try: image_name = str(uuid.uuid4()) local_path = f"{self.destination}\\{image_name}.jpg" response = requests.get(url, stream=True) response.raise_for_status() with open(local_path, 'wb') as file: for chunk in response.iter_content(chunk_size=8192): file.write(chunk) images.append(local_path) except requests.exceptions.RequestException as e: continue return images base_url = "https://www.googleapis.com/customsearch/v1" _params = f"key={GOOGLE_APIKEY}&cx={GOOGLE_SEARCH_ID}" content = [] start = (self.page_index - 1) * self.search_count_from_google system_params = f"{_params}&q={text}&lr=lang_zh-CN&sort=review-rating:d:s&searchType=image&start={start}" search_result = json.loads( requests.get(url=f"{base_url}?{system_params}").text) if search_result and "items" in search_result: for item in search_result["items"]: content.append(item["link"]) images = download_images(content) return images # 3、将从互联网搜索出来的图片进行摘要提取并与原始输入摘要/文本进行欧式计算,返回相似度最高的前面N条 def compare_google_and_orignal_image(self, google_result: list, original_vector): def get_distance(google_result: list, original_vector): blip_google_results = [] for item in google_result: try: target_vector = self._embedding_image(item) blip_google_results.append({ "image_path": item, "vector": target_vector, "distance": 0 }) except: pass result = [] for i in range(0, len(blip_google_results)): try: consine_distance = distance.cosine( np.array(original_vector), np.array(blip_google_results[i]["vector"])) blip_google_results[i]["distance"] = consine_distance if consine_distance <= self.cos_distance_threshold: result.append(blip_google_results[i]) except: pass return result, blip_google_results satisfy_list, all_search_list = get_distance(google_result, original_vector) total_search_times = int(self.max_count_from_google / self.search_count_from_google) cur_time_index = 1 while len( satisfy_list ) < self.search_count_from_embedding_db and cur_time_index <= total_search_times: self.page_index = self.page_index + 1 google_images = self.search_image_by_google(self.blip_info) images, all_list = get_distance(google_images, original_vector) satisfy_list.extend(images) all_search_list.extend(all_list) cur_time_index = cur_time_index + 1 if len(satisfy_list) < self.search_count_from_embedding_db: res_count = self.search_count_from_embedding_db - len(satisfy_list) res_list = sorted(all_search_list, key=lambda x: float(x["distance"]), reverse=False)[:res_count] satisfy_list.extend(res_list) # 删除多余文件 Image_Search_Util_Img.delete_files(satisfy_list, all_search_list) return satisfy_list # 4、将图片信息存入向量数据库,并返回存入成功的图片数据 def embedding_image_info(self, images: list): if images is None or len(images) <= 0: raise ValueError("images参数必须包含有效值") result_images = [] for image in images: if "image_path" not in image or "vector" not in image: continue id = str(uuid.uuid4()) self.db_collection.add( ids=id, embeddings=image["vector"], metadatas={"image_path": image["image_path"]}) result_images.append(image["image_path"]) return result_images def set_image_init_data(self, dic_path: str): files = os.listdir(dic_path) image_list = [] for file in files: # 获取文件的完整路径 file_path = os.path.join(dic_path, file) vector = self._embedding_image(file_path) image_list.append({"image_path": file_path, "vector": vector}) return self.embedding_image_info(image_list) @staticmethod def delete_files(satisfy_list, all_search_list): satisfy_image_paths = set(item['image_path'] for item in satisfy_list) for item in all_search_list: image_path = item['image_path'] if image_path not in satisfy_image_paths: try: os.remove(image_path) except OSError as e: pass # Path: web_image_search.py import gradio as gr import os import shutil from PIL import Image from sdxl.generate_style_config import style_list from sdxl.sd_refiner_model import SD_Refiner_Model from utils.image_search.image_search_util_txt import Image_Search_Util_Txt from utils.image_search.image_search_util_img import Image_Search_Util_Img style_name = [(i["name"]) for i in style_list] with gr.Blocks() as web_gc: selected_image: str = None gr.HTML("""<h1 align="center">EasyGC_Image_Search_Generation</h1>""") with gr.Row(): # 左侧搜索部分 with gr.Column(scale=6): with gr.Row(): gallery_search = gr.Gallery(label="图像搜索结果", show_label=False, elem_id="gallery_search") with gr.Row(): with gr.Column(): comment = gr.Textbox(lines=2, show_label=False, interactive=True) image_dic = gr.Textbox( lines=2, label="图片源", placeholder="请填写图片文件夹绝对路径,对图片进行向量化入库", show_label=True, interactive=True) with gr.Column(): img = gr.Image(show_label=False, height=200, interactive=True, type="filepath") search_note_Btn = gr.Button("搜索", variant="primary") init_image_Btn = gr.Button("向量化", variant="primary") # 右侧生成部分 with gr.Column(scale=6): gallery_generate = gr.Gallery(label="图像生成结果", show_label=False, elem_id="gallery_generate") img_refiner = gr.Image(show_label=False, height=120, interactive=True, type="filepath") style_dropdown = gr.Dropdown(choices=style_name, type="value", value="", show_label=True, container=False, multiselect=False, interactive=True) ok_note_Btn = gr.Button("生成", variant="primary") def search_images(img, comment): if img: image_util = Image_Search_Util_Img() query_result = image_util.query_image_by_vector(image_path=img) # 向量数据库搜索到相关图片 if query_result["original_blip"] is None: embedding_images = [ item["image_path"] for item in query_result["search_result"] ] else: text = query_result["original_blip"] original_vector = query_result["original_vector"] google_images = image_util.search_image_by_google(text) compare_result = image_util.compare_google_and_orignal_image( google_result=google_images, original_vector=original_vector) embedding_images = image_util.embedding_image_info( images=compare_result) elif comment: image_util = Image_Search_Util_Txt() text = comment embedding_images = image_util.search_embedding_by_text(text) if embedding_images is None or len(embedding_images) <= 0: google_images = image_util.search_image_by_google(text) compare_result = image_util.compare_google_and_orignal_blipinfo( google_result=google_images, original_text=text) embedding_images = image_util.embedding_image_info( images=compare_result) else: raise ValueError("图片与文本至少需要保证有一个值不为空") return embedding_images def generate_image_by_finner(img_refiner, style_dropdown): Image_Search_Util_Txt.resize_image(image_path=img_refiner) if img_refiner is not None: style = {} for i in style_list: if i["name"] == style_dropdown: style = i break sd_model = SD_Refiner_Model().instance(is_combine_base=False) sd_model.load_model() prompt = style["prompt"].format(prompt="").lower() negative_prompt = style["negative_prompt"] images = sd_model.get_image_to_image_single_prompt( query=prompt, image_url=img_refiner, image_count=4, negative_prompt=negative_prompt) # 关闭SDXL模型,释放显卡资源 sd_model.unload_model() return images return None def init_image_db(image_dic): image_util = Image_Search_Util_Img() images = image_util.set_image_init_data(image_dic) return images search_note_Btn.click(search_images, inputs=[img, comment], outputs=[gallery_search], show_progress=True) ok_note_Btn.click(generate_image_by_finner, inputs=[img_refiner, style_dropdown],
outputs=[gallery_generate])
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: kiharalab/Distance-AF # Path: protein_utils/residue_constants.py def load_stereo_chemical_props() -> Tuple[Mapping[str, List[Bond]], def make_bond_key(atom1_name, atom2_name): def sequence_to_onehot( sequence: str, mapping: Mapping[str, int], map_unknown_to_x: bool = False) -> np.ndarray: def _make_standard_atom_mask() -> np.ndarray: def chi_angle_atom(atom_index: int) -> np.ndarray: def _make_rigid_transformation_4x4(ex, ey, translation): def _make_rigid_group_constants(): def make_atom14_dists_bounds(overlap_tolerance=1.5, bond_length_tolerance_factor=15): HHBLITS_AA_TO_ID = { 'A': 0, 'B': 2, 'C': 1, 'D': 2, 'E': 3, 'F': 4, 'G': 5, 'H': 6, 'I': 7, 'J': 20, 'K': 8, 'L': 9, 'M': 10, 'N': 11, 'O': 20, 'P': 12, 'Q': 13, 'R': 14, 'S': 15, 'T': 16, 'U': 1, 'V': 17, 'W': 18, 'X': 20, 'Y': 19, 'Z': 3, '-': 21, } ID_TO_HHBLITS_AA = { 0: 'A', 1: 'C', # Also U. 2: 'D', # Also B. 3: 'E', # Also Z. 4: 'F', 5: 'G', 6: 'H', 7: 'I', 8: 'K', 9: 'L', 10: 'M', 11: 'N', 12: 'P', 13: 'Q', 14: 'R', 15: 'S', 16: 'T', 17: 'V', 18: 'W', 19: 'Y', 20: 'X', # Includes J and O. 21: '-', } MAP_HHBLITS_AATYPE_TO_OUR_AATYPE = tuple( restypes_with_x_and_gap.index(ID_TO_HHBLITS_AA[i]) for i in range(len(restypes_with_x_and_gap))) STANDARD_ATOM_MASK = _make_standard_atom_mask() # Path: protein_utils/affine_utils.py class T: def __init__(self, rots, trans): self.rots = rots self.trans = trans if self.rots is None and self.trans is None: raise ValueError("Only one of rots and trans can be None") elif self.rots is None: self.rots = T.identity_rot( self.trans.shape[:-1], self.trans.dtype, self.trans.device, self.trans.requires_grad, ) elif self.trans is None: self.trans = T.identity_trans( self.rots.shape[:-2], self.rots.dtype, self.rots.device, self.rots.requires_grad, ) if ( self.rots.shape[-2:] != (3, 3) or self.trans.shape[-1] != 3 or self.rots.shape[:-2] != self.trans.shape[:-1] ): raise ValueError("Incorrectly shaped input") def __getitem__(self, index): if type(index) != tuple: index = (index,) return T( self.rots[index + (slice(None), slice(None))], self.trans[index + (slice(None),)], ) def __eq__(self, obj): return torch.all(self.rots == obj.rots) and torch.all( self.trans == obj.trans ) def __mul__(self, right): rots = self.rots * right[..., None, None] trans = self.trans * right[..., None] return T(rots, trans) def __rmul__(self, left): return self.__mul__(left) @property def shape(self): s = self.rots.shape[:-2] return s if len(s) > 0 else torch.Size([1]) def get_trans(self): return self.trans def get_rots(self): return self.rots def compose(self, t): rot_1, trn_1 = self.rots, self.trans rot_2, trn_2 = t.rots, t.trans rot = rot_matmul(rot_1, rot_2) trn = rot_vec_mul(rot_1, trn_2) + trn_1 return T(rot, trn) def apply(self, pts): r, t = self.rots, self.trans rotated = rot_vec_mul(r, pts) return rotated + t def invert_apply(self, pts): r, t = self.rots, self.trans pts = pts - t return rot_vec_mul(r.transpose(-1, -2), pts) def invert(self): rot_inv = self.rots.transpose(-1, -2) trn_inv = rot_vec_mul(rot_inv, self.trans) return T(rot_inv, -1 * trn_inv) def unsqueeze(self, dim): if dim >= len(self.shape): raise ValueError("Invalid dimension") rots = self.rots.unsqueeze(dim if dim >= 0 else dim - 2) trans = self.trans.unsqueeze(dim if dim >= 0 else dim - 1) return T(rots, trans) @staticmethod def identity_rot(shape, dtype, device, requires_grad): rots = torch.eye( 3, dtype=dtype, device=device, requires_grad=requires_grad ) rots = rots.view(*((1,) * len(shape)), 3, 3) rots = rots.expand(*shape, -1, -1) return rots @staticmethod def identity_trans(shape, dtype, device, requires_grad): trans = torch.zeros( (*shape, 3), dtype=dtype, device=device, requires_grad=requires_grad ) return trans @staticmethod def identity(shape, dtype, device, requires_grad=True): return T( T.identity_rot(shape, dtype, device, requires_grad), T.identity_trans(shape, dtype, device, requires_grad), ) @staticmethod def from_4x4(t): rots = t[..., :3, :3] trans = t[..., :3, 3] return T(rots, trans) def to_4x4(self): tensor = self.rots.new_zeros((*self.shape, 4, 4)) tensor[..., :3, :3] = self.rots tensor[..., :3, 3] = self.trans tensor[..., 3, 3] = 1 return tensor @staticmethod def from_tensor(t): return T.from_4x4(t) @staticmethod def from_3_points(p_neg_x_axis, origin, p_xy_plane, eps=1e-8): p_neg_x_axis = torch.unbind(p_neg_x_axis, dim=-1) origin = torch.unbind(origin, dim=-1) p_xy_plane = torch.unbind(p_xy_plane, dim=-1) e0 = [c1 - c2 for c1, c2 in zip(origin, p_neg_x_axis)] e1 = [c1 - c2 for c1, c2 in zip(p_xy_plane, origin)] denom = torch.sqrt(sum((c * c for c in e0)) + eps) e0 = [c / denom for c in e0] dot = sum((c1 * c2 for c1, c2 in zip(e0, e1))) e1 = [c2 - c1 * dot for c1, c2 in zip(e0, e1)] denom = torch.sqrt(sum((c * c for c in e1)) + eps) e1 = [c / denom for c in e1] e2 = [ e0[1] * e1[2] - e0[2] * e1[1], e0[2] * e1[0] - e0[0] * e1[2], e0[0] * e1[1] - e0[1] * e1[0], ] rots = torch.stack([c for tup in zip(e0, e1, e2) for c in tup], dim=-1) rots = rots.reshape(rots.shape[:-1] + (3, 3)) return T(rots, torch.stack(origin, dim=-1)) @staticmethod def concat(ts, dim): rots = torch.cat([t.rots for t in ts], dim=dim if dim >= 0 else dim - 2) trans = torch.cat( [t.trans for t in ts], dim=dim if dim >= 0 else dim - 1 ) return T(rots, trans) def map_tensor_fn(self, fn): """ Apply a function that takes a tensor as its only argument to the rotations and translations, treating the final two/one dimension(s), respectively, as batch dimensions. E.g.: Given t, an instance of T of shape [N, M], this function can be used to sum out the second dimension thereof as follows: t = t.map_tensor_fn(lambda x: torch.sum(x, dim=-1)) The resulting object has rotations of shape [N, 3, 3] and translations of shape [N, 3] """ rots = self.rots.view(*self.rots.shape[:-2], 9) rots = torch.stack(list(map(fn, torch.unbind(rots, -1))), dim=-1) rots = rots.view(*rots.shape[:-1], 3, 3) trans = torch.stack(list(map(fn, torch.unbind(self.trans, -1))), dim=-1) return T(rots, trans) def stop_rot_gradient(self): return T(self.rots.detach(), self.trans) def scale_translation(self, factor): return T(self.rots, self.trans * factor) @staticmethod def make_transform_from_reference(n_xyz, ca_xyz, c_xyz, eps=1e-20): translation = -1 * c_xyz n_xyz = n_xyz + translation c_xyz = c_xyz + translation c_x, c_y, c_z = [c_xyz[..., i] for i in range(3)] norm = torch.sqrt(eps + c_x ** 2 + c_y ** 2) sin_c1 = -c_y / norm cos_c1 = c_x / norm zeros = sin_c1.new_zeros(sin_c1.shape) ones = sin_c1.new_ones(sin_c1.shape) c1_rots = sin_c1.new_zeros((*sin_c1.shape, 3, 3)) c1_rots[..., 0, 0] = cos_c1 c1_rots[..., 0, 1] = -1 * sin_c1 c1_rots[..., 1, 0] = sin_c1 c1_rots[..., 1, 1] = cos_c1 c1_rots[..., 2, 2] = 1 norm = torch.sqrt(eps + c_x ** 2 + c_y ** 2 + c_z ** 2) sin_c2 = c_z / norm cos_c2 = torch.sqrt(c_x ** 2 + c_y ** 2) / norm c2_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3)) c2_rots[..., 0, 0] = cos_c2 c2_rots[..., 0, 2] = sin_c2 c2_rots[..., 1, 1] = 1 c1_rots[..., 2, 0] = -1 * sin_c2 c1_rots[..., 2, 2] = cos_c2 c_rots = rot_matmul(c2_rots, c1_rots) n_xyz = rot_vec_mul(c_rots, n_xyz) _, n_y, n_z = [n_xyz[..., i] for i in range(3)] norm = torch.sqrt(eps + n_y ** 2 + n_z ** 2) sin_n = -n_z / norm cos_n = n_y / norm n_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3)) n_rots[..., 0, 0] = 1 n_rots[..., 1, 1] = cos_n n_rots[..., 1, 2] = -1 * sin_n n_rots[..., 2, 1] = sin_n n_rots[..., 2, 2] = cos_n rots = rot_matmul(n_rots, c_rots) rots = rots.transpose(-1, -2) translation = -1 * translation return T(rots, translation) def cuda(self): return T(self.rots.cuda(), self.trans.cuda()) # Path: train_utils/tensor_utils.py def permute_final_dims(tensor: torch.Tensor, inds: List[int]): def flatten_final_dims(t: torch.Tensor, no_dims: int): def masked_mean(mask, value, dim, eps=1e-4): def pts_to_distogram(pts, min_bin=2.3125, max_bin=21.6875, no_bins=64): def dict_multimap(fn, dicts): def one_hot(x, v_bins): def batched_gather(data, inds, dim=0, no_batch_dims=0): def dict_map(fn, dic, leaf_type): def tree_map(fn, tree, leaf_type): def chunk_layer( layer: Callable, inputs: Dict[str, Any], chunk_size: int, no_batch_dims: int, ) -> Any: def fetch_dims(tree): def prep_inputs(t): def assign(d1, d2): # Path: Loss/openfold_loss.py import numpy as np import torch import torch.nn as nn import logging from typing import Dict, Optional, Tuple from protein_utils import residue_constants from protein_utils.affine_utils import T from train_utils.tensor_utils import ( tree_map, tensor_tree_map, masked_mean, permute_final_dims, batched_gather, ) # Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #from functools import partial #from torch.distributions.bernoulli import Bernoulli #from openfold.utils import feats def softmax_cross_entropy(logits, labels): loss = -1 * torch.sum( labels * torch.nn.functional.log_softmax(logits, dim=-1), dim=-1, ) return loss def sigmoid_cross_entropy(logits, labels): log_p = torch.nn.functional.logsigmoid(logits) log_not_p = torch.nn.functional.logsigmoid(-logits) loss = -labels * log_p - (1 - labels) * log_not_p return loss def torsion_angle_loss( a, # [*, N, 7, 2] a_gt, # [*, N, 7, 2] a_alt_gt, # [*, N, 7, 2] ): # [*, N, 7] norm = torch.norm(a, dim=-1) # [*, N, 7, 2] a = a / norm.unsqueeze(-1) # [*, N, 7] diff_norm_gt = torch.norm(a - a_gt, dim=-1) diff_norm_alt_gt = torch.norm(a - a_alt_gt, dim=-1) min_diff = torch.minimum(diff_norm_gt ** 2, diff_norm_alt_gt ** 2) # [*] l_torsion = torch.mean(min_diff, dim=(-1, -2)) l_angle_norm = torch.mean(torch.abs(norm - 1), dim=(-1, -2)) an_weight = 0.02 return l_torsion + an_weight * l_angle_norm def compute_fape( pred_frames: T, target_frames: T, frames_mask: torch.Tensor, pred_positions: torch.Tensor, target_positions: torch.Tensor, positions_mask: torch.Tensor,
length_scale: float,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: HangBack/nodoc # Path: structure/tree.py class Node(metaclass=abc.ABCMeta): def __init__(self, **data) -> None: """ 节点 - 关键字参数: - **data: Any, 节点保存的数据 - 属性: - parent: Node, 该节点的父节点 - left: Node, 该节点的左节点 - right: Node, 该节点的左节点 - children: list[Node], 该节点的所有子节点 - visited: bool, 该节点是否被访问 """ self._parent: Node = None # 父节点 self._left: Node = None # 左节点 self._right: Node = None # 右节点 self._children: Nodes = Nodes([]) # 子节点列表 self._data = data # 节点数据 self._visited: bool = False # 是否被访问 self._count: int = 1 # 包括自己在内的节点数量(包含深度) self._depth: int = 0 # 节点的深度 self._tree: Tree = None self.seeker: Node @property def tree(self) -> 'Tree': return self._tree @tree.setter def tree(self, tree: 'Tree'): if not isinstance(tree, Tree): raise TypeError(f'期望:{Tree},实际:{type(tree)}') self._tree = tree @property def depth(self) -> int: return self._depth @depth.setter def depth(self, value: 'int') -> int: if not isinstance(value, int): raise TypeError(f'期望:{int},实际:{type(value)}') self._depth = value @property def visited(self) -> bool: "是否被访问" return self._visited @visited.setter def visited(self, value: bool) -> bool: self._visited = value @property def parent(self): """ 父节点 - setter: - node: `Node`,设置该节点的父亲节点 """ return self._parent @parent.setter def parent(self, node: 'Node'): if not isinstance(node, Node): raise TypeError(f'期望:{Node},实际:{type(node)}') if self._parent: self._parent._children.remove(self) self._parent = node self._parent._children.append(self) self.depth = self._parent.depth + 1 # 节点深度 + 1 auto_tree_updater(self, node) @property def left(self) -> 'Node': """ 兄弟节点-左 - node: `Node`,设置该节点的左节点 """ return self._left @left.setter def left(self, node: 'Node'): if not isinstance(node, Node): raise TypeError(f'期望:{Node},实际:{type(node)}') self._left = node if self._left.right is not self: # 同时防止递归过深 self._left.right = self auto_tree_updater(self, node) @property def right(self) -> 'Node': """ 兄弟节点-右 - node: `Node`,设置该节点的右节点 """ return self._right @right.setter def right(self, node: 'Node'): if not isinstance(node, Node): raise TypeError(f'期望:{Node},实际:{type(node)}') self._right = node if self._right.left is not self: # 同时防止递归过深 self._right.left = self auto_tree_updater(self, node) @property def children(self) -> 'Nodes': "子节点" return self._children @children.setter def children(self, value): self._children = value @property def data(self): "节点数据" return self._data @data.setter def data(self, value: Any): self._data = value @property def count(self) -> int: "节点数量" return self._count @count.setter def count(self, value: int): self._count = value @property def type(self): "节点类型" return type(self._data) @abc.abstractmethod def get_route(self, endpoint: 'Node', condition: Callable[['Node'], bool] = lambda node: True) -> 'Nodes': """ 获取子父节点的路由 -> 从该节点到目标节点之间的所有节点(不包括该节点)。 - endpoint: Node,该节点的目标节点。 - condition: Callable, 每个节点 """ if not isinstance(endpoint, Node): raise TypeError(f'期望:{Node},实际:{type(endpoint)}') elif self is endpoint: return None result: list['Node'] = [] if self.depth < endpoint.depth: current_node = endpoint endpoint = self reverse = False else: current_node = self reverse = True while ( current_node.parent is not None and current_node is not endpoint ): current_node = current_node.parent if condition(current_node): # 满足条件则追加该节点 result.append(current_node) if reverse: result.reverse() if len(result) == 0: return None return Nodes(result) def __lshift__(self, other): if isinstance(other, Node): return other.get_route(self) def __rshift__(self, other): if isinstance(other, Node): return self.get_route(other) def __matmul__(self, other): if isinstance(other, Node): self.parent = other return other elif isinstance(other, Tree): self._tree = other return other def __and__(self, other): if isinstance(other, Node): self.right = other return Nodes([self, other]) elif isinstance(other, Nodes): self & other[0] other.prepend(self) # Path: structure/tree.py class Nodes(metaclass=abc.ABCMeta): def __init__(self, nodes: list[Node]) -> None: self.data: deque[Node] = deque(nodes) def __matmul__(self, other): for node in self.data: node @ other return other def __and__(self, other): if isinstance(other, Node): self[-1] & other self.append(other) return other def __getitem__(self, index) -> Node: return self.data[index] def __iter__(self): for node in self.data: yield node def prepend(self, node: Node): self.data.appendleft(node) def append(self, node: Node): self.data.append(node) def remove(self, node: Node): self.data.remove(node) def __str__(self) -> str: return "".join([str(node) for node in self.data]) # Path: structure/tree.py class Tree(metaclass=abc.ABCMeta): def __init__(self, root: Node, name: str = '无名树') -> None: """ 实例化一个基本树对象。 - root: Node, 树的根节点。 - name: str, 树的名字,用于查询。 """ self.name: str = name self.root: Node = root self.current_node: Node = root self.__nodecount: int = 1 for node in self.DFT(): node @ self @property def nodecount(self) -> int: return self.__nodecount """ 栈 queue = [time1 -> a, time2 -> b...] 以下循环:直到栈空 栈出 queue.popleft() 现在 queue 相当于 [time2 -> b, time3 -> c...] 栈入 queue.extend(nodeList) 现在 queue 相当于 [time2 -> b, time3 -> c...timeN1 -> Na, timeN2 -> Nb...] """ def BFS(self, callback: Callable[[Node], bool] = lambda: True) -> Node | None: """ 广度优先搜索(层次搜索)。 - callback: Callable, 用于判断node是否符合指定条件。 """ visited = set() queue = deque([self.root]) while queue: current_node = queue.popleft() if callback(current_node): return current_node # 第一个符合条件的节点 visited.add(current_node) queue.extend(child for child in current_node.children if child not in visited and child not in queue) return None # 没有任何满足条件的节点 @abc.abstractmethod def BFT(self, callback: Callable[[Node], bool] = lambda: True) -> Nodes | None: """ 广度优先遍历(层次遍历) - callback: Callable, 用于判断node是否符合指定条件。 """ visited = set() queue = deque([self.root]) result = [] while queue: current_node = queue.popleft() if callback(current_node): result.append(current_node) # 追加一个符合条件的节点 visited.add(current_node) queue.extend(child for child in current_node.children if child not in visited and child not in queue) return Nodes(result) """ 递归 从当前节点开始优先找子节点,子节点也优先找子节点,直到到底了都还没找到则返回父节点并找该节点的另一个子节点,以此类推 """ def DFS(self, node=None, callback: Callable[[Node], bool] = lambda: True) -> Node | None: """ 深度优先搜索。 - node: Node, 起点节点,默认为根节点。 - callback: Callable, 用于判断node是否符合指定条件。 """ result = None if node is None: node = self.root if callback(node): return node # 找到符合条件的节点 node.visited = True for child in node.children: if not child.visited: result = self.DFS(child, callback) if result is not None: return result # 在子树中找到符合条件的节点 node.visited = False return None # 在当前子树未找到符合条件的节点 @abc.abstractmethod def DFT(self, node=None, callback: Callable[[Node], bool] = lambda: True) -> Nodes | None: """ 深度优先遍历。 - node: Node, 起点节点,默认为根节点。 - callback: Callable, 用于判断node是否符合指定条件。 """ result = None if node is None: node = self.root result = [] if callback(node): result.append(node) # 找到符合条件的节点 node.visited = True for child in node.children: if not child.visited: current_node = self.DFT(child, callback) result.extend(current_node) node.visited = False return Nodes(result) # Path: structure/doc_tree.py import time import sys from typing import Any, Callable, Self, TypedDict, Unpack, Literal from nodoc import const from nodoc.document.base import Document from .tree import Node, Nodes, Tree raise TypeError(f'期望:bool,实际:{type(value)}') self._isImage = value def __eq__(self, __value: object) -> bool: if __value is splitSign: return len(self.children) == 0 return super().__eq__(__value) def __rshift__(self, other): result = super().__rshift__(other) if result is None: return None return docNodes(result) def __lshift__(self, other): result = super().__lshift__(other) if result is None: return None return docNodes(result) def get_route(self, endpoint: 'docNode', condition: Callable[['docNode'], bool] = lambda node: True) -> 'docNodes': """ 获取子父节点的路由 -> 默认是从该节点到目标节点之间的所有标题节点(不包括该节点)。 - endpoint: Node,该节点的目标节点。 """ if condition is None: def condition(node: docNode): return node.isTitle result = super().get_route(endpoint, condition) if result is None: return None return docNodes(list(result)) def __matmul__(self, other): result = super().__matmul__(other) return result def __str__(self): return f""" 标头:{self.data['head']} 内容:{self.data['content']} 类型:{self.data['kind']} 路由:{self >> self.tree.root} """ class docNodes(Nodes): def __init__(self, nodes: list[docNode]) -> None: super().__init__(nodes) def prepend(self, node: docNode): return super().prepend(node) def append(self, node: docNode): return super().append(node) def remove(self, node: docNode): return super().remove(node) def __str__(self) -> str: return "/".join([node.data['content'] for node in self.data]) class docTree(Tree): def __init__(self, root: docNode, name: str = '文档树', **data: Unpack[docArg]) -> None: """ 实例化一个文档树对象。 - root: docNode, 文档树的根节点。 - name: str, 文档树的名称,用于查询。 """ data.setdefault('head', None) data.setdefault('metadata', { 'create_time': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()), 'modify_time': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()), 'visit_time': time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()) }) if not isinstance(root, docNode): raise TypeError(f'期望:docNode,实际:{type(root)}') super().__init__(root, name) self.data = data self.root: docNode def update(self): self.data['metadata'].setdefault('size', sys.getsizeof(self.document)) def from_document(self, document: Document): ... # @override def DFT(self, node=None, callback: Callable[[Node], bool] = lambda node: True) -> list[docNode] | None: result = super().DFT(node, callback) return docNodes(result) # @override def BFT(self, callback: Callable[[Node], bool] = lambda node: True) -> list[docNode] | None: result = super().BFT(callback) return docNodes(result) def __str__(self): document = None if hasattr(self, 'document'): if len(self.document) <= 12: document = self.document.replace('\n', '') else: prefix = self.document[0:5].replace('\n', '') char_count = f'...({len(self.document) - 10}字)...' suffix = self.document[-6:-1].replace('\n', '') document = prefix + char_count + suffix result = f""" {self.name} - 创建时间:{self.data['metadata']['create_time']} - 修改时间:{self.data['metadata']['modify_time']} - 访问时间:{self.data['metadata']['visit_time']} - 文档大小:{const.get_size(self.data['metadata']['size'])}
- 文档内容:{document}
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: kai-wen-yang/QVix # Path: models/instruct_blip/common/dist_utils.py def setup_for_distributed(is_master): def print(*args, **kwargs): def is_dist_avail_and_initialized(): def get_world_size(): def get_rank(): def is_main_process(): def init_distributed_mode(args): def get_dist_info(): def main_process(func): def wrapper(*args, **kwargs): def download_cached_file(url, check_hash=True, progress=False): def get_cached_file_path(): # Path: models/instruct_blip/common/dist_utils.py def download_cached_file(url, check_hash=True, progress=False): """ Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again. If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded. """ def get_cached_file_path(): # a hack to sync the file path across processes parts = torch.hub.urlparse(url) filename = os.path.basename(parts.path) cached_file = os.path.join(timm_hub.get_cache_dir(), filename) return cached_file if is_main_process(): timm_hub.download_cached_file(url, check_hash, progress) if is_dist_avail_and_initialized(): dist.barrier() return get_cached_file_path() # Path: models/instruct_blip/common/utils.py def is_url(url_or_filename): parsed = urlparse(url_or_filename) return parsed.scheme in ("http", "https") # Path: models/instruct_blip/common/logger.py class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError( "'{}' object has no attribute '{}'".format(type(self).__name__, attr) ) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def global_avg(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {:.4f}".format(name, meter.global_avg)) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.4f}") data_time = SmoothedValue(fmt="{avg:.4f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" log_msg = [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] if torch.cuda.is_available(): log_msg.append("max mem: {memory:.0f}") log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print( "{} Total time: {} ({:.4f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) # Path: models/instruct_blip/models/base_model.py class BaseModel(nn.Module): """Base class for models.""" def __init__(self): super().__init__() @property def device(self): return list(self.parameters())[0].device def load_checkpoint(self, url_or_filename): """ Load from a finetuned checkpoint. This should expect no mismatch in the model keys and the checkpoint keys. """ if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location="cpu") else: raise RuntimeError("checkpoint url or path is invalid") if "model" in checkpoint.keys(): state_dict = checkpoint["model"] else: state_dict = checkpoint msg = self.load_state_dict(state_dict, strict=False) logging.info("Missing keys {}".format(msg.missing_keys)) logging.info("load checkpoint from %s" % url_or_filename) return msg @classmethod def from_pretrained(cls, model_type): """ Build a pretrained model from default configuration file, specified by model_type. Args: - model_type (str): model type, specifying architecture and checkpoints. Returns: - model (nn.Module): pretrained or finetuned model, depending on the configuration. """ model_cfg = OmegaConf.load(cls.default_config_path(model_type)).model model = cls.from_config(model_cfg) return model @classmethod def default_config_path(cls, model_type): assert ( model_type in cls.PRETRAINED_MODEL_CONFIG_DICT ), "Unknown model type {}".format(model_type) return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type]) def load_checkpoint_from_config(self, cfg, **kwargs): """ Load checkpoint as specified in the config file. If load_finetuned is True, load the finetuned model; otherwise, load the pretrained model. When loading the pretrained model, each task-specific architecture may define their own load_from_pretrained() method. """ load_finetuned = cfg.get("load_finetuned", True) if load_finetuned: finetune_path = cfg.get("finetuned", None) assert ( finetune_path is not None ), "Found load_finetuned is True, but finetune_path is None." self.load_checkpoint(url_or_filename=finetune_path) else: load_pretrained = cfg.get("load_pretrained", True) if load_pretrained: # load pre-trained weights pretrain_path = cfg.get("pretrained", None) assert "Found load_finetuned is False, but pretrain_path is None." self.load_from_pretrained(url_or_filename=pretrain_path, **kwargs) def before_evaluation(self, **kwargs): pass def show_n_params(self, return_str=True): tot = 0 for p in self.parameters(): w = 1 for x in p.shape: w *= x tot += w if return_str: if tot >= 1e6: return "{:.1f}M".format(tot / 1e6) else: return "{:.1f}K".format(tot / 1e3) else: return tot # Path: models/instruct_blip/models/blip2_models/Qformer.py class BertEmbeddings(nn.Module): class BertSelfAttention(nn.Module): class BertSelfOutput(nn.Module): class BertAttention(nn.Module): class BertIntermediate(nn.Module): class BertOutput(nn.Module): class BertLayer(nn.Module): class BertEncoder(nn.Module): class BertPooler(nn.Module): class BertPredictionHeadTransform(nn.Module): class BertLMPredictionHead(nn.Module): class BertOnlyMLMHead(nn.Module): class BertPreTrainedModel(PreTrainedModel): class BertModel(BertPreTrainedModel): class BertLMHeadModel(BertPreTrainedModel): class BertForMaskedLM(BertPreTrainedModel): def __init__(self, config): def forward( self, input_ids=None, position_ids=None, query_embeds=None, past_key_values_length=0, ): def __init__(self, config, is_cross_attention): def save_attn_gradients(self, attn_gradients): def get_attn_gradients(self): def save_attention_map(self, attention_map): def get_attention_map(self): def transpose_for_scores(self, x): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): def __init__(self, config): def forward(self, hidden_states, input_tensor): def __init__(self, config, is_cross_attention=False): def prune_heads(self, heads): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, ): def __init__(self, config): def forward(self, hidden_states): def __init__(self, config): def forward(self, hidden_states, input_tensor): def __init__(self, config, layer_num): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, query_length=0, ): def feed_forward_chunk(self, attention_output): def feed_forward_chunk_query(self, attention_output): def __init__(self, config): def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, query_length=0, ): def create_custom_forward(module): def custom_forward(*inputs): def __init__(self, config): def forward(self, hidden_states): def __init__(self, config): def forward(self, hidden_states): def __init__(self, config): def forward(self, hidden_states): def __init__(self, config): def forward(self, sequence_output): def _init_weights(self, module): def __init__(self, config, add_pooling_layer=False): def get_input_embeddings(self): def set_input_embeddings(self, value): def _prune_heads(self, heads_to_prune): def get_extended_attention_mask( self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool, has_query: bool = False, ) -> Tensor: def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, is_decoder=False, ): def __init__(self, config): def get_output_embeddings(self): def set_output_embeddings(self, new_embeddings): def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, past_key_values=None, use_cache=True, output_attentions=None, output_hidden_states=None, return_dict=None, return_logits=False, is_decoder=True, reduction="mean", ): def prepare_inputs_for_generation( self, input_ids, query_embeds, past=None, attention_mask=None, **model_kwargs ): def _reorder_cache(self, past, beam_idx): def __init__(self, config): def get_output_embeddings(self): def set_output_embeddings(self, new_embeddings): def forward( self, input_ids=None, attention_mask=None, position_ids=None, head_mask=None, query_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, return_logits=False, is_decoder=False, ): # Path: models/instruct_blip/models/eva_vit.py def create_eva_vit_g(img_size=224,drop_path_rate=0.4,use_checkpoint=False,precision="fp16"): model = VisionTransformer( img_size=img_size, patch_size=14, use_mean_pooling=False, embed_dim=1408, depth=39, num_heads=1408//88, mlp_ratio=4.3637, qkv_bias=True, drop_path_rate=drop_path_rate, norm_layer=partial(nn.LayerNorm, eps=1e-6), use_checkpoint=use_checkpoint, ) url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/eva_vit_g.pth" cached_file = download_cached_file( url, check_hash=False, progress=True ) state_dict = torch.load(cached_file, map_location="cpu") interpolate_pos_embed(model,state_dict) incompatible_keys = model.load_state_dict(state_dict, strict=False) # print(incompatible_keys) if precision == "fp16": # model.to("cuda") convert_weights_to_fp16(model) return model # Path: models/instruct_blip/models/clip_vit.py def create_clip_vit_L(img_size=224,use_checkpoint=False,precision="fp16"): model = VisionTransformer( input_resolution=img_size, patch_size=14, width=1024, layers=23, heads=16, use_grad_checkpointing=use_checkpoint, ) url = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/clip_vit_L.pth" cached_file = download_cached_file( url, check_hash=False, progress=True ) state_dict = torch.load(cached_file, map_location="cpu") interpolate_pos_embed(model,state_dict) incompatible_keys = model.load_state_dict(state_dict, strict=False) # print(incompatible_keys) if precision == "fp16": convert_weights_to_fp16(model) return model # Path: models/instruct_blip/models/blip2_models/blip2.py import contextlib import logging import os import time import datetime import torch import torch.nn as nn import torch.distributed as dist import torch.nn.functional as F import spacy from ...common import dist_utils as dist_utils from ...common.dist_utils import download_cached_file from ...common.utils import is_url from ...common.logger import MetricLogger from ..base_model import BaseModel from ..blip2_models.Qformer import BertConfig, BertLMHeadModel from ..eva_vit import create_eva_vit_g from ..clip_vit import create_clip_vit_L from transformers import BertTokenizer # elif model_name == "eva2_clip_L": # visual_encoder = create_eva2_vit_L( # img_size, drop_path_rate, use_grad_checkpoint, precision # ) elif model_name == "clip_L": visual_encoder = create_clip_vit_L(img_size, use_grad_checkpoint, precision) ln_vision = LayerNorm(visual_encoder.num_features) self.vit_name = model_name return visual_encoder, ln_vision def load_from_pretrained(self, url_or_filename): if is_url(url_or_filename): cached_file = download_cached_file( url_or_filename, check_hash=False, progress=True ) checkpoint = torch.load(cached_file, map_location="cpu") elif os.path.isfile(url_or_filename): checkpoint = torch.load(url_or_filename, map_location="cpu") else: raise RuntimeError("checkpoint url or path is invalid") for key, value in checkpoint['model'].items(): print(key) state_dict = checkpoint["model"] msg = self.load_state_dict(state_dict, strict=False) # logging.info("Missing keys {}".format(msg.missing_keys)) logging.info("load checkpoint from %s" % url_or_filename) return msg def get_optimizer_params(self, weight_decay, lr_scale=1): if self.vit_name == "eva_clip_g": vit_num_layers = self.visual_encoder.get_num_layer() lr_scales = list(lr_scale ** (vit_num_layers + 1 - i) for i in range(vit_num_layers + 2)) parameter_group_names = {} parameter_group_vars = {} for name, param in self.named_parameters(): if not param.requires_grad: continue # frozen weights if len(param.shape) == 1 or name.endswith(".bias"): group_name = "no_decay" this_weight_decay = 0. else: group_name = "decay" this_weight_decay = weight_decay if 'visual_encoder' in name: layer_id = self.visual_encoder.get_num_layer(name.replace('visual_encoder.','')) group_name = "vit_layer_%d_%s" % (layer_id, group_name) else: layer_id = None if group_name not in parameter_group_names: if layer_id is not None: scale = lr_scales[layer_id] else: scale = 1 parameter_group_names[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name] = { "weight_decay": this_weight_decay, "params": [], "lr_scale": scale } parameter_group_vars[group_name]["params"].append(param) parameter_group_names[group_name]["params"].append(name) # import json # print("Param groups = %s" % json.dumps(parameter_group_names, indent=2)) optim_params = list(parameter_group_vars.values()) return optim_params else: return super().get_optimizer_params(weight_decay,lr_scale) def _lemmatize(self, answers): def apply(answer): doc = self.lemmatizer(answer) words = [] for token in doc: if token.pos_ in ["NOUN", "VERB"]: words.append(token.lemma_) else: words.append(token.text) answer = " ".join(words) return answer return [apply(answer) for answer in answers] @property def lemmatizer(self): if self._lemmatizer is None: try: self._lemmatizer = spacy.load("en_core_web_sm") except ImportError: logging.error( """ Please install spacy and en_core_web_sm model to apply lemmatization. python -m spacy download en_core_web_sm OR import spacy.cli spacy.cli.download("en_core_web_sm") """ ) exit(1) return self._lemmatizer def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self
class LayerNorm(nn.LayerNorm):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: inferigang/breads # Path: src/ui/banner.py def get_banner() -> None: ''' Return BREADS banner url ''' banner_list: list = [ "https://pastebin.com/raw/mhEASUuU", "https://pastebin.com/raw/CFEzbcVh", "https://pastebin.com/raw/yVe8AAud", "https://pastebin.com/raw/iKR7qDAM", "https://pastebin.com/raw/fSzQMQ27", "https://pastebin.com/raw/kGqfqWRc" ] banner = choice(banner_list) try: response = get(banner, verify=False) banner = response.text current_version = "Breaking Active Directory Security by @opps3c\nVersion: v1.1.2" print(f"[bold {get_random_color()}]{banner}\n{current_version}\n\nType 'help' to list commands[/]") except RequestException as error: print(f"[red][!][/][bright_white] Error when requesting banner from pastebin: {error}[/]") pass # Path: src/handlers/profile.py def create_profile_folder() -> None: ''' Create the profile folder name based on user input in /home/user/.breads/profile_name/ ''' global profile_name profile_name_input = Prompt.ask("[yellow]# Type the profile name[/]") profile_name = profile_name_input print(f"\n[green][✔][/] [bright_white]Creating [b]{profile_name}'s[/] profile folder [/]") create_breads_directory() folder_name = f"{BREADS_FOLDER}/{profile_name}" if not path.exists(folder_name): mkdir(folder_name) print(f"[green][+][/] [bright_white]{folder_name} folder created[/]") create_profile_base_json() else: print(f"[red][!][/] [bright_white]{folder_name} profile already exists[/]") return # Path: src/handlers/profile.py def load_profile() -> None: ''' Loads a profile based on user input if at least one exists on breads ''' if not path.exists(BREADS_FOLDER): print(f"[red][!][/] .breads directory not found. Initialize one with 'create_profile' command\n") return if path.exists(BREADS_FOLDER): folders_list = listdir(BREADS_FOLDER) if not folders_list: print(f"[red][!][/] No profiles found on .breads directory. Create one with 'create_profile' command\n") return for folder_name in folders_list: print(f"[cyan]* {folder_name}[/]") load_user_input = Prompt.ask("\n# Type the profile name to be used") for folder_name in folders_list: if(load_user_input == folder_name): print(f"[green][+][/] [bright_white]Profile [b]{folder_name}'s[/b] selected successfully!. Load it with the 'load_profile' command[/]") environ["breads_profile"] = folder_name profile_json_file = f"{BREADS_FOLDER}/{get_current_profile()}/settings.json" with open(profile_json_file, 'r+') as json_file: existing_data = json.load(json_file) host = existing_data['host'] username = existing_data['username'] password = existing_data['password'] if(len(host) > 2): # If the length of host variable on profile json file is greater than 2 we can assume we already have an host defined print(f"[yellow][!][/] [bright_white]Profile settings: {host}, {username}, {password}[/]") keep_data_input = Prompt.ask("[yellow][!][/] [bright_white]There is already information stored in this profile, do you want to keep it? [Y/N][/]") keep_data_input = keep_data_input.lower() if(keep_data_input == 'y'): print("[yellow][!][/] [bright_white]Not changing current configuration[/]\n") return else: pass target_host_input = Prompt.ask("# Type the target host (ex: 127.0.0.1)") username_input = Prompt.ask("# Type the username to be used (example.lab/Administrator)") password_input = Prompt.ask("# Type the password to be used") profile_data = { "host": target_host_input, "username": username_input, "password": password_input } try: existing_data.update(profile_data) json_file.seek(0) json.dump(existing_data, json_file, ensure_ascii=False, indent=4) json_file.truncate() print(f"[green][+][/] [bright_white]Profile information stored successfully![/]\n") except Exception as error: print(f"[red][!][/] [bright_white]Error when trying to store profile information: {error}[/]") else: print(f"[red][!][/] [bright_white]Profile not found, check if the name is correct[/]") # Path: src/helpers/user.py def get_current_profile() -> None: ''' Get current user profile name based on environment variables (breads_profile) ''' profile = environ.get("breads_profile") if environ.get("breads_profile", "None") else "" return str(profile) # Path: src/modules/enum/domain_controllers.py def get_domain_controllers() -> None: ''' Get all the Domain Controllers name ''' #search_filter = '(primaryGroupID=516)' # 516 is the Primary ID for Domain Controllers computers search_filter = '(&(objectCategory=Computer)(userAccountControl:1.2.840.113556.1.4.803:=8192))' query = connect_and_fetch(search_filter) if query: print(f"[yellow][!][/] [bright_white]Domain Controller(s) Name(s):[/]") for _dn, attrs in query: # dn is just here to be possible to get the attrs from the query for attr_name in attrs: if(attr_name == 'name'): for dc_name in attrs[attr_name]: print(f"[green][+][/] [bright_white]Name: {dc_name.decode('utf-8')}[/]") # Path: src/modules/enum/administrators.py def get_admins() -> None: ''' Get all the accounts from domain that has administrator privilege in somewhere ''' search_filter = f'(&(&(objectCategory=person)(objectClass=user)(!(userAccountControl:1.2.840.113556.1.4.803:=2)))(adminCount=1))' attributes = ['sAMAccountName'] query = connect_and_fetch(search_filter) if query: print(f"[yellow][!][/] [bright_white]Administrator(s) username(s):[/]") print(f"[yellow][!][/] Users listed below are not necessarily Domain Administrators, they can be Local Administrator.") for _dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') print(f"[green][+][/] [bright_white]{attribute}: {value}[/]") # Path: src/modules/enum/pass_not_req.py def get_pass_not_req() -> None: ''' Get users from domain that does not require a password to authenticate ''' search_filter = f'(&(objectClass=user)(userAccountControl:1.2.840.113556.1.4.803:=32))' attributes = 'sAMAccountName' query = connect_and_fetch(search_filter) if query: print(f"[yellow][!][/] Users that doesn't require any password to logon:") for _dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') print(f"[green][+][/] [bright_white]{attribute}: {value}[/]") # Path: src/modules/enum/pass_pol.py def get_pass_policy() -> None: ''' Get the current password policy from the domain ''' search_filter = f'(objectClass=domainDNS)' attributes = ['minPwdLength', 'lockoutThreshold', 'lockoutDuration'] query = connect_and_fetch(search_filter) if query: print(f"[yellow][!][/] [bright_white]Domain Password Policy:[/]") for _dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') if attribute == 'lockoutThreshold' and value == '0': console.print(f"[green][+][/] [bright_white]{attribute}:[/] [bright_yellow]{value} - Password Spray possiblity detected[/]", highlight=False) else: console.print(f"[green][+][/] [bright_white]{attribute}: {value}[/]", highlight=False) # Path: src/modules/enum/all_users.py def get_users() -> None: ''' List all usernames from the domain''' search_filter = f'(&(objectCategory=person)(objectClass=user))' attributes = ['sAMAccountName'] query = connect_and_fetch(search_filter) if query: print(f"[yellow][!][/] Domain Users:") for _dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') print(f"[green][+][/] [bright_white]{attribute}: {value}[/]") # Path: src/modules/enum/disabled_accounts.py def get_disabled_users() -> None: ''' List all the current disabled accounts from the domain ''' search_filter = f'(&(objectCategory=person)(objectClass=user)(userAccountControl:1.2.840.113556.1.4.803:=2))' attributes = ['sAMAccountName'] query = connect_and_fetch(search_filter) if query: print(f"[yellow][!][/] Disabled Domain Users:") for _dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') print(f"[green][+][/] [bright_white]{attribute}: {value}[/]") # Path: src/modules/enum/laps.py def get_laps(inp) -> None: ''' Get all the LAPS password from domain pass''' computer_name: str = inp global search_filter if len(computer_name) == 0: search_filter = "(&(objectCategory=computer)(|(msLAPS-EncryptedPassword=*)(ms-MCS-AdmPwd=*)(msLAPS-Password=*)))" else: search_filter = f"(&(objectCategory=computer)(|(msLAPS-EncryptedPassword=*)(ms-MCS-AdmPwd=*)(msLAPS-Password=*))(name={computer_name}))" attributes = ['sAMAccountName', 'msLAPS-Password', 'ms-MCS-AdmPwd', 'msLAPS-EncryptedPassword'] query = connect_and_fetch(search_filter) if query: print(f"[yellow][!][/] LAPS information:") print(f"[yellow][!][/] If the result is blank, probably there is no LAPS information to retrive or your user does not have the required permissions\n") for _dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') print(f"[green][+][/] [bright_white]{attribute}: {value}[/]") # Path: src/modules/enum/kerberoasting.py def get_kerberoastable() -> None: ''' Search for kerberoastable users with filter and ignore krbtgt or computers''' # TO-DO: Return kerberoastable user hash # https://github.com/byt3bl33d3r/CrackMapExec/blob/3c3e412193cb6d3237abe90c543e5d995bfa4447/cme/protocols/ldap.py#L927C1-L927C1 search_filter = "(&(servicePrincipalName=*)(!(objectCategory=computer)))" attributes = ['sAMAccountName', 'servicePrincipalName'] query = connect_and_fetch(search_filter) if query: print("[yellow][!][/] [bright_white]Kerberoastable users from domain (excluding computers):[/]") print("[yellow][!][/] [bright_white]If the result is blank, there is no kerberoastable users to be listed [/]") for _dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') print(f"[green][+][/] [bright_white]{attribute}: {value}[/]") # Path: src/modules/enum/maq_acc_quota.py def get_maq_acc_quota() -> None: ''' Get the Macchine Account Quota value domain-level attribute ''' search_filter = "(objectClass=*)" query_attribute = "ms-DS-MachineAccountQuota" query = connect_and_fetch(search_filter) if query: print("[yellow][!][/] Domain Machine Account Quota value:") for _dn, attrs in query: for attr_name in attrs: if(attr_name == query_attribute): for maq_account_quota_value in attrs[attr_name]: print(f"[green][+][/] [bright_white]Machine Account Quota value: {maq_account_quota_value.decode('utf-8')} [/]") # Path: src/modules/enum/obsolete.py def get_obsolete() -> None: ''' Search for for obsolete operating systems installed on computers''' search_filter = ("(&(objectclass=computer)(!(userAccountControl:1.2.840.113556.1.4.803:=2))" "(|(operatingSystem=*Windows 6*)(operatingSystem=*Windows 2000*)" "(operatingSystem=*Windows XP*)(operatingSystem=*Windows Vista*)" "(operatingSystem=*Windows 7*)(operatingSystem=*Windows 8*)" "(operatingSystem=*Windows 8.1*)(operatingSystem=*Windows Server 2003*)" "(operatingSystem=*Windows Server 2008*)(operatingSystem=*Windows Server 2000*)))") attributes = ['name', 'operatingSystem', 'dNSHostName'] query = connect_and_fetch(search_filter) if query: print("[yellow][!][/] [bright_white]Obsolete operating systems installed on computers located:[/]") print("[yellow][!][/] [bright_white]If the result is blank, there is no obsolete operating systems installed on computers to be listed [/]") for dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') print(f"[green][+][/] [bright_white]{attribute}: {value}[/]") # Path: src/modules/enum/all_computers.py def get_computers() -> None: ''' Return all the computers that can be located on the environment''' search_filter = "(&(objectClass=computer)(!(userAccountControl:1.2.840.113556.1.4.803:=2)))" attributes = ['sAMAccountName', 'name', 'operatingSystem', 'dNSHostName'] query = connect_and_fetch(search_filter) if query: print("[yellow][!][/] [bright_white]All computers located:[/]") print("[yellow][!][/] [bright_white]If the result is blank, there is no computer(s) to be listed [/]") for _dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') print(f"[green][+][/] [bright_white]{attribute}: {value}[/]") # Path: src/modules/enum/trusted_delegation.py def get_trusted_delegate() -> None: ''' Retrieve all the accounts that has msds-allowedtodelegateto enabled ''' search_filter = "(&(objectClass=User)(msDS-AllowedToDelegateTo=*))" attributes = ['sAMAccountName'] query = connect_and_fetch(search_filter) if query: print("[yellow][!][/] [bright_white]All accounts with msDS-AllowedToDelegateTo located:[/]") print("[yellow][!][/] [bright_white]If the result is blank, there is no accounts with msDS-AllowedToDelegateTo rights [/]") for _dn, values in query: for attribute_name in values: for attribute in attributes: if attribute_name == attribute: for value in values[attribute]: value = value.decode('utf-8') print(f"[green][+][/] [bright_white]{attribute}: {value}[/]") # Path: src/modules/user/whoami.py def get_user_whoami(inp) -> None: ''' Return information from a specific user from the domain (sAMAccountName, distinguishedName, Groups, UAC value and status, Last Logon and Last Logoff time)''' username: str = inp if len(username) == 0: print("[red][!][/] You need to specify a username to use 'whoami' command") return search_filter = f'(&(objectClass=user)(sAMAccountName={username}))' query = connect_and_fetch(search_filter) if query: print(f"[yellow][!][/] Whoami: [bold white]{username}[/]") for dn, attributes in query: for attr_name in attributes: # Time is stored in Windows Filetime and starts in January 1, 1601 as we can see on https://learn.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-filetime?redirectedfrom=MSDN # ^ Used to format lastLogon and lastLogoff time attributes_list = { 'sAMAccountName': 'sAMAccountName', 'distinguishedName': 'distinguishedName', 'memberOf': 'Member of', 'lastLogon': 'Last Logon (Nanoseconds)', 'lastLogoff': 'Last Logoff' , 'userAccountControl': 'UAC Value' } uac_values = { '512': '[bold green]User is Enabled[/] - Password Expires', '514': '[bold red]User is Disabled[/] - Password Expires', '66048': "[bold green]User is Enabled[/] - [bold yellow]Password Never Expires[/]", '66050': "[bold red]User is Disabled[/] - [bold yellow]Password Never Expires[/]" } for attribute, name in attributes_list.items(): if(attr_name == attribute): for attribute_value in attributes[attr_name]: if "userAccountControl" in attr_name: for uac_number, uac_context in uac_values.items(): if attribute_value.decode('utf-8') == uac_number: console.print(f"[green][+][/] UAC Status: [bright_white]{uac_context}[/]", highlight=False) if "lastLogon" in attr_name: last_logon_filetime = attribute_value.decode('utf-8') last_login_datetime = filetime_to_dt(int(last_logon_filetime)) console.print(f"[green][+][/] Last Logon: [bright_white]{last_login_datetime}[/]", highlight=False) if "lastLogoff" in attr_name: last_logoff_filetime = attribute_value.decode('utf-8') if last_logoff_filetime == 0: console.print(f"[green][+][/] Last Logoff: [bright_white]{last_logoff_filetime}[/]", highlight=False) else: last_logoff_datetime = filetime_to_dt(int(last_logoff_filetime)) console.print(f"[green][+][/] Last Logoff: [bright_white]{last_logoff_datetime}[/]", highlight=False) else: print(f"[green][+][/] {name}: [bright_white]{attribute_value.decode('utf-8')}[/]") # Path: src/main.py from cmd import Cmd from rich import print from datetime import datetime from src.ui.banner import get_banner from src.handlers.profile import create_profile_folder, load_profile from src.helpers.user import get_current_profile from src.modules.enum.domain_controllers import get_domain_controllers from src.modules.enum.administrators import get_admins from src.modules.enum.pass_not_req import get_pass_not_req from src.modules.enum.pass_pol import get_pass_policy from src.modules.enum.all_users import get_users from src.modules.enum.disabled_accounts import get_disabled_users from src.modules.enum.laps import get_laps from src.modules.enum.kerberoasting import get_kerberoastable from src.modules.enum.maq_acc_quota import get_maq_acc_quota from src.modules.enum.obsolete import get_obsolete from src.modules.enum.all_computers import get_computers from src.modules.enum.trusted_delegation import get_trusted_delegate from src.modules.user.whoami import get_user_whoami import os #!/usr/bin/python3 class BreadsPrompt(Cmd): current_time = datetime.now().time() current_time = current_time.strftime('%H:%M:%S') prompt = f"{current_time} - breads # " intro = get_banner() def emptyline(self): pass
def do_exit(self, inp):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: hhd-dev/hhd # Path: src/hhd/logging.py def set_log_plugin(plugin: str = "main"): global _main with _lock: _plugins[get_ident()] = plugin _main = plugin # Path: src/hhd/logging.py def setup_logger( log_dir: str | None = None, init: bool = True, ctx: Context | None = None ): from rich import get_console from rich.traceback import install if log_dir: log_dir = expanduser(log_dir, ctx) install() handlers = [] handlers.append(PluginRichHandler(PluginLogRender())) if log_dir: os.makedirs(log_dir, exist_ok=True) if ctx: fix_perms(log_dir, ctx) handler = UserRotatingFileHandler( os.path.join(log_dir, "hhd.log"), maxBytes=10_000_000, backupCount=10, ctx=ctx, ) handler.setFormatter( NewLineFormatter("%(asctime)s %(module)-15s %(levelname)-8s|||%(message)s") ) handler.doRollover() handlers.append(handler) FORMAT = "%(message)s" logging.basicConfig( level=logging.INFO, datefmt="[%H:%M]", format=FORMAT, handlers=handlers, ) if init: get_console().print(RASTER, justify="full", markup=False, highlight=False) logger.info(f"Handheld Daemon starting...") # Path: src/hhd/logging.py def update_log_plugins(): for t in enumerate(): if t.ident and t.ident not in _plugins: _plugins[t.ident] = _main # Path: src/hhd/plugins/conf.py class Config: def __init__( self, conf: Pytree | Sequence[Pytree] = [], readonly: bool = False ) -> None: self._conf: Pytree | MutableMapping = {} self._lock = Lock() self._updated = False self.readonly = readonly self.update(conf) self.updated = False def update(self, conf: Pytree | Sequence[Pytree]): with self._lock: conf = deepcopy(conf) if isinstance(conf, Sequence): self._conf = parse_confs(conf, self._conf) else: if isinstance(self._conf, MutableMapping): parse_conf(conf, self._conf) else: self._conf = conf self.updated = True def __eq__(self, __value: object) -> bool: if not isinstance(__value, Config): return False if __value is self: return True with __value._lock, self._lock: return compare_dicts(__value._conf, self._conf) def __setitem__(self, key: str | tuple[str, ...], val): with self._lock: val = deepcopy(val) seq = to_seq(key) cont = {} d = cont for s in seq[:-1]: d[s] = {} d = d[s] d[seq[-1]] = val if isinstance(self._conf, MutableMapping): parse_conf(cont, self._conf) else: self._conf = cont if self._conf != cont: self.updated = True def __contains__(self, key: str | tuple[str, ...]): with self._lock: seq = to_seq(key) d = self._conf for s in seq: if s not in d: return False d = cast(Mapping, d)[s] return True def __getitem__(self, key: str | tuple[str, ...]) -> "Config": with self._lock: assert isinstance(self._conf, MutableMapping) seq = to_seq(key) d = self._conf for s in seq: d = cast(Mapping, d)[s] return Config([deepcopy(d)]) def __delitem__(self, key: str | tuple[str, ...]): with self._lock: assert isinstance(self._conf, MutableMapping) seq = to_seq(key) d = self._conf for s in seq[:-1]: d = cast(Mapping, d)[s] del d[seq[-1]] self.updated = True def get(self, key, default: A) -> A: try: return self[key].to(type(default)) except KeyError: return default def to(self, t: type[A]) -> A: return cast(t, self.conf) def copy(self): return Config([self.conf]) @property def conf(self): with self._lock: return deepcopy(self._conf) @property def updated(self): with self._lock: return self._updated @updated.setter def updated(self, v: bool): with self._lock: self._updated = v # Path: src/hhd/plugins/plugin.py class Context(NamedTuple): class SettingsEvent(TypedDict): class ProfileEvent(TypedDict): class ApplyEvent(TypedDict): class ConfigEvent(TypedDict): class InputEvent(TypedDict): class Emitter(Protocol): class HHDPlugin: class HHDAutodetect(Protocol): def __call__(self, event: Event | Sequence[Event]) -> None: def open( self, emit: Emitter, context: Context, ): def settings(self) -> HHDSettings: def validate(self, tags: Sequence[str], config: Any, value: Any): def prepare(self, conf: Config): def update(self, conf: Config): def close(self): def __call__(self, existing: Sequence[HHDPlugin]) -> Sequence[HHDPlugin]: # Path: src/hhd/plugins/settings.py class ButtonSetting(TypedDict): class BooleanSetting(TypedDict): class MultipleSetting(TypedDict): class DiscreteSetting(TypedDict): class NumericalSetting(TypedDict): class IntegerSetting(TypedDict): class Color(TypedDict): class ColorSetting(TypedDict): class DisplaySetting(TypedDict): class CustomSetting(TypedDict): class Container(TypedDict): class Mode(TypedDict): class Validator(Protocol): STATE_HEADER = ( "\n" + "# Handheld Daemon State Config\n" + "#\n" + "# This file contains plugin software-only configuration that will be retained\n" + "# across reboots. You may edit this file in lueu of using a frontend.\n" + "# This header is on the bottom to make editing easier with e.g., nano.\n" + "#\n" + "# Parameters that are stored in hardware (TDP, RGB colors, etc) and\n" + "# risky parameters that might cause instability and should be reset\n" + "# across sessions are not part of this file.\n" + "# Use profiles to apply changes to these settings.\n" + "#\n" + "# Persisted (software) parameters are marked by having a default value.\n" + "# Non-persisted/hardware parameters do not have a default value.\n" + "#\n" + "# This file and comments are autogenerated. Your comments will be discarded\n" + "# during configuration changes. Parameters with the value `default` are\n" + "# ignored and are meant as a template for you to change them.\n" + "#\n" + "# - CONFIGURATION PARAMETERS\n" + "#" ) PROFILE_HEADER = ( "\n" + "# Handheld Daemon Profile Config\n" + "#\n" + "# This file contains the configuration options that will be set when\n" + "# applying the profile which shares this file name.\n" + "# This header is on the bottom to make editing easier with e.g., nano.\n" + "#\n" + "# Settings are applied once, when applying the profile, and only the ones\n" + "# that are stated change. Therefore, they may drift as the system state changes\n" + "# (e.g., using native TDP shortcuts, or controller profile shortcuts).\n" + "#\n" + "# It is possible to set all supported parameters using profiles, and\n" + "# it is encouraged for you to stack profiles together.\n" + "#\n" + "# For example, you can have TDP only profiles that control the energy budget,\n" + "# and controller profiles that switch controller behavior.\n" + "# Then, depending on the game, you can apply the appropriate 2 profiles\n" + "# together.\n" + "#\n" + "# This file and comments are autogenerated. Your comments will be discarded\n" + "# during configuration changes. Parameters with the value `unset` are\n" + "# ignored and are meant to act as a template for you to change them.\n" + "#\n" + "# - CONFIGURATION PARAMETERS\n" + "#" ) def parse(d: Setting | Container | Mode, prev: Sequence[str], out: MutableMapping): def parse_defaults(sets: HHDSettings): def fill_in_defaults(s: Setting | Container | Mode): def merge_reduce( a: Setting | Container | Mode, b: Setting | Container | Mode ) -> Setting | Container | Mode: def merge_reduce_sec(a: Section, b: Section): def merge_reduce_secs(a: HHDSettings, b: HHDSettings): def merge_settings(sets: Sequence[HHDSettings]): def generate_desc(s: Setting | Container | Mode): def traverse_desc(set: Setting | Container | Mode, prev: Sequence[str]): def tranverse_desc_sec(set: HHDSettings): def dump_comment(set: HHDSettings, header: str = STATE_HEADER): def dump_setting( set: Container | Mode, prev: Sequence[str], conf: Config, unmark: Literal["unset", "default"] = "default", ): def merge_dicts(a: Mapping | Any, b: Mapping | Any): def dump_settings( set: HHDSettings, conf: Config, unmark: Literal["unset", "default"] = "default" ): def save_state_yaml(fn: str, set: HHDSettings, conf: Config, shash=None): def save_blacklist_yaml(fn: str, avail: Sequence[str], blacklist: Sequence[str]): def load_blacklist_yaml(fn: str): def save_profile_yaml( fn: str, set: HHDSettings, conf: Config | None = None, shash=None ): def strip_defaults(c): def get_default_state(set: HHDSettings): def load_state_yaml(fn: str, set: HHDSettings): def load_profile_yaml(fn: str): def get_settings_hash(set: HHDSettings): def unravel(d: Setting | Container | Mode, prev: Sequence[str], out: MutableMapping): def unravel_options(settings: HHDSettings): def __call__(self, tags: Sequence[str], config: Any, value: Any) -> bool: def validate_config( conf: Config, settings: HHDSettings, validator: Validator, use_defaults: bool = True ): # Path: src/hhd/plugins/utils.py def load_relative_yaml(fn: str): """Returns the yaml data of a file in the relative dir provided.""" import inspect import os import yaml script_fn = inspect.currentframe().f_back.f_globals["__file__"] # type: ignore dirname = os.path.dirname(script_fn) with open(os.path.join(dirname, fn), "r") as f: return yaml.safe_load(f) # Path: src/hhd/plugins/settings.py class Validator(Protocol): def __call__(self, tags: Sequence[str], config: Any, value: Any) -> bool: return False # Path: src/hhd/plugins/settings.py def get_default_state(set: HHDSettings): return Config(parse_defaults(set)) # Path: src/hhd/plugins/settings.py def load_blacklist_yaml(fn: str): import yaml try: with open(fn, "r") as f: return yaml.safe_load(f)["blacklist"] except Exception as e: logger.warning(f"Plugin blacklist not found, using default (empty).") return ["myplugin1"] # Path: src/hhd/plugins/settings.py def load_profile_yaml(fn: str): import yaml try: with open(fn, "r") as f: state = cast(Mapping, strip_defaults(yaml.safe_load(f)) or {}) except FileNotFoundError: logger.warning( f"Profile file not found, using defaults. Searched location:\n{fn}" ) return None except yaml.YAMLError: logger.warning( f"Profile file is invalid, skipping loading. Searched location:\n{fn}" ) return None return Config([state]) # Path: src/hhd/plugins/settings.py def load_state_yaml(fn: str, set: HHDSettings): import yaml defaults = parse_defaults(set) try: with open(fn, "r") as f: state = cast(Mapping, strip_defaults(yaml.safe_load(f)) or {}) except FileNotFoundError: logger.warning(f"State file not found. Searched location:\n{fn}") return None except yaml.YAMLError: logger.warning(f"State file is invalid. Searched location:\n{fn}") return None return Config([defaults, state]) # Path: src/hhd/plugins/settings.py def merge_settings(sets: Sequence[HHDSettings]): if not sets: return {} if len(sets) > 1: return reduce(merge_reduce_secs, sets) return merge_reduce_secs({}, sets[0]) # Path: src/hhd/plugins/settings.py def save_blacklist_yaml(fn: str, avail: Sequence[str], blacklist: Sequence[str]): import yaml with open(fn, "w") as f: f.write( ( "" + "# \n" + "# Plugin blacklist\n" + "# The plugin providers under blacklist will not run.\n" + "# \n" + "# Warning: this file is read only on startup.\n" + "# `sudo systemctl restart hhd@$(whoami)`\n" + "# \n" + "# Available providers:\n" + f"# [{', '.join(avail)}]\n\n" ) ) yaml.safe_dump({"blacklist": blacklist}, f, width=85, sort_keys=False) return True # Path: src/hhd/plugins/settings.py def save_profile_yaml( fn: str, set: HHDSettings, conf: Config | None = None, shash=None ): import yaml if shash is None: shash = get_settings_hash(set) if conf is None: conf = Config({}) elif conf.get("version", None) == shash and not conf.updated: return False conf["version"] = shash with open(fn, "w") as f: yaml.safe_dump(dump_settings(set, conf, "unset"), f, width=85, sort_keys=False) f.write("\n") f.write(dump_comment(set, PROFILE_HEADER)) return True # Path: src/hhd/plugins/settings.py def get_settings_hash(set: HHDSettings): import hashlib return hashlib.md5(dump_comment(set).encode()).hexdigest()[:8] # Path: src/hhd/plugins/settings.py def save_state_yaml(fn: str, set: HHDSettings, conf: Config, shash=None): import yaml if shash is None: shash = get_settings_hash(set) if conf.get("version", None) == shash and not conf.updated: return False conf["version"] = shash with open(fn, "w") as f: yaml.safe_dump( dump_settings(set, conf, "default"), f, sort_keys=False ) f.write("\n") f.write(dump_comment(set, STATE_HEADER)) return True # Path: src/hhd/plugins/settings.py def validate_config( conf: Config, settings: HHDSettings, validator: Validator, use_defaults: bool = True ): options = unravel_options(settings) for k, d in options.items(): v = conf.get(k, None) if d["type"] == "action": default = False else: default = d["default"] if v is None: if use_defaults and default is not None: conf[k] = default continue match d["type"]: case "mode": if v not in d["modes"]: if use_defaults: conf[k] = default else: del conf[k] case "bool" | "action": if v not in (False, True): conf[k] = bool(v) case "multiple" | "discrete": if v not in d["options"]: if use_defaults: conf[k] = default else: del conf[k] case "integer": if not isinstance(v, int): conf[k] = int(v) if v < d["min"]: conf[k] = d["min"] if v > d["max"]: conf[k] = d["max"] case "float": if not isinstance(v, float): conf[k] = float(v) if v < d["min"]: conf[k] = d["min"] if v > d["max"]: conf[k] = d["max"] case "color": invalid = False if not isinstance(v, Mapping): invalid = True else: for c in ("red", "green", "blue"): if c not in v: invalid = True elif not (0 <= v[c] < 256): invalid = True if invalid: if use_defaults: conf[k] = default else: del conf[k] case "custom": if not validator(d["tags"], d["config"], v): if use_defaults: conf[k] = default else: del conf[k] # Path: src/hhd/utils.py def expanduser(path: str, user: int | str | Context | None = None): """Expand ~ and ~user constructions. If user or $HOME is unknown, do nothing. Modified from the python implementation to support using the target userid/user.""" path = os.fspath(path) if not path.startswith("~"): return path i = path.find("/", 1) if i < 0: i = len(path) if i == 1: if "HOME" in os.environ and not user: # Fallback to environ only if user not set userhome = os.environ["HOME"] else: try: import pwd except ImportError: # pwd module unavailable, return path unchanged return path try: if not user: userhome = pwd.getpwuid(os.getuid()).pw_dir elif isinstance(user, int): userhome = pwd.getpwuid(user).pw_dir elif isinstance(user, Context): userhome = pwd.getpwuid(user.euid).pw_dir else: userhome = pwd.getpwnam(user).pw_dir except KeyError: # bpo-10496: if the current user identifier doesn't exist in the # password database, return the path unchanged return path else: try: import pwd except ImportError: # pwd module unavailable, return path unchanged return path name = path[1:i] try: pwent = pwd.getpwnam(name) except KeyError: # bpo-10496: if the user name from the path doesn't exist in the # password database, return the path unchanged return path userhome = pwent.pw_dir root = "/" userhome = userhome.rstrip(root) return (userhome + path[i:]) or root # Path: src/hhd/utils.py def fix_perms(fn: str, ctx: Context): os.chown(fn, ctx.euid, ctx.egid) # Path: src/hhd/utils.py def get_context(user: str | None) -> Context | None: try: uid = os.getuid() gid = os.getgid() if not user: if not uid: print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") print( "Running as root without a specified user (`--user`). Configs will be placed at `/root/.config`." ) print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") return Context(uid, gid, uid, gid, getpass.getuser()) euid = int( subprocess.run( ["id", "-u", user], capture_output=True, check=True ).stdout.decode() ) egid = int( subprocess.run( ["id", "-g", user], capture_output=True, check=True ).stdout.decode() ) if (uid or gid) and (uid != euid or gid != egid): print( f"The user specified with --user is not the user this process was started with." ) return None return Context(euid, egid, uid, gid, user) except subprocess.CalledProcessError as e: print(f"Getting the user uid/gid returned an error:\n{e.stderr.decode()}") return None except Exception as e: print(f"Failed getting permissions with error:\n{e}") return None # Path: src/hhd/utils.py def switch_priviledge(p: Context, escalate=False): uid = os.geteuid() gid = os.getegid() if escalate: os.seteuid(p.uid) os.setegid(p.gid) else: os.setegid(p.egid) os.seteuid(p.euid) return uid, gid # Path: src/hhd/__main__.py import argparse import fcntl import logging import os import signal import subprocess import sys import pkg_resources import hashlib import random from os.path import join from threading import Condition from threading import Event as TEvent from threading import RLock from time import sleep from typing import Sequence from .logging import set_log_plugin, setup_logger, update_log_plugins from .plugins import ( Config, Emitter, Event, HHDAutodetect, HHDPlugin, HHDSettings, load_relative_yaml, ) from .plugins.settings import ( Validator, get_default_state, load_blacklist_yaml, load_profile_yaml, load_state_yaml, merge_settings, save_blacklist_yaml, save_profile_yaml, get_settings_hash, save_state_yaml, validate_config, ) from .utils import expanduser, fix_perms, get_context, switch_priviledge from importlib.metadata import version from .http import HHDHTTPServer class EmitHolder(Emitter): def __init__(self, condition: Condition) -> None: self._events = [] self._condition = condition def __call__(self, event: Event | Sequence[Event]) -> None: with self._condition: if isinstance(event, Sequence): self._events.extend(event) else: self._events.append(event) self._condition.notify_all() def get_events(self, timeout: int = -1) -> Sequence[Event]: with self._condition: if not self._events and timeout != -1: self._condition.wait() ev = self._events self._events = [] return ev def has_events(self): with self._condition: return bool(self._events) def notifier(ev: TEvent, cond: Condition): def _inner(sig, frame): with cond: ev.set() cond.notify_all() return _inner def print_token(ctx): token_fn = expanduser(join(CONFIG_DIR, "token"), ctx) try: with open(token_fn, "r") as f: token = f.read().strip() logger.info(f'Current HHD token (for user "{ctx.name}") is: "{token}"') except Exception as e: logger.error(f"Token not found or could not be read, error:\n{e}") logger.info( "Enable the http endpoint to generate a token automatically.\n" + "Or place it under '~/.config/hhd/token' manually.\n" + "'chown 600 ~/.config/hhd/token' for security reasons!" ) def main(): parser = argparse.ArgumentParser( prog="HHD: Handheld Daemon main interface.", description="Handheld Daemon is a daemon for managing the quirks inherent in handheld devices.", ) parser.add_argument( "-u", "--user", default=None, help="The user whose home directory will be used to store the files (~/.config/hhd).", dest="user", ) parser.add_argument( "command", nargs="*", default=[], help="The command to run. If empty, run as daemon. Right now, only the command token is supported.", ) args = parser.parse_args() user = args.user # Setup temporary logger for permission retrieval ctx = get_context(user) if not ctx: print(f"Could not get user information. Exiting...") return detectors: dict[str, HHDAutodetect] = {} plugins: dict[str, Sequence[HHDPlugin]] = {} cfg_fds = [] # HTTP data https = None prev_http_cfg = None updated = False # Check we are in a virtual environment # TODO: Improve exe_python = sys.executable try: # Create nested hhd dir # This might mess up permissions in upward directories # So try to deescalate hhd_dir = expanduser(CONFIG_DIR, ctx) try: switch_priviledge(ctx, False) os.makedirs(hhd_dir, exist_ok=True) switch_priviledge(ctx, True) fix_perms(hhd_dir, ctx) except Exception: pass # Remove old dir try: os.rename( join(hhd_dir, "plugins"), join(hhd_dir, "plugins_old_USE_STATEYML") ) except Exception: pass set_log_plugin("main") setup_logger(join(CONFIG_DIR, "log"), ctx=ctx) if args.command: if args.command[0] == "token": print_token(ctx) return
else:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: IDSIA/automated-cl # Path: torchmeta_local/utils/data/dataset.py class ClassDataset(object): """Base class for a dataset of classes. Each item from a `ClassDataset` is a dataset containing examples from the same class. Parameters ---------- meta_train : bool (default: `False`) Use the meta-train split of the dataset. If set to `True`, then the arguments `meta_val` and `meta_test` must be set to `False`. Exactly one of these three arguments must be set to `True`. meta_val : bool (default: `False`) Use the meta-validation split of the dataset. If set to `True`, then the arguments `meta_train` and `meta_test` must be set to `False`. Exactly one of these three arguments must be set to `True`. meta_test : bool (default: `False`) Use the meta-test split of the dataset. If set to `True`, then the arguments `meta_train` and `meta_val` must be set to `False`. Exactly one of these three arguments must be set to `True`. meta_split : string in {'train', 'val', 'test'}, optional Name of the split to use. This overrides the arguments `meta_train`, `meta_val` and `meta_test`. class_augmentations : list of callable, optional A list of functions that augment the dataset with new classes. These classes are transformations of existing classes. E.g. `transforms.HorizontalFlip()`. """ def __init__(self, meta_train=False, meta_val=False, meta_test=False, meta_split=None, class_augmentations=None): if meta_train + meta_val + meta_test == 0: if meta_split is None: raise ValueError('The meta-split is undefined. Use either the ' 'argument `meta_train=True` (or `meta_val`/`meta_test`), or ' 'the argument `meta_split="train"` (or "val"/"test").') elif meta_split not in ['train', 'val', 'test']: raise ValueError('Unknown meta-split name `{0}`. The meta-split ' 'must be in [`train`, `val`, `test`].'.format(meta_split)) meta_train = (meta_split == 'train') meta_val = (meta_split == 'val') meta_test = (meta_split == 'test') elif meta_train + meta_val + meta_test > 1: raise ValueError('Multiple arguments among `meta_train`, `meta_val` ' 'and `meta_test` are set to `True`. Exactly one must be set to ' '`True`.') self.meta_train = meta_train self.meta_val = meta_val self.meta_test = meta_test self._meta_split = meta_split if class_augmentations is not None: if not isinstance(class_augmentations, list): raise TypeError('Unknown type for `class_augmentations`. ' 'Expected `list`, got `{0}`.'.format(type(class_augmentations))) unique_augmentations = OrderedSet() for augmentations in class_augmentations: for transform in augmentations: if transform in unique_augmentations: warnings.warn('The class augmentation `{0}` already ' 'exists in the list of class augmentations (`{1}`). ' 'To avoid any duplicate, this transformation is ' 'ignored.'.format(transform, repr(transform)), UserWarning, stacklevel=2) unique_augmentations.add(transform) class_augmentations = list(unique_augmentations) else: class_augmentations = [] self.class_augmentations = class_augmentations def get_class_augmentation(self, index): transform_index = (index // self.num_classes) - 1 if transform_index < 0: return None return self.class_augmentations[transform_index] def get_transform(self, index, transform=None): class_transform = self.get_class_augmentation(index) if class_transform is None: return transform if transform is None: return class_transform return Compose([class_transform, transform]) def get_target_transform(self, index): class_transform = self.get_class_augmentation(index) return FixedCategory(class_transform) @property def meta_split(self): if self._meta_split is None: if self.meta_train: self._meta_split = 'train' elif self.meta_val: self._meta_split = 'val' elif self.meta_test: self._meta_split = 'test' else: raise NotImplementedError() return self._meta_split def __getitem__(self, index): raise NotImplementedError() @property def num_classes(self): raise NotImplementedError() def __len__(self): return self.num_classes * (len(self.class_augmentations) + 1) # Path: torchmeta_local/utils/data/dataset.py class CombinationMetaDataset(MetaDataset): """Base class for a meta-dataset, where the classification tasks are over multiple classes from a `ClassDataset`. Parameters ---------- dataset : `ClassDataset` instance A dataset of classes. Each item of `dataset` is a dataset, containing all the examples from the same class. num_classes_per_task : int Number of classes per tasks. This corresponds to `N` in `N-way` classification. target_transform : callable, optional A function/transform that takes a target, and returns a transformed version. See also `torchvision.transforms`. dataset_transform : callable, optional A function/transform that takes a dataset (ie. a task), and returns a transformed version of it. E.g. `transforms.ClassSplitter()`. """ def __init__(self, dataset, num_classes_per_task, target_transform=None, dataset_transform=None): if not isinstance(num_classes_per_task, int): raise TypeError('Unknown type for `num_classes_per_task`. Expected ' '`int`, got `{0}`.'.format(type(num_classes_per_task))) self.dataset = dataset self.num_classes_per_task = num_classes_per_task # If no target_transform, then use a default target transform that # is well behaved for the `default_collate` function (assign class # augmentations ot integers). if target_transform is None: target_transform = DefaultTargetTransform(dataset.class_augmentations) super(CombinationMetaDataset, self).__init__(meta_train=dataset.meta_train, meta_val=dataset.meta_val, meta_test=dataset.meta_test, meta_split=dataset.meta_split, target_transform=target_transform, dataset_transform=dataset_transform) def __iter__(self): num_classes = len(self.dataset) for index in combinations(num_classes, self.num_classes_per_task): yield self[index] def sample_task(self): index = self.np_random.choice(len(self.dataset), size=self.num_classes_per_task, replace=False) return self[tuple(index)] def __getitem__(self, index): if isinstance(index, int): raise ValueError('The index of a `CombinationMetaDataset` must be ' 'a tuple of integers, and not an integer. For example, call ' '`dataset[({0})]` to get a task with classes from 0 to {1} ' '(got `{2}`).'.format(', '.join([str(idx) for idx in range(self.num_classes_per_task)]), self.num_classes_per_task - 1, index)) assert len(index) == self.num_classes_per_task datasets = [self.dataset[i] for i in index] # Use deepcopy on `Categorical` target transforms, to avoid any side # effect across tasks. task = ConcatTask(datasets, self.num_classes_per_task, target_transform=wrap_transform(self.target_transform, self._copy_categorical, transform_type=Categorical)) if self.dataset_transform is not None: task = self.dataset_transform(task) return task def _copy_categorical(self, transform): assert isinstance(transform, Categorical) transform.reset() if transform.num_classes is None: transform.num_classes = self.num_classes_per_task return deepcopy(transform) def __len__(self): num_classes, length = len(self.dataset), 1 for i in range(1, self.num_classes_per_task + 1): length *= (num_classes - i + 1) / i if length > sys.maxsize: warnings.warn('The number of possible tasks in {0} is ' 'combinatorially large (equal to C({1}, {2})), and exceeds ' 'machine precision. Setting the length of the dataset to the ' 'maximum integer value, which undervalues the actual number of ' 'possible tasks in the dataset. Therefore the value returned by ' '`len(dataset)` should not be trusted as being representative ' 'of the true number of tasks.'.format(self, len(self.dataset), self.num_classes_per_task), UserWarning, stacklevel=2) length = sys.maxsize return int(length) # Path: torchmeta_local/utils/data/task.py class Dataset(Dataset_): def __init__(self, index, transform=None, target_transform=None): self.index = index self.transform = transform self.target_transform = target_transform def target_transform_append(self, transform): if transform is None: return if self.target_transform is None: self.target_transform = transform else: self.target_transform = Compose([self.target_transform, transform]) def __hash__(self): return hash(self.index) # Path: torchmeta_local/datasets/utils.py def get_asset(*args, dtype=None): filename = get_asset_path(*args) if not os.path.isfile(filename): raise IOError('{} not found'.format(filename)) if dtype is None: _, dtype = os.path.splitext(filename) dtype = dtype[1:] if dtype == 'json': with open(filename, 'r') as f: data = json.load(f) else: raise NotImplementedError() return data # Path: torchmeta_local/datasets/letter.py import numpy as np import os import json import h5py from tqdm import tqdm from torchmeta_local.utils.data import Dataset, ClassDataset, CombinationMetaDataset from torchmeta_local.datasets.utils import get_asset from sklearn.datasets import fetch_openml from sklearn.datasets import fetch_openml def __getitem__(self, index): label = self.labels[index % self.num_classes] data = self.data[label] transform = self.get_transform(index, self.transform) target_transform = self.get_target_transform(index) return LetterDataset(index, data, label, transform=transform, target_transform=target_transform) @property def num_classes(self): return self._num_classes @property def data(self): if self._data is None: self._data_file = h5py.File(self.split_filename, 'r') self._data = self._data_file['datasets'] return self._data @property def labels(self): if self._labels is None: with open(self.split_filename_labels, 'r') as f: self._labels = json.load(f) return self._labels def _check_integrity(self): return (os.path.isfile(self.split_filename) and os.path.isfile(self.split_filename_labels)) def close(self): if self._data is not None: self._data.close() self._data = None def download(self): if self._check_integrity(): return data = fetch_openml(data_id=self.open_ml_id) features = data.data targets = data.target os.makedirs(self.root, exist_ok=True) # for each meta-data-split, get the labels, then check which data-point belongs to the set (via a mask). # then, retrieve the features and targets belonging to the set. Then create hdf5 file for these features. for s, split in enumerate(['train', 'val', 'test']): labels_assets_split = get_asset(self.folder, '{0}.json'.format(split)) is_in_split = [t in labels_assets_split for t in targets] features_split = features.loc[is_in_split] targets_split = targets.loc[is_in_split] assert targets_split.shape[0] == features_split.shape[0] unique_targets_split = np.unique(targets_split) if len(labels_assets_split) > unique_targets_split.shape[0]: print(f"unique set of labels ({(unique_targets_split.shape[0])}) is smaller than set of labels " f"given by assets ({len(labels_assets_split)}). Proceeding with unique set of labels.") # write unique targets to json file. labels_filename = os.path.join(self.root, self.filename_labels.format(split)) with open(labels_filename, 'w') as f: json.dump(unique_targets_split.tolist(), f) # write data (features and class labels) filename = os.path.join(self.root, self.filename.format(split)) with h5py.File(filename, 'w') as f: group = f.create_group('datasets') for i, label in enumerate(tqdm(unique_targets_split, desc=filename)): data_class = features_split.loc[targets_split == label] group.create_dataset(label, data=data_class) class LetterDataset(Dataset): def __init__(self, index, data, label, transform=None, target_transform=None): super(LetterDataset, self).__init__(index, transform=transform, target_transform=target_transform) self.data = data self.label = label def __len__(self): return len(self.data) def __getitem__(self, index): features = self.data[index, :] target = self.label if self.transform is not None: features = self.transform(features) if self.target_transform is not None: target = self.target_transform(target) return features, target def create_asset(root='data', num_split=None, numpy_seed=42): """This methods creates the assets of the letter dataset. These are the meta-dataset splits from the original data. Only run this method in case you want to create new assets. Once created, copy the assets to this directory: torchmeta_local.datasets.assets.letter. You can also manually change the assets.""" # number of classes per split: train, valid, test (26 classes in total) if num_split is None: num_split = {"train": 15, "val": 5, "test": 6} num_classes = 0 for key in num_split: num_classes += num_split[key] data = fetch_openml(data_id=LetterClassDataset.open_ml_id) unique_targets = np.unique(data.target) num_unique_targets = len(unique_targets) assert num_classes == num_unique_targets # split unique labels randomly np.random.seed(numpy_seed)
perm = np.random.permutation(num_unique_targets)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: yamy-cheng/DMAOT-VOTS2023 # Path: dmaot/networks/encoders/resnest/resnet.py class ResNet(nn.Module): """ResNet Variants Parameters ---------- block : Block Class for the residual block. Options are BasicBlockV1, BottleneckV1. layers : list of int Numbers of layers in each block classes : int, default 1000 Number of classification classes. dilated : bool, default False Applying dilation strategy to pretrained ResNet yielding a stride-8 model, typically used in Semantic Segmentation. norm_layer : object Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; for Synchronized Cross-GPU BachNormalization). Reference: - He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. - Yu, Fisher, and Vladlen Koltun. "Multi-scale context aggregation by dilated convolutions." """ # pylint: disable=unused-variable def __init__(self, block, layers, radix=1, groups=1, bottleneck_width=64, num_classes=1000, dilated=False, dilation=1, deep_stem=False, stem_width=64, avg_down=False, rectified_conv=False, rectify_avg=False, avd=False, avd_first=False, final_drop=0.0, dropblock_prob=0, last_gamma=False, norm_layer=nn.BatchNorm2d, freeze_at=0): self.cardinality = groups self.bottleneck_width = bottleneck_width # ResNet-D params self.inplanes = stem_width * 2 if deep_stem else 64 self.avg_down = avg_down self.last_gamma = last_gamma # ResNeSt params self.radix = radix self.avd = avd self.avd_first = avd_first super(ResNet, self).__init__() self.rectified_conv = rectified_conv self.rectify_avg = rectify_avg if rectified_conv: from rfconv import RFConv2d conv_layer = RFConv2d else: conv_layer = nn.Conv2d conv_kwargs = {'average_mode': rectify_avg} if rectified_conv else {} if deep_stem: self.conv1 = nn.Sequential( conv_layer(3, stem_width, kernel_size=3, stride=2, padding=1, bias=False, **conv_kwargs), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), norm_layer(stem_width), nn.ReLU(inplace=True), conv_layer(stem_width, stem_width * 2, kernel_size=3, stride=1, padding=1, bias=False, **conv_kwargs), ) else: self.conv1 = conv_layer(3, 64, kernel_size=7, stride=2, padding=3, bias=False, **conv_kwargs) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], norm_layer=norm_layer, is_first=False) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, norm_layer=norm_layer) if dilated or dilation == 4: self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) elif dilation == 2: self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilation=1, norm_layer=norm_layer, dropblock_prob=dropblock_prob) else: self.layer3 = self._make_layer(block, 256, layers[2], stride=2, norm_layer=norm_layer, dropblock_prob=dropblock_prob) self.stem = [self.conv1, self.bn1] self.stages = [self.layer1, self.layer2, self.layer3] for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, norm_layer): m.weight.data.fill_(1) m.bias.data.zero_() self.freeze(freeze_at) def _make_layer(self, block, planes, blocks, stride=1, dilation=1, norm_layer=None, dropblock_prob=0.0, is_first=True): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: down_layers = [] if self.avg_down: if dilation == 1: down_layers.append( nn.AvgPool2d(kernel_size=stride, stride=stride, ceil_mode=True, count_include_pad=False)) else: down_layers.append( nn.AvgPool2d(kernel_size=1, stride=1, ceil_mode=True, count_include_pad=False)) down_layers.append( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=1, bias=False)) else: down_layers.append( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False)) down_layers.append(norm_layer(planes * block.expansion)) downsample = nn.Sequential(*down_layers) layers = [] if dilation == 1 or dilation == 2: layers.append( block(self.inplanes, planes, stride, downsample=downsample, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=1, is_first=is_first, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma)) elif dilation == 4: layers.append( block(self.inplanes, planes, stride, downsample=downsample, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=2, is_first=is_first, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma)) else: raise RuntimeError("=> unknown dilation size: {}".format(dilation)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, radix=self.radix, cardinality=self.cardinality, bottleneck_width=self.bottleneck_width, avd=self.avd, avd_first=self.avd_first, dilation=dilation, rectified_conv=self.rectified_conv, rectify_avg=self.rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob, last_gamma=self.last_gamma)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) xs = [] x = self.layer1(x) xs.append(x) # 4X x = self.layer2(x) xs.append(x) # 8X x = self.layer3(x) xs.append(x) # 16X # Following STMVOS, we drop stage 5. xs.append(x) # 16X return xs def freeze(self, freeze_at): if freeze_at >= 1: for m in self.stem: freeze_params(m) for idx, stage in enumerate(self.stages, start=2): if freeze_at >= idx: freeze_params(stage) # Path: dmaot/networks/encoders/resnest/resnet.py class Bottleneck(nn.Module): """ResNet Bottleneck """ # pylint: disable=unused-argument expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, radix=1, cardinality=1, bottleneck_width=64, avd=False, avd_first=False, dilation=1, is_first=False, rectified_conv=False, rectify_avg=False, norm_layer=None, dropblock_prob=0.0, last_gamma=False): super(Bottleneck, self).__init__() group_width = int(planes * (bottleneck_width / 64.)) * cardinality self.conv1 = nn.Conv2d(inplanes, group_width, kernel_size=1, bias=False) self.bn1 = norm_layer(group_width) self.dropblock_prob = dropblock_prob self.radix = radix self.avd = avd and (stride > 1 or is_first) self.avd_first = avd_first if self.avd: self.avd_layer = nn.AvgPool2d(3, stride, padding=1) stride = 1 if dropblock_prob > 0.0: self.dropblock1 = DropBlock2D(dropblock_prob, 3) if radix == 1: self.dropblock2 = DropBlock2D(dropblock_prob, 3) self.dropblock3 = DropBlock2D(dropblock_prob, 3) if radix >= 1: self.conv2 = SplAtConv2d(group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False, radix=radix, rectify=rectified_conv, rectify_avg=rectify_avg, norm_layer=norm_layer, dropblock_prob=dropblock_prob) elif rectified_conv: from rfconv import RFConv2d self.conv2 = RFConv2d(group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False, average_mode=rectify_avg) self.bn2 = norm_layer(group_width) else: self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False) self.bn2 = norm_layer(group_width) self.conv3 = nn.Conv2d(group_width, planes * 4, kernel_size=1, bias=False) self.bn3 = norm_layer(planes * 4) if last_gamma: from torch.nn.init import zeros_ zeros_(self.bn3.weight) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.dilation = dilation self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) if self.dropblock_prob > 0.0: out = self.dropblock1(out) out = self.relu(out) if self.avd and self.avd_first: out = self.avd_layer(out) out = self.conv2(out) if self.radix == 0: out = self.bn2(out) if self.dropblock_prob > 0.0: out = self.dropblock2(out) out = self.relu(out) if self.avd and not self.avd_first: out = self.avd_layer(out) out = self.conv3(out) out = self.bn3(out) if self.dropblock_prob > 0.0: out = self.dropblock3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out # Path: dmaot/networks/encoders/resnest/resnest.py import torch from .resnet import ResNet, Bottleneck __all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269'] _url_format = 'https://s3.us-west-1.wasabisys.com/resnest/torch/{}-{}.pth' _model_sha256 = { name: checksum for checksum, name in [ ('528c19ca', 'resnest50'), ('22405ba7', 'resnest101'), ('75117900', 'resnest200'), ('0cc87c48', 'resnest269'), ] } def short_hash(name): if name not in _model_sha256: raise ValueError( 'Pretrained model for {name} is not available.'.format(name=name)) return _model_sha256[name][:8] resnest_model_urls = { name: _url_format.format(name, short_hash(name)) for name in _model_sha256.keys() } def resnest50(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict( torch.hub.load_state_dict_from_url(resnest_model_urls['resnest50'], progress=True, check_hash=True)) return model def resnest101(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 23, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict( torch.hub.load_state_dict_from_url( resnest_model_urls['resnest101'], progress=True, check_hash=True)) return model def resnest200(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True,
avd=True,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: tosiyuki/LLaVA-JP # Path: llava/conversation.py class SeparatorStyle(Enum): class Conversation: SINGLE = auto() PLAIN = auto() TWO = auto() W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge W, H = image.size H, W = longest_edge, shortest_edge H, W = shortest_edge, longest_edge def get_prompt(self): def append_message(self, role, message): def get_images(self, return_pil=False): def expand2square(pil_img, background_color=(122, 116, 104)): def to_gradio_chatbot(self): def copy(self): def dict(self): # Path: llava/model/llava_gpt2.py class LlavaGpt2ForCausalLM(GPT2LMHeadModel, LlavaMetaForCausalLM): config_class = LlavaConfig base_model = "gpt2" def __init__(self, config): super(LlavaGpt2ForCausalLM, self).__init__(config) self.model = LlavaGpt2Model(config) #self.model = LlavaMetaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, **kwargs ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images ) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images return _inputs # Path: llava/model/llava_gpt_neox.py class LlavaGptNeoxForCausalLM(PreTrainedModel, LlavaMetaForCausalLM): config_class = LlavaConfig base_model = "gpt_neox" def __init__(self, config): super(LlavaGptNeoxForCausalLM, self).__init__(config) self.model = LlavaGptNeoxModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images ) print(inputs_embeds.size()) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images return _inputs # Path: llava/model/llava_llama.py class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM): config_class = LlavaConfig base_model = "llama" def __init__(self, config): super(LlavaLlamaForCausalLM, self).__init__(config) self.model = LlavaLlamaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, **kwargs ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images ) return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images return _inputs # Path: llava/train/dataset.py class LazySupervisedDataset(Dataset): """Dataset for supervised fine-tuning.""" def __init__(self, data_path: str, tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments): super(LazySupervisedDataset, self).__init__() list_data_dict = json.load(open(data_path, "r")) print("Formatting inputs...Skip in lazy mode") self.tokenizer = tokenizer self.list_data_dict = list_data_dict self.data_args = data_args def __len__(self): return len(self.list_data_dict) @property def lengths(self): length_list = [] for sample in self.list_data_dict: img_tokens = 128 if 'image' in sample else 0 length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) return length_list @property def modality_lengths(self): length_list = [] for sample in self.list_data_dict: cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) cur_len = cur_len if 'images' in sample else -cur_len length_list.append(cur_len) return length_list def __getitem__(self, i) -> Dict[str, torch.Tensor]: sources = self.list_data_dict[i] if isinstance(i, int): sources = [sources] assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME if 'image' in sources[0]: image_file = self.list_data_dict[i]['image'] image_folder = self.data_args.image_folder processor = self.data_args.image_processor image = Image.open(os.path.join(image_folder, image_file)).convert('RGB') if self.data_args.image_aspect_ratio == 'pad': def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result image = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] else: image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] sources = preprocess_multimodal( copy.deepcopy([e["conversations"] for e in sources]), self.data_args ) else: sources = copy.deepcopy([e["conversations"] for e in sources]) data_dict = preprocess( sources, self.tokenizer, has_image=('image' in self.list_data_dict[i])) if isinstance(i, int): data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]) # image exist in the data if 'image' in self.list_data_dict[i]: data_dict['images'] = image elif self.data_args.is_multimodal: # image does not exist in the data, but the model is multimodal crop_size = self.data_args.image_processor.crop_size data_dict['images'] = torch.zeros(3, crop_size['height'], crop_size['width']) return data_dict # Path: llava/train/dataset.py class DataCollatorForSupervisedDataset(object): """Collate examples for supervised fine-tuning.""" tokenizer: transformers.PreTrainedTokenizer def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: input_ids, labels = tuple([instance[key] for instance in instances] for key in ("input_ids", "labels")) input_ids = torch.nn.utils.rnn.pad_sequence( input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = torch.nn.utils.rnn.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) input_ids = input_ids[:, :self.tokenizer.model_max_length] labels = labels[:, :self.tokenizer.model_max_length] batch = dict( input_ids=input_ids, labels=labels, attention_mask=input_ids.ne(self.tokenizer.pad_token_id), ) if 'images' in instances[0]: images = [instance['images'] for instance in instances] if all(x is not None and x.shape == images[0].shape for x in images): batch['images'] = torch.stack(images) else: batch['images'] = images return batch # Path: llava/train/arguments_dataclass.py class ModelArguments: base_model: Optional[str] = field(default="gpt2", metadata={"help": "gpt2 or gpt_neox or llama"}) model_name_or_path: Optional[str] = field(default="rinna/japanese-gpt2-xsmall") version: Optional[str] = field(default="plain") freeze_backbone: bool = field(default=False) # LLMをFreezeするか tune_mm_mlp_adapter: bool = field(default=False) # 事前学習のときはmm_mlp_adapterだけ保存する. vision_tower: Optional[str] = field(default="openai/clip-vit-large-patch14-336") mm_vision_select_layer: Optional[int] = field(default=-2) # default to the last two layer pretrain_mm_mlp_adapter: Optional[str] = field(default=None) # fine-tuningのときには設定 mm_projector_type: Optional[str] = field(default='mlp2x_gelu') # 2層の線形層 mm_vision_select_feature: Optional[str] = field(default="patch") # Path: llava/train/arguments_dataclass.py class DataArguments: data_path: str = field(default="", metadata={"help": "Path to the training data."}) lazy_preprocess: bool = False is_multimodal: bool = False image_folder: Optional[str] = field(default="/home/toshi/work/llava_jp/input/LLaVA-CC3M-Pretrain-595K/images", metadata={"help": "Path to image data."}) image_aspect_ratio: str = 'square' # Path: llava/train/arguments_dataclass.py class TrainingArguments(transformers.TrainingArguments): cache_dir: Optional[str] = field(default=None) optim: str = field(default="adamw_torch") model_max_length: int = field( default=1024, metadata={ "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." }, ) double_quant: bool = field( default=True, metadata={"help": "Compress the quantization statistics through double quantization."} ) quant_type: str = field( default="nf4", metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} ) bits: int = field( default=16, metadata={"help": "How many bits to use."} ) lora_enable: bool = False lora_r: int = 64 lora_alpha: int = 16 lora_dropout: float = 0.05 lora_weight_path: str = "" lora_bias: str = "none" mm_projector_lr: Optional[float] = None group_by_modality_length: bool = field(default=False) # dataset sampler option fp16: bool = field(default=False) bf16: bool = field(default=False) output_dir: str = field(default="./output_llava/checkpoints/llava-v1.5-japanese-gpt2-xsmall") num_train_epochs: int = field(default=1) per_device_train_batch_size: int = field(default=32) per_device_eval_batch_size: int = field(default=4) gradient_accumulation_steps: int = field(default=1) evaluation_strategy: str = field(default="no") save_strategy: str = field(default="steps") save_steps: int = field(default=24000) save_total_limit: int = field(default=1) learning_rate: float = field(default=1e-3) weight_decay: float = field(default=0.) warmup_ratio: float = field(default=0.03) logging_steps: int = field(default=1) model_max_length: int = field(default=1024) gradient_checkpointing: bool = field(default=True) dataloader_num_workers: int = field(default=16) lr_scheduler_type: str = field(default="cosine") seed: int = field(default=42) # Path: llava/train/llava_trainer.py class LLaVATrainer(Trainer): def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: if self.train_dataset is None or not has_length(self.train_dataset): return None if self.args.group_by_modality_length: lengths = self.train_dataset.modality_lengths return LengthGroupedSampler( self.args.train_batch_size, world_size=self.args.world_size * self.args.gradient_accumulation_steps, lengths=lengths, group_by_modality=True, ) else: return super()._get_train_sampler() def create_optimizer(self): """ Setup the optimizer. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the Trainer's init through `optimizers`, or subclass and override this method in a subclass. """ opt_model = self.model if self.optimizer is None: decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS) decay_parameters = [name for name in decay_parameters if "bias" not in name] if self.args.mm_projector_lr is not None: projector_parameters = [name for name, _ in opt_model.named_parameters() if "mm_projector" in name] optimizer_grouped_parameters = [ { "params": [ p for n, p in opt_model.named_parameters() if (n in decay_parameters and n not in projector_parameters and p.requires_grad) ], "weight_decay": self.args.weight_decay, }, { "params": [ p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n not in projector_parameters and p.requires_grad) ], "weight_decay": 0.0, }, { "params": [ p for n, p in opt_model.named_parameters() if (n in decay_parameters and n in projector_parameters and p.requires_grad) ], "weight_decay": self.args.weight_decay, "lr": self.args.mm_projector_lr, }, { "params": [ p for n, p in opt_model.named_parameters() if (n not in decay_parameters and n in projector_parameters and p.requires_grad) ], "weight_decay": 0.0, "lr": self.args.mm_projector_lr, }, ] else: optimizer_grouped_parameters = [ { "params": [ p for n, p in opt_model.named_parameters() if (n in decay_parameters and p.requires_grad) ], "weight_decay": self.args.weight_decay, }, { "params": [ p for n, p in opt_model.named_parameters() if (n not in decay_parameters and p.requires_grad) ], "weight_decay": 0.0, }, ] optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args) self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs) if optimizer_cls.__name__ == "Adam8bit": import bitsandbytes manager = bitsandbytes.optim.GlobalOptimManager.get_instance() skipped = 0 for module in opt_model.modules(): if isinstance(module, nn.Embedding): skipped += sum({p.data_ptr(): p.numel() for p in module.parameters()}.values()) logger.info(f"skipped {module}: {skipped/2**20}M params") manager.register_module_override(module, "weight", {"optim_bits": 32}) logger.debug(f"bitsandbytes: will optimize {module} in fp32") logger.info(f"skipped: {skipped/2**20}M params") return self.optimizer def _save_checkpoint(self, model, trial, metrics=None): if getattr(self.args, 'tune_mm_mlp_adapter', False): from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" run_dir = self._get_output_dir(trial=trial) output_dir = os.path.join(run_dir, checkpoint_folder) # Only save Adapter #keys_to_match = ['mm_projector', 'vision_resampler'] keys_to_match = ['mm_projector'] weight_to_save = get_mm_adapter_state(self.model.named_parameters(), keys_to_match) #weight_to_save = self.model.named_parameters().detach().cpu().clone() if self.args.local_rank == 0 or self.args.local_rank == -1: self.model.config.save_pretrained(output_dir) torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) else: super(LLaVATrainer, self)._save_checkpoint(model, trial, metrics) def _save(self, output_dir: Optional[str] = None, state_dict=None): if getattr(self.args, 'tune_mm_mlp_adapter', False): pass else: super(LLaVATrainer, self)._save(output_dir, state_dict) # Path: train_llava.py import os import pathlib import torch import transformers from typing import Dict from llava import conversation as conversation_lib from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM from llava.model.llava_gpt_neox import LlavaGptNeoxForCausalLM from llava.model.llava_llama import LlavaLlamaForCausalLM from llava.train.dataset import LazySupervisedDataset, DataCollatorForSupervisedDataset from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments from llava.train.llava_trainer import LLaVATrainer from transformers import BitsAndBytesConfig from peft import prepare_model_for_kbit_training from peft import LoraConfig, get_peft_model from peft.tuners.lora import LoraLayer def rank0_print(*args): if local_rank == 0: print(*args) # Borrowed from peft.utils.get_peft_model_state_dict def get_peft_state(named_params, bias): if bias == "none": to_return = {k: t for k, t in named_params if "lora_" in k} elif bias == "all": to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} elif bias == "lora_only": to_return = {} maybe_lora_bias = {} lora_bias_names = set() for k, t in named_params: if "lora_" in k: to_return[k] = t bias_name = k.split("lora_")[0] + "bias" lora_bias_names.add(bias_name) elif "bias" in k: maybe_lora_bias[k] = t for k, t in maybe_lora_bias: if bias_name in lora_bias_names: to_return[bias_name] = t else: raise NotImplementedError to_return = {k: v.detach().cpu().clone() for k, v in to_return.items()} return to_return def get_peft_state_non_lora(named_params, require_grad_only=True): to_return = {k: t for k, t in named_params if "lora_" not in k} if require_grad_only:
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: jags111/ComfyUI_Jags_Audiotools # Path: libs/dance_diffusion/base/type.py class ModelType(str, enum.Enum): DD = 'DD' # Path: libs/dance_diffusion/base/model.py class ModelWrapperBase(): def __init__(self): #self.uuid: str = None #self.name: str = None self.path: str = None self.device_accelerator: torch.device = None self.chunk_size: int = None self.sample_rate: int = None def load( self, path: str, device_accelerator: torch.device, optimize_memory_use:bool=False, chunk_size: int=131072, sample_rate: int=48000 ): raise NotImplementedError # Path: libs/dance_diffusion/base/inference.py class InferenceBase(): def __init__( self, device_accelerator: torch.device, device_offload: torch.device, optimize_memory_use: bool, use_autocast: bool, model: ModelWrapperBase ): self.device_accelerator = device_accelerator self.device_offload = device_offload if(optimize_memory_use==True) else None self.optimize_memory_use = optimize_memory_use self.use_autocast = use_autocast self.model = model self.generator = torch.Generator(device_accelerator)# if (device_accelerator.type != 'mps') else torch.device('cpu')) self.rng_state = None def set_device_accelerator( self, device: torch.device = None ): self.device_accelerator = device def get_device_accelerator( self ) -> torch.device: return self.device_accelerator def set_model( self, model: ModelWrapperBase = None ): self.model = model def get_model( self ) -> ModelWrapperBase: return self.model def expand( self, tensor: torch.Tensor, expansion_map: list[int] ) -> torch.Tensor: out = torch.empty([0], device=self.device_accelerator) for i in range(tensor.shape[0]): out = torch.cat([out, tensor[i,:,:].expand(expansion_map[i], -1, -1)], 0) return out # def cc_randn(self, shape:tuple, seed:int, device:torch.device, dtype = None, rng_state_in:torch.Tensor = None): # initial_rng_state = self.generator.get_state() # rng_state_out = torch.empty([shape[0], shape[1]], dtype=torch.ByteTensor,device=self.generator.device) # rn = torch.empty(shape,device=device, dtype=dtype, device=device) # for sample in range(shape[0]): # for channel in range(shape[1]): # self.generator.manual_seed(seed + sample * shape[1] + channel) if(rng_state_in == None) else self.generator.set_state(rng_state_in[sample, channel]) # rn[sample, channel] = torch.randn([shape[2]], generator=self.generator, dtype=dtype, device=device) # rng_state_out[sample, channel] = self.generator.get_state() # self.rng_state = rng_state_out # self.generator.set_state(initial_rng_state) # return rn # def cc_randn_like(self, input:torch.Tensor, seed:int, rng_state_in:torch.Tensor = None) -> Tuple[torch.Tensor, torch.Tensor]: # initial_rng_state = self.generator.get_state() # rng_state_out = torch.empty([input.shape[0], input.shape[1]], dtype=torch.ByteTensor,device=self.generator.device) # rn = torch.empty_like(input) # for sample in range(input.shape[0]): # for channel in range(input.shape[1]): # self.generator.manual_seed(seed + sample * input.shape[1] + channel) if(rng_state_in == None) else self.generator.set_state(rng_state_in[sample, channel]) # rn[sample, channel] = torch.randn([input.shape[2]], generator=self.generator, dtype=input.dtype, device=input.device) # rng_state_out[sample, channel] = self.generator.get_state() # self.rng_state = rng_state_out # self.generator.set_state(initial_rng_state) # return rn def autocast_context(self): if self.device_accelerator.type == 'cuda': return torch.cuda.amp.autocast() elif self.device_accelerator.type == 'cpu': return torch.cpu.amp.autocast() elif self.device_accelerator.type == 'mps': return nullcontext() else: return torch.autocast(self.device_accelerator.type, dtype=torch.float32) @contextlib.contextmanager def offload_context(self, model): """ Used by inference implementations, this context manager moves the passed model to the inference's `device_accelerator` device on enter, and then returns it to the `device_offload` device on exit. It also wraps the `inference.autocast_context()` context. """ autocast = self.autocast_context() if self.use_autocast else nullcontext() with autocast: if self.optimize_memory_use: model.to(self.device_accelerator) yield None if self.optimize_memory_use: model.to(self.device_offload) # Path: libs/dance_diffusion/dd/model.py class DDModelWrapper(ModelWrapperBase): def __init__(self): super().__init__() self.module:DanceDiffusionInference = None self.model:Callable = None def load( self, path:str, device_accelerator:torch.device, optimize_memory_use:bool=False, chunk_size:int=None, sample_rate:int=None ): default_model_config = dict( version = [0, 0, 1], model_info = dict( name = 'Dance Diffusion Model', description = 'v1.0', type = ModelType.DD, native_chunk_size = 65536, sample_rate = 48000, ), diffusion_config = dict( n_attn_layers = 4 ) ) file = torch.load(path, map_location='cpu') model_config = file.get('model_config') if not model_config: print(f"Model file {path} is invalid. Please run the conversion script.") print(f" - Default model config will be used, which may be inaccurate.") model_config = default_model_config model_info = model_config.get('model_info') diffusion_config = model_config.get('diffusion_config') self.path = path self.chunk_size = model_info.get('native_chunk_size')if not chunk_size else chunk_size self.sample_rate = model_info.get('sample_rate')if not sample_rate else sample_rate self.module = DanceDiffusionInference( n_attn_layers=diffusion_config.get('n_attn_layers'), sample_size=chunk_size, sample_rate=sample_rate, latent_dim=0, ) self.module.load_state_dict( file["state_dict"], strict=False ) self.module.eval().requires_grad_(False) self.model = self.module.diffusion_ema if (optimize_memory_use) else self.module.diffusion_ema.to(device_accelerator) # Path: libs/dance_diffusion/dd/inference.py class DDInference(InferenceBase): def __init__( self, device_accelerator: torch.device = None, device_offload: torch.device = None, optimize_memory_use: bool = False, use_autocast: bool = True, model: ModelWrapperBase = None ): super().__init__(device_accelerator, device_offload, optimize_memory_use, use_autocast, model) def generate( self, callback: Callable = None, batch_size: int = None, seed: int = None, steps: int = None, scheduler: SchedulerType = None, scheduler_args: dict = None, sampler: SamplerType = None, sampler_args: dict = None, **kwargs ): self.generator.manual_seed(seed) step_list = scheduler.get_step_list(steps, self.device_accelerator.type, **scheduler_args)#step_list = step_list[:-1] if sampler in [SamplerType.V_PRK, SamplerType.V_PLMS, SamplerType.V_PIE, SamplerType.V_PLMS2, SamplerType.V_IPLMS] else step_list if SamplerType.is_v_sampler(sampler): x_T = torch.randn([batch_size, 2, self.model.chunk_size], generator=self.generator, device=self.device_accelerator) model = self.model.model else: x_T = step_list[0] * torch.randn([batch_size, 2, self.model.chunk_size], generator=self.generator, device=self.device_accelerator) model = VDenoiser(self.model.model) with self.offload_context(self.model.model): return sampler.sample( model, x_T, step_list, callback, **sampler_args ).float() def generate_variation( self, callback: Callable = None, batch_size: int = None, seed: int = None, audio_source: torch.Tensor = None, expansion_map: list[int] = None, noise_level: float = None, steps: int = None, scheduler: SchedulerType = None, scheduler_args = None, sampler: SamplerType = None, sampler_args = None, **kwargs ) -> torch.Tensor: self.generator.manual_seed(seed) audio_source = self.expand(audio_source, expansion_map) if SamplerType.is_v_sampler(sampler): step_list = scheduler.get_step_list(steps, self.device_accelerator.type, **scheduler_args) step_list = step_list[step_list < noise_level] alpha_T, sigma_T = t_to_alpha_sigma(step_list[0]) x_T = alpha_T * audio_source + sigma_T * torch.randn(audio_source.shape, device=audio_source.device, generator=self.generator) model = self.model.model else: scheduler_args.update(sigma_max = scheduler_args.get('sigma_max', 1.0) * noise_level) step_list = scheduler.get_step_list(steps, self.device_accelerator.type, **scheduler_args) x_T = audio_source + step_list[0] * torch.randn(audio_source.shape, device=audio_source.device, generator=self.generator) model = VDenoiser(self.model.model) with self.offload_context(self.model.model): return sampler.sample( model, x_T, step_list, callback, **sampler_args ).float() def generate_interpolation( self, callback: Callable = None, batch_size: int = None, # seed: int = None, interpolation_positions: list[float] = None, audio_source: torch.Tensor = None, audio_target: torch.Tensor = None, expansion_map: list[int] = None, noise_level: float = None, steps: int = None, scheduler: SchedulerType = None, scheduler_args = None, sampler: SamplerType = None, sampler_args = None, **kwargs ) -> torch.Tensor: if SamplerType.is_v_sampler(sampler): step_list = scheduler.get_step_list(steps, self.device_accelerator.type, **scheduler_args) step_list = step_list[step_list < noise_level] step_list[-1] += 1e-7 #HACK avoid division by 0 in reverse sampling model = self.model.model else: scheduler_args.update(sigma_max = scheduler_args.get('sigma_max', 1.0) * noise_level) step_list = scheduler.get_step_list(steps, self.device_accelerator.type, **scheduler_args) step_list = step_list[:-1] #HACK avoid division by 0 in reverse sampling model = VDenoiser(self.model.model) if self.optimize_memory_use and batch_size < 2: x_0_source = audio_source x_0_target = audio_target with self.offload_context(self.model.model): x_T_source = sampler.sample( model, x_0_source, step_list.flip(0), callback, **sampler_args ) with self.offload_context(self.model.model): x_T_target = sampler.sample( model, x_0_target, step_list.flip(0), callback, **sampler_args ) x_T = torch.cat([x_T_source, x_T_target], dim=0) else: x_0 = torch.cat([audio_source, audio_target], dim=0) with self.offload_context(self.model.model): x_T = sampler.sample( model, x_0, step_list.flip(0), callback, **sampler_args ) if SamplerType.is_v_sampler(sampler): #HACK reset schedule after hack step_list[-1] = 0.0 else: step_list = torch.cat([step_list, step_list.new_zeros([1])]) x_Int = torch.empty([batch_size, 2, self.model.chunk_size], device=self.device_accelerator) for pos in range(len(interpolation_positions)): x_Int[pos] = tensor_slerp_2D(x_T[0], x_T[1], interpolation_positions[pos]) with self.offload_context(self.model.model): return sampler.sample( model, x_Int, step_list, callback, **sampler_args ).float() def generate_inpainting( self, callback: Callable = None, batch_size: int = None, seed: int = None, audio_source: torch.Tensor = None, expansion_map: list[int] = None, mask: torch.Tensor = None, steps: int = None, scheduler: SchedulerType = None, scheduler_args = None, sampler: SamplerType = None, sampler_args = None, inpainting_args = None, **kwargs ) -> torch.Tensor: self.generator.manual_seed(seed) method = inpainting_args.get('method') if(method == 'repaint'): raise Exception("Repaint currently not supported due to changed requirements") elif(method == 'posterior_guidance'): step_list = scheduler.get_step_list(steps, self.device_accelerator.type, **scheduler_args) if SamplerType.is_v_sampler(sampler): raise Exception('V-Sampler currently not supported for posterior guidance. Please choose a K-Sampler.') else: x_T = audio_source + step_list[0] * torch.randn([batch_size, 2, self.model.chunk_size], generator=self.generator, device=self.device_accelerator) model = PosteriorSampling( VDenoiser(self.model.model), x_T, audio_source, mask, inpainting_args.get('posterior_guidance_scale') ) with self.offload_context(self.model.model): return sampler.sample( model, x_T, step_list, callback, **sampler_args ).float() def generate_extension( self, callback: Callable = None, batch_size: int = None, seed: int = None, audio_source: torch.Tensor = None, expansion_map: list[int] = None, steps: int = None, scheduler: SchedulerType = None, scheduler_args = None, sampler: SamplerType = None, sampler_args = None, inpainting_args = None, keep_start: bool = None, **kwargs ) -> torch.Tensor: half_chunk_size = self.model.chunk_size // 2 chunk = torch.cat([audio_source[:, :, -half_chunk_size:], torch.zeros([batch_size, 2, half_chunk_size], device=self.device_accelerator)], dim=2) #chunk = audio_source mask = torch.cat( [torch.ones([batch_size, 2, half_chunk_size], dtype=torch.bool, device=self.device_accelerator), torch.zeros([batch_size, 2, half_chunk_size], dtype=torch.bool, device=self.device_accelerator)], dim=2 ) output = self.generate_inpainting( callback, batch_size, seed, chunk, expansion_map, mask, steps, scheduler, scheduler_args, sampler, sampler_args, inpainting_args ) if (keep_start): return torch.cat( [audio_source, output[:, :, -half_chunk_size:]], dim=2 ) else: return output[:, :, -half_chunk_size:] # Path: libs/dance_diffusion/api.py import torch import enum from dataclasses import dataclass from typing import Callable from .base.type import ModelType from .base.model import ModelWrapperBase from .base.inference import InferenceBase from .dd.model import DDModelWrapper from .dd.inference import DDInference class RequestType(str, enum.Enum): Generation = 'Generation' Variation = 'Variation' Interpolation = 'Interpolation' Inpainting = 'Inpainting' Extension = 'Extension' class Request: def __init__( self, request_type: RequestType, model_path: str, model_type: ModelType, model_chunk_size: int, model_sample_rate: int, **kwargs ): self.request_type = request_type self.model_path = model_path self.model_type = model_type self.model_chunk_size = model_chunk_size self.model_sample_rate = model_sample_rate self.kwargs = kwargs class Response: def __init__( self, result: torch.Tensor ): self.result = result class RequestHandler: def __init__( self, device_accelerator: torch.device, device_offload: torch.device = None, optimize_memory_use: bool = False, use_autocast: bool = True ): self.device_accelerator = device_accelerator self.device_offload = device_offload self.model_wrapper: ModelWrapperBase = None self.inference: InferenceBase = None self.optimize_memory_use = optimize_memory_use self.use_autocast = use_autocast def process_request( self, request: Request, callback: Callable = None ) -> Response: # load the model from the request if it's not already loaded if (self.model_wrapper == None): self.load_model( request.model_type, request.model_path, request.model_chunk_size, request.model_sample_rate ) elif (request.model_path != self.model_wrapper.path): del self.model_wrapper, self.inference self.load_model( request.model_type, request.model_path, request.model_chunk_size,
request.model_sample_rate
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zaigie/stream-infer # Path: stream_infer/inference.py class Inference: def __init__(self, dispatcher: Dispatcher): self.dispatcher = dispatcher self.inferences_info = [] self.timers = {} self.is_stop = False self.process_func = self.default_process def load_algo( self, algo_instance: BaseAlgo, frame_count: int, frame_step: int, interval: Union[int, float], ): if not isinstance(algo_instance, BaseAlgo): err = f"Algo instance must be an instance of `BaseAlgo`, but got {type(algo_instance)}" logger.error(err) raise ValueError(err) self.inferences_info.append((algo_instance, frame_count, frame_step, interval)) self.timers[algo_instance.name] = Timer(interval, key=algo_instance.name) algo_instance.init() def list_algos(self): result = [] for algo_instance, _, _, _ in self.inferences_info: result.append(algo_instance.name) return result def run(self): for inference_info in self.inferences_info: algo_instance, _, _, _ = inference_info timer = self.timers[algo_instance.name] if timer.is_time(): self._infer(inference_info) def run_loop(self): while not self.is_stop: self.run() def run_async(self): thread = th.Thread(target=self.run_loop) thread.start() return thread def stop(self): self.is_stop = True def auto_run_specific(self, fps: int, current_frame_index: int) -> List[str]: current_algo_names = [] for algo_instance, _, _, frequency in self.inferences_info: if current_frame_index % int(frequency * fps) == 0: self.run_specific(algo_instance.name) current_algo_names.append(algo_instance.name) return current_algo_names def run_specific(self, algo_name: str): for inference_info in self.inferences_info: algo_instance, _, _, _ = inference_info if algo_instance.name == algo_name: self._infer(inference_info) def _infer(self, inference_info): algo_instance, frame_count, frame_step, _ = inference_info frames = self.dispatcher.get_frames(frame_count, frame_step) if not frames: return -1 result = algo_instance.run(frames) self.dispatcher.collect( self.dispatcher.get_current_position(), algo_instance.name, result ) def default_process(self, *args, **kwargs): pass def process(self, func): def wrapper(*args, **kwargs): return func(self, *args, **kwargs) self.process_func = wrapper def start( self, player: Player, fps: int = 30, position: int = 0, mode: Literal["realtime", "offline"] = "realtime", recording_path: str = None, ): if mode in [Mode.OFFLINE, Mode.OFFLINE.value]: recorder = Recorder(player, recording_path) if recording_path else None for frame, current_frame_index in player.play(fps, position): current_algo_names = self.auto_run_specific(fps, current_frame_index) processed_frame = self.process_func( frame=frame, current_algo_names=current_algo_names ) frame = processed_frame if processed_frame is not None else frame if recorder: recorder.add_frame(frame) if recorder: recorder.close() elif mode in [Mode.REALTIME, Mode.REALTIME.value]: player.play_async(fps) self.run_async() while player.is_active(): self.process_func() self.stop() player.stop() else: err = f"Unsupported mode: {mode}, only support `realtime` or `offline`" logger.error(err) raise ValueError(err) self.dispatcher.clear() # Path: stream_infer/player.py class Player: def __init__( self, dispatcher: Union[Dispatcher, BaseProxy], producer: Union[OpenCVProducer, PyAVProducer], source: Union[str, int], show_progress: bool = True, ): self.dispatcher = dispatcher self.producer = producer self.source = source self.show_progress = show_progress try: self.info = self.producer.get_info(self.source) except Exception as e: raise ValueError(f"Error getting info: {e}") self.fps = self.info["fps"] self.play_fps = self.fps self.frame_count = self.info["frame_count"] self.process = None self.is_end = mp.Value("b", False) def play(self, fps=None, position=0): fps = self.fps if fps is None else fps self.play_fps = fps interval_count = 0 if self.show_progress: pbar = tqdm( total=self.info["total_seconds"], desc="Video Time", leave=True, unit="sec", ) if position > 0: self.dispatcher.set_current_position(position) self.dispatcher.set_current_frame_index(fps * position) if self.show_progress: pbar.update(fps * position) for frame in self.producer.read(self.source, fps, position): self.dispatcher.add_frame(frame) interval_count += 1 if interval_count >= fps: interval_count = 0 self.dispatcher.increase_current_position() if self.show_progress: pbar.update(1) else: logger.debug( f"{self.get_play_time()}/{position2time(self.info['total_seconds'])}" ) yield frame, self.dispatcher.get_current_frame_index() if self.show_progress: pbar.close() def play_async(self, fps=None): """ Starts the appropriate streaming process based on the frame count. """ if not isinstance(self.dispatcher, BaseProxy): logger.error( f"Dispatcher is not an proxy: {type(self.dispatcher)}, use create(mode='realtime') to create" ) raise ValueError( f"Dispatcher is not an proxy: {type(self.dispatcher)}, use create(mode='realtime') to create" ) if fps is None or fps >= self.fps: fps = self.fps if fps > 30: logger.warning( f"FPS {fps} is too high, if your player is playing more slowly than the actual time, set a lower play fps" ) self.play_fps = fps if self.frame_count <= 0: target = self.normal_stream else: target = self.video_stream self.process = mp.Process(target=target) self.process.start() return self.process def stop(self): if self.process: self.is_end.value = True self.process.terminate() def is_active(self) -> bool: """ Checks if the streaming process is still running. """ return ( self.process.is_alive() and not self.is_end.value if self.process else False ) def get_play_time(self) -> str: return position2time(self.dispatcher.get_current_position()) def video_stream(self): """ Handles streaming for video files. Frames are processed at a rate determined by the video's FPS. """ base_interval = 1 / self.play_fps start_time = time.time() interval_count = 0 if self.show_progress: pbar = tqdm( total=self.info["total_seconds"], desc="Streaming Video Time", leave=True, unit="sec", ) for idx, frame in enumerate(self.producer.read(self.source, self.play_fps)): target_time = start_time + (idx * base_interval) time.sleep(max(0, target_time - time.time())) self.dispatcher.add_frame(frame) interval_count += 1 if interval_count >= self.play_fps: interval_count = 0 self.dispatcher.increase_current_position() if self.show_progress: pbar.update(1) else: logger.debug( f"{self.get_play_time()}/{position2time(self.info['total_seconds'])}" ) if self.show_progress: pbar.close() self.is_end.value = True def normal_stream(self): """ Handles streaming for non-video files. Frames are processed at regular intervals. """ for frame in self.producer.read(self.source, self.play_fps): if self.dispatcher.get_current_frame_index() % self.play_fps == 0: self.dispatcher.increase_current_position() logger.debug(f"{self.get_play_time()}") self.dispatcher.add_frame(frame) self.is_end.value = True # Path: stream_infer/producer/_opencv.py class OpenCVProducer: def __init__(self, width: int, height: int, cvt_code=None): self.width = width self.height = height self.cvt_code = cvt_code def read(self, source, fps=None, position=0): """ Reads frames from a video file/stream_url/v4l2 device. Optionally skips frames to meet the specified fps. Args: source (str): The path to the video file/stream_url/v4l2 device. fps (int, optional): Target frames per second. If None, no frame skipping is done. position (int, optional): The position in seconds from where to start reading the video. Yields: numpy.ndarray: frame """ cap = cv2.VideoCapture(source) if not cap.isOpened(): raise ValueError(f"Failed to open {source}") original_fps = cap.get(cv2.CAP_PROP_FPS) # Skip to the requested second if position > 0: cap.set(cv2.CAP_PROP_POS_MSEC, position * 1000) # position in milliseconds frame_interval = 1.0 if fps is not None and original_fps > fps: frame_interval = original_fps / fps frame_index = int(original_fps * position) next_frame_to_process = frame_index while True: ret, frame = cap.read() if not ret: break if frame_index >= next_frame_to_process: try: height, width, _ = frame.shape if width != self.width or height != self.height: frame = cv2.resize(frame, (self.width, self.height)) if self.cvt_code is not None: frame = cv2.cvtColor(frame, self.cvt_code) yield frame next_frame_to_process += frame_interval except Exception as e: logger.error(f"Error processing frame: {e}") raise e frame_index += 1 cap.release() def get_info(self, source): """ Extracts video properties. Args: source (str): The path to the video file/stream_url/v4l2 device. Returns: dict: Video properties including width, height, fps, and frame count. """ cap = cv2.VideoCapture(source) if not cap.isOpened(): raise ValueError(f"Failed to open {source}") width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) fps = cap.get(cv2.CAP_PROP_FPS) frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) total_seconds = int(frame_count / fps) cap.release() return { "width": width, "height": height, "fps": fps, "frame_count": frame_count, "total_seconds": total_seconds, } # Path: stream_infer/producer/_pyav.py class PyAVProducer: def __init__(self, width: int, height: int, format=None): self.width = width self.height = height self.format = "bgr24" if format is None else format def read(self, source, fps=None, position=0): """ Reads frames from a video file/stream_url/v4l2 device. Optionally skips frames to meet the specified fps. Args: source (str): The path to the video file/stream_url/v4l2 device. fps (int, optional): Target frames per second. If None, no frame skipping is done. position (int, optional): The position in seconds from where to start reading the video. Yields: numpy.ndarray: frame """ try: container = av.open(source) video_stream = next(s for s in container.streams if s.type == "video") original_fps = video_stream.base_rate # Seek to the specified position if position > 0: logger.warning( "Using PyAVProducer and specifying position is not recommended because there is not yet a good solution to the problem of startup delays but it still works" ) start_frame = int(position * original_fps) frame_interval = 1.0 if fps is not None and original_fps > fps: frame_interval = original_fps / fps frame_index = 0 next_frame_to_process = start_frame if position > 0 else frame_index for frame in container.decode(video=0): if frame_index >= next_frame_to_process: try: frame = frame.to_ndarray(format=self.format) height, width, _ = frame.shape if width != self.width or height != self.height: frame = cv2.resize(frame, (self.width, self.height)) yield frame next_frame_to_process += frame_interval except Exception as e: logger.error(f"Error processing frame: {e}") raise e frame_index += 1 except av.AVError as e: logger.error(f"Failed to open {source}: {e}") raise ValueError(f"Failed to open {source}: {e}") container.close() def get_info(self, source): """ Extracts video properties. Args: source (str): The path to the video file/stream_url/v4l2 device. Returns: dict: Video properties including width, height, fps, and frame count. """ try: container = av.open(source) video_stream = next(s for s in container.streams if s.type == "video") width = video_stream.width height = video_stream.height fps = video_stream.base_rate # or video_stream.average_rate if hasattr(video_stream, "frames"): frame_count = video_stream.frames else: frame_count = 0 total_seconds = int(frame_count / fps) return { "width": width, "height": height, "fps": fps, "frame_count": frame_count, "total_seconds": total_seconds, } except av.AVError as e: raise ValueError(f"Failed to open {source}: {e}") # Path: stream_infer/model.py class Mode(Enum): REALTIME = "realtime" OFFLINE = "offline" # Path: stream_infer/model.py class ProducerType(Enum): OPENCV = "opencv" PYAV = "pyav" # Path: stream_infer/log.py def get_logger(): # Path: stream_infer/dynamic.py import os import sys import importlib from pydantic import BaseModel, ValidationError from typing import Union from .inference import Inference from .player import Player from .producer import OpenCVProducer, PyAVProducer from .model import Mode, ProducerType from .log import logger class ProducerData(BaseModel): type: ProducerType width: int height: int class DynamicImport(BaseModel): module: str name: str args: Union[tuple, None] = () kwargs: Union[dict, None] = {} class AlgoKwArgs(BaseModel): frame_count: int frame_step: int interval: int class Algos(DynamicImport): kwargs: AlgoKwArgs class DynamicConfig(BaseModel): mode: Mode source: str fps: int dispatcher: DynamicImport algos: list[Algos] producer: ProducerData process: Union[DynamicImport, None] = None recording_path: Union[str, None] = None class DynamicApp: def __init__(self, config: DynamicConfig) -> None: try: config = DynamicConfig(**config) except ValidationError as e: err = f"Invalid config: {e}" logger.error(err) raise e self.config = config dispatcher_module = self.dynamic_import(config.dispatcher.module) dispatcher_cls = getattr(dispatcher_module, config.dispatcher.name) self.dispatcher = dispatcher_cls.create( mode=config.mode, *config.dispatcher.args, **config.dispatcher.kwargs ) self.inference = Inference(self.dispatcher) if config.process is not None: process_module = self.dynamic_import(config.process.module) self.inference.process(getattr(process_module, config.process.name)) def start(self): if self.config.producer.type in [ ProducerType.OPENCV, ProducerType.OPENCV.value, ]: producer = OpenCVProducer( self.config.producer.width, self.config.producer.height ) elif self.config.producer.type in [ProducerType.PYAV, ProducerType.PYAV.value]: producer = PyAVProducer( self.config.producer.width, self.config.producer.height ) else: raise ValueError( f"Unknown producer: {producer}, must be 'opencv' or 'pyav'" ) for algo in self.config.algos: module = self.dynamic_import(algo.module) algo_class = getattr(module, algo.name) self.inference.load_algo(algo_class(), **algo.kwargs.dict()) self.inference.start( Player( self.dispatcher, producer, source=self.config.source, show_progress=False, ),
fps=self.config.fps,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: DongGeun-Yoon/DGDM # Path: Register.py class Registers: def __init__(self): raise RuntimeError("Registries is not intended to be instantiated") datasets = Register('datasets') runners = Register('runners') # Path: runners/BBDMRunner.py class BBDMRunner(BaseRunner): def __init__(self, config): super().__init__(config) def initialize_model(self, config): if config.model.model_type == "BBDM": bbdmnet = BrownianBridgeModel(config) else: raise NotImplementedError # initialize model try: bbdmnet.apply(weights_init) except: pass return bbdmnet def load_model_from_checkpoint(self): states = super().load_model_from_checkpoint() def print_model_summary(self, net): def get_parameter_number(model): total_num = sum(p.numel() for p in model.parameters()) trainable_num = sum(p.numel() for p in model.parameters() if p.requires_grad) return total_num, trainable_num total_num, trainable_num = get_parameter_number(net) print("Total Number of parameter: %.2fM" % (total_num / 1e6)) print("Trainable Number of parameter: %.2fM" % (trainable_num / 1e6)) def initialize_optimizer_scheduler(self, net, config): # diffusion model weight learning_params = [{'params':net.denoise_fn.parameters(), 'lr':config.model.BB.optimizer.lr}] # condition model weight if config.model.CondParams.train or config.model.CondParams.pretrained is None: learning_params.append({'params':net.cond_stage_model.parameters(), 'lr':config.model.CondParams.lr}) optimizer = torch.optim.Adam(learning_params, weight_decay=config.model.BB.optimizer.weight_decay, betas=(config.model.BB.optimizer.beta1, config.model.BB.optimizer.beta2) ) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer, mode='min', verbose=True, threshold_mode='rel', **vars(config.model.BB.lr_scheduler) ) return [optimizer], [scheduler] @torch.no_grad() def get_checkpoint_states(self, stage='epoch_end'): model_states, optimizer_scheduler_states = super().get_checkpoint_states() return model_states, optimizer_scheduler_states def loss_fn(self, net, batch, epoch, step, opt_idx=0, stage='train', write=True): x, x_cond = batch loss, additional_info, cond = net(x, x_cond) if write: self.writer.add_scalar(f'loss/{stage}', loss, step) self.writer.add_scalar(f'loss/cond', cond, step) loss = loss + cond return loss @torch.no_grad() def sample(self, net, batch, sample_path, stage='train', write=True): sample_path = make_dir(os.path.join(sample_path, f'{stage}_sample')) x, x_cond = batch # batch_size = x.shape[0] if x.shape[0] < 4 else 4 batch_size = 1 x = x[0:1] x_cond = x_cond[0:1] grid_size = max(x.size(1), x_cond.size(1)) # save images sample = net.sample(x_cond, clip_denoised=self.config.testing.clip_denoised) sample, prediction = sample[0], sample[1] channels = ['ir105', 'sw038', 'wv063'] for z, channel in enumerate(channels): x_conds = x_cond[0,:, z:z+1] x_split = x[0,:, z:z+1] sample_split = sample[:, z:z+1] prediction_split = prediction[:, z:z+1] save_single_video(x_conds, sample_path, f'{channel}_input.png', grid_size, to_normal=self.config.data.dataset_config.to_normal) save_single_video(x_split, sample_path, f'{channel}_target.png', grid_size, to_normal=self.config.data.dataset_config.to_normal) save_single_video(prediction_split, sample_path, f'{channel}_deter.png', grid_size, to_normal=self.config.data.dataset_config.to_normal) save_single_video(sample_split, sample_path, f'{channel}_proba.png', grid_size, to_normal=self.config.data.dataset_config.to_normal) if stage == 'val': target = torch.clamp(((x_split+1)/2), 0, 1).unsqueeze(0).cpu().numpy() prediction_split = torch.clamp(((prediction_split+1)/2), 0, 1).unsqueeze(0).cpu().numpy() sample_split = torch.clamp(((sample_split+1)/2), 0, 1).unsqueeze(0).cpu().numpy() mse_, mae_, ssim_, psnr_ = metric(prediction_split, target, mean=0, std=1, return_ssim_psnr=True) mse_2, mae_2, ssim_2, psnr_2 = metric(sample_split, target, mean=0, std=1, return_ssim_psnr=True) print(f"=======================================") print(f"{channel}_Deterministic MAE : {mae_:.2f}, MSE : {mse_:.2f}, SSIM : {ssim_:.4f}, PSNR : {psnr_:.2f}") print(f"{channel}_Probabilistic MAE : {mae_2:.2f}, MSE : {mse_2:.2f}, SSIM : {ssim_2:.4f}, PSNR : {psnr_2:.2f}") if write: self.writer.add_scalar(f'val_step/{channel}_deter_MSE', mse_, self.global_step) self.writer.add_scalar(f'val_step/{channel}_deter_MAE', mae_, self.global_step) self.writer.add_scalar(f'val_step/{channel}_deter_SSIM', ssim_, self.global_step) self.writer.add_scalar(f'val_step/{channel}_deter_PSNR', psnr_, self.global_step) self.writer.add_scalar(f'val_step/{channel}_prob_MSE', mse_2, self.global_step) self.writer.add_scalar(f'val_step/{channel}_prob_MAE', mae_2, self.global_step) self.writer.add_scalar(f'val_step/{channel}_prob_SSIM', ssim_2, self.global_step) self.writer.add_scalar(f'val_step/{channel}_prob_PSNR', psnr_2, self.global_step) @torch.no_grad() def sample_to_eval(self, net, test_loader, sample_path, save_frame=True): inputs_path = make_dir(os.path.join(sample_path, 'input')) target_path = make_dir(os.path.join(sample_path, 'target')) deter_path = make_dir(os.path.join(sample_path, 'deter')) prob_path = make_dir(os.path.join(sample_path, 'prob')) total_path = make_dir(os.path.join(sample_path, 'Total')) if save_frame: frame_path = sample_path.replace('sample_to_eval', 'sample_frame') inputs_frame = make_dir(os.path.join(frame_path, 'input')) target_frame = make_dir(os.path.join(frame_path, 'target')) deter_frame = make_dir(os.path.join(frame_path, 'deter')) prob_frame = make_dir(os.path.join(frame_path, 'prob')) pbar = tqdm(test_loader, total=len(test_loader), smoothing=0.01) batch_size = self.config.data.test.batch_size grid_size = self.config.data.dataset_config.in_frames to_normal = self.config.data.dataset_config.to_normal sample_num = self.config.testing.sample_num channels = self.config.data.channels real_embeddings = [[] for _ in range(len(channels))] det_embeddings = [[] for _ in range(len(channels))] fake_embeddings = [[[] for _ in range(sample_num)] for _ in range(len(channels))] MAE = [AverageMeter() for _ in range(len(channels))] MSE = [AverageMeter() for _ in range(len(channels))] PSNR = [AverageMeter() for _ in range(len(channels))] SSIM = [AverageMeter() for _ in range(len(channels))] LPIPS = [AverageMeter() for _ in range(len(channels))] MAE2 = [AverageMeter() for _ in range(len(channels))] MSE2 = [AverageMeter() for _ in range(len(channels))] PSNR2 = [AverageMeter() for _ in range(len(channels))] SSIM2 = [AverageMeter() for _ in range(len(channels))] LPIPS2 = [AverageMeter() for _ in range(len(channels))] idx = 0 loss_fn = lpips.LPIPS().cuda() i3d = load_i3d_pretrained().cuda() # FVD def to_i3d(x): if x.size(1) == 1: x = x.repeat(1, 3, 1, 1) # hack for greyscale images x = x.unsqueeze(0).permute(0, 2, 1, 3, 4) # BTCHW -> BCTHW return x for test_batch in pbar: if idx >= 1000 and False: break x, x_cond = test_batch b, f, c, h, w = x.shape for j in range(sample_num): # iteration sample = net.sample(x_cond, clip_denoised=False) sample, pred = sample[0].reshape(b, f, c, h, w), sample[1].reshape(b, f, c, h, w) for i in range(batch_size): input_b = x_cond[i] target_b = x[i] sample_b = sample[i] pred_b = pred[i] for z, channel in enumerate(channels): inputs_split = input_b[:, z:z+1] target_split = target_b[:, z:z+1] sample_split = sample_b[:, z:z+1] prediction_split = pred_b[:, z:z+1] names = idx + i # save frame if save_frame: if j == 0: save_frames(inputs_split, inputs_frame, f'{names:06}_{channel}_input.png', grid_size, to_normal=to_normal) save_frames(target_split, target_frame, f'{names:06}_{channel}_target.png', grid_size, to_normal=to_normal) save_frames(prediction_split, deter_frame, f'{names:06}_{channel}_deter.png', grid_size, to_normal=to_normal) save_frames(sample_split, prob_frame, f'{names:06}_{channel}_{j}_proba.png', grid_size, to_normal=to_normal) # save gif if j == 0: images = [(frames * 127.5 + 127.5)[0].detach().cpu().numpy() for frames in inputs_split] imageio.mimsave(os.path.join(inputs_frame, f'{names:06}_{channel}.gif'), images, loop=0) images = [(frames * 127.5 + 127.5)[0].detach().cpu().numpy() for frames in target_split] imageio.mimsave(os.path.join(target_frame, f'{names:06}_{channel}.gif'), images, loop=0) images = [(frames * 127.5 + 127.5)[0].detach().cpu().numpy() for frames in prediction_split] imageio.mimsave(os.path.join(deter_frame, f'{names:06}_{channel}.gif'), images, loop=0) images = [(frames * 127.5 + 127.5)[0].detach().cpu().numpy() for frames in sample_split] imageio.mimsave(os.path.join(prob_frame, f'{names:06}_{channel}_{j}.gif'), images, loop=0) # save one png if j == 0: save_single_video(inputs_split, inputs_path, f'{names:06}_{channel}_input.png', grid_size, to_normal=to_normal) save_single_video(target_split, target_path, f'{names:06}_{channel}_target.png', grid_size, to_normal=to_normal) save_single_video(prediction_split, deter_path, f'{names:06}_{channel}_deter.png', grid_size, to_normal=to_normal) save_single_video(sample_split, prob_path, f'{names:06}_{channel}_{j}_proba.png', grid_size, to_normal=to_normal) save_single_video(torch.cat([inputs_split, target_split, prediction_split, sample_split], dim=0), total_path, f'{channel}_{names:06}_{j}_total.png', grid_size, to_normal=to_normal) trues = torch.clamp(((target_split+1)/2), 0, 1) deters = torch.clamp(((prediction_split+1)/2), 0, 1) probs = torch.clamp(((sample_split+1)/2), 0, 1) if j == 0: real_embeddings[z].append(get_feats(to_i3d(trues), i3d)) det_embeddings[z].append(get_feats(to_i3d(deters), i3d)) fake_embeddings[z][j].append(get_feats(to_i3d(probs), i3d)) # Diffusion mse_, mae_, ssim_, psnr_ = metric(probs.unsqueeze(0).cpu().numpy(), trues.unsqueeze(0).cpu().numpy(), mean=0, std=1, return_ssim_psnr=True) lpips_ = loss_fn(probs, trues) lpips_ = lpips_.mean().item() MAE[z].update(mae_, 1) MSE[z].update(mse_, 1) SSIM[z].update(ssim_, 1) PSNR[z].update(psnr_, 1) LPIPS[z].update(lpips_, 1) # Prediction mse_, mae_, ssim_, psnr_ = metric(deters.unsqueeze(0).cpu().numpy(), trues.unsqueeze(0).cpu().numpy(), mean=0, std=1, return_ssim_psnr=True) lpips_ = loss_fn(deters, trues) lpips_ = lpips_.mean().item() MAE2[z].update(mae_, 1) MSE2[z].update(mse_, 1) SSIM2[z].update(ssim_, 1) PSNR2[z].update(psnr_, 1) LPIPS2[z].update(lpips_, 1) # TODO: per frame # psnr_per = np.zeros(10) # for f_idx in range(grid_size): # mse = np.mean((preds.cpu().numpy()[f_idx]-trues.cpu().numpy()[f_idx])**2) # psnr_per[f_idx] = - 10 * np.log10(mse) # ssim_per = np.zeros(10) # for f_idx in range(grid_size): # ssim_per[f_idx] = cal_ssim(preds.cpu().numpy()[f_idx].swapaxes(0, 2), trues.cpu().numpy()[f_idx].swapaxes(0, 2), multichannel=True) # mse_per = np.sum(np.mean((preds.unsqueeze(0).cpu().numpy() - trues.unsqueeze(0).cpu().numpy())**2, axis=(0)), axis=(1,2,3)) # mae_per = np.sum(np.mean(np.abs(preds.unsqueeze(0).cpu().numpy() - trues.unsqueeze(0).cpu().numpy()), axis=(0)), axis=(1,2,3)) # print(" ".join([str(i) for i in mse_per]), " ".join([str(i) for i in mae_per]), " ".join([str(i) for i in psnr_per]), " ".join([str(i) for i in ssim_per]), file=results) idx += batch_size if idx != 1 and (idx) % 1 == 0: for z, channel in enumerate(channels): real_embedding = np.concatenate(real_embeddings[z], axis=0) fake_embedding = [np.concatenate(fake_embeddings[z][i], axis=0) for i in range(sample_num)] det_embedding = np.concatenate(det_embeddings[z], axis=0) print(f"--------[{channel}]--------") print("Probabilistic FVD :", end=' ') for k in range(sample_num): fvd = compute_fvd(real_embedding, fake_embedding[k]) print(f"{fvd:.4f}", end=' ') print("\nDeterministic FVD : {:.4f}".format(compute_fvd(real_embedding, det_embedding))) print(f"Test [{idx}/{len(test_loader)*b}] MAE : {MAE[z].val:.3f} ({MAE[z].avg:.3f}), MSE : {MSE[z].val:.3f} ({MSE[z].avg:.3f}), SSIM : {SSIM[z].val:.3f} ({SSIM[z].avg:.3f}), PSNR : {PSNR[z].val:.3f} ({PSNR[z].avg:.3f}), LPIPS : {LPIPS[z].val:.3f} ({LPIPS[z].avg:.3f})") print(f"Deterministic, MAE : {MAE2[z].val:.3f} ({MAE2[z].avg:.3f}), MSE : {MSE2[z].val:.3f} ({MSE2[z].avg:.3f}), SSIM : {SSIM2[z].val:.3f} ({SSIM2[z].avg:.3f}), PSNR : {PSNR2[z].val:.3f} ({PSNR2[z].avg:.3f}), LPIPS : {LPIPS2[z].val:.3f} ({LPIPS2[z].avg:.3f})") print("------------------------") # Path: utils.py import argparse import importlib import omegaconf.dictconfig from Register import Registers from runners.BBDMRunner import BBDMRunner def dict2namespace(config): namespace = argparse.Namespace() for key, value in config.items():
if isinstance(value, dict) or isinstance(value, omegaconf.dictconfig.DictConfig):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: VinAIResearch/MISCA # Path: trainer.py class Trainer(object): def __init__(self, args, collate, train_dataset=None, dev_dataset=None, test_dataset=None): self.args = args self.train_dataset = train_dataset self.dev_dataset = dev_dataset self.test_dataset = test_dataset self.collate_fn = collate args.n_chars = len(self.train_dataset.chars) if 'bert' in self.args.model_type: self.tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) train_dataset.load_bert(self.tokenizer) dev_dataset.load_bert(self.tokenizer) test_dataset.load_bert(self.tokenizer) self.intent_label_lst = get_intent_labels(args) self.slot_label_lst, self.hiers = get_slots_all(args) self.pad_token_label_id = args.ignore_index self.config_class, self.model_class, _ = MODEL_CLASSES[args.model_type] if 'bert' in self.args.model_type: self.config = self.config_class.from_pretrained(args.model_name_or_path, finetuning_task=args.task) self.model = self.model_class.from_pretrained( args.model_name_or_path, config=self.config, args=args, intent_label_lst=self.intent_label_lst, slot_label_lst=self.slot_label_lst, slot_hier=self.hiers ) else: self.model = self.model_class(args, len(self.train_dataset.vocab), self.intent_label_lst, self.slot_label_lst, self.hiers) if args.base_model: model_state = self.model.state_dict() pretrained_state = torch.load(os.path.join(args.base_model, 'model.bin')) pretrained_state = { k:v for k,v in pretrained_state.items() if k in model_state and v.size() == model_state[k].size() } model_state.update(pretrained_state) self.model.load_state_dict(model_state) self.device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" self.model.to(self.device) def train(self): train_sampler = RandomSampler(self.train_dataset) train_dataloader = DataLoader(self.train_dataset, sampler=train_sampler, batch_size=self.args.train_batch_size, collate_fn=self.collate_fn) writer = SummaryWriter(log_dir=self.args.model_dir) if self.args.max_steps > 0: t_total = self.args.max_steps self.args.num_train_epochs = ( self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1 ) else: t_total = len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs print("check init") results = self.evaluate("dev", -1) print(results) logfile = open(self.args.model_dir + "/" + self.args.logging, 'w') # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=t_total ) if self.args.logging_steps < 0: self.args.logging_steps = len(train_dataloader) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(self.train_dataset)) logger.info(" Num Epochs = %d", self.args.num_train_epochs) logger.info(" Total train batch size = %d", self.args.train_batch_size) logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) logger.info(" Logging steps = %d", self.args.logging_steps) global_step = 0 tr_loss = 0.0 self.model.zero_grad() best_sent = 0 best_slot = 0 train_iterator = trange(int(self.args.num_train_epochs), desc="Epoch") early_stopping = EarlyStopping(patience=self.args.early_stopping, verbose=True) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", position=0, leave=True) print("\nEpoch", _) for step, batch in enumerate(epoch_iterator): self.model.train() batch = tuple(t.to(self.device) for t in batch[:-1]) + (batch[-1], ) # GPU or CPU if 'bert' in self.args.model_type: inputs = { "input_ids": batch[0], "attention_mask": batch[3], "intent_label_ids": batch[5], "slot_labels_ids": batch[6], "token_type_ids": batch[4], "heads": batch[2], "seq_lens": batch[-1].cpu() } else: inputs = { "input_ids": batch[0], "char_ids": batch[1], "intent_label_ids": batch[2], "slot_labels_ids": batch[3], "seq_lens": batch[4], } outputs = self.model(**inputs) total_loss, intent_loss, slot_loss, count_loss = outputs[0] if self.args.gradient_accumulation_steps > 1: total_loss = total_loss / self.args.gradient_accumulation_steps if _ < self.args.num_train_epochs * self.args.only_intent: total_loss = intent_loss + count_loss total_loss.backward() else: total_loss.backward() tr_loss += total_loss.item() if (step + 1) % self.args.gradient_accumulation_steps == 0: torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule self.model.zero_grad() global_step += 1 if self.args.logging_steps > 0 and global_step % (self.args.logging_steps) == 0: print("\nTuning metrics:", self.args.tuning_metric) results = self.evaluate("dev", _) # self.evaluate("test") writer.add_scalar("Loss/validation", results["loss"], _) writer.add_scalar("Intent Accuracy/validation", results["intent_acc"], _) writer.add_scalar("Intent F1", results["intent_f1"], _) writer.add_scalar("Slot F1/validation", results["slot_f1"], _) writer.add_scalar("Mean Intent Slot", results["mean_intent_slot"], _) writer.add_scalar("Sentence Accuracy/validation", results["semantic_frame_acc"], _) if results['semantic_frame_acc'] >= best_sent or results['slot_f1'] >= best_slot: best_sent = results['semantic_frame_acc'] best_slot = results['slot_f1'] self.save_model() results = self.evaluate('test', _) logfile.write('\n\nEPOCH = ' + str(_) + '\n') for key in sorted(results.keys()): to_write = " {key} = {value}".format(key=key, value=str(results[key])) logfile.write(to_write) logfile.write("\n") if 0 < self.args.max_steps < global_step: epoch_iterator.close() break if 0 < self.args.max_steps < global_step or early_stopping.early_stop: train_iterator.close() break writer.add_scalar("Loss/train", tr_loss / global_step, _) logfile.close() return global_step, tr_loss / global_step def write_evaluation_result(self, out_file, results): out_file = self.args.model_dir + "/" + out_file w = open(out_file, "w", encoding="utf-8") w.write("***** Eval results *****\n") for key in sorted(results.keys()): to_write = " {key} = {value}".format(key=key, value=str(results[key])) w.write(to_write) w.write("\n") w.close() def evaluate(self, mode, epoch): if mode == "test": dataset = self.test_dataset elif mode == "dev": dataset = self.dev_dataset else: raise Exception("Only dev and test dataset available") eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=self.args.eval_batch_size, collate_fn=self.collate_fn) logger.info("***** Running evaluation on %s dataset *****", mode) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", self.args.eval_batch_size) eval_loss = 0.0 nb_eval_steps = 0 slot_label_map = {i: label for i, label in enumerate(self.slot_label_lst)} out_slot_label_list = [] slot_preds_list = [] predictions = [] intent_labels = [] int_len_gold = [] int_len_pred = [] results = {} self.model.eval() for batch in tqdm(eval_dataloader, desc="Evaluating"): batch = tuple(t.to(self.device) for t in batch[:-1]) + (batch[-1], ) # print(batch) with torch.no_grad(): if 'bert' in self.args.model_type: inputs = { "input_ids": batch[0], "attention_mask": batch[3], "intent_label_ids": batch[5], "slot_labels_ids": batch[6], "token_type_ids": batch[4], "heads": batch[2], "seq_lens": batch[-1].cpu() } else: inputs = { "input_ids": batch[0], "char_ids": batch[1], "intent_label_ids": batch[2], "slot_labels_ids": batch[3], "seq_lens": batch[4], } outputs = self.model(**inputs) if self.args.num_intent_detection: tmp_eval_loss, (intent_logits, slot_logits, intent_dec) = outputs[:2] else: tmp_eval_loss, (intent_logits, slot_logits) = outputs[:2] eval_loss += tmp_eval_loss[0].mean().item() nb_eval_steps += 1 # Intent prediction intent_logits = F.logsigmoid(intent_logits).detach().cpu() intent_preds = intent_logits.numpy() if self.args.num_intent_detection: intent_nums = intent_dec.detach().cpu().numpy() out_intent_label_ids = inputs["intent_label_ids"].detach().cpu().numpy() intent_labels.extend(out_intent_label_ids.tolist()) # Slot prediction if self.args.use_crf: slot_preds = np.array(self.model.crf.decode(slot_logits)) else: slot_preds = slot_logits.detach().cpu() out_slot_labels_ids = inputs["slot_labels_ids"].detach().cpu().numpy() cur = [] if self.args.num_intent_detection: num_intents = intent_logits.size(1) intent_nums = np.argmax(intent_nums, axis=-1) gold_nums = np.sum(out_intent_label_ids, axis=-1) int_len_gold.extend(gold_nums.tolist()) int_len_pred.extend(intent_nums.tolist()) for num, preds in zip(intent_nums, intent_preds): idx = preds.argsort()[-num:] p = np.zeros(num_intents) p[idx] = 1. predictions.append(p) cur.append(p) else: predictions.extend(np.rint(intent_preds).tolist()) if not self.args.use_crf: slot_preds_arg = np.argmax(slot_preds.numpy(), axis=2) else: slot_preds_arg = slot_preds for i in range(out_slot_labels_ids.shape[0]): slt = None out_slot_label_list.append([]) slot_preds_list.append([]) for j in range(out_slot_labels_ids.shape[1]): if out_slot_labels_ids[i, j] != self.pad_token_label_id: out_slot_label_list[-1].append(slot_label_map[out_slot_labels_ids[i][j]]) predict_label = slot_label_map[slot_preds_arg[i][j]] if predict_label[:2] == 'B-': slt = predict_label[2:] elif predict_label[:2] == 'I-': if slt is None: predict_label = 'O' elif slt != predict_label[2:]: predict_label = 'O' else: slt = None slot_preds_list[-1].append(predict_label) eval_loss = eval_loss / nb_eval_steps results['loss'] = eval_loss predictions = np.array(predictions) intent_labels = np.array(intent_labels) total_result = compute_metrics(predictions, intent_labels, slot_preds_list, out_slot_label_list) results.update(total_result) int_len_gold = np.array(int_len_gold) int_len_pred = np.array(int_len_pred) results['num_acc'] = (int_len_gold == int_len_pred).mean() results['epoch'] = epoch logger.info("***** Eval results *****") for key in sorted(results.keys()): logger.info(" %s = %s", key, str(results[key])) if mode == "test": self.write_evaluation_result("eval_test_results.txt", results) elif mode == "dev": self.write_evaluation_result("eval_dev_results.txt", results) return results def save_model(self): # Save model checkpoint (Overwrite) if not os.path.exists(self.args.model_dir): os.makedirs(self.args.model_dir) model_to_save = self.model.module if hasattr(self.model, "module") else self.model torch.save(model_to_save, os.path.join(self.args.model_dir, 'model.bin')) # Save training arguments together with the trained model torch.save(self.args, os.path.join(self.args.model_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", self.args.model_dir) def load_model(self): # Check whether model exists if not os.path.exists(self.args.model_dir): raise Exception("Model doesn't exists! Train first!") try: self.model.load_state_dict(torch.load(os.path.join(self.args.model_dir, 'model.bin')), strict=False) self.model.to(self.device) logger.info("***** Model Loaded *****") except Exception: raise Exception("Some model files might be missing...") # Path: utils.py def init_logger(): logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO) # Path: utils.py def load_tokenizer(args): return MODEL_CLASSES[args.model_type][2].from_pretrained(args.model_name_or_path) # Path: utils.py def read_prediction_text(args): return [text.strip() for text in open(os.path.join(args.pred_dir, args.pred_input_file), 'r', encoding='utf-8')] # Path: utils.py def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if not args.no_cuda and torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed) # Path: utils.py MODEL_CLASSES = { "lstm": (None, JointLSTM, None), "roberta": (RobertaConfig, JointRoberta, RobertaTokenizer) } # Path: utils.py MODEL_PATH_MAP = { "lstm": "", "roberta": "roberta-base" } # Path: utils.py def get_intent_labels(args): return [label.strip() for label in open(os.path.join(args.data_dir, args.task, args.intent_label_file), 'r', encoding='utf-8')] # Path: utils.py def get_slots_all(args): slot_labels = get_slot_labels(args) hier = () if args.task == 'mixatis': slot_parents = get_clean_labels(args) hier = (slot_parents, ) slot_type = sorted(set([name[2:] for name in slot_labels if name[:2] == 'B-' or name[:2] == 'I-'])) hier += (slot_type, ) return slot_labels, hier # Path: data_loader.py class TextLoader(Dataset): def __init__(self, args, mode): self.args = args self.intent_labels = get_intent_labels(args) self.slot_labels, self.hiers = get_slots_all(args) self.vocab = Vocab(min_freq=self.args.min_freq) self.chars = Vocab() self.examples = self.build(mode) def load_bert(self, tokenizer): pad_token_label_id = self.args.ignore_index self.examples = convert_examples_to_features(self.examples, self.args.max_seq_len, tokenizer, pad_token_label_id=pad_token_label_id) @classmethod def read_file(cls, input_file, quotechar=None): """ Read data file of given path. :param file_path: path of data file. :return: list of sentence, list of slot and list of intent. """ texts, slots, intents = [], [], [] text, slot = [], [] with open(input_file, 'r', encoding="utf8") as fr: for line in fr.readlines(): items = line.strip().split() if len(items) == 1: texts.append(text) slots.append(slot) if "/" not in items[0]: intents.append(items) else: new = items[0].split("/") intents.append([new[1]]) # clear buffer lists. text, slot = [], [] elif len(items) == 2: text.append(items[0].strip()) slot.append(items[1].strip()) return texts, slots, intents def _create_examples(self, texts, chars, intents, slots, set_type): """Creates examples for the training and dev sets.""" examples = [] for i, (text, char, intent, slot) in enumerate(zip(texts, chars, intents, slots)): guid = "%s-%s" % (set_type, i) # 1. input_text words = self.vocab.get_index(text) # Some are spaced twice words = [self.vocab.start_index] + words + [self.vocab.end_index] # char char = self.chars.get_index(char) max_char = max([len(x) for x in char]) for j in range(len(char)): char[j] = char[j] + [0] * (max_char - len(char[j])) char = [[0] * max_char] + char + [[0] * max_char] # 2. intent _intent = intent[0].split('#') intent_label = [0 for _ in self.intent_labels] for _int in _intent: idx = self.intent_labels.index(_int) if _int in self.intent_labels else self.intent_labels.index("UNK") intent_label[idx] = 1 # 3. slot slot_labels = [] for s in slot: slot_labels.append(self.slot_labels.index(s) if s in self.slot_labels else self.slot_labels.index("UNK")) slot_labels = [self.slot_labels.index('PAD')] + slot_labels + [self.slot_labels.index('PAD')] assert len(words) == len(slot_labels) examples.append(InputExample(guid=guid, words=words, chars=char, intent_label=intent_label, slot_labels=slot_labels, text=text)) return examples def build(self, mode): data_path = os.path.join(self.args.data_dir, self.args.task, mode + '.txt') logger.info("LOOKING AT {}".format(data_path)) texts, slots, intents = self.read_file(data_path) chars = [] max_len = 0 for text in texts: chars.append([]) for word in text: chars[-1].append(list(word)) cache = os.path.join(self.args.data_dir, f'vocab_{self.args.task}') if os.path.exists(cache): self.vocab.load(cache) elif mode == 'train': self.vocab.add(texts) self.vocab.save(cache) cache_chars = os.path.join(self.args.data_dir, f'chars_{self.args.task}') if os.path.exists(cache_chars): self.chars.load(cache_chars) elif mode == 'train': self.chars.add(chars) self.chars.save(cache_chars) return self._create_examples(texts=texts, chars=chars, intents=intents, slots=slots, set_type=mode) def __getitem__(self, index): example = self.examples[index] words = torch.tensor(example.words, dtype=torch.long) intent = torch.tensor(example.intent_label, dtype=torch.float) slot = torch.tensor(example.slot_labels, dtype=torch.long) chars = torch.tensor(example.chars, dtype=torch.long) if 'bert' in self.args.model_type: attention_mask = torch.tensor(example.attention_mask, dtype=torch.long) token_type_ids = torch.tensor(example.token_type_ids, dtype=torch.long) heads = torch.tensor(example.heads, dtype=torch.long) return (words, chars, heads, attention_mask, token_type_ids, intent, slot) else: return (words, chars, intent, slot) def __len__(self): return len(self.examples) # Path: data_loader.py class TextCollate(): def __init__(self, pad_index, num_intents, max_seq_len): self.pad_index = pad_index self.num_intents = num_intents self.max_seq_len = max_seq_len def __call__(self, batch): len_list = [len(x[-1]) for x in batch] len_char = [x[1].size(1) for x in batch] max_len = max(len_list) max_char = max(len_char) seq_lens = [] bert = len(batch[0]) > 4 char_padded = torch.LongTensor(len(batch), max_len, max_char) slot_padded = torch.LongTensor(len(batch), max_len) intent = torch.FloatTensor(len(batch), self.num_intents) char_padded.zero_() intent.zero_() slot_padded.zero_() if not bert: text_padded = torch.LongTensor(len(batch), max_len) text_padded.zero_() else: input_ids = torch.LongTensor(len(batch), self.max_seq_len) attention_mask = torch.LongTensor(len(batch), self.max_seq_len) token_type_ids = torch.LongTensor(len(batch), self.max_seq_len) heads = torch.LongTensor(len(batch), max_len) input_ids.zero_() attention_mask.zero_() token_type_ids.zero_() heads.zero_() # Get sorted index of len_list. sorted_index = np.argsort(len_list)[::-1] for i, index in enumerate(sorted_index): seq_lens.append(len_list[index]) intent[i] = batch[index][-2] slot = batch[index][-1] slot_padded[i, :slot.size(0)] = slot char = batch[index][1] char_padded[i, :char.size(0), :char.size(1)] = char if not bert: text = batch[index][0] text_padded[i, :text.size(0)] = text else: input_ids[i] = batch[index][0] attention_mask[i] = batch[index][3] token_type_ids[i] = batch[index][4] head = batch[index][2] heads[i, :head.size(0)] = head if not bert: return text_padded, char_padded, intent, slot_padded, torch.tensor(seq_lens, dtype=torch.long) else: return input_ids, char_padded, heads, attention_mask, token_type_ids, intent, slot_padded, torch.tensor(seq_lens, dtype=torch.long) # Path: main.py import argparse from trainer import Trainer from utils import init_logger, load_tokenizer, read_prediction_text, set_seed, MODEL_CLASSES, MODEL_PATH_MAP, get_intent_labels, get_slots_all from data_loader import TextLoader, TextCollate def main(args): init_logger() set_seed(args) slot_label_lst, hiers = get_slots_all(args) collate = TextCollate(0, len(get_intent_labels(args)), args.max_seq_len) train_dataset = TextLoader(args, 'train') dev_dataset = TextLoader(args, 'dev') test_dataset = TextLoader(args, 'test') trainer = Trainer(args, collate, train_dataset, dev_dataset, test_dataset) if args.do_train: trainer.train() if args.do_eval: trainer.load_model() trainer.evaluate('dev', 0) trainer.evaluate("test", -1) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--task", default=None, required=True, type=str, help="The name of the task to train") parser.add_argument("--model_dir", default=None, required=True, type=str, help="Path to save, load model") parser.add_argument("--data_dir", default="./data", type=str, help="The input data dir") parser.add_argument("--intent_label_file", default="intent_label.txt", type=str, help="Intent Label file") parser.add_argument("--slot_label_file", default="slot_label.txt", type=str, help="Slot Label file") parser.add_argument("--slot_label_clean", default="slot_clean.txt", type=str, help="Slot Label file") parser.add_argument("--logging", default="log.txt", type=str, help="Logging file") # LAAT parser.add_argument("--n_levels", default=1, type=int, help="Number of attention") parser.add_argument("--attention_mode", default=None, type=str) parser.add_argument("--level_projection_size", default=32, type=int) parser.add_argument("--d_a", default=-1, type=int) parser.add_argument("--char_embed", default=64, type=int) parser.add_argument("--char_out", default=64, type=int) parser.add_argument("--use_charcnn", action="store_false", help="Whether to use CharCNN") parser.add_argument("--use_charlstm", action="store_false", help="Whether to use CharLSTM") parser.add_argument("--word_embedding_dim", default=128, type=int) parser.add_argument("--encoder_hidden_dim", default=128, type=int) parser.add_argument("--decoder_hidden_dim", default=256, type=int) parser.add_argument("--attention_hidden_dim", default=256, type=int) parser.add_argument("--attention_output_dim", default=256, type=int) # Config training parser.add_argument("--model_type", default="bert", type=str, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) parser.add_argument('--seed', type=int, default=1234, help="random seed for initialization") parser.add_argument("--train_batch_size", default=32, type=int, help="Batch size for training.") parser.add_argument("--eval_batch_size", default=64, type=int, help="Batch size for evaluation.") parser.add_argument("--max_seq_len", default=100, type=int, help="The maximum total input sequence length after tokenization.") parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--num_train_epochs", default=50, type=float, help="Total number of training epochs to perform.") parser.add_argument("--weight_decay", default=0, type=float, help="Weight decay if we apply some.") parser.add_argument('--gradient_accumulation_steps', type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zyc00/PartSLIP2 # Path: src/utils.py def normalize_pc(pc_file, save_dir, io, device, save_normalized_pc=False): pc = io.load_pointcloud(pc_file, device = device) xyz = pc.points_padded().reshape(-1,3) rgb = pc.features_padded().reshape(-1,3) xyz = xyz - xyz.mean(axis=0) xyz = xyz / torch.norm(xyz, dim=1, p=2).max().item() xyz = xyz.cpu().numpy() rgb = rgb.cpu().numpy() if save_normalized_pc: save_colored_pc(os.path.join(save_dir, "normalized_pc.ply"), xyz, rgb) return xyz, rgb # Path: src/render_pc.py def render_pc(xyz, rgb, save_dir, device): pc = Pointclouds(points=[torch.Tensor(xyz).to(device)], features=[torch.Tensor(rgb).to(device)]) #pc = io.load_pointcloud(pc_file, device=device) img_dir = os.path.join(save_dir, "rendered_img") os.makedirs(img_dir, exist_ok=True) indices = [0, 4, 7, 1, 5, 2, 8, 6, 3, 9] views = [[10, 0], [10, 90], [10, 180], [10, 270], [40, 0], [40, 120], [40, 240], [-20, 60], [-20, 180], [-20, 300]] pc_idx_list = [] screen_coords_list = [] for i, view in enumerate(views): img, pc_idx, screen_coords = render_single_view(pc, view, device, camera_distance=2.2) plt.imsave(os.path.join(img_dir, f"{i}.png"), img[0, ..., :3].cpu().numpy() * 0.99999) pc_idx_list.append(pc_idx) screen_coords_list.append(screen_coords) pc_idx = torch.cat(pc_idx_list, dim=0).squeeze() screen_coords = torch.cat(screen_coords_list, dim=0).reshape(len(views),-1, 3)[...,:2] np.save(f"{save_dir}/idx.npy", pc_idx.cpu().numpy()) np.save(f"{save_dir}/coor.npy", screen_coords.cpu().numpy()) return img_dir, pc_idx.cpu().numpy(), screen_coords.cpu().numpy(), len(views) # Path: src/glip_inference.py def glip_inference(glip_demo, save_dir, part_names, sam_predictor, num_views=10, save_pred_img=True, save_individual_img=False, save_pred_json=False): pred_dir = os.path.join(save_dir, "glip_pred") os.makedirs(pred_dir, exist_ok = True) seg_masks = [[] for _ in range(num_views)] preds = [[] for _ in range(num_views)] for i in range(num_views): image = load_img("%s/rendered_img/%d.png" % (save_dir, i)) result, top_predictions = glip_demo.run_on_web_image(image, part_names, 0.5) if save_pred_img: plt.imsave("%s/%d.png" % (pred_dir, i), result[:, :, [2, 1, 0]]) bbox = top_predictions.bbox.cpu().numpy() score = top_predictions.get_field("scores").cpu().numpy() labels = top_predictions.get_field("labels").cpu().numpy() if save_individual_img: save_individual_img(image, bbox, labels, len(part_names), pred_dir, i) for j in range(len(bbox)): x1, y1, x2, y2 = bbox[j].tolist() preds[i].append((np.array([x1, y1, x2, y2]), labels[j].item() - 1)) for i in range(num_views): image = load_img("%s/rendered_img/%d.png" % (save_dir, i)) sam_predictor.set_image(image) preds_view = preds[i] for pred in preds_view: bbox, cat_id = pred mask = segment(sam_predictor, bbox) seg_masks[i].append((mask, cat_id, bbox)) return seg_masks # Path: src/glip_inference.py def load_model(config_file, weight_file): cfg.local_rank = 0 cfg.num_gpus = 1 cfg.merge_from_file(config_file) cfg.merge_from_list(["MODEL.WEIGHT", weight_file]) cfg.merge_from_list(["MODEL.DEVICE", "cuda"]) glip_demo = GLIPDemo( cfg, min_image_size=800, confidence_threshold=0.7, show_mask_heatmaps=False ) return glip_demo # Path: src/bbox2seg.py def bbox2seg(xyz, superpoint, masks, screen_coor_all, point_idx_all, part_names, save_dir, num_view=10, solve_instance_seg=True, visualize=True): print("semantic segmentation...") n_category = len(part_names) n_sp = len(superpoint) sp_visible_cnt = np.zeros(n_sp) #visible points for each superpoint sp_bbox_visible_cnt = np.zeros((n_category, n_sp)) #visible points of superpoint j that are covered by at least a bounding box of category i masks_per_view = masks in_mask_ratio_list = [[[] for j in range(n_sp)] for i in range(n_category)] #used for instance segmentation visible_pts_list = [] view_cat_bbox = [[[] for _ in range(len(part_names))] for _ in range(num_view)] for i in range(num_view): screen_coor = screen_coor_all[i] #2D projected location of each 3D point point_idx = point_idx_all[i] #point index of each 2D pixel visible_pts = np.unique(point_idx)[1:] # the first one is -1 visible_pts_list.append(visible_pts) valid_masks = [] mask_2d = np.zeros([point_idx_all.shape[1], point_idx_all.shape[2], len(part_names)]) for mask_cat in masks_per_view[i]: mask, cat_id, bbox = mask_cat view_cat_bbox[i][cat_id].append(bbox) mask_points = np.nonzero(mask) x1, x2 = np.asarray(mask_points[1]).min(), np.asarray(mask_points[1]).max() y1, y2 = np.asarray(mask_points[0]).min(), np.asarray(mask_points[0]).max() if check_pc_within_bbox(x1, y1, x2, y2, np.int16(screen_coor)).mean() < 0.98: #ignore bbox covering the whole objects valid_masks.append(mask_cat) mask_2d[..., cat_id] = np.logical_or(mask, mask_2d[..., cat_id]) # visualize SAM result os.makedirs(f"{save_dir}/sam_result/", exist_ok=True) image = load_img(f"{save_dir}/rendered_img/{i}.png") for cat_id in range(len(part_names)): masked_image = image * (1 - mask_2d[..., cat_id][..., None]) + \ mask_2d[..., cat_id][..., None] * np.array([255, 0, 0]) for bbox in view_cat_bbox[i][cat_id]: bbox = np.int16(bbox) masked_image = draw_rectangle(masked_image, bbox[0], bbox[1], bbox[2], bbox[3]) plt.imsave(f"{save_dir}/sam_result/{part_names[cat_id]}_{i}.jpg", np.uint8(masked_image)) view_idx = point_idx_all[i] for k, sp in enumerate(superpoint): sp_visible_pts = intersection(sp, visible_pts) sp_visible_cnt[k] += len(sp_visible_pts) in_bbox = np.zeros((n_category, len(sp_visible_pts)), dtype=bool) if len(sp_visible_pts) != 0: sp_coor = screen_coor[sp_visible_pts] bb1 = {'x1': sp_coor[:, 0].min(), 'y1': sp_coor[:, 1].min(), \ 'x2': sp_coor[:, 0].max(), 'y2': sp_coor[:, 1].max()} for mask_cat in valid_masks: mask, cat_id, bbox = mask_cat mask_points = np.nonzero(mask) x1, x2 = np.asarray(mask_points[1]).min(), np.asarray(mask_points[1]).max() y1, y2 = np.asarray(mask_points[0]).min(), np.asarray(mask_points[0]).max() if len(sp_visible_pts) == 0: in_mask_ratio_list[cat_id][k].append(-1) else: bb2 = {'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2} if get_iou(bb1, bb2) < 1e-6: in_mask_ratio_list[cat_id][k].append(0) else: # point_seg_mask = check_pc_within_bbox(x1, y1, x2, y2, np.int16(sp_coor)) point_seg_mask = check_pc_within_seg_mask(mask, np.int16(sp_coor)) in_bbox[cat_id] = np.logical_or(in_bbox[cat_id], point_seg_mask) in_mask_ratio_list[cat_id][k].append(point_seg_mask.mean()) for j in range(n_category): sp_bbox_visible_cnt[j, k] += in_bbox[j].sum() sem_score = sp_bbox_visible_cnt / (sp_visible_cnt.reshape(1, -1) + 1e-6) sem_score[:, sp_visible_cnt == 0] = 0 sem_seg = np.ones(xyz.shape[0], dtype=np.int32) * -1 # assign semantic labels to superpoints for i in range(n_sp): if sem_score[:, i].max() < 0.5: continue idx = -1 for j in reversed(range(n_category)): #give priority to small parts if sem_score[j, i] >= 0.5 and part_names[j] in ["handle", "button", "wheel", "knob", "switch", "bulb", "shaft", "touchpad", "camera", "screw"]: idx = j break if idx == -1: idx = np.argmax(sem_score[:, i]) sem_seg[superpoint[i]] = idx if visualize: os.makedirs("%s/semantic_seg" % save_dir, exist_ok=True) for j in range(n_category): rgb_sem = np.ones((xyz.shape[0], 3)) * (sem_seg == j).reshape(-1, 1) save_colored_pc("%s/semantic_seg/%s.ply" % (save_dir, part_names[j]), xyz, rgb_sem) if solve_instance_seg == False: return sem_seg, None print("instance segmentation...") os.makedirs("%s/instance_seg" % save_dir, exist_ok=True) connectivity = calc_sp_connectivity(xyz, superpoint) ins_seg = np.ones(xyz.shape[0], dtype=np.int32) * -1 ins_cnt = 0 for j in range(n_category): f = [] for i in range(n_sp): # initialize union-find sets f.append(i) # merge superpoints that are adjacent and have similar bounding box ratio for i in range(n_sp): if sem_seg[superpoint[i][0]] == j: for k in range(i): if sem_seg[superpoint[k][0]] == j and connectivity[i][k]: ratio_i = np.array(in_mask_ratio_list[j][i]) ratio_k = np.array(in_mask_ratio_list[j][k]) mask = np.logical_and(ratio_i > -1, ratio_k > -1) # -1 indicates invisible if mask.sum() == 0 or max(ratio_i[mask].sum(), ratio_k[mask].sum()) < 1e-3: dis = 1 else: dis = np.abs(ratio_i[mask] - ratio_k[mask]).sum() dis /= max(ratio_i[mask].sum(), ratio_k[mask].sum()) l1 = len(superpoint[i]) l2 = len(superpoint[k]) if dis < 0.2 and max(l1, l2) / min(l1, l2) < 100: f[get_union(f, i)] = get_union(f, k) # merge two union-find sets instances = [] flags = [] merged_sps = [[] for i in range(n_sp)] for i in range(n_sp): merged_sps[get_union(f, i)].append(superpoint[i]) for i in range(n_sp): if len(merged_sps[i]) > 0 and sem_seg[superpoint[i][0]] == j: instances.append(np.concatenate(merged_sps[i])) flags.append(False) #filter out instances that have small iou with all bounding boxes for i in range(num_view): screen_coor = screen_coor_all[i] #2D projected location of each 3D point visible_pts = visible_pts_list[i] for k, instance in enumerate(instances): if flags[k]: continue ins_visible_pts = intersection(instance, visible_pts) if len(ins_visible_pts) == 0: continue ins_coor = screen_coor[ins_visible_pts] bb1 = {'x1': ins_coor[:, 0].min(), 'y1': ins_coor[:, 1].min(), \ 'x2': ins_coor[:, 0].max(), 'y2': ins_coor[:, 1].max()} for mask_cat in masks_per_view[i]: mask, cat_id, bbox = mask_cat if cat_id != j: continue mask_points = np.nonzero(mask) x1, x2 = np.asarray(mask_points[1]).min(), np.asarray(mask_points[1]).max() y1, y2 = np.asarray(mask_points[0]).min(), np.asarray(mask_points[0]).max() bb2 = {'x1': x1, 'y1': y1, 'x2': x2, 'y2': y2} if get_iou(bb1, bb2) > 0.5: flags[k] = True break rgb_ins = np.zeros((xyz.shape[0], 3)) for i in range(len(instances)): if flags[i]: ins_seg[instances[i]] = ins_cnt ins_cnt += 1 rgb_ins[instances[i]] = np.random.rand(3) if visualize: save_colored_pc("%s/instance_seg/%s.ply" % (save_dir, part_names[j]), xyz, rgb_ins) return sem_seg, ins_seg # Path: run_partslip.py import os import torch import json import numpy as np from pytorch3d.io import IO from src.utils import normalize_pc from src.render_pc import render_pc from src.glip_inference import glip_inference, load_model from src.bbox2seg import bbox2seg from segment_anything import sam_model_registry, SamPredictor def Infer(input_pc_file, category, model, part_names, zero_shot=False, save_dir="tmp"): if zero_shot: config ="GLIP/configs/glip_Swin_L.yaml" weight_path = "./models/glip_large_model.pth" print("-----Zero-shot inference of %s-----" % input_pc_file) else: config ="GLIP/configs/glip_Swin_L_pt.yaml" weight_path = "./models/%s.pth" % category print("-----Few-shot inference of %s-----" % input_pc_file) print("[loading GLIP model...]") glip_demo = load_model(config, weight_path) print("[creating tmp dir...]") if torch.cuda.is_available(): device = torch.device("cuda:0") torch.cuda.set_device(device) else: device = torch.device("cpu") io = IO() os.makedirs(save_dir, exist_ok=True) print(save_dir) print("[normalizing input point cloud...]") xyz, rgb = normalize_pc(input_pc_file, save_dir, io, device) print("[rendering input point cloud...]") img_dir, pc_idx, screen_coords, num_views = render_pc(xyz, rgb, save_dir, device) print("[glip infrence...]") SAM_ENCODER_VERSION = "vit_h" SAM_CHECKPOINT_PATH = "./models/sam_vit_h_4b8939.pth" sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH) sam.to(device=torch.device("cuda:0")) sam_predictor = SamPredictor(sam) masks = glip_inference(glip_demo, save_dir, part_names, sam_predictor, num_views=num_views)
print('[generating superpoints...]')
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: fzmi/ubdd # Path: models/dino/util/misc.py def inverse_sigmoid(x, eps=1e-3): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1/x2) # Path: models/dino/models/dino/utils.py def gen_encoder_output_proposals(memory:Tensor, memory_padding_mask:Tensor, spatial_shapes:Tensor, learnedwh=None): """ Input: - memory: bs, \sum{hw}, d_model - memory_padding_mask: bs, \sum{hw} - spatial_shapes: nlevel, 2 - learnedwh: 2 Output: - output_memory: bs, \sum{hw}, d_model - output_proposals: bs, \sum{hw}, 4 """ N_, S_, C_ = memory.shape base_scale = 4.0 proposals = [] _cur = 0 for lvl, (H_, W_) in enumerate(spatial_shapes): mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1) valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device)) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2 scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale if learnedwh is not None: wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0 ** lvl) else: wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl) proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) proposals.append(proposal) _cur += (H_ * W_) output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True) output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf')) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf')) output_memory = memory output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) return output_memory, output_proposals # Path: models/dino/models/dino/utils.py class MLP(nn.Module): """ Very simple multi-layer perceptron (also called FFN)""" def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x # Path: models/dino/models/dino/utils.py def _get_activation_fn(activation, d_model=256, batch_dim=0): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu if activation == "prelu": return nn.PReLU() if activation == "selu": return F.selu raise RuntimeError(F"activation should be relu/gelu, not {activation}.") # Path: models/dino/models/dino/utils.py def gen_sineembed_for_position(pos_tensor): # n_query, bs, _ = pos_tensor.size() # sineembed_tensor = torch.zeros(n_query, bs, 256) scale = 2 * math.pi dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device) dim_t = 10000 ** (2 * (dim_t // 2) / 128) x_embed = pos_tensor[:, :, 0] * scale y_embed = pos_tensor[:, :, 1] * scale pos_x = x_embed[:, :, None] / dim_t pos_y = y_embed[:, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) if pos_tensor.size(-1) == 2: pos = torch.cat((pos_y, pos_x), dim=2) elif pos_tensor.size(-1) == 4: w_embed = pos_tensor[:, :, 2] * scale pos_w = w_embed[:, :, None] / dim_t pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) h_embed = pos_tensor[:, :, 3] * scale pos_h = h_embed[:, :, None] / dim_t pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) else: raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1))) return pos # Path: models/dino/models/dino/ops/modules/ms_deform_attn.py class MSDeformAttn(nn.Module): def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): """ Multi-Scale Deformable Attention Module :param d_model hidden dimension :param n_levels number of feature levels :param n_heads number of attention heads :param n_points number of sampling points per attention head per feature level """ super().__init__() if d_model % n_heads != 0: raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads)) _d_per_head = d_model // n_heads # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation if not _is_power_of_2(_d_per_head): warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 " "which is more efficient in our CUDA implementation.") self.im2col_step = 64 self.d_model = d_model self.n_levels = n_levels self.n_heads = n_heads self.n_points = n_points self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) self.value_proj = nn.Linear(d_model, d_model) self.output_proj = nn.Linear(d_model, d_model) self._reset_parameters() def _reset_parameters(self): constant_(self.sampling_offsets.weight.data, 0.) thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.) constant_(self.attention_weights.bias.data, 0.) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.) def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None): """ :param query (N, Length_{query}, C) :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes :param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C) :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}] :param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements :return output (N, Length_{query}, C) """ N, Len_q, _ = query.shape N, Len_in, _ = input_flatten.shape assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in value = self.value_proj(input_flatten) if input_padding_mask is not None: value = value.masked_fill(input_padding_mask[..., None], float(0)) value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2) attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points) attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points) # N, Len_q, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1) sampling_locations = reference_points[:, :, None, :, None, :] \ + sampling_offsets / offset_normalizer[None, None, None, :, None, :] elif reference_points.shape[-1] == 4: sampling_locations = reference_points[:, :, None, :, None, :2] \ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 else: raise ValueError( 'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1])) # for amp if value.dtype == torch.float16: # for mixed precision output = MSDeformAttnFunction.apply( value.to(torch.float32), input_spatial_shapes, input_level_start_index, sampling_locations.to(torch.float32), attention_weights, self.im2col_step) output = output.to(torch.float16) output = self.output_proj(output) return output output = MSDeformAttnFunction.apply( value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step) output = self.output_proj(output) return output # Path: models/dino/models/dino/deformable_transformer.py import math, random import copy import torch from typing import Optional from torch import nn, Tensor from models.dino.util.misc import inverse_sigmoid from .utils import gen_encoder_output_proposals, MLP,_get_activation_fn, gen_sineembed_for_position from .ops.modules import MSDeformAttn from .utils import RandomBoxPerturber else: dec_layer_share = False assert layer_share_type is None self.decoder_sa_type = decoder_sa_type assert decoder_sa_type in ['sa', 'ca_label', 'ca_content'] # choose encoder layer type if deformable_encoder: encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points, add_channel_attention=add_channel_attention, use_deformable_box_attn=use_deformable_box_attn, box_attn_type=box_attn_type) else: raise NotImplementedError encoder_norm = nn.LayerNorm(d_model) if normalize_before else None self.encoder = TransformerEncoder( encoder_layer, num_encoder_layers, encoder_norm, d_model=d_model, num_queries=num_queries, deformable_encoder=deformable_encoder, enc_layer_share=enc_layer_share, two_stage_type=two_stage_type ) # choose decoder layer type if deformable_decoder: decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, dec_n_points, use_deformable_box_attn=use_deformable_box_attn, box_attn_type=box_attn_type, key_aware_type=key_aware_type, decoder_sa_type=decoder_sa_type, module_seq=module_seq) else: raise NotImplementedError decoder_norm = nn.LayerNorm(d_model) self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm, return_intermediate=return_intermediate_dec, d_model=d_model, query_dim=query_dim, modulate_hw_attn=modulate_hw_attn, num_feature_levels=num_feature_levels, deformable_decoder=deformable_decoder, decoder_query_perturber=decoder_query_perturber, dec_layer_number=dec_layer_number, rm_dec_query_scale=rm_dec_query_scale, dec_layer_share=dec_layer_share, use_detached_boxes_dec_out=use_detached_boxes_dec_out ) self.d_model = d_model self.nhead = nhead self.dec_layers = num_decoder_layers self.num_queries = num_queries # useful for single stage model only self.num_patterns = num_patterns if not isinstance(num_patterns, int): Warning("num_patterns should be int but {}".format(type(num_patterns))) self.num_patterns = 0 if num_feature_levels > 1: if self.num_encoder_layers > 0: self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) else: self.level_embed = None self.learnable_tgt_init = learnable_tgt_init assert learnable_tgt_init, "why not learnable_tgt_init" self.embed_init_tgt = embed_init_tgt if (two_stage_type != 'no' and embed_init_tgt) or (two_stage_type == 'no'): self.tgt_embed = nn.Embedding(self.num_queries, d_model) nn.init.normal_(self.tgt_embed.weight.data) else: self.tgt_embed = None # for two stage self.two_stage_type = two_stage_type self.two_stage_pat_embed = two_stage_pat_embed self.two_stage_add_query_num = two_stage_add_query_num self.two_stage_learn_wh = two_stage_learn_wh assert two_stage_type in ['no', 'standard'], "unknown param {} of two_stage_type".format(two_stage_type) if two_stage_type =='standard': # anchor selection at the output of encoder self.enc_output = nn.Linear(d_model, d_model) self.enc_output_norm = nn.LayerNorm(d_model) if two_stage_pat_embed > 0: self.pat_embed_for_2stage = nn.Parameter(torch.Tensor(two_stage_pat_embed, d_model)) nn.init.normal_(self.pat_embed_for_2stage) if two_stage_add_query_num > 0: self.tgt_embed = nn.Embedding(self.two_stage_add_query_num, d_model) if two_stage_learn_wh: self.two_stage_wh_embedding = nn.Embedding(1, 2) else: self.two_stage_wh_embedding = None if two_stage_type == 'no': self.init_ref_points(num_queries) # init self.refpoint_embed self.enc_out_class_embed = None self.enc_out_bbox_embed = None # evolution of anchors self.dec_layer_number = dec_layer_number if dec_layer_number is not None: if self.two_stage_type != 'no' or num_patterns == 0: assert dec_layer_number[0] == num_queries, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries})" else: assert dec_layer_number[0] == num_queries * num_patterns, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries}) * num_patterns({num_patterns})" self._reset_parameters() self.rm_self_attn_layers = rm_self_attn_layers if rm_self_attn_layers is not None: print("Removing the self-attn in {} decoder layers".format(rm_self_attn_layers)) for lid, dec_layer in enumerate(self.decoder.layers): if lid in rm_self_attn_layers: dec_layer.rm_self_attn_modules()
self.rm_detach = rm_detach
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: ZhenboSong/RobustSIRR # Path: models/base.py def discriminator(k=4, fc=True): return Discriminator(models.resnet18(pretrained=True, progress=False), k, fc=fc) # Path: models/networks.py class SCM(nn.Module): def __init__(self, out_plane): super(SCM, self).__init__() self.main = nn.Sequential( BasicConv(3, out_plane//4, kernel_size=3, stride=1, relu=True), BasicConv(out_plane // 4, out_plane // 2, kernel_size=1, stride=1, relu=True), BasicConv(out_plane // 2, out_plane // 2, kernel_size=3, stride=1, relu=True), BasicConv(out_plane // 2, out_plane-3, kernel_size=1, stride=1, relu=True) ) self.conv = BasicConv(out_plane, out_plane, kernel_size=1, stride=1, relu=False) def forward(self, x): x = torch.cat([x, self.main(x)], dim=1) return self.conv(x) # Path: models/networks.py class DynamicConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, K=4, init_weight=True, use_FC=False): super(DynamicConv2d, self).__init__() assert in_channels%groups==0 self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias self.K = K # False self.use_FC=use_FC self.weight = nn.Parameter(torch.randn(K, out_channels, in_channels//groups, kernel_size, kernel_size), requires_grad=True) if bias: self.bias = nn.Parameter(torch.Tensor(K, out_channels)) else: self.bias = None if use_FC: self.fc=nn.Sequential(nn.Linear(512, K), nn.Softmax(dim=-1)) if init_weight: self._initialize_weights() def _initialize_weights(self): for i in range(self.K): nn.init.kaiming_uniform_(self.weight[i]) if self.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[i]) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias[i], -bound, bound) def forward(self, x, softmax_attention):#将batch视作维度变量,进行组卷积,因为组卷积的权重是不同的,动态卷积的权重也是不同的 if self.use_FC: softmax_attention=self.fc(softmax_attention) batch_size, in_channels, height, width = x.size() x = x.view(1, -1, height, width)# 变化成一个维度进行组卷积 weight = self.weight.view(self.K, -1) # 动态卷积的权重的生成, 生成的是batch_size个卷积参数(每个参数不同) aggregate_weight = torch.mm(softmax_attention, weight).view(-1, self.in_channels, self.kernel_size, self.kernel_size) self.aggregate_weight = aggregate_weight if self.bias is not None: aggregate_bias = torch.mm(softmax_attention, self.bias).view(-1) output = F.conv2d(x, weight=aggregate_weight, bias=aggregate_bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * batch_size) else: output = F.conv2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * batch_size) output = output.view(batch_size, self.out_channels, output.size(-2), output.size(-1)) return output # Path: models/networks.py class DynamicConvTranspose2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, K=4, init_weight=True, use_FC=False): super(DynamicConvTranspose2d, self).__init__() assert in_channels%groups==0 self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.stride = stride self.padding = padding self.dilation = dilation self.groups = groups self.bias = bias self.K = K # False self.use_FC=use_FC self.weight = nn.Parameter(torch.randn(K, out_channels, in_channels//groups, kernel_size, kernel_size), requires_grad=True) if bias: self.bias = nn.Parameter(torch.Tensor(K, out_channels)) else: self.bias = None if use_FC: self.fc=nn.Sequential(nn.Linear(512, K), nn.Softmax(dim=-1)) if init_weight: self._initialize_weights() def _initialize_weights(self): for i in range(self.K): nn.init.kaiming_uniform_(self.weight[i]) if self.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[i]) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias[i], -bound, bound) def forward(self, x, softmax_attention):#将batch视作维度变量,进行组卷积,因为组卷积的权重是不同的,动态卷积的权重也是不同的 if self.use_FC: softmax_attention=self.fc(softmax_attention) batch_size, in_channels, height, width = x.size() x = x.view(1, -1, height, width)# 变化成一个维度进行组卷积 weight = self.weight.view(self.K, -1) # 动态卷积的权重的生成, 生成的是batch_size个卷积参数(每个参数不同) aggregate_weight = torch.mm(softmax_attention, weight).view(-1, self.in_channels, self.kernel_size, self.kernel_size) self.aggregate_weight = aggregate_weight if self.bias is not None: aggregate_bias = torch.mm(softmax_attention, self.bias).view(-1) output = F.conv_transpose2d(x, weight=aggregate_weight, bias=aggregate_bias, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * batch_size) else: output = F.conv_transpose2d(x, weight=aggregate_weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups * batch_size) output = output.view(batch_size, self.out_channels, output.size(-2), output.size(-1)) return output # Path: models/networks.py class AFF(nn.Module): def __init__(self, in_channel, out_channel): super(AFF, self).__init__() self.conv = nn.Sequential( BasicConv(in_channel, out_channel, kernel_size=1, stride=1, relu=True), BasicConv(out_channel, out_channel, kernel_size=3, stride=1, relu=False) ) def forward(self, x1, x2, x4): x = torch.cat([x1, x2, x4], dim=1) return self.conv(x) # Path: models/networks.py class BasicConv(nn.Module): def __init__(self, in_channel, out_channel, kernel_size, stride, bias=True, norm=False, relu=True, transpose=False): super(BasicConv, self).__init__() if bias and norm: bias = False padding = kernel_size // 2 layers = list() if transpose: padding = kernel_size // 2 -1 layers.append(nn.ConvTranspose2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias)) else: layers.append( nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias)) if norm: layers.append(nn.BatchNorm2d(out_channel)) if relu: layers.append(nn.ReLU(inplace=True)) self.main = nn.Sequential(*layers) def forward(self, x): return self.main(x) # Path: models/networks.py class TransformerBlock(nn.Module): def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type): super(TransformerBlock, self).__init__() self.norm1 = LayerNorm(dim, LayerNorm_type) self.attn = Attention(dim, num_heads, bias) self.norm2 = LayerNorm(dim, LayerNorm_type) self.ffn = FeedForward(dim, ffn_expansion_factor, bias) def forward(self, x): x = x + self.attn(self.norm1(x)) x = x + self.ffn(self.norm2(x)) return x # Path: models/networks.py class Downsample(nn.Module): def __init__(self, n_feat): super(Downsample, self).__init__() self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat//2, kernel_size=3, stride=1, padding=1, bias=False), nn.PixelUnshuffle(2)) def forward(self, x): return self.body(x) # Path: models/networks.py class Upsample(nn.Module): def __init__(self, n_feat): super(Upsample, self).__init__() self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat*2, kernel_size=3, stride=1, padding=1, bias=False), nn.PixelShuffle(2)) def forward(self, x): return self.body(x) # Path: models/networks.py class FAM(nn.Module): def __init__(self, channel): super(FAM, self).__init__() self.merge = BasicConv(channel, channel, kernel_size=3, stride=1, relu=False) def forward(self, x1, x2): x = x1 * x2 out = x1 + self.merge(x) return out # Path: models/arch/default.py from operator import xor from torch import nn from models.base import discriminator from models.networks import SCM, DynamicConv2d, DynamicConvTranspose2d, AFF, BasicConv, TransformerBlock, Downsample, Upsample, FAM from copy import deepcopy import torch import torch.nn.functional as F def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y ssd_adv_pred = {} class DRNet(torch.nn.Module): def __init__(self, in_channels, out_channels, base_channels, n_resblocks, norm=nn.BatchNorm2d, se_reduction=None, res_scale=1, bottom_kernel_size=3, pyramid=False): super(DRNet, self).__init__() # Initial convolution layers conv = nn.Conv2d deconv = nn.ConvTranspose2d act = nn.ReLU(True) self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.device1 = torch.device("cuda:0" if torch.cuda.device_count() > 1 else "cuda:0") # attack train self.disc = discriminator().to(self.device) num_blocks = [1,2,2,4] # num_blocks = [4,6,6,8] num_refinement_blocks = 4 heads = [1,2,4,8] ffn_expansion_factor = 2.66 bias = False LayerNorm_type = 'WithBias' ## Other option 'BiasFree' dual_pixel_task = False ## True for dual-pixel defocus deblurring only. Also set inp_channels=6 # self.conv1 = ConvLayer(conv, in_channels, n_feats, kernel_size=bottom_kernel_size, stride=1, norm=None, act=act) # self.conv2 = ConvLayer(conv, n_feats, n_feats, kernel_size=3, stride=1, norm=norm, act=act) # self.conv3 = ConvLayer(conv, n_feats, n_feats, kernel_size=3, stride=2, norm=norm, act=act) self.feat_extract = nn.Sequential( DynamicConvLayer(conv, in_channels, base_channels, kernel_size=bottom_kernel_size, stride=1, norm=None, act=act), DynamicConvLayer(conv, base_channels, base_channels, kernel_size=3, stride=1, norm=norm, act=act), DynamicConvLayer(conv, base_channels, base_channels, kernel_size=3, stride=1, norm=norm, act=act) ).to(self.device) self.SCM1 = SCM(base_channels * 4).to(self.device) self.SCM2 = SCM(base_channels * 2).to(self.device) self.FAM1 = FAM(base_channels * 4).to(self.device) self.FAM2 = FAM(base_channels * 2).to(self.device) self.AFFs = nn.ModuleList([ AFF(base_channels * 7, base_channels * 1), AFF(base_channels * 7, base_channels * 2) ]).to(self.device) self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=base_channels, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]).to(self.device) self.down1_2 = Downsample(base_channels).to(self.device) self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(base_channels*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])]).to(self.device) self.down2_3 = Downsample(int(base_channels*2**1)).to(self.device) self.encoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(base_channels*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])]).to(self.device) self.down3_4 = Downsample(int(base_channels*2**2)).to(self.device) self.latent = nn.Sequential(*[TransformerBlock(dim=int(base_channels*2**3), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[3])]).to(self.device) self.up4_3 = Upsample(int(base_channels*2**3)).to(self.device1) self.reduce_chan_level3 = nn.Conv2d(int(base_channels*2**3), int(base_channels*2**2), kernel_size=1, bias=bias).to(self.device1) self.decoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(base_channels*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])]).to(self.device1) self.up3_2 = Upsample(int(base_channels*2**2)).to(self.device1) self.reduce_chan_level2 = nn.Conv2d(int(base_channels*2**2), int(base_channels*2**1), kernel_size=1, bias=bias).to(self.device1) self.decoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(base_channels*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])]).to(self.device1) self.up2_1 = Upsample(int(base_channels*2**1)).to(self.device1) self.decoder_level1 = nn.Sequential(*[TransformerBlock(dim=int(base_channels*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]).to(self.device1) self.spatial_feat_extract = nn.Sequential( DynamicConvLayer(conv, base_channels * 2, base_channels, kernel_size=3, stride=1, norm=norm, act=act), DynamicConvLayer(conv, base_channels, base_channels, kernel_size=3, stride=1, norm=norm, act=act), PyramidPooling(base_channels, base_channels, scales=(4,8,16,32), ct_channels=base_channels//4), DynamicConvLayer(conv, base_channels, out_channels, kernel_size=1, stride=1, norm=None, act=act) ).to(self.device1) #input dynamic convolution weights to each DynamicConv2d layer via hook for layer in self.modules(): if isinstance(layer, DynamicConv2d) or isinstance(layer, DynamicConvTranspose2d): layer.register_forward_pre_hook(lambda module, x:(x[0], ssd_adv_pred[x[0].device])) @property def adv_pred(self): return ssd_adv_pred[self.conv1.device] def forward(self, x, adv_pred): # adv_pred=adv_pred if adv_pred is not None else self.disc(x) ssd_adv_pred[adv_pred.device] = adv_pred #AID预测动态卷积权重 adv_pred1 = adv_pred.to(self.device1) ssd_adv_pred[adv_pred1.device] = adv_pred1 x_2 = F.interpolate(x, scale_factor=0.5) # print('x_2.shape',x_2.shape) x_4 = F.interpolate(x_2, scale_factor=0.5) z2 = self.SCM2(x_2) z4 = self.SCM1(x_4) # encoder inp_enc_level1 = self.feat_extract(x) # print('inp_enc_level1.shape',inp_enc_level1.shape) out_enc_level1 = self.encoder_level1(inp_enc_level1) # print('out_enc_level1.shape',out_enc_level1.shape) inp_fam2 = self.down1_2(out_enc_level1) # print('inpfam2.shape',inp_fam2.shape) # print('z2.shape',z2.shape) inp_enc_level2 = self.FAM2(inp_fam2, z2) out_enc_level2 = self.encoder_level2(inp_enc_level2) inp_fam1 = self.down2_3(out_enc_level2) inp_enc_level3 = self.FAM1(inp_fam1, z4)
out_enc_level3 = self.encoder_level3(inp_enc_level3)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: girgle/DouZero_For_New_HLDDZ # Path: douzero/env/move_generator.py class MovesGener(object): """ This is for generating the possible combinations """ def __init__(self, cards_list): self.cards_list = cards_list self.cards_dict = collections.defaultdict(int) for i in self.cards_list: self.cards_dict[i] += 1 self.single_card_moves = [] self.gen_type_1_single() self.pair_moves = [] self.gen_type_2_pair() self.triple_cards_moves = [] self.gen_type_3_triple() self.bomb_moves = [] self.gen_type_4_bomb() self.final_bomb_moves = [] self.gen_type_5_king_bomb() def _gen_serial_moves(self, cards, min_serial, repeat=1, repeat_num=0): if repeat_num < min_serial: # at least repeat_num is min_serial repeat_num = 0 single_cards = sorted(list(set(cards))) seq_records = list() moves = list() start = i = 0 longest = 1 while i < len(single_cards): if i + 1 < len(single_cards) and single_cards[i + 1] - single_cards[i] == 1: longest += 1 i += 1 else: seq_records.append((start, longest)) i += 1 start = i longest = 1 for seq in seq_records: if seq[1] < min_serial: continue start, longest = seq[0], seq[1] longest_list = single_cards[start: start + longest] if repeat_num == 0: # No limitation on how many sequences steps = min_serial while steps <= longest: index = 0 while steps + index <= longest: target_moves = sorted(longest_list[index: index + steps] * repeat) moves.append(target_moves) index += 1 steps += 1 else: # repeat_num > 0 if longest < repeat_num: continue index = 0 while index + repeat_num <= longest: target_moves = sorted(longest_list[index: index + repeat_num] * repeat) moves.append(target_moves) index += 1 return moves def gen_type_1_single(self): self.single_card_moves = [] for i in set(self.cards_list): self.single_card_moves.append([i]) return self.single_card_moves def gen_type_2_pair(self): self.pair_moves = [] for k, v in self.cards_dict.items(): if v >= 2: self.pair_moves.append([k, k]) return self.pair_moves def gen_type_3_triple(self): self.triple_cards_moves = [] for k, v in self.cards_dict.items(): if v >= 3: self.triple_cards_moves.append([k, k, k]) return self.triple_cards_moves def gen_type_4_bomb(self): self.bomb_moves = [] for k, v in self.cards_dict.items(): if v == 4: self.bomb_moves.append([k, k, k, k]) return self.bomb_moves def gen_type_5_king_bomb(self): self.final_bomb_moves = [] if 20 in self.cards_list and 30 in self.cards_list: self.final_bomb_moves.append([20, 30]) return self.final_bomb_moves def gen_type_6_3_1(self): result = [] for t in self.single_card_moves: for i in self.triple_cards_moves: if t[0] != i[0]: result.append(t+i) return result def gen_type_7_3_2(self): result = list() for t in self.pair_moves: for i in self.triple_cards_moves: if t[0] != i[0]: result.append(t+i) return result def gen_type_8_serial_single(self, repeat_num=0): return self._gen_serial_moves(self.cards_list, MIN_SINGLE_CARDS, repeat=1, repeat_num=repeat_num) def gen_type_9_serial_pair(self, repeat_num=0): single_pairs = list() for k, v in self.cards_dict.items(): if v >= 2: single_pairs.append(k) return self._gen_serial_moves(single_pairs, MIN_PAIRS, repeat=2, repeat_num=repeat_num) def gen_type_10_serial_triple(self, repeat_num=0): single_triples = list() for k, v in self.cards_dict.items(): if v >= 3: single_triples.append(k) return self._gen_serial_moves(single_triples, MIN_TRIPLES, repeat=3, repeat_num=repeat_num) def gen_type_11_serial_3_1(self, repeat_num=0): serial_3_moves = self.gen_type_10_serial_triple(repeat_num=repeat_num) serial_3_1_moves = list() for s3 in serial_3_moves: # s3 is like [3,3,3,4,4,4] s3_set = set(s3) new_cards = [i for i in self.cards_list if i not in s3_set] # Get any s3_len items from cards subcards = select(new_cards, len(s3_set)) for i in subcards: serial_3_1_moves.append(s3 + i) return list(k for k, _ in itertools.groupby(serial_3_1_moves)) def gen_type_12_serial_3_2(self, repeat_num=0): serial_3_moves = self.gen_type_10_serial_triple(repeat_num=repeat_num) serial_3_2_moves = list() pair_set = sorted([k for k, v in self.cards_dict.items() if v >= 2]) for s3 in serial_3_moves: s3_set = set(s3) pair_candidates = [i for i in pair_set if i not in s3_set] # Get any s3_len items from cards subcards = select(pair_candidates, len(s3_set)) for i in subcards: serial_3_2_moves.append(sorted(s3 + i * 2)) return serial_3_2_moves def gen_type_13_4_2(self): four_cards = list() for k, v in self.cards_dict.items(): if v == 4: four_cards.append(k) result = list() for fc in four_cards: cards_list = [k for k in self.cards_list if k != fc] subcards = select(cards_list, 2) for i in subcards: result.append([fc]*4 + i) return list(k for k, _ in itertools.groupby(result)) def gen_type_14_4_22(self): four_cards = list() for k, v in self.cards_dict.items(): if v == 4: four_cards.append(k) result = list() for fc in four_cards: cards_list = [k for k, v in self.cards_dict.items() if k != fc and v>=2] subcards = select(cards_list, 2) for i in subcards: result.append([fc] * 4 + [i[0], i[0], i[1], i[1]]) return result # generate all possible moves from given cards def gen_moves(self): moves = [] moves.extend(self.gen_type_1_single()) moves.extend(self.gen_type_2_pair()) moves.extend(self.gen_type_3_triple()) moves.extend(self.gen_type_4_bomb()) moves.extend(self.gen_type_5_king_bomb()) moves.extend(self.gen_type_6_3_1()) moves.extend(self.gen_type_7_3_2()) moves.extend(self.gen_type_8_serial_single()) moves.extend(self.gen_type_9_serial_pair()) moves.extend(self.gen_type_10_serial_triple()) moves.extend(self.gen_type_11_serial_3_1()) moves.extend(self.gen_type_12_serial_3_2()) moves.extend(self.gen_type_13_4_2()) moves.extend(self.gen_type_14_4_22()) return moves # Path: douzero/env/move_detector.py def get_move_type(move): move_size = len(move) move_dict = collections.Counter(move) if move_size == 0: return {'type': TYPE_0_PASS} if move_size == 1: return {'type': TYPE_1_SINGLE, 'rank': move[0]} if move_size == 2: if move[0] == move[1]: return {'type': TYPE_2_PAIR, 'rank': move[0]} elif move == [20, 30]: # Kings return {'type': TYPE_5_KING_BOMB} else: return {'type': TYPE_15_WRONG} if move_size == 3: if len(move_dict) == 1: return {'type': TYPE_3_TRIPLE, 'rank': move[0]} else: return {'type': TYPE_15_WRONG} if move_size == 4: if len(move_dict) == 1: return {'type': TYPE_4_BOMB, 'rank': move[0]} elif len(move_dict) == 2: if move[0] == move[1] == move[2] or move[1] == move[2] == move[3]: return {'type': TYPE_6_3_1, 'rank': move[1]} else: return {'type': TYPE_15_WRONG} else: return {'type': TYPE_15_WRONG} if is_continuous_seq(move): return {'type': TYPE_8_SERIAL_SINGLE, 'rank': move[0], 'len': len(move)} if move_size == 5: if len(move_dict) == 2: return {'type': TYPE_7_3_2, 'rank': move[2]} else: return {'type': TYPE_15_WRONG} count_dict = collections.defaultdict(int) for c, n in move_dict.items(): count_dict[n] += 1 if move_size == 6: if (len(move_dict) == 2 or len(move_dict) == 3) and count_dict.get(4) == 1 and \ (count_dict.get(2) == 1 or count_dict.get(1) == 2): return {'type': TYPE_13_4_2, 'rank': move[2]} if move_size == 8 and (((len(move_dict) == 3 or len(move_dict) == 2) and (count_dict.get(4) == 1 and count_dict.get(2) == 2)) or count_dict.get(4) == 2): return {'type': TYPE_14_4_22, 'rank': max([c for c, n in move_dict.items() if n == 4])} mdkeys = sorted(move_dict.keys()) if len(move_dict) == count_dict.get(2) and is_continuous_seq(mdkeys): return {'type': TYPE_9_SERIAL_PAIR, 'rank': mdkeys[0], 'len': len(mdkeys)} if len(move_dict) == count_dict.get(3) and is_continuous_seq(mdkeys): return {'type': TYPE_10_SERIAL_TRIPLE, 'rank': mdkeys[0], 'len': len(mdkeys)} # Check Type 11 (serial 3+1) and Type 12 (serial 3+2) if count_dict.get(3, 0) >= MIN_TRIPLES: serial_3 = list() single = list() pair = list() for k, v in move_dict.items(): if v == 3: serial_3.append(k) elif v == 1: single.append(k) elif v == 2: pair.append(k) else: # no other possibilities return {'type': TYPE_15_WRONG} serial_3.sort() if is_continuous_seq(serial_3): if len(serial_3) == len(single)+len(pair)*2: return {'type': TYPE_11_SERIAL_3_1, 'rank': serial_3[0], 'len': len(serial_3)} if len(serial_3) == len(pair) and len(move_dict) == len(serial_3) * 2: return {'type': TYPE_12_SERIAL_3_2, 'rank': serial_3[0], 'len': len(serial_3)} if len(serial_3) == 4: if is_continuous_seq(serial_3[1:]): return {'type': TYPE_11_SERIAL_3_1, 'rank': serial_3[1], 'len': len(serial_3) - 1} if is_continuous_seq(serial_3[:-1]): return {'type': TYPE_11_SERIAL_3_1, 'rank': serial_3[0], 'len': len(serial_3) - 1} return {'type': TYPE_15_WRONG} # Path: douzero/env/move_selector.py def common_handle(moves, rival_move): def filter_type_1_single(moves, rival_move): def filter_type_2_pair(moves, rival_move): def filter_type_3_triple(moves, rival_move): def filter_type_4_bomb(moves, rival_move): def filter_type_6_3_1(moves, rival_move): def filter_type_7_3_2(moves, rival_move): def filter_type_8_serial_single(moves, rival_move): def filter_type_9_serial_pair(moves, rival_move): def filter_type_10_serial_triple(moves, rival_move): def filter_type_11_serial_3_1(moves, rival_move): def filter_type_12_serial_3_2(moves, rival_move): def filter_type_13_4_2(moves, rival_move): def filter_type_14_4_22(moves, rival_move): # Path: search_utility.py import time from douzero.env.move_generator import MovesGener from douzero.env.move_detector import get_move_type from douzero.env import move_selector return False for item in mlist: if not isinstance(item, type): return False return True def action_in_tree(path_list, action): for ac in path_list: ac[0].sort() if action == ac[0]: return ac return None def search_actions(my_cards, other_cards, path_list, rival_move=None, prev_moves=None): if len(path_list) > 100: return None if prev_moves is None: my_cards.sort() other_cards.sort() my_gener = MovesGener(my_cards) other_gener = MovesGener(other_cards) other_bombs = other_gener.gen_type_4_bomb() other_bombs.extend(other_gener.gen_type_5_king_bomb()) my_bombs = my_gener.gen_type_4_bomb() my_bombs.extend(my_gener.gen_type_5_king_bomb()) legal_move_tree = [] rival_move_info = {} type_range = [4, 5, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] if rival_move is not None: if len(rival_move) > 0: rival_move_info = get_move_type(rival_move) type_range = [4, 5, rival_move_info["type"]] else: rival_move = None for mtype in type_range: my_moves = my_gener.gen_moves_by_type(mtype) if len(my_moves) == 0: continue if mtype == 4: other_moves = other_bombs else: other_moves = other_gener.gen_moves_by_type(mtype) for move in my_moves: if len(move) != len(my_cards): if mtype != 4 and mtype != 5 and len(other_bombs) > 0: break if len(move_selector.filter_type_n(mtype, other_moves, move)) == 0: if rival_move is not None: move_info = get_move_type(move) if "rank" in move_info and "rank" in rival_move_info and move_info["rank"] <= rival_move_info["rank"]: continue if "len" in move_info and move_info["len"] != rival_move_info["len"]: continue if rival_move_info["type"] == 5: continue new_cards = my_cards.copy() for card in move: new_cards.remove(card) if prev_moves is not None: new_prev = prev_moves.copy() new_prev.append(move) else: new_prev = [move] actions = search_actions(new_cards, other_cards, path_list, prev_moves=new_prev) del new_prev del new_cards if actions is not None and len(actions) > 0: legal_move_tree.append([move, actions]) else: if rival_move is not None: move_info = get_move_type(move) if "rank" in move_info and "rank" in rival_move_info and move_info["rank"] <= rival_move_info["rank"]: continue if "len" in move_info and move_info["len"] != rival_move_info["len"]: continue if rival_move_info["type"] == 5: continue legal_move_tree.append(move) if prev_moves is not None: new_path = prev_moves.copy() new_path.append(move) path_list.append(new_path) else: path_list.append([move]) legal_moves_count = len(legal_move_tree) del my_gener, other_gener, my_bombs, other_bombs, my_cards, other_cards, legal_move_tree return None # if legal_moves_count == 0: # return None # if legal_moves_count == 1: # return legal_move_tree[0] # return legal_move_tree def eval_path(path): bomb = 0 for action in path: if 30 in action and 20 in action or len(action) == 4 and len(set(action)) == 1: bomb += 1 return 1 + bomb - len(path) * 0.05 def select_optimal_path(path_list): if len(path_list) != 0: max_path = max(path_list, key=lambda x: eval_path(x)) for action in max_path: action.sort() return max_path else: return None def check_42(path): for action in path: move_type = get_move_type(action) if move_type["type"] == 13 or move_type["type"] == 14:
return True
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: yongzhuo/ChatGLM3-SFT # Path: chatglm3_sft/ft_chatglm3/config.py CUDA_VISIBLE_DEVICES = "0" # Path: chatglm3_sft/ft_chatglm3/config.py USE_TORCH = "1" # Path: chatglm3_sft/ft_chatglm3/config.py CPU_NUMS = "9" # Path: chatglm3_sft/models/modeling_chatglm.py _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM" _CONFIG_FOR_DOC = "ChatGLMConfig" CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [ "THUDM/chatglm3-6b", # See all ChatGLM models at https://huggingface.co/models?filter=chatglm ] def default_init(cls, *args, **kwargs): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: def __init__(self, config: ChatGLMConfig): def forward(self, prefix: torch.Tensor): def split_tensor_along_last_dim( tensor: torch.Tensor, num_partitions: int, contiguous_split_chunks: bool = False, ) -> List[torch.Tensor]: def __init__(self, dim, original_impl=False, device=None, dtype=None): def forward_impl( self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000 ): def forward(self, max_seq_len, offset=0): def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): def forward(self, hidden_states: torch.Tensor): def __init__(self, config: ChatGLMConfig, layer_number): def forward(self, query_layer, key_layer, value_layer, attention_mask): def __init__(self, config: ChatGLMConfig, layer_number, device=None): def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None): def forward( self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True ): def _config_to_kwargs(args): def __init__(self, config: ChatGLMConfig, device=None): def swiglu(x): def forward(self, hidden_states): def __init__(self, config: ChatGLMConfig, layer_number, device=None): def forward( self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True, ): def __init__(self, config: ChatGLMConfig, device=None): def build_layer(layer_number): def _get_layer(self, layer_number): def forward( self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None, use_cache: Optional[bool] = True, output_hidden_states: Optional[bool] = False, ): def _init_weights(self, module): def get_masks(self, input_ids, past_key_values, padding_mask=None): def get_position_ids(self, input_ids, device): def _set_gradient_checkpointing(self, module, value=False): def __init__(self, config: ChatGLMConfig, device=None): def forward(self, input_ids): def __init__(self, config: ChatGLMConfig, device=None, empty_init=True): def get_input_embeddings(self): def set_input_embeddings(self, new_embeddings: torch.Tensor): def get_prompt(self, batch_size, device, dtype=torch.half): def forward( self, input_ids, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.BoolTensor] = None, full_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): def quantize(self, weight_bit_width: int): def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, standardize_cache_format: bool = False, ) -> Dict[str, Any]: def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, is_first_forward: bool = True, **kwargs ) -> dict: def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, full_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, return_last_logit: Optional[bool] = False, ): def _reorder_cache( past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: def process_response(self, output, history): def tool_call(**kwargs): def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user", max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, **kwargs): def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user", past_key_values=None,max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None, return_past_key_values=False, **kwargs): def stream_generate( self, input_ids, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None, return_past_key_values=False, **kwargs, ): def quantize(self, bits: int, empty_init=False, device=None, **kwargs): def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, full_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, inputs_embeds: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]: class InvalidScoreLogitsProcessor(LogitsProcessor): class PrefixEncoder(torch.nn.Module): class RotaryEmbedding(nn.Module): class RMSNorm(torch.nn.Module): class CoreAttention(torch.nn.Module): class SelfAttention(torch.nn.Module): class MLP(torch.nn.Module): class GLMBlock(torch.nn.Module): class GLMTransformer(torch.nn.Module): class ChatGLMPreTrainedModel(PreTrainedModel): class Embedding(torch.nn.Module): class ChatGLMModel(ChatGLMPreTrainedModel): class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel): class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel): # Path: chatglm3_sft/models/tokenization_chatglm.py class ChatGLMTokenizer(PreTrainedTokenizer): vocab_files_names = {"vocab_file": "tokenizer.model"} model_input_names = ["input_ids", "attention_mask", "position_ids"] def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, **kwargs): self.name = "GLMTokenizer" self.vocab_file = vocab_file self.tokenizer = SPTokenizer(vocab_file) self.special_tokens = { "<bos>": self.tokenizer.bos_id, "<eos>": self.tokenizer.eos_id, "<pad>": self.tokenizer.pad_id } super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces, **kwargs) def get_command(self, token): if token in self.special_tokens: return self.special_tokens[token] assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}" return self.tokenizer.special_tokens[token] @property def unk_token(self) -> str: return "<unk>" @property def pad_token(self) -> str: return "<unk>" @property def pad_token_id(self): return self.get_command("<pad>") @property def eos_token(self) -> str: return "</s>" @property def eos_token_id(self): return self.get_command("<eos>") @property def vocab_size(self): return self.tokenizer.n_words def get_vocab(self): """ Returns vocab as a dict """ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text, **kwargs): return self.tokenizer.tokenize(text) def _convert_token_to_id(self, token): """ Converts a token (str) in an id using the vocab. """ return self.tokenizer.convert_token_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.tokenizer.convert_id_to_token(index) def convert_tokens_to_string(self, tokens: List[str]) -> str: return self.tokenizer.decode_tokens(tokens) def save_vocabulary(self, save_directory, filename_prefix=None): """ Save the vocabulary and special tokens file to a directory. Args: save_directory (`str`): The directory in which to save the vocabulary. filename_prefix (`str`, *optional*): An optional prefix to add to the named of the saved files. Returns: `Tuple(str)`: Paths to the files saved. """ if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, self.vocab_files_names["vocab_file"] ) else: vocab_file = save_directory with open(self.vocab_file, 'rb') as fin: proto_str = fin.read() with open(vocab_file, "wb") as writer: writer.write(proto_str) return (vocab_file,) def get_prefix_tokens(self): prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")] return prefix_tokens def build_single_message(self, role, metadata, message): assert role in ["system", "user", "assistant", "observation"], role role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n") message_tokens = self.tokenizer.encode(message) tokens = role_tokens + message_tokens return tokens def build_chat_input(self, query, history=None, role="user"): if history is None: history = [] input_ids = [] for item in history: content = item["content"] if item["role"] == "system" and "tools" in item: content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False) input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content)) input_ids.extend(self.build_single_message(role, "", query)) input_ids.extend([self.get_command("<|assistant|>")]) return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ prefix_tokens = self.get_prefix_tokens() token_ids_0 = prefix_tokens + token_ids_0 if token_ids_1 is not None: token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")] return token_ids_0 def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults # assert self.padding_side == "left" required_input = encoded_inputs[self.model_input_names[0]] seq_length = len(required_input) if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * seq_length if "position_ids" not in encoded_inputs: encoded_inputs["position_ids"] = list(range(seq_length)) if needs_to_be_padded: difference = max_length - len(required_input) if "attention_mask" in encoded_inputs: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "position_ids" in encoded_inputs: encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input return encoded_inputs # Path: chatglm3_sft/ft_chatglm3/config.py PATH_MODEL_PRETRAIN = "" # Path: chatglm3_sft/ft_chatglm3/config.py DATA_PATH = "../dataset/alpaca_gpt4_data_zh.json" # Path: chatglm3_sft/ft_chatglm3/config.py MODEL_SAVE_DIR = "model_chatglm3_sft" # Path: chatglm3_sft/ft_chatglm3/config.py REPO_ID = "THUDM/chatglm3-6b" # Path: chatglm3_sft/ft_chatglm3/config.py MICRO_BATCH_SIZE = 4 # default=4 # this could actually be 5 but i like powers of 2 # Path: chatglm3_sft/ft_chatglm3/config.py BATCH_SIZE = 128 # Path: chatglm3_sft/ft_chatglm3/config.py GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE # Path: chatglm3_sft/ft_chatglm3/config.py LEARNING_RATE = 3e-4 # default=3e-4 # the Karpathy constant # Path: chatglm3_sft/ft_chatglm3/config.py EPOCHS = 3 # default=3 # we don't always need 3 tbh # Path: chatglm3_sft/ft_chatglm3/config.py SAVE_STEPS = 382 # Path: chatglm3_sft/ft_chatglm3/config.py VAL_SET_SIZE = 0 # Path: chatglm3_sft/ft_chatglm3/config.py TARGET_MODULES = ["query_key_value"] # Path: chatglm3_sft/ft_chatglm3/config.py IS_PARALLELIZABLE = False # Path: chatglm3_sft/ft_chatglm3/config.py MODEL_PARALLEL = False # Path: chatglm3_sft/ft_chatglm3/config.py USE_CACHE = False # Path: chatglm3_sft/ft_chatglm3/config.py MAX_LENGTH_Q = 256 - 2 # default=128 - 2 # 512 - 2 # Path: chatglm3_sft/ft_chatglm3/config.py MAX_LENGTH_A = 256 - 2 # default=128 - 2 # 512 - 2 # Path: chatglm3_sft/ft_chatglm3/config.py MAX_LENGTH_QA = MAX_LENGTH_Q + MAX_LENGTH_A + 4 # Path: chatglm3_sft/ft_chatglm3/config.py LORA_DROPOUT = 0.05 # Path: chatglm3_sft/ft_chatglm3/config.py LORA_ALPHA = 16 # Path: chatglm3_sft/ft_chatglm3/config.py LORA_R = 8 # Path: chatglm3_sft/ft_chatglm3/train.py import random import copy import sys import os import torch.nn as nn import transformers import torch from chatglm3_sft.ft_chatglm3.config import CUDA_VISIBLE_DEVICES, USE_TORCH, CPU_NUMS # from config from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from peft import (get_peft_model_state_dict, get_peft_model, LoraConfig) from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.modeling_utils import unwrap_model from tensorboardX import SummaryWriter from datasets import load_dataset from chatglm3_sft.models.modeling_chatglm import ChatGLMForConditionalGeneration, ChatGLMConfig from chatglm3_sft.models.tokenization_chatglm import ChatGLMTokenizer from chatglm3_sft.ft_chatglm3.config import PATH_MODEL_PRETRAIN, DATA_PATH, MODEL_SAVE_DIR, REPO_ID from chatglm3_sft.ft_chatglm3.config import MICRO_BATCH_SIZE, BATCH_SIZE, GRADIENT_ACCUMULATION_STEPS from chatglm3_sft.ft_chatglm3.config import LEARNING_RATE, EPOCHS, SAVE_STEPS, VAL_SET_SIZE, TARGET_MODULES from chatglm3_sft.ft_chatglm3.config import IS_PARALLELIZABLE, MODEL_PARALLEL, USE_CACHE from chatglm3_sft.ft_chatglm3.config import MAX_LENGTH_Q, MAX_LENGTH_A, MAX_LENGTH_QA from chatglm3_sft.ft_chatglm3.config import LORA_DROPOUT, LORA_ALPHA, LORA_R # !/usr/bin/python # -*- coding: utf-8 -*- # @time : 2023/3/5 21:04 # @author : Mo # @function: chatglm3-sft path_root = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")) print(path_root) sys.path.append(path_root) os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:3072" os.environ["CUDA_VISIBLE_DEVICES"] = CUDA_VISIBLE_DEVICES os.environ["USE_TORCH"] = USE_TORCH os.environ["OMP_NUM_THREADS"] = CPU_NUMS # export OMP_NUM_THREADS=1 os.environ["OPENBLAS_NUM_THREADS"] = CPU_NUMS # export OPENBLAS_NUM_THREADS=1 os.environ["MKL_NUM_THREADS"] = CPU_NUMS # export MKL_NUM_THREADS=1 os.environ["VECLIB_MAXIMUM_THREADS"] = CPU_NUMS # export VECLIB_MAXIMUM_THREADS=1 os.environ["NUMEXPR_NUM_THREADS"] = CPU_NUMS # export NUMEXPR_NUM_THREADS=1 # import bitsandbytes as bnb def save_model_state(model, config=None, model_save_dir="./", model_name="adapter_model.bin"): """ 仅保存 有梯度 的 模型参数(推荐使用) """ if not os.path.exists(model_save_dir): os.makedirs(model_save_dir) # save config if config: config.save_pretrained(model_save_dir) # config.to_dict() # save model path_model = os.path.join(model_save_dir, model_name) grad_params_dict = {k: v.to("cpu") for k, v in model.named_parameters() if v.requires_grad == True} torch.save(grad_params_dict, path_model) print("******model_save_path is {}******".format(path_model)) def print_named_parameters(model, use_print_data=False): """ 打印模型训练参数/数据类型信息 """ trainable_params = 0 all_param = 0 for name, param in model.named_parameters(): if use_print_data: print((name, param.data.dtype, param.requires_grad, param.data)) else: print((name, param.data.dtype, param.requires_grad)) num_params = param.numel() # if using DS Zero 3 and the weights are initialized empty if num_params == 0 and hasattr(param, "ds_numel"): num_params = param.ds_numel all_param += num_params if param.requires_grad: trainable_params += num_params print(f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}") def prepare_model_for_half_training(model, output_embedding_layer_name="lm_head", use_gradient_checkpointing=True, layer_norm_names=["layer_norm"]): r"""
This method wrapps the entire protocol for preparing a model before running a training. This includes:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: forefy/eburger # Path: eburger/utils/cli_args.py # Path: eburger/utils/filesystem.py def create_directory_if_not_exists(directory_path): # Check if the directory already exists if not os.path.exists(directory_path): # Create the directory os.makedirs(directory_path) log("info", f"Created directory: {directory_path}") # Path: eburger/utils/filesystem.py def create_or_empty_directory(directory_path): # Check if the directory already exists if os.path.exists(directory_path): # Empty the directory by removing all its contents shutil.rmtree(directory_path) os.makedirs(directory_path) log("info", f"Emptied and re-created directory: {directory_path}") else: # Create the directory if it does not exist os.makedirs(directory_path) log("info", f"Created directory: {directory_path}") # Path: eburger/utils/filesystem.py def find_and_read_sol_file(folder_path): # Search for .sol files recursively in the given folder excluded_folders = settings.excluded_dirs + ["mocks", "lib"] for root, dirs, files in os.walk(folder_path): for file in files: sol_file_path = os.path.join(root, file) if any( fnmatch.fnmatch(sol_file_path, f"*/{pattern}/*") for pattern in excluded_folders ): continue if ( file.endswith(".sol") and not file.endswith(".t.sol") and not file.endswith(".s.sol") ): with open(sol_file_path, "r") as input_file: head = [line for line, _ in zip(input_file, range(10))] if any("pragma" in line for line in head): return sol_file_path log("error", "Can't parse path given in argument.") # Path: eburger/utils/filesystem.py def get_foundry_ast_json(forge_out_dir) -> dict: json_files = [f for f in os.listdir(forge_out_dir) if f.endswith(".json")] if not json_files: log("error", "forge build generated no output.") if len(json_files) > 1: log( "warning", "Multiple forge-output files found, choosing the latest.", ) latest_file = max( json_files, key=lambda x: os.path.getctime(os.path.join(forge_out_dir, x)), ) latest_file_path = os.path.join(forge_out_dir, latest_file) with open(latest_file_path, "r") as f: ast_json = json.load(f) return ast_json["output"] # Path: eburger/utils/filesystem.py def get_hardhat_ast_json(hardhat_out_dir) -> dict: json_files = [f for f in os.listdir(hardhat_out_dir) if f.endswith(".json")] if not json_files: log("error", "npx hardhat compile generated no output.") if len(json_files) > 1: log( "warning", "Multiple hardhat output files found, choosing the latest.", ) latest_file = max( json_files, key=lambda x: os.path.getctime(os.path.join(hardhat_out_dir, x)), ) latest_file_path = os.path.join(hardhat_out_dir, latest_file) with open(latest_file_path, "r") as f: ast_json = json.load(f) return ast_json["output"] # Path: eburger/utils/filesystem.py def get_solidity_version_from_file(solidity_file_or_folder: str) -> str: solc_required_version = None version_pattern = r"pragma\s+solidity\s+([^;]+);" version_number_pattern = r"\d+\.\d+\.\d+|\d+\.\d+" with open(solidity_file_or_folder, "r") as f: content = f.read() match = re.search(version_pattern, content) if match: version_match = match.group(1) # Extract all version numbers version_numbers = re.findall(version_number_pattern, version_match) if version_numbers: # If there is an upper limit, choose the version just below the upper limit if "<" in version_match and len(version_numbers) > 1: upper_version = version_numbers[-1] lower_version = ( version_numbers[0] if len(version_numbers) > 1 else None ) major, minor, *patch = map(int, upper_version.split(".")) lower_major, lower_minor, *lower_patch = ( map(int, lower_version.split(".")) if lower_version else (0, 0) ) if minor > 0 and ( major > lower_major or (major == lower_major and minor - 1 >= lower_minor) ): # Choose the highest minor version below the upper limit solc_required_version = f"{major}.{minor - 1}.0" else: # If the upper limit is too close to the lower limit, return the lower limit solc_required_version = lower_version else: # Return the highest version number found solc_required_version = version_numbers[-1] if solc_required_version is None: log("warning", "Couldn't extract solidity version from file, trying 0.8.20") solc_required_version = "0.8.20" return solc_required_version # Path: eburger/utils/helpers.py def construct_solc_cmdline(path_type: str, compilation_source_path: str) -> str: solc_cmdline = "solc" if args.solc_remappings: solc_cmdline += " " solc_cmdline += " ".join(args.solc_remappings) if path_type == "folder": solidity_files = get_all_solidity_files(args.solidity_file_or_folder) compilation_source_path = " ".join(solidity_files) solc_cmdline += f" --allow-paths . --combined-json abi,ast,bin,bin-runtime,srcmap,srcmap-runtime,userdoc,devdoc,hashes {compilation_source_path}" return solc_cmdline # Path: eburger/utils/helpers.py def get_filename_from_path(file_path: str) -> tuple: if args.project_name: filename = args.project_name else: filename_match = re.search(r"/([^/]+)\.sol$", file_path) filename = filename_match.group(1) if filename_match else None filename = f"{filename}_{datetime.now().strftime('%m%y')}" output_filename = settings.outputs_dir / f"{filename}.json" return filename, output_filename # Path: eburger/utils/helpers.py def is_valid_json(json_string): if not json_string: return False try: json.loads("".join(json_string)) return True except ValueError: return False # Path: eburger/utils/helpers.py def run_command(command, directory=None, shell=False, live_output=False): log("info", f"{command}") results = [] errors = [] process = subprocess.Popen( command if shell else shlex.split(command), stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8", shell=shell, cwd=directory, ) while True: output = process.stdout.readline() error = process.stderr.readline() if output == "" and process.poll() is not None: break if output: output_stripped = output.strip() if live_output: log("info", output_stripped) results.append(output_stripped) if error: error_stripped = error.strip() if live_output: log("error", error_stripped) errors.append(error_stripped) return results, errors # Path: eburger/utils/installers.py def install_foundry_if_not_found(): forge_binary_found = False try: run_command("forge -V") forge_binary_found = True except FileNotFoundError: pass if not forge_binary_found: log("info", "forge wasn't found on the system, trying to install.") run_command( "curl -L https://foundry.paradigm.xyz | bash", shell=True, ) run_command("foundryup") try: run_command("forge -V") log("info", "Successfully installed forge.") except: log( "error", "Couldn't automatically install forge, please install manually and try again.", ) # Path: eburger/utils/installers.py def install_hardhat_if_not_found(): hardhat_found = False npm_found = False npx_found = False try: res, err = run_command("npx hardhat help", directory=settings.project_root) if err: raise FileNotFoundError hardhat_found = True except FileNotFoundError: pass if not hardhat_found: log("info", "Local hardhat not found on project, installing.") try: run_command("npm -v") npm_found = True except FileNotFoundError: log( "error", "Can't automatically install hardhat without npm being installed manually first, please install npm and run again.", ) if npm_found: try: run_command("npx -v") npx_found = True except FileNotFoundError: log( "error", "Couldn't automatically install hardhat, please install manually and try again.", ) if not npx_found: try: run_command("npm install -g npx") run_command("npx -v") except FileNotFoundError: log( "error", "Couldn't automatically install hardhat, please install manually and try again.", ) try: if os.path.isfile(os.path.join(settings.project_root, "yarn.lock")): run_command( "yarn add --dev hardhat", directory=settings.project_root, ) else: run_command( "npm install --save-dev hardhat", directory=settings.project_root, ) except: log( "error", "Couldn't automatically install hardhat, please install manually and try again.", ) # Path: eburger/utils/installers.py def set_solc_compiler_version(solc_required_version): log("info", f"Trying to set solc to version {solc_required_version}") solc_use_res, errors = run_command(f"solc-select use {solc_required_version}") if not solc_use_res or errors: log("info", "Trying to install missing solc version") solc_select_install_res, errors = run_command( f"solc-select install {solc_required_version}" ) print(solc_select_install_res, errors) solc_select_use_res, errors = run_command( f"solc-select use {solc_required_version}" ) print(solc_select_use_res, errors) if not solc_use_res or errors: log("error", "Failed to install required solc version") log( "info", "Successfully set solc version, trying to compile contract.", ) # Path: eburger/utils/logger.py def log(type: str, message: str): match type: case "success": if "success" not in args.no: print(f"[{color.Success} 🍔 Success {color.Default}] {message}") case "error": print(f"[{color.Error} Error {color.Default}] {message}") sys.exit(0) case "warning": if "warning" not in args.no: print(f"[{color.Warning} Warning {color.Default}] {message}") case "info": if "info" not in args.no: print(f"[{color.Info} Info {color.Default}] {message}") case "insights": # json_printable = json.dumps(message, indent=4) # print(json_printable) if "insights" not in args.no: for item in message: name = item.get("name") severity = item.get("severity") results = item.get("results") # Check a sample result to ensure correct structure try: results[0]["file"] except Exception: log("warning", f"Bad results for {item.get('name')}, skipping.") continue occurrences = construct_insight_occurrences(results) match severity: case "High": severity = f"[{color.Error} ❗️High {color.Default}]" case "Medium": severity = f"[{color.Warning} ❗️Medium {color.Default}]" case "Low": severity = f"[{color.Info} ❗️Low {color.Default}]" print(f"{severity} {name} at:") for occurrence in occurrences: print(f" {occurrence}") # Path: eburger/serializer.py def parse_solidity_ast(ast_json, G): """ Parses the entire Solidity AST from the JSON representation. """ root_nodes = [] for key, node in ast_json.get("sources", {}).items(): ast_node = node.get("AST", node.get("ast", {})) root_node, G = parse_ast_node(ast_node, G) if root_node: root_nodes.append(root_node) return root_nodes, G # Path: eburger/serializer.py def reduce_json(ast_json): # Maintain original file list array def extract_file_list_from_ast(ast_data): if "sources" in ast_data: return list(ast_data["sources"].keys()) return [] original_file_list = extract_file_list_from_ast(ast_json) # Function to remove keys in-place from a dictionary def remove_keys_in_place(dictionary): removal_list = [ key for key in dictionary if any(substring in key for substring in settings.excluded_contracts) ] for key in removal_list: log("info", f"Excluding {key}") del dictionary[key] for section in ["sources", "contracts"]: if section in ast_json: remove_keys_in_place(ast_json[section]) return ast_json, original_file_list # Path: eburger/utils/outputs.py def draw_graph(file_name, G): nt = Network("800px", "1800px", select_menu=True, directed=True) nt.from_nx(G) nt.show_buttons(filter_=[]) original_stdout = sys.stdout sys.stdout = Silent() file_path = settings.outputs_dir / f"{file_name}.html" nt.show(str(file_path), notebook=False) sys.stdout = original_stdout graph_vis_lib_path = settings.outputs_dir / "lib" if os.path.exists(graph_vis_lib_path): shutil.rmtree(graph_vis_lib_path) graph_html_folders = ["bindings", "tom-select", "vis-*"] move_multiple_dirs("lib", graph_html_folders, graph_vis_lib_path) # Path: eburger/utils/outputs.py def save_as_json(file_path, json_data): with open(file_path, "w") as outfile: json.dump(json_data, outfile, indent=4) # Path: eburger/utils/outputs.py def save_python_ast(file_name, data): orig_name = file_name file_path = settings.outputs_dir / f"{file_name}.py" with open(file_path, "w") as file: data_str = repr(data) file.write(f"from eburger.models import *\n\n{orig_name} = {data_str}\n") # Path: eburger/yaml_parser.py def process_files_concurrently(ast_data: dict, src_file_list: list): yaml_files = list(settings.templates_directory.glob("*.yaml")) log( "info", f"Loaded {color.Success}{len(yaml_files)}{color.Default} templates for execution.", ) insights = [] with concurrent.futures.ThreadPoolExecutor() as executor: futures = [ executor.submit(process_yaml, str(file_path), ast_data, src_file_list) for file_path in yaml_files ] for future in concurrent.futures.as_completed(futures): try: results = future.result(timeout=30) # 30 seconds timeout if results.get("results"): insights.append(results) except concurrent.futures.TimeoutError: log("error", "A task has timed out.") except Exception as e: log("error", f"Unhandled error: {e}") log( "info", f"{color.Error}{len(insights)}{color.Default} insight{'s were' if (len(insights) > 1 or len(insights) == 0) else ' was'} found by eBurger.", ) if insights: log("insights", insights) return insights # Path: eburger/main.py from datetime import datetime from pathlib import Path from eburger.utils.cli_args import args from eburger.utils.filesystem import ( create_directory_if_not_exists, create_or_empty_directory, find_and_read_sol_file, get_foundry_ast_json, get_hardhat_ast_json, get_solidity_version_from_file, ) from eburger.utils.helpers import ( construct_solc_cmdline, get_filename_from_path, is_valid_json, run_command, ) from eburger.utils.installers import ( install_foundry_if_not_found, install_hardhat_if_not_found, set_solc_compiler_version, ) from eburger.utils.logger import log from eburger.serializer import parse_solidity_ast, reduce_json from eburger.utils.outputs import draw_graph, save_as_json, save_python_ast from eburger.yaml_parser import process_files_concurrently import json import os import re import shutil import sys import networkx as nx import eburger.settings as settings if path_type is not None: # Foundry compilation flow if path_type == "foundry": log("info", "Foundry project detected, compiling using forge.") install_foundry_if_not_found() if args.solc_remappings: log("warning", "Ignoring the -r option in foundry based projects.") run_command(f"forge clean", args.solidity_file_or_folder) forge_out_dir = settings.outputs_dir / "forge-output" create_or_empty_directory(forge_out_dir) build_output_lines, _ = run_command( f"forge build --force --skip {' '.join(settings.excluded_dirs)} --build-info --build-info-path {forge_out_dir}", args.solidity_file_or_folder, ) for line in build_output_lines: log("info", line) sample_file_path = find_and_read_sol_file(args.solidity_file_or_folder) filename, output_filename = get_filename_from_path(sample_file_path) ast_json = get_foundry_ast_json(forge_out_dir) ast_json, src_file_list = reduce_json(ast_json) save_as_json(output_filename, ast_json) # Hardhat compilation flow if path_type == "hardhat": log("info", "Hardhat project detected, compiling using hardhat.") install_hardhat_if_not_found() if args.solc_remappings: log("warning", "Ignoring the -r option in hardhat based projects.") run_command(f"npx hardhat clean", directory=settings.project_root) build_output_lines, _ = run_command( f"npx hardhat compile --force", directory=settings.project_root, ) for line in build_output_lines: log("info", line) # Copy compilation results to .eburger expected_hardhat_outfiles = os.path.join( args.solidity_file_or_folder, "artifacts", "build-info" ) if not os.path.isdir(expected_hardhat_outfiles): log( "error", f"Hardhat's compilation files were not found in expected location {expected_hardhat_outfiles}", ) hardhat_out_dir = settings.outputs_dir / "hardhat-output" if os.path.exists(hardhat_out_dir): shutil.rmtree(hardhat_out_dir) shutil.copytree(expected_hardhat_outfiles, hardhat_out_dir) sample_file_path = find_and_read_sol_file(args.solidity_file_or_folder) filename, output_filename = get_filename_from_path(sample_file_path) ast_json = get_hardhat_ast_json(hardhat_out_dir) ast_json, src_file_list = reduce_json(ast_json) save_as_json(output_filename, ast_json) # solc compilation flow elif path_type in ["file", "folder"]: sample_file_path = args.solidity_file_or_folder compilation_source_path = args.solidity_file_or_folder if path_type == "folder": sample_file_path = find_and_read_sol_file(args.solidity_file_or_folder) filename, output_filename = get_filename_from_path(sample_file_path) if args.solc_compiler_version: solc_required_version = args.solc_compiler_version else: solc_required_version = get_solidity_version_from_file(sample_file_path) set_solc_compiler_version(solc_required_version) solc_cmdline = construct_solc_cmdline(path_type, compilation_source_path) if solc_cmdline is None: log("error", "Error constructing solc command line") solc_compile_res, _ = run_command(solc_cmdline) if not is_valid_json(solc_compile_res): error_string = "Locally installed solc errored out trying to compile the contract. Please review comiler warnings above" if not args.solc_remappings: error_string += ( "or see if library remappings (using the -r option) are needed" ) if not args.solc_compiler_version: error_string += ", or try specifing the solidity compiler version (using the -s option)" error_string += "." log( "error", error_string, ) solc_compile_res_parsed = json.loads("".join(solc_compile_res)) ast_json, src_file_list = reduce_json(solc_compile_res_parsed) save_as_json(output_filename, solc_compile_res_parsed) # Parse AST G = nx.MultiDiGraph() ast_roots, G = parse_solidity_ast(ast_json, G) # Draw graph settings.outputs_dir / filename draw_graph(settings.outputs_dir / filename, G) save_python_ast(filename, ast_roots) # Parse YAML templates if args.templates_path: settings.templates_directory = Path(args.templates_path) log("info", f"Templates path: {settings.templates_directory}") insights = process_files_concurrently(ast_json, src_file_list) if insights: # Same data saved twice - once for historic reference and one for clarity
insights_json_path = settings.outputs_dir / f"eburger_output_{filename}.json"
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: monofy-org/monofy-ai # Path: utils/startup_args.py class DefaultArgs: def print_help(): # Path: settings.py HOST = "127.0.0.1" # Path: settings.py IDLE_OFFLOAD_TIME = 60 # Path: settings.py MEDIA_CACHE_DIR = ".cache" # Path: settings.py PORT = 5000 # Path: settings.py SD_USE_SDXL = True # Set to True for SDXL/turbo models # Path: utils/console_logging.py def init_logging(): import logging import sys # Create a custom formatter with color class ColoredFormatter(logging.Formatter): COLORS = { "ERROR": ANSI_COLORS["red"], "WARNING": ANSI_COLORS["bold"] + ANSI_COLORS["cyan"], "INFO": ANSI_COLORS["cyan"], "DEBUG": ANSI_COLORS["gray"], "RESET": ANSI_COLORS["reset"], } def format(self, record): log_message = super(ColoredFormatter, self).format(record) log_level = record.levelname # Add color to log messages based on log level return ( f"{self.COLORS.get(log_level, '')}{log_message}{self.COLORS['RESET']}" ) # Create a console handler and set the formatter ensure_folder_exists("logs") #logging.basicConfig(filename=os.path.join("logs", "console.log"), level=logging.DEBUG) logging.basicConfig(level=logging.INFO) logging.root.handlers.clear() console_handler = logging.StreamHandler(sys.stdout) console_handler.setFormatter(ColoredFormatter()) logging.root.addHandler(console_handler) # Path: utils/file_utils.py def ensure_folder_exists(path: str): if not os.path.exists(path): os.makedirs(path) logging.info(f"Created folder {path}") # Path: utils/gpu_utils.py def load_gpu_task(task_name: str, client, free_vram=True): if not torch.cuda.is_available(): logging.info("CUDA not available. Skipping offloads.") return global current_tasks global last_task last_used[task_name] = time.time() if task_name == last_task or not free_vram: return last_task = task_name logging.info(f"Freeing VRAM for task {task_name}...") before = torch.cuda.memory_reserved() if free_vram: free_idle_vram(task_name) small_tasks_only = last_task is not None and last_task in small_tasks empty_cache = task_name != last_task if small_tasks_only: if task_name in large_tasks: empty_cache = True for _, client in current_tasks.items(): client.offload(task_name) current_tasks.clear() else: if current_tasks: empty_cache = True for _, client in current_tasks.items(): client.offload(task_name) current_tasks.clear() current_tasks[task_name] = client if empty_cache: torch.cuda.empty_cache() gc.collect() after = torch.cuda.memory_reserved() gib = bytes_to_gib(before - after) if gib > 0: logging.info(f"Freed {gib:.2f} GiB from VRAM cache") logging.warn(f"Loading {task_name}...") last_used[task_name] = time.time() # Path: utils/gpu_utils.py def set_idle_offload_time(timeout_seconds: float): global idle_offload_time idle_offload_time = timeout_seconds # Path: utils/misc_utils.py def print_completion_time(since, task_name=None): t = time.time() - since logging.info(f"{task_name or 'Task'} completed in {round(t,2)} seconds.") return t # Path: utils/misc_utils.py def sys_info(): python_info = sys.version optimizations = f"bf16={is_bf16_available}, fp16={use_fp16}, cudnn={torch.backends.cudnn.is_available()}, xformers={USE_XFORMERS}, deepspeed={USE_DEEPSPEED}" logging.info(f"Python version: {python_info}") logging.info(f"Using device: {autodetect_device()} ({optimizations})") # Path: webui.py def launch_webui(args, prevent_thread_lock=False): if args is None or args.tts: tts = True else: tts = False async def chat( text: str, history: list[list], speak_results: bool, chunk_sentences ): from clients import TTSClient, Exllama2Client from utils.chat_utils import convert_gr_to_openai print(f"text={text}") print(f"chunk_sentences={chunk_sentences}") response = Exllama2Client.chat( text=text, messages=convert_gr_to_openai(history), ) message = "" for chunk in response: message += chunk if tts and speak_results: logging.info("\nGenerating speech...") async with gpu_thread_lock: load_gpu_task("tts", TTSClient) audio = TTSClient.generate_speech( message, speed=settings["speed"], temperature=settings["temperature"], speaker_wav=settings["voice"], language=settings["language"], ) yield message play_wav_from_bytes(audio) with gr.Blocks(title="monofy-ai", analytics_enabled=False).queue() as web_ui: if not args or args.llm: with gr.Tab("Chat/TTS"): speech_checkbox = None with gr.Row(): with gr.Column(): with gr.Row(): speech_checkbox = gr.Checkbox( value=tts is not None, interactive=tts is not None, label="Speak results", ) check_sentences_checkbox = gr.Checkbox( value=True, label="Chunk sentences", visible=False, # TODO ) grChat = gr.ChatInterface( fn=chat, additional_inputs=[ speech_checkbox, check_sentences_checkbox, ], ) grChat.queue() if tts: with gr.Column(): def set_language(value): settings["language"] = value def set_speed(value): settings["speed"] = value def set_temperature(value): settings["temperature"] = value def set_voice(value): settings["voice"] = value with gr.Column(): grText = gr.Textbox( "This is a test of natural speech.", label="Text" ) tts_voice = gr.Textbox( os.path.join(TTS_VOICES_PATH, "female1.wav"), label="Voice", ) with gr.Row(): tts_speed = gr.Number("1", label="Speed") tts_temperature = gr.Number( "0.75", label="Temperature" ) tts_language = gr.Dropdown( [ "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko", ], label="Language", value=settings["language"], ) tts_language.change(set_language, inputs=[tts_language]) tts_speed.change(set_speed, inputs=[tts_speed]) tts_temperature.change( set_temperature, inputs=[tts_temperature] ) tts_voice.change(set_voice, inputs=[tts_voice]) tts_button = gr.Button("Generate") tts_output = gr.Audio( label="Audio Output", type="numpy", autoplay=True, format="wav", interactive=False, streaming=False, # TODO ) import pygame def play_wav_from_bytes(wav_bytes): tts_output.update(wav_bytes) return pygame.mixer.init() sound = pygame.mixer.Sound(io.BytesIO(wav_bytes)) sound.play() # Wait for the sound to finish playing pygame.time.wait(int(sound.get_length() * 1000)) async def preview_speech( text: str, speed: int, temperature: float, voice: str, language: str, ): from clients import TTSClient # TODO stream to grAudio using generate_text_streaming async with gpu_thread_lock: load_gpu_task("tts", TTSClient) yield TTSClient.generate_speech( text, speed, temperature, voice, language, ) tts_button.click( preview_speech, inputs=[ grText, tts_speed, tts_temperature, tts_voice, tts_language, ], outputs=[tts_output], ) # Right half of the screen (Chat UI) - Only if args.llm is True if not args or args.sd: from hyper_tile import split_attention t2i_vid_button: gr.Button = None async def generate_video( image_input, width: int, height: int, steps: int, fps: int, motion_bucket_id: int, noise: float, interpolate: int, ): from clients import SDClient # Convert numpy array to PIL Image async with gpu_thread_lock: load_gpu_task("img2vid", SDClient) # TODO VideoClient image = Image.fromarray(image_input).convert("RGB") filename_noext = random_filename(None, True) num_frames = 50 decode_chunk_size = 25 def do_gen(): video_frames = SDClient.pipelines["img2vid"]( image, num_inference_steps=steps, num_frames=num_frames, motion_bucket_id=motion_bucket_id, decode_chunk_size=decode_chunk_size, width=width, height=height, noise_aug_strength=noise, ).frames[0] if interpolate > 1: video_frames = modules.rife.interpolate( video_frames, count=interpolate, scale=1, pad=1, change=0, ) export_to_video( video_frames, f"{filename_noext}.mp4", fps=fps * interpolate, ) else: export_to_video( video_frames, f"{filename_noext}.mp4", fps=fps ) return f"{filename_noext}.mp4" if SD_USE_HYPERTILE_VIDEO: aspect_ratio = 1 if width == height else width / height split_vae = split_attention( SDClient.pipelines["img2vid"].vae, tile_size=256, aspect_ratio=aspect_ratio, ) split_unet = split_attention( SDClient.pipelines["img2vid"].unet, tile_size=256, aspect_ratio=aspect_ratio, ) with split_vae: with split_unet: yield do_gen() else: yield do_gen() async def txt2img( prompt: str, negative_prompt: str, width: int, height: int, num_inference_steps: int, guidance_scale: float, ): from clients import SDClient async with gpu_thread_lock: load_gpu_task( "sdxl" if SD_USE_SDXL else "stable diffusion", SDClient ) result = SDClient.pipelines["txt2img"]( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, width=width, height=height, ) yield result.images[0], gr.Button( label="Generate Video", interactive=True ) async def audiogen(prompt: str, duration: float, temperature: float): from clients import AudioGenClient filename_noext = random_filename(None, True) return AudioGenClient.generate( prompt, file_path=filename_noext, duration=duration, temperature=temperature, ) async def musicgen(prompt: str, duration: float, temperature: float): from clients import MusicGenClient filename_noext = random_filename(None, True) return MusicGenClient.generate( prompt, file_path=filename_noext, duration=duration, temperature=temperature, ) def disable_send_button(): yield gr.Button(label="Generating...", interactive=False) with gr.Tab("Image/Video"): with gr.Row(): with gr.Column(): t2i_prompt = gr.TextArea( "an advanced humanoid robot with human expression in a futuristic laboratory", lines=4, label="Prompt", ) t2i_negative_prompt = gr.TextArea( "", lines=4, label="Negative Prompt" ) with gr.Row(): t2i_width = gr.Slider( minimum=256, maximum=2048, value=512, step=8, interactive=True, label="Width", ) t2i_height = gr.Slider( minimum=256, maximum=2048, value=512, step=8, interactive=True, label="Height", ) t2i_steps = gr.Slider( minimum=1, maximum=100, value=20, step=1, interactive=True, label="Steps", ) t2i_guidance_scale = gr.Slider( minimum=0, maximum=50, value=3, step=0.1, interactive=True, label="Guidance", ) t2i_button = gr.Button("Generate") with gr.Column(): t2i_output = gr.Image( None, width=512, height=512, interactive=False, label="Output", ) with gr.Row(): i2v_width = gr.Number( 512, label="Width", precision=0, step=8 ) i2v_height = gr.Number( 512, label="Height", precision=0, step=8 ) i2v_fps = gr.Number(6, label="FPS", precision=0, minimum=1) i2v_steps = gr.Number(10, label="Steps", precision=0) i2v_motion = gr.Number( 15, label="Motion Bucket ID", precision=0 ) i2v_noise = gr.Number( 0.0, label="Noise (also increases motion)", precision=0, step=0.01, ) i2v_interpolation = gr.Number( 3, label="Frame Interpolation", precision=0, minimum=1 ) t2i_vid_button = gr.Button("Generate Video", interactive=False) i2v_output = gr.Video( None, width=320, height=320, interactive=False, label="Video", format="mp4", autoplay=True, ) t2i_vid_button.click( generate_video, inputs=[ t2i_output, i2v_width, i2v_height, i2v_steps, i2v_fps, i2v_motion, i2v_noise, i2v_interpolation, ], outputs=[i2v_output], ) t2i_button.click(disable_send_button, outputs=[t2i_vid_button]) t2i_button.click( txt2img, inputs=[ t2i_prompt, t2i_negative_prompt, t2i_width, t2i_height, t2i_steps, t2i_guidance_scale, ], outputs=[t2i_output, t2i_vid_button], ) with gr.Tab("Audio/Music"): with gr.Row(): with gr.Column(): audiogen_prompt = gr.TextArea( "robot assembly line", label="Audio description", lines=3 ) with gr.Row(): audiogen_duration = gr.Slider( minimum=1, maximum=30, value=3, step=1, interactive=True, label="Duration (seconds)", ) audiogen_temperature = gr.Slider( minimum=0.1, maximum=1.9, value=1, step=0.05, interactive=True, label="Temperature", ) audiogen_button = gr.Button("Generate Audio") audiogen_output = gr.Audio(interactive=False) audiogen_button.click( audiogen, inputs=[ audiogen_prompt, audiogen_duration, audiogen_temperature, ], outputs=[audiogen_output], ) with gr.Column(): musicgen_prompt = gr.TextArea( "techno beat with a cool bassline", label="Music description", lines=3, ) with gr.Row(): musicgen_duration = gr.Slider( minimum=1, maximum=30, value=15, step=1, interactive=True, label="Duration (seconds)", ) musicgen_temperature = gr.Slider( minimum=0.1, maximum=1.9, value=1, step=0.05, interactive=True, label="Temperature", ) musicgen_button = gr.Button("Generate Music") musicgen_output = gr.Audio(interactive=False) musicgen_button.click( musicgen, inputs=[ musicgen_prompt, musicgen_duration, musicgen_temperature, ], outputs=[musicgen_output], ) with gr.Tab("Shap-e"): async def shape_generate(prompt: str, steps: int, guidance: float): from clients import ShapeClient async with gpu_thread_lock: load_gpu_task("shap-e", ShapeClient) filename_noext = random_filename(None, True) file_path = ShapeClient.generate( prompt, steps=steps, guidance_scale=guidance, file_path=filename_noext, format="glb", ) print(file_path) yield file_path with gr.Row(): with gr.Column(): shap_e_prompt = gr.TextArea("a humanoid robot", label="Prompt") shap_e_guidance = gr.Slider( minimum=0, maximum=50, value=15, step=0.1, interactive=True, label="Guidance", ) shap_e_steps = gr.Slider( minimum=1, maximum=100, value=20, step=1, interactive=True, label="Steps", ) shap_e_button = gr.Button("Generate") with gr.Column(): shap_e_output = gr.Model3D( None, interactive=False, label="Output", ) shap_e_button.click( shape_generate, inputs=[ shap_e_prompt, shap_e_steps, shap_e_guidance, ], outputs=[shap_e_output], ) web_ui.launch( prevent_thread_lock=prevent_thread_lock, inbrowser=args and not args.all ) return web_ui # Path: run.py import time import torch import logging import uvicorn from utils.startup_args import print_help, startup_args as args from settings import ( HOST, IDLE_OFFLOAD_TIME, MEDIA_CACHE_DIR, PORT, SD_USE_SDXL ) from fastapi import FastAPI from fastapi.staticfiles import StaticFiles from utils.console_logging import init_logging from utils.file_utils import ensure_folder_exists from utils.gpu_utils import load_gpu_task, set_idle_offload_time from utils.misc_utils import print_completion_time, sys_info from webui import launch_webui from apis import txt2img, img2img, depth, txt2vid, img2vid, shape, audiogen, musicgen from apis.llm import llm_api from apis import whisper from apis.tts import tts_api from clients import SDClient from clients import TTSClient from clients import Exllama2Client API_PREFIX = "/api" init_logging() start_time = None end_time = None sys_info() ensure_folder_exists(MEDIA_CACHE_DIR) def start_fastapi(args=None): global start_time start_time = time.time() app = FastAPI( title="monofy-ai", description="Simple and multifaceted API for AI", version="0.0.1", redoc_url="/api/docs", docs_url="/api/docs/swagger", ) set_idle_offload_time(IDLE_OFFLOAD_TIME) if args is None or args.all or args.sd: app.include_router(txt2img.router, prefix=API_PREFIX) app.include_router(img2img.router, prefix=API_PREFIX) app.include_router(depth.router, prefix=API_PREFIX) app.include_router(txt2vid.router, prefix=API_PREFIX) app.include_router(img2vid.router, prefix=API_PREFIX) app.include_router(shape.router, prefix=API_PREFIX) app.include_router(audiogen.router, prefix=API_PREFIX) app.include_router(musicgen.router, prefix=API_PREFIX) if args is None or args.all or args.llm: app.include_router(whisper.router, prefix=API_PREFIX) # TODO use router llm_api(app) if args is None or args.all or args.tts: tts_api(app) app.mount("/", StaticFiles(directory="public_html", html=True), name="static") return app def print_startup_time(): global start_time global end_time if end_time is None: end_time = print_completion_time(start_time, "Startup") def warmup(args): logging.info("Warming up...") if args is None or args.sd: load_gpu_task("sdxl" if SD_USE_SDXL else "stable diffusion", SDClient, False) SDClient.pipelines["txt2img"] # just reference something so the module loads logging.info(f"[--warmup] {SDClient.friendly_name} ready.") if args is None or args.tts: load_gpu_task("tts", TTSClient, False)
TTSClient.generate_speech("Initializing speech.")
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: wadiuvatzy/SAM-G # Path: logger.py class Logger(object): def __init__(self, log_dir, use_tb=False, use_wandb=False): self._log_dir = log_dir self._train_mg = MetersGroup(log_dir / 'train.csv', formating=COMMON_TRAIN_FORMAT, use_wandb=use_wandb) self._eval_mg = MetersGroup(log_dir / 'eval.csv', formating=COMMON_EVAL_FORMAT, use_wandb=use_wandb) if use_tb: self._sw = SummaryWriter(str(log_dir / 'tb')) else: self._sw = None self.use_wandb = use_wandb def _try_sw_log(self, key, value, step): if self._sw is not None: self._sw.add_scalar(key, value, step) def log(self, key, value, step): assert key.startswith('train') or key.startswith('eval') if type(value) == torch.Tensor: value = value.item() self._try_sw_log(key, value, step) mg = self._train_mg if key.startswith('train') else self._eval_mg mg.log(key, value) def log_metrics(self, metrics, step, ty): for key, value in metrics.items(): self.log(f'{ty}/{key}', value, step) def dump(self, step, ty=None): if ty is None or ty == 'eval': self._eval_mg.dump(step, 'eval') if ty is None or ty == 'train': self._train_mg.dump(step, 'train') def log_and_dump_ctx(self, step, ty): return LogAndDumpCtx(self, step, ty) # Path: replay_buffer.py class ReplayBufferStorage: def __init__(self, data_specs, replay_dir): self._data_specs = data_specs self._replay_dir = replay_dir replay_dir.mkdir(exist_ok=True) self._current_episode = defaultdict(list) self._preload() def __len__(self): return self._num_transitions def add(self, time_step): for spec in self._data_specs: value = time_step[spec.name] if np.isscalar(value): value = np.full(spec.shape, value, spec.dtype) assert spec.shape == value.shape and spec.dtype == value.dtype self._current_episode[spec.name].append(value) if time_step.last(): episode = dict() for spec in self._data_specs: value = self._current_episode[spec.name] episode[spec.name] = np.array(value, spec.dtype) self._current_episode = defaultdict(list) self._store_episode(episode) def _preload(self): self._num_episodes = 0 self._num_transitions = 0 for fn in self._replay_dir.glob('*.npz'): _, _, eps_len = fn.stem.split('_') self._num_episodes += 1 self._num_transitions += int(eps_len) def _store_episode(self, episode): eps_idx = self._num_episodes eps_len = episode_len(episode) self._num_episodes += 1 self._num_transitions += eps_len ts = datetime.datetime.now().strftime('%Y%m%dT%H%M%S') eps_fn = f'{ts}_{eps_idx}_{eps_len}.npz' save_episode(episode, self._replay_dir / eps_fn) # Path: replay_buffer.py def make_replay_loader(replay_dir, max_size, batch_size, num_workers, save_snapshot, nstep, discount): max_size_per_worker = max_size // max(1, num_workers) iterable = ReplayBuffer(replay_dir, max_size_per_worker, num_workers, nstep, discount, fetch_every=1000, save_snapshot=save_snapshot) loader = torch.utils.data.DataLoader(iterable, batch_size=batch_size, num_workers=num_workers, pin_memory=True, worker_init_fn=_worker_init_fn) return loader # Path: video.py class TrainVideoRecorder: def __init__(self, root_dir, render_size=256, fps=20): if root_dir is not None: self.save_dir = root_dir / 'train_video' self.save_dir.mkdir(exist_ok=True) else: self.save_dir = None self.render_size = render_size self.fps = fps self.frames = [] def init(self, obs, enabled=True): self.frames = [] self.enabled = self.save_dir is not None and enabled self.record(obs) def record(self, obs): if self.enabled: frame = cv2.resize(obs[-3:].transpose(1, 2, 0), dsize=(self.render_size, self.render_size), interpolation=cv2.INTER_CUBIC) self.frames.append(frame) def save(self, file_name): if self.enabled: path = self.save_dir / file_name imageio.mimsave(str(path), self.frames, fps=self.fps) # Path: video.py class VideoRecorder: def __init__(self, root_dir, render_size=256, fps=20): if root_dir is not None: self.save_dir = root_dir / 'eval_video' self.save_dir.mkdir(exist_ok=True) else: self.save_dir = None self.render_size = render_size self.fps = fps self.frames = [] def init(self, env, enabled=True): self.frames = [] self.enabled = self.save_dir is not None and enabled self.record(env) def record(self, env): if self.enabled: if hasattr(env, 'physics'): frame = env.physics.render(height=self.render_size, width=self.render_size, camera_id=0) else: frame = env.render() self.frames.append(frame) def save(self, file_name): if self.enabled: path = self.save_dir / file_name imageio.mimsave(str(path), self.frames, fps=self.fps) # Path: eval.py import warnings import os import hydra import numpy as np import torch import wrappers.dmc as dmc import utils import wandb import imageio import cv2 import sys import matplotlib.pyplot as plt from pathlib import Path from dm_env import specs from logger import Logger from replay_buffer import ReplayBufferStorage, make_replay_loader from video import TrainVideoRecorder, VideoRecorder from tqdm import tqdm from wrappers.robo_wrapper import robo_make from wrappers.habi_wrapper import make_habitat_env from wrappers.carla_wrapper import carla_make_eval from wrappers.robo_wrapper import robo_make from eval import Workspace as W step, episode, total_reward = 0, 0, 0 eval_until_episode = utils.Until(self.cfg.num_eval_episodes) count = 0 success_rate = 0 for i in tqdm(range(1, 11)): episode_reward = 0 time_step = self.eval_env.reset() self.video_recorder.init(self.eval_env, enabled=(episode == 0)) while not time_step.last(): if self.agent_name == 'pieg': with torch.no_grad(): action = self.agent.act(time_step.observation, self.global_step, eval_mode=True) else: with torch.no_grad(), utils.eval_mode(self.agent): action = self.agent.act(time_step.observation, self.global_step, eval_mode=True) time_step = self.eval_env.step(action) self.video_recorder.record(self.eval_env) total_reward += time_step.reward episode_reward += time_step.reward step += 1 success_rate += time_step.info['success'] f = open("{}/file_{}.txt".format(self.model_work_dir, self.cfg.seed), 'a') f.write("episode_reward: %f \n" % (float(episode_reward))) f.write("success_rate: %f \n" % (float(time_step.info['success']))) f.close() episode += 1 self.video_recorder.save(f'{self.global_frame}.mp4') print(f'Seed {self.cfg.seed} Mean_reward: ', total_reward / episode) print(f'Seed {self.cfg.seed} Success_rate: ', success_rate / episode) with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log: log('episode_reward', total_reward / episode) log('episode_length', step * self.cfg.action_repeat / episode) log('episode', self.global_episode) log('step', self.global_step) log('success_rate', success_rate / episode) def carla_eval(self): step, episode, total_reward = 0, 0, 0 eval_until_episode = utils.Until(self.cfg.num_eval_episodes) # carla metrics: reason_each_episode_ended = [] distance_driven_each_episode = [] crash_intensity = 0. steer = 0. brake = 0. count = 0 success_num = 0 for i in range(50): time_step = self.eval_env.reset() # To check wether the weather is successfully changed if i == 0: plt.imshow(time_step.observation[6:9].transpose(1, 2, 0) / 255.) plt.savefig(f'{self.work_dir}/test.png') # self.video_recorder.init(enabled=True) dist_driven_this_episode = 0. while not time_step.last(): if self.agent_name == 'pieg': with torch.no_grad(): action = self.agent.act(time_step.observation, self.global_step, eval_mode=True) else: with torch.no_grad(), utils.eval_mode(self.agent): action = self.agent.act(time_step.observation, self.global_step, eval_mode=True) time_step, info = self.eval_env.step(action) # self.video_recorder.record(self.eval_env) total_reward += time_step.reward step += 1 dist_driven_this_episode += info['distance'] crash_intensity += info['crash_intensity'] steer += abs(info['steer']) brake += info['brake'] count += 1 episode += 1 print('total_reward per episode:', total_reward / episode) # self.video_recorder.save(f'{episode}.mp4') reason_each_episode_ended.append(info['reason_episode_ended']) distance_driven_each_episode.append(dist_driven_this_episode) if info['reason_episode_ended'] == 'success': success_num += 1 with self.logger.log_and_dump_ctx(self.global_frame, ty='eval') as log: log('episode_reward', total_reward / episode) log('episode_length', step * self.cfg.action_repeat / episode) log('episode', self.global_episode) log('step', self.global_step) log('success_rate', success_num / episode) print('METRICS--------------------------') print("reason_each_episode_ended: {}".format(reason_each_episode_ended)) print("distance_driven_each_episode: {}".format(distance_driven_each_episode)) print('crash_intensity: {}'.format(crash_intensity / self.cfg.num_eval_episodes)) print('steer: {}'.format(steer / count)) print('brake: {}'.format(brake / count)) print('---------------------------------') f = open("{}/file_{}.txt".format(self.work_dir, self.seed), 'a') f.write("seed: %f \n" % (self.seed)) f.write("weather_name: %s \n" % (self.env_weather_name)) f.write("reward: %f \n" % (float(total_reward / episode))) f.write("distance: %f \n" % (float(np.mean(distance_driven_each_episode)))) f.write("steer: %f \n" % (steer / count)) f.write("brake: %f \n" % (brake / count)) f.write("reason_episode_ended: {} \n".format(reason_each_episode_ended))
f.write("distance all: {} \n".format(distance_driven_each_episode))
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: USB-Data-Logger/PythonBasedPCapp # Path: libs/utils.py def get_icon(icon_path): return ImageTk.PhotoImage(Image.open(resource_path(icon_path))) # Path: libs/utils.py def get_formatted_date(format_str, suffix=""): format_str = format_str.replace("%o", suffix) return datetime.now().strftime(format_str) # Path: libs/utils.py def resource_path(relative_path): """Get absolute path to resource, works for dev and for PyInstaller""" try: # PyInstaller creates a temp folder and stores path in _MEIPASS base_path = sys._MEIPASS except Exception: base_path = os.path.abspath(".") return os.path.join(base_path, relative_path) # Path: libs/utils.py def get_com_port(settings): com_ports = [f"COM{i}" for i in range(10)] if not settings["com_port"] in com_ports: com_ports.append(settings["com_port"]) return com_ports # Path: libs/constants.py FILE_NAME_TEMPLATE = { "Default (Date+time+Optional suffix)": "%Y-%m-%d %H.%M.%S %o", "Date only (Date+Optional suffix)": "%Y-%m-%d %o", "User Input": "%o", } SETTINGS_FILE = "settings.json" ASSET_PATH = "asset" MAIN_WINDOW_WIDTH = 450 MAIN_WINDO_HEIGHT = 300 MAIN_WINDOW_GEOMETRY = f"{MAIN_WINDOW_WIDTH}x{MAIN_WINDO_HEIGHT}" # Path: libs/settings.py def load_settings(settings_path): def save_settings(settings_file, settings): # Path: libs/serial_communicator.py class SerialCommunicator: def __init__(self): self.serial_port = None self.stop_thread = False def open_serial_port(self, port, baudrate): try: self.serial_port = serial.Serial(port, baudrate, timeout=1) except serial.SerialException as e: raise RuntimeError(f"Error opening serial port: {e}") def close_serial_port(self): if self.serial_port: self.serial_port.close() def read_line(self): if self.serial_port: return self.serial_port.readline().decode("utf-8").strip() return "" # Path: dialogs/settings_window.py class SettingsWindow: def __init__(self, parent, settings, on_distroy=None): self.parent = parent self.place_holder = "Optional suffix" settings_icon = get_icon(path.join(constants.ASSET_PATH, "smallicon_setting.ico")) self.settings = settings self.on_distroy = on_distroy self.settings_window = ctk.CTkToplevel(parent) self.settings_window.transient(self.parent) self.settings_window.configure() self.settings_window.title("Settings") self.settings_window.geometry("460x200") self.settings_window.resizable(False, False) # Folder Selection self.folder_label = ctk.CTkLabel( self.settings_window, text="Select Folder Location:" ) self.folder_label.place(x=10, y=7) self.folder_var = ctk.StringVar() self.folder_entry = ctk.CTkEntry( self.settings_window, width=210, textvariable=self.folder_var, ) self.folder_entry.place(x=150, y=7) ToolTip(self.folder_entry, msg=self.folder_var.get) self.browse_button = ctk.CTkButton( self.settings_window, text="Browse", width=80, fg_color="#0F0F0F", hover_color="#474747", command=self.browse_folder, ) self.browse_button.place(x=373, y=7) # File Name Template self.template_label = ctk.CTkLabel( self.settings_window, text="File Name Template:" ) self.template_label.place(x=10, y=50) self.template_var = ctk.StringVar() self.combo_format = ctk.CTkComboBox( self.settings_window, values=[i for i in constants.FILE_NAME_TEMPLATE.keys()], command=self.combo_format_selected, width=300, ) self.combo_format.place(x=150, y=50) self.file_template_render = ctk.StringVar() ctk.CTkLabel( self.settings_window, font=("impack", 15, "bold"), width=150, textvariable=self.file_template_render, ).place(x=150, y=80) # Buffer Size self.buffer_label = ctk.CTkLabel(self.settings_window, text="Buffer Size:") self.buffer_label.place(x=20, y=110) self.buffer_var = ctk.StringVar() self.buffer_entry = ctk.CTkEntry( self.settings_window, textvariable=self.buffer_var ) self.buffer_entry.place(x=150, y=110) # Save and Exit Button self.save_and_exit_btn = ctk.CTkButton( self.settings_window, text="Save And Exit", fg_color="#0F0F0F", hover_color="#474747", command=self.settings_ok, ) self.save_and_exit_btn.place(x=150, y=160) self.discard_button = ctk.CTkButton( self.settings_window, text="Discard Settings", fg_color="#0F0F0F", hover_color="#474747", command=self.settings_window.destroy, ) self.discard_button.place(x=310, y=160) self.settings_window.wm_iconbitmap() self.settings_window.after( 300, lambda: self.settings_window.iconphoto(False, settings_icon) ), self.load_settings() self.settings_window.focus() self.settings_window.wait_visibility() self.settings_window.grab_set() def combo_format_selected(self, choice): foramtted_date = get_formatted_date( constants.FILE_NAME_TEMPLATE.get(choice, choice) ) if choice != "User Input": self.file_template_render.set(foramtted_date + "[Optional suffix].csv") self.place_holder = "Optional suffix" else: self.file_template_render.set( foramtted_date + "[User must input file name].csv" ) self.place_holder = "Enter File Name" self.template_var.set(choice) self.settings["file_name_template"] = choice def load_settings(self): self.folder_var.set(self.settings["folder"]) self.template_var.set(self.settings["file_name_template"]) self.combo_format.set(self.settings["file_name_template"]) foramtted_date = get_formatted_date( constants.FILE_NAME_TEMPLATE.get( self.settings["file_name_template"], self.settings["file_name_template"], ) ) if self.settings["file_name_template"] != "User Input": self.file_template_render.set(foramtted_date + "[Optional suffix].csv") else: self.file_template_render.set(foramtted_date + ".csv") self.template_var.set(self.settings["file_name_template"]) self.buffer_var.set(self.settings["buffer_size"]) def browse_folder(self): folder_selected = filedialog.askdirectory() if not folder_selected: folder_selected = self.settings["folder"] if folder_selected: self.folder_var.set(folder_selected) def settings_ok(self): self.settings["folder"] = self.folder_var.get() self.settings["file_name_template"] = self.combo_format.get() self.settings["buffer_size"] = self.buffer_var.get() if self.on_distroy: self.on_distroy() self.settings_window.destroy() # Path: dialogs/help_window.py class HelpWindow: def __init__(self,parent): self.help_window = ctk.CTkToplevel(parent) help_icon_path = get_icon(path.join(constants.ASSET_PATH, "Smallicon_help.ico")) # Load the PNG file image = Image.open( resource_path(path.join(constants.ASSET_PATH, "HelpImage.png")) ) # Convert the image to a format which Tkinter can use photo = ctk.CTkImage(light_image=image, size=image.size) # Create a new window or Use an existing widget to disply the image self.help_window.transient(parent) self.help_window.title("Help Image") self.help_window.wm_iconbitmap() # Set the help window icon # https://github.com/TomSchimansky/CustomTkinter/issues/2160 self.help_window.after(300, lambda: self.help_window.iconphoto(False, help_icon_path)) self.help_window.wait_visibility() self.help_window.grab_set() # Create a label in the new window to display the image image_label = ctk.CTkLabel(self.help_window, image=photo, text="") image_label.pack(fill=ctk.BOTH, expand=True) # Path: Serial2CSVscript.py import os import threading import customtkinter as ctk from datetime import datetime from os import path from PIL import Image from tktooltip import ToolTip from libs.utils import ( get_icon, get_formatted_date, resource_path, get_com_port, ) from libs import constants from libs import settings as st from libs.serial_communicator import SerialCommunicator from dialogs.settings_window import SettingsWindow from dialogs.help_window import HelpWindow command=self.com_port_clicked, ) self.combo_com_port.place(x=10, y=25) self.combo_com_port.set(self.settings["com_port"]) ToolTip( self.combo_com_port, msg="you can type custom com port number\n or path address in the window", bg="grey", fg="white", ) self.combo_baud_rate = ctk.CTkComboBox( self.root, values=["9600", "19200", "38400", "57600", "115200"], command=self.baud_rate_clicked, ) self.combo_baud_rate.place(x=300, y=25) self.combo_baud_rate.set(self.settings["baud_rate"]) ToolTip( self.combo_baud_rate, msg="you can type custom value\nin the window if needed", bg="grey", fg="white", x_offset=-90, ) ctk.CTkLabel( self.root, text="Output file name", font=( "impack", 15, ), ).place(x=170, y=65) self.lbl_prefix = ctk.CTkLabel(self.root) self.lbl_prefix.place(x=30, y=90) self.file_suffix_entry = ctk.CTkEntry( self.root, # Here the placeholder text needs to be updated accordingly placeholder_text=self.place_holder, ) self.file_suffix_entry.place(x=155, y=90) ctk.CTkLabel(self.root, text=".csv").place(x=300, y=90) self.start_stop_button = ctk.CTkButton( self.root, text="Start Monitoring", fg_color="#0F0F0F", hover_color="#474747", command=self.toggle_monitoring, ) self.start_stop_button.place(x=155, y=130) self.help_btn = ctk.CTkButton( self.root, width=80, text="Help", fg_color="#0F0F0F", hover_color="#474747", command=lambda :HelpWindow(self.root), ) self.help_btn.place(x=360, y=90) self.setting_btn = ctk.CTkButton( self.root, width=80, text="Settings", fg_color="#0F0F0F", hover_color="#474747", command=self.open_settings, ) self.setting_btn.place(x=360, y=130) self.status_label = ctk.CTkLabel(self.root, text="Monitoring Console") self.status_label.place(x=10, y=138) self.output_window = ctk.CTkTextbox( self.root, width=430, height=120, fg_color="#0F0F0F", wrap=ctk.WORD, # setting for how many line ) self.output_window.place(x=10, y=170) # Set the state of the ScrolledText widget to DISABLED self.output_window.configure(state=ctk.DISABLED) ToolTip(self.output_window, msg="Message") # Function to open Help Image def com_port_clicked(self, choice): self.settings["com_port"] = choice def baud_rate_clicked(self, choice): self.settings["baud_rate"] = choice def open_settings(self): self.settings_window = SettingsWindow( self.root, self.settings, self.settings_window_distroy ) def settings_window_distroy(self): self.settings = self.settings_window.settings self.place_holder = self.settings_window.place_holder st.save_settings(constants.SETTINGS_FILE, self.settings) self.file_suffix_entry.configure(placeholder_text=self.place_holder) self.update_lbl_prefix() def open_serial_port(self): self.serial_communicator.open_serial_port( self.settings["com_port"], int(self.settings["baud_rate"]), ) def create_logging_thread(self): self.serial_communicator.stop_thread = False
self.serial_thread = threading.Thread(target=self.serial_reader)
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zhangzm0128/DVT # Path: utils/dataloader.py class CifarLoader: def __init__(self, config): self.data_root = os.path.join(config['data_root'], config['cifar_type']) self.cifar_type = config['cifar_type'] self.valid_scale = config['valid_scale'] self.batch_size = config['batch_size'] self.img_size = config['img_size'] self.norm = config['norm'] self.mp = config['multi_process'] self.num_classes = config['num_classes'] # augmentation if 'augmentation' in config: aug = [] aug_config = config['augmentation'] aug += [transforms.RandomHorizontalFlip(), transforms.RandomCrop(self.img_size, padding=4)] if 'aug_policy' in aug_config: if aug_config['aug_policy'] == 'CIFAR': aug_policy = CIFARPolicy() aug += [aug_policy] aug += [transforms.ToTensor(), transforms.Normalize(self.norm[0], self.norm[1])] if 'random_erasing' in aug_config: re_config = aug_config['random_erasing'] re = RandomErasing(re_config['prob'], sh=re_config['sh'], r1=re_config['r1'], mean=self.norm[0]) aug += [re] train_transform = transforms.Compose(aug) else: train_transform = transforms.Compose([ transforms.RandomCrop(self.img_size, padding=4), transforms.Resize(self.img_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(self.norm[0], self.norm[1]), ]) val_test_transform = transforms.Compose([ transforms.Resize(self.img_size), transforms.ToTensor(), transforms.Normalize(self.norm[0], self.norm[1]), ]) if self.cifar_type == 'CIFAR10': trainset = torchvision.datasets.CIFAR10(root=self.data_root, train=True, download=True, transform=train_transform) testset = torchvision.datasets.CIFAR10(root=self.data_root, train=False, download=True, transform=val_test_transform) self.classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') elif self.cifar_type == 'CIFAR100': trainset = torchvision.datasets.CIFAR100(root=self.data_root, train=True, download=True, transform=train_transform) testset = torchvision.datasets.CIFAR100(root=self.data_root, train=False, download=True, transform=val_test_transform) self.classes = ('apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'cra', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm') if self.valid_scale != 0: train_size, val_size = len(trainset) * (1 - self.valid_scale), len(trainset) * self.valid_scale train_, valid_ = torch.utils.data.random_split(trainset, [int(train_size), int(val_size)]) self.trainloader = torch.utils.data.DataLoader(train_, num_workers=self.mp, pin_memory=True, batch_sampler=RASampler(len(train_), self.batch_size, 1, aug_config['repeat_aug'], shuffle=True, drop_last=True)) self.validloader = torch.utils.data.DataLoader(valid_, batch_size=self.batch_size, shuffle=False, pin_memory=True, num_workers=self.mp) self.testloader = torch.utils.data.DataLoader(testset, batch_size=self.batch_size, shuffle=False, pin_memory=True, num_workers=self.mp) else: self.trainloader = torch.utils.data.DataLoader(trainset, num_workers=self.mp, pin_memory=True, batch_sampler=RASampler(len(trainset), self.batch_size, 1, aug_config['repeat_aug'], shuffle=True, drop_last=True)) self.validloader = torch.utils.data.DataLoader(testset, batch_size=self.batch_size, shuffle=False, pin_memory=True, num_workers=self.mp) self.testloader = torch.utils.data.DataLoader(testset, batch_size=self.batch_size, shuffle=False, pin_memory=True, num_workers=self.mp) # Path: utils/logger.py class LoggerWriter: ''' LoggerWriter completes the functions implementation of log writing and model saving Inputs: config, checkpoint - config: the global config file for whole application - checkpoint: the checkpoint path to load, default is None ''' def __init__(self, config, checkpoint=None): self.config = config self.checkpoint = checkpoint self.model_save_index = 0 self.last_metric = {} self.net_name = self.config['network_params']['name'] self.lr_name = self.config['train_params']['learning_rate'] self.loss_name = self.config['train_params']['loss'] self.proj_root = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) self.init_path() self.set_log_format() def init_path(self): ''' init path based on checkpoint path, if it is None, init path based on time, network's name, loss's name, and lr ''' if self.checkpoint is None: log_root = self.config['log_params']['log_root'] if not os.path.exists(log_root): raise RuntimeError('Log root directory "{}" does not exist'.format(log_root)) create_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime(time.time())) self.log_dir = os.path.join(self.config['log_params']['log_root'], '{}_{}_{}_{}'.format( create_time, self.net_name, self.lr_name, self.loss_name)) os.mkdir(self.log_dir) self.config_save_path = os.path.join(self.log_dir, 'config') self.weight_save_path = os.path.join(self.log_dir, 'weight') self.model_save_path = os.path.join(self.log_dir, 'model') self.loss_save_path = os.path.join(self.log_dir, 'loss') os.mkdir(self.config_save_path) os.mkdir(self.weight_save_path) os.mkdir(self.model_save_path) os.mkdir(self.loss_save_path) save_config_file = open(os.path.join(self.config_save_path, 'config.json'), 'w') json.dump(self.config, save_config_file, indent=4) save_config_file.close() copyfile(os.path.join(self.proj_root, 'network/network.py'), os.path.join(self.model_save_path, 'network.py')) copyfile(os.path.join(self.proj_root, 'network/loss.py'), os.path.join(self.model_save_path, 'loss.py')) copyfile(os.path.join(self.proj_root, 'train.py'), os.path.join(self.model_save_path, 'train.py')) else: if not os.path.exists(self.checkpoint): raise RuntimeError('Checkpoint directory "{}" does not exist'.format(self.checkpoint)) self.log_dir = self.checkpoint self.config_save_path = os.path.join(self.log_dir, 'config') self.weight_save_path = os.path.join(self.log_dir, 'weight') self.model_save_path = os.path.join(self.log_dir, 'model') self.loss_save_path = os.path.join(self.log_dir, 'loss') def set_log_format(self, log_header=None): ''' This function sets the table header of log file, if log_header is None, set as default format ''' if log_header is None: self.log_header = 'Epoch,Iter,Loss-{},Time\n'.format(self.loss_name) self.log_format = '{},{},{},{}\n' else: self.log_header = log_header self.log_format = ','.join(['{}']*len(self.log_header.split(',')))+'\n' def init_logs(self): ''' Create log file ''' self.train_log = os.path.join(self.loss_save_path, 'train_loss.csv') self.valid_log = os.path.join(self.loss_save_path, 'valid_loss.csv') if not os.path.exists(self.train_log): with open(self.train_log, 'w') as f: f.write(self.log_header) f.close() if not os.path.exists(self.valid_log): with open(self.valid_log, 'w') as f: f.write(self.log_header) f.close() def write_train_log(self, args): with open(self.train_log, 'a') as f: f.write(self.log_format.format(*args)) f.close() def write_valid_log(self, args): with open(self.valid_log, 'a') as f: f.write(self.log_format.format(*args)) f.close() def load_model(self, model_name=None, device='cuda'): ''' Load saved model based on the network and weight in checkpoint path ''' # net = eval(self.net_name)(self.config['network_params'], device) # load model based on network name in config # load network model from checkpoint file spec = importlib.util.spec_from_file_location( 'network', os.path.join(self.checkpoint, 'model', 'network.py') ) load_network_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(load_network_module) net = eval('load_network_module.' + self.net_name)(self.config['network_params'], device) if model_name is not None: model_path = os.path.join(self.weight_save_path, model_name + '.pkl') self.model_name = model_name elif os.path.exists(os.path.join(self.weight_save_path, 'best_model.pkl')): # if model_name is None, load best_model.pkl as default weight model_path = os.path.join(self.weight_save_path, 'best_model.pkl') self.model_name = 'best' else: raise RuntimeError('The model "{}" dose not exist'.format(model_name)) net.load_state_dict(torch.load(model_path, map_location=torch.device(device))) return net def save_model(self, net, metric, mode='min', prefix=None): ''' Save the weight of model Paramters: - net: network<torch.nn.Module> - metric: the evaluation metrics which the model saving is based on - mode: mode limited in ['min', 'max'], if mode is 'min', select the minimal metrics as best model ''' if prefix is None: model_name = 'model' else: model_name = prefix + '_model' # torch.save(net.state_dict(), os.path.join(self.weight_save_path, '{}_{}.pkl'.format(model_name, self.model_save_index))) self.model_save_index += 1 if prefix not in self.last_metric: torch.save(net.state_dict(), os.path.join(self.weight_save_path, 'best_{}.pkl'.format(model_name))) self.last_metric[prefix] = metric torch.save(net.state_dict(), os.path.join(self.weight_save_path, 'best_{}_{}00.pkl'.format(model_name, self.model_save_index // 100))) else: if mode == 'min': if metric < self.last_metric[prefix]: torch.save(net.state_dict(), os.path.join(self.weight_save_path, 'best_{}.pkl'.format(model_name))) self.last_metric[prefix] = metric torch.save(net.state_dict(), os.path.join(self.weight_save_path, 'best_{}_{}00.pkl'.format(model_name, self.model_save_index // 100))) elif mode == 'max': if metric > self.last_metric[prefix]: torch.save(net.state_dict(), os.path.join(self.weight_save_path, 'best_{}.pkl'.format(model_name))) self.last_metric[prefix] = metric torch.save(net.state_dict(), os.path.join(self.weight_save_path, 'best_{}_{}00.pkl'.format(model_name, self.model_save_index // 100))) else: raise ValueError('Save mode must be in ["max", "min"], error {}'.format(mode)) # Path: train.py class Train: def __init__(self, config, logger, net, train_data_loader, valid_data_loader, device): self.config = config self.device = device self.logger = logger self.net = net for param_tensor in self.net.state_dict(): print(param_tensor, "\t", self.net.state_dict()[param_tensor].size()) self.train_data_loader = train_data_loader self.valid_data_loader = valid_data_loader self.num_classes = config['data_params']['num_classes'] Loss = LossUtils(self.device) self.loss = Loss(config['train_params']['loss']) self.lr = config['train_params']['learning_rate'] self.opt = config['train_params']['optimizer'] self.epoch = config['train_params']['epoch'] self.save_mode = config['train_params']['save_mode'] self.metrics = ClassMetrics(self.num_classes) self.metrics.set_report_metrics(config['train_params']['report_metrics']) self.report_format = config['train_params']['report_format'] self.no_improve = 0 self.stopper = False self.best_val_loss = None self.set_opt() self.set_scheduler() def set_opt(self): if 'opt_args' not in self.config['train_params']: self.opt = eval('optim.' + self.opt)(self.net.parameters(), lr=self.lr) # self.opt = eval('optim.' + self.opt)(self.net.parameters(), lr=self.lr) # self.opt = eval('optim.' + self.opt)( # [{'params': self.net.parameters(), 'lr': self.lr*10}, # # {'params': self.net.transformer.parameters(), 'lr': self.lr}, # ], lr=self.lr) else: self.opt = eval('optim.' + self.opt)(self.net.parameters(), self.lr, **self.config['train_params']['opt_args']) # self.opt = eval('optim.' + self.opt)( # [{'params': self.net.net.transformer.parameters(), "lr": self.lr}, # {'params': self.net.net.mlp_head.parameters(), "lr": self.lr-1e-3} # ], **self.config['train_params']['opt_args']) def set_scheduler(self): if 'lr_scheduler' in self.config['train_params'] and self.config['train_params']['lr_scheduler'] != {}: n_iter_per_epoch = len(self.train_data_loader) num_steps = int(self.epoch * n_iter_per_epoch) warmup_steps = int(self.config['train_params']['lr_scheduler']['warmup'] * n_iter_per_epoch) self.lr_scheduler = CosineAnnealingWarmupRestarts( self.opt, first_cycle_steps=num_steps, cycle_mult=1., max_lr = self.lr, min_lr = 1e-6, warmup_steps=warmup_steps) else: self.lr_scheduler = None def report_save(self, epoch, train_report, valid_report, step_time, save_metric, mode): self.logger.save_model(self.net, self.val_acc_1, mode=self.save_mode) report_data = [epoch] for x, y in zip(train_report, valid_report): report_data.append(x) report_data.append(y) report_data.append(step_time) print(self.report_format.format(*report_data)) def train(self): # Training process epoch_num_batch = len(self.train_data_loader) train_loss = [] for current_epoch in range(self.epoch): step_time = time.time() self.net.train() true_report, pred_report = None, None for idx, (data, labels) in enumerate(self.train_data_loader): # print(data.shape,labels.shape) # datas [b, n, h, w], labels (int label) [b] x_batch = Variable(torch.FloatTensor(data).to(self.device), requires_grad=False) y_batch = Variable(labels.to(self.device), requires_grad=False) self.opt.zero_grad() output = self.net(x_batch) # one_hot pred [b, num_classes] loss = self.loss(output, y_batch) loss.backward() self.opt.step() if self.lr_scheduler is not None: self.lr_scheduler.step() train_loss.append(loss.item()) if true_report is None and pred_report is None: true_report = labels.cpu().detach().numpy() pred_report = output.cpu().detach().numpy() else: true_report = np.r_[true_report, labels.cpu().detach().numpy()] pred_report = np.r_[pred_report, output.cpu().detach().numpy()] all_report = self.metrics.report(true_report, pred_report) step_time = time.time() - step_time # acc-1, acc-3, pre, recall, f1, AUC # print('Train Epoch: {} -- Loss: {:.4} -- Acc-1: {:.0%} -- AUC: {:.0%} -- Time: {}'.format( # current_epoch, np.mean(train_loss), all_report[0], all_report[5], format_runtime(step_time))) train_log_data = [current_epoch, np.mean(train_loss)] + all_report + [step_time] valid_log_data = self.valid(current_epoch) self.logger.write_train_log(train_log_data) self.logger.write_valid_log(valid_log_data) self.report_save(current_epoch, [train_log_data[1], train_log_data[2], train_log_data[-2]], [valid_log_data[1], valid_log_data[2], valid_log_data[-2]], format_runtime(train_log_data[-1] + valid_log_data[-1]), self.val_acc_1, self.save_mode) # self.logger.save_model(self.net, self.val_acc_1, mode=self.save_mode) def valid(self, current_epoch): valid_loss = [] self.net.eval() step_time = time.time() true_report, pred_report = None, None for idx, (data, labels) in enumerate(self.valid_data_loader): x_batch = Variable(torch.FloatTensor(data).to(self.device), requires_grad=False) y_batch = Variable(labels.to(self.device), requires_grad=False) output = self.net(x_batch) loss = self.loss(output, y_batch) valid_loss.append(loss.item()) if true_report is None and pred_report is None: true_report = labels.cpu().detach().numpy() pred_report = output.cpu().detach().numpy() else: true_report = np.r_[true_report, labels.cpu().detach().numpy()] pred_report = np.r_[pred_report, output.cpu().detach().numpy()] all_report = self.metrics.report(true_report, pred_report) step_time = time.time() - step_time # print('Valid Epoch: {} -- Loss: {:.4} -- Acc-1: {:.0%} -- AUC: {:.0%} -- Time: {}'.format( # current_epoch, np.mean(valid_loss), all_report[0], all_report[5], format_runtime(step_time))) log_data = [current_epoch, np.mean(valid_loss)] + all_report + [step_time] self.val_acc_1 = all_report[0] return log_data # Path: test.py class Test: def __init__(self, config, logger, net, test_data_loader, device): self.config = config self.device = device self.logger = logger self.net = net # for param_tensor in self.net.state_dict(): # print(param_tensor, "\t", self.net.state_dict()[param_tensor].size()) self.test_data_loader = test_data_loader self.num_classes = config['data_params']['num_classes'] Loss = LossUtils(self.device) self.loss = Loss(config['train_params']['loss']) self.metrics = ClassMetrics(self.num_classes, 'macro') self.metrics.set_report_metrics(config['train_params']['report_metrics']) self.report_format = config['train_params']['report_format'] def report_save(self, epoch, train_report, valid_report, step_time, save_metric, mode): self.logger.save_model(self.net, self.val_acc_1, mode=self.save_mode) report_data = [epoch] for x, y in zip(train_report, valid_report): report_data.append(x) report_data.append(y) report_data.append(step_time) print(self.report_format.format(*report_data)) def test(self): test_loss = [] self.net.eval() step_time = time.time() true_report, pred_report = None, None for idx, (data, labels) in enumerate(self.test_data_loader): x_batch = Variable(torch.FloatTensor(data).to(self.device), requires_grad=False) y_batch = Variable(labels.to(self.device), requires_grad=False) output = self.net(x_batch) loss = self.loss(output, y_batch) test_loss.append(loss.item()) if true_report is None and pred_report is None: true_report = labels.cpu().detach().numpy() pred_report = output.cpu().detach().numpy() else: true_report = np.r_[true_report, labels.cpu().detach().numpy()] pred_report = np.r_[pred_report, output.cpu().detach().numpy()] all_report = self.metrics.report(true_report, pred_report) step_time = time.time() - step_time # print('Valid Epoch: {} -- Loss: {:.4} -- Acc-1: {:.0%} -- AUC: {:.0%} -- Time: {}'.format( # current_epoch, np.mean(valid_loss), all_report[0], all_report[5], format_runtime(step_time))) # for name, data in zip(self.config['train_params']['report_metrics'], all_report): # print('{}: {}'.format(name, data)) for name in self.config['train_params']['report_metrics']: print(name, end='\t') print('') for data in all_report: print('{:.4}'.format(data), end='\t') print('') print(true_report.shape) print(pred_report.shape) return all_report # Path: main.py import os import json import argparse import time from network.network import * from utils.dataloader import CifarLoader from utils.logger import LoggerWriter from train import Train from test import Test parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, default='config.json', help='the path of global config file.') parser.add_argument('--checkpoint', type=str, default=None, help='the path of checkpoint and program will run checkpoint data.') parser.add_argument('--model_name', type=str, default=None) parser.add_argument('--mode', type=str, default='train', help='the mode of app will run, plz choose among ["train", "test", "predict"]') parser.add_argument('--device', type=str, default='cuda', help='the device of app will run, plz choose among ["cuda", "cpu"]') args = parser.parse_args() model_name = args.model_name checkpoint = args.checkpoint mode = args.mode device = args.device if mode == 'train': config_file = open(args.config, 'r').read() config = json.loads(config_file) else: config_in_checkpoint = os.path.join(checkpoint, 'config', 'config.json') config_file = open(config_in_checkpoint, 'r').read() config = json.loads(config_file) if 'cifar_type' in config['data_params']: data_loader = CifarLoader(config['data_params']) if mode == 'train': logger = LoggerWriter(config, checkpoint) logger.set_log_format('Epoch,Loss-CE,Acc-k1,Acc-k3,Pre,Recall,F1,AUC,Time\n') logger.init_logs() net_name = config['network_params']['name'] net = eval(net_name)(config['network_params'], device) if config['data_params']['valid_scale'] == 0: train_data_loader = data_loader.trainloader valid_data_loader = data_loader.validloader else: train_data_loader = data_loader.trainloader valid_data_loader = data_loader.validloader trainer = Train(config, logger, net, train_data_loader, valid_data_loader, device) trainer.train()
if mode == 'test':
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: facebookresearch/hgap # Path: trajectory/utils/relabel_humanoid.py def get_speed(proprioceptive_obs): """ get the speed of the humanoid in from proprioceptive_obs. Note that the speed is a non-negative scalar and do not indicate direction (different from velocity) """ current_vel = slice_observable(proprioceptive_obs, 'sensors_velocimeter') if isinstance(current_vel, tf.Tensor): speed = tf.norm(current_vel, axis=-1) elif isinstance(current_vel, np.ndarray): speed = np.linalg.norm(current_vel, axis=-1) elif isinstance(current_vel, torch.Tensor): speed = torch.norm(current_vel, dim=-1) return speed # Path: trajectory/utils/relabel_humanoid.py def get_angular_vel(proprioceptive_obs, direction): """ get the angular speed of the humanoid in from proprioceptive_obs. """ angular_vel = slice_observable(proprioceptive_obs, 'sensors_gyro') if direction == 'x': angular_vel = angular_vel[..., 0] elif direction == 'y': angular_vel = angular_vel[..., 1] elif direction == 'z': angular_vel = angular_vel[..., 2] return angular_vel # Path: trajectory/utils/relabel_humanoid.py def get_body_height(proprioceptive_obs): """ get the height of the humanoid in from proprioceptive_obs. """ return slice_observable(proprioceptive_obs, 'body_height')[..., 0] # Path: trajectory/utils/relabel_humanoid.py def get_vel(proprioceptive_obs, direction): current_vel = slice_observable(proprioceptive_obs, 'sensors_velocimeter') if direction == 'x': vel = current_vel[..., 0] elif direction == 'y': vel = current_vel[..., 1] elif direction == 'z': vel = current_vel[..., 2] else: raise ValueError(f"direction {direction} not found") return vel # Path: trajectory/utils/relabel_humanoid.py def get_left_vel(proprioceptive_obs): """ get the left speed of the humanoid in from proprioceptive_obs. cancel the sub-velocity towards world z axis according to the ego-centric world z axis. """ ego_centric_vel = slice_observable(proprioceptive_obs, 'sensors_velocimeter') world_zaxis = slice_observable(proprioceptive_obs, 'world_zaxis') left_vel = project_left(ego_centric_vel, world_zaxis) return left_vel # Path: trajectory/utils/relabel_humanoid.py def get_height_vel(proprioceptive_obs): """ get the height speed of the humanoid in from proprioceptive_obs. """ ego_centric_vel = slice_observable(proprioceptive_obs, 'sensors_velocimeter') world_zaxis = slice_observable(proprioceptive_obs, 'world_zaxis') height_vel = project_height(ego_centric_vel, world_zaxis) return height_vel # Path: trajectory/utils/relabel_humanoid.py def get_forward_vel(proprioceptive_obs): """ get the forward speed of the humanoid in from proprioceptive_obs. cancel the sub-velocity towards world z axis according to the ego-centric world z axis. """ ego_centric_vel = slice_observable(proprioceptive_obs, 'sensors_velocimeter') world_zaxis = slice_observable(proprioceptive_obs, 'world_zaxis') forward_vel = project_forward(ego_centric_vel, world_zaxis) return forward_vel # Path: trajectory/tfds/mocap_utils.py CMU_HUMANOID_OBSERVABLES = ( "walker/actuator_activation", "walker/appendages_pos", "walker/body_height", "walker/end_effectors_pos", "walker/joints_pos", "walker/joints_vel", "walker/sensors_accelerometer", "walker/sensors_gyro", "walker/sensors_torque", "walker/sensors_touch", "walker/sensors_velocimeter", "walker/world_zaxis", ) MEAN_ACTION = "mean_action" def _get_dataset_keys(h5file): def visitor(name, item): def _read_group(dataset_file): def __init__(self, path: str) -> None: def h5_file(self): def n_rsi_rollouts(self): def n_start_rollouts(self): def ref_steps(self): def observable_indices(self): def stats(self): def snippet_group_names(self): def get_snippet_start_metrics(self, snippet_name: str): def get_snippet_rsi_metrics(self, snippet_name: str): def get_snippet_early_termination(self, snippet_name: str): def get_snippet_num_episodes(self, snippet_name: str): def get_snippet_episode(self, snippet_name: str, episode_id: int): def get_episode_from_key(self, key): def keys(self): def __init__( self, pattern: Union[str, Sequence[str]], metrics_path: str, observables: Sequence[str] = CMU_HUMANOID_OBSERVABLES, concat_observations: bool = False, mean_actions: bool = False, normalize_observations: bool = False, normalize_actions: bool = False, need_to_extract_observables: bool = True, ) -> None: def _set_element_spec(self, example_episode): def _set_environment_specs(self, episode) -> None: def action_spec(self): def observation_spec(self): def reward_spec(self): def discount_spec(self): def _set_metrics(self, path): def make_episode_dataset( self, shuffle_files: bool = True, num_parallel_calls: int = tf.data.AUTOTUNE, ) -> tf.data.Dataset: def episode_generator(path): def maybe_normalize_steps(episode): def extract_observations(episode): def convert_to_rlds_format(episode): def _pad_last(nest): def _fused_preprocess_fn(episode): def __init__( self, name: str, split: str = "train", observables: Sequence[str] = CMU_HUMANOID_OBSERVABLES, normalize_observations: bool = False, normalize_actions: bool = False, use_mean_actions: bool = False, concat_observations: bool = True, tfds_data_dir: Optional[str] = None, ): def set_mean_std(self): def make_episode_dataset(self): def normalize_steps(steps, normalize_observations, normalize_actions): def choose_actions(steps, use_mean_actions: bool): def extract_observations( steps, observables: Sequence[str], concat_observations: bool ): def preprocess_steps(steps): def transform_episode(episode_dataset): def _pad_array_along_axis(x, padded_size, axis=0, value=0): def _pad_along_axis(nest, padding_size, axis=0, value=0): def pad_steps(steps, max_len: int, add_mask: bool = True): class MocapActTrajectoryReader: class MocapActHDF5DataSource: class MocapActTFDSDataSource: # Path: trajectory/datasets/mocapact.py from torch.utils.data import Dataset from gym import spaces from typing import Dict, Sequence, Text, Optional, Union from stable_baselines3.common.running_mean_std import RunningMeanStd from trajectory.utils.relabel_humanoid import get_speed, get_angular_vel, get_body_height, get_vel, get_left_vel, get_height_vel, get_forward_vel from trajectory.tfds import mocap_utils import bisect import h5py import itertools import collections import numpy as np import functools import torch import rlds import tensorflow as tf import tensorflow_datasets as tfds import os self.validation_data_loader = validation_dataset.prefetch(tf.data.AUTOTUNE) self.validation_data_iterator = self.validation_data_loader.as_numpy_iterator() self.validation_set = [self.numpy_data_to_torch(validation_batch) for validation_batch in self.validation_data_iterator] else: self.validation_set = [] self.checkpoint_path = checkpoint_path self._checkpoint = tf.train.Checkpoint(train=self.data_loader, validation=self.validation_data_loader) def pre_process(self, dataset, relabel_type, discount, sequence_length, deterministic, repeat, shuffle_buffer, batch_size, reward_clip, body_height_limit, body_height_penalty, ignore_incomplete_episodes=False): denorm_func = self.denormalize_observations if self.normalize_obs else None dataset = dataset.map( functools.partial(relabel_reward, relabel_type=relabel_type, denormalize=denorm_func, reward_clip=reward_clip, body_height_limit=body_height_limit, body_height_penalty=body_height_penalty), num_parallel_calls=tf.data.AUTOTUNE ) dataset = dataset.map( functools.partial(overwrite_value, discount=discount), num_parallel_calls=tf.data.AUTOTUNE ) if self.normalize_reward: dataset = dataset.map( functools.partial(normalize_reward_return, reward_mean=self.reward_mean, return_mean=self.return_mean, reward_std=self.reward_std, return_std=self.return_std), num_parallel_calls=tf.data.AUTOTUNE) dataset: tf.data.Dataset = dataset.interleave( lambda episode: rlds.transformations.batch( episode["steps"], size=sequence_length, shift=1, drop_remainder=ignore_incomplete_episodes ), deterministic=deterministic, num_parallel_calls=tf.data.AUTOTUNE, cycle_length=16, block_length=16 ) dataset = dataset.map( functools.partial(mocap_utils.pad_steps, max_len=sequence_length) ) if repeat: dataset = dataset.repeat() if shuffle_buffer: dataset = dataset.shuffle(100000, reshuffle_each_iteration=True, seed=0 if deterministic else None) dataset = dataset.batch(batch_size, num_parallel_calls=tf.data.AUTOTUNE) return dataset @property def observation_dim(self): return self.data_loader.element_spec["observation"].shape[-1] @property def action_dim(self): return self.data_loader.element_spec["action"].shape[-1] def numpy_data_to_torch(self, numpy_data): observation = torch.tensor(numpy_data["observation"], dtype=torch.float32) action = torch.tensor(numpy_data["action"], dtype=torch.float32) reward = torch.tensor(numpy_data["reward"], dtype=torch.float32)[..., None] value = torch.tensor(numpy_data["value"], dtype=torch.float32)[..., None] terminal = torch.tensor(numpy_data["is_terminal"], dtype=torch.float32)[..., None] terminal = 1 - torch.cumprod(1 - terminal, dim=1) mask = torch.tensor(numpy_data["mask"], dtype=torch.float32)[..., None] # also mask out if the actions are all zero (hacky way to deal with padding) mask *= (torch.logical_not(torch.all((action == 0), dim=-1, keepdim=True))).float() joined = torch.tensor(np.concatenate([observation, action, reward, value], axis=-1), dtype=torch.float32) return joined, mask, terminal def __iter__(self): return self def __next__(self): numpy_data = next(self.data_iterator) joined, mask, terminal = self.numpy_data_to_torch(numpy_data) return joined, mask, terminal def _extract_observations(self, all_obs: np.ndarray, observable_keys: Sequence[Text]): return {k: all_obs[..., self.observable_indices[k]] for k in observable_keys} def denormalize_reward(self, rewards): return rewards * self.reward_std + self.reward_mean def denormalize_return(self, returns): return returns * self.return_std + self.return_mean def normalize_observations(self, states): states_std = np.squeeze(np.array(self.proprio_std)) states_mean = np.squeeze(np.array(self.proprio_mean)) if self.need_to_extract_observables: states_std = self._extract_observations(states_std, self._observables) states_mean = self._extract_observations(states_mean, self._observables) states_std = np.concatenate(list(states_std.values()), axis=-1) states_mean = np.concatenate(list(states_mean.values()), axis=-1) if torch.is_tensor(states): states_std = torch.Tensor(states_std).to(states.device) states_mean = torch.Tensor(states_mean).to(states.device) return (states - states_mean) / states_std def denormalize_observations(self, observations): states_std = np.squeeze(np.array(self.proprio_std)) states_mean = np.squeeze(np.array(self.proprio_mean)) if self.need_to_extract_observables: obs_std = self._extract_observations(states_std, self._observables) obs_mean = self._extract_observations(states_mean, self._observables) obs_std = np.concatenate(list(obs_std.values()), axis=-1) obs_mean = np.concatenate(list(obs_mean.values()), axis=-1) else: obs_std = states_std obs_mean = states_mean if torch.is_tensor(observations): obs_std = torch.Tensor(states_std).to(observations.device) obs_mean = torch.Tensor(states_mean).to(observations.device) return observations * obs_std + obs_mean
def denormalize_states(self, states):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Cocon-Se/gpyrobotstxt # Path: gpyrobotstxt/robots_cc.py class RobotsMatcher: def __init__(self): self._seen_global_agent = False self._seen_specific_agent = False self._ever_seen_specific_agent = False self._seen_separator = False self._path = None self._user_agents = None self._allow = MatchHierarchy() self._disallow = MatchHierarchy() self._match_strategy = RobotsMatchStrategy() def init_user_agents_and_path(self, user_agents: List[str], path: str): if path[0] != "/": raise ValueError("Path must begin with '/'") self._path = path self._user_agents = user_agents def extract_user_agent(self, user_agent: str): # Allowed characters in user-agent are [a-zA-Z_-]. def ascii_is_alpha(c): return "a" <= c <= "z" or "A" <= c <= "Z" i = 0 while i < len(user_agent): c = user_agent[i] if not ascii_is_alpha(c) and not c == "-" and not c == "_": break i += 1 return user_agent[:i] def extract_user_agent_rfc7231(self, user_agent: str): # extract_user_agent extracts the matchable part of a user agent string, # essentially stopping at the first invalid character. # Example: 'Googlebot/2.1' becomes 'Googlebot' # Allowed characters in user-agent are [a-zA-Z_-]. # # Bugfix: # # According to RFC 7231, the 'product' part of the user-agent # is defined as a 'token', which allows: # # "!" / "#" / "$" / "%" / "&" / "'" / "*" # / "+" / "-" / "." / "^" / "_" / "`" / "|" / "~" # / DIGIT / ALPHA # # See https://httpwg.org/specs/rfc7231.html#header.user-agent def ascii_is_alpha(c): return "a" <= c <= "z" or "A" <= c <= "Z" def ascii_is_numeric(c): return "0" <= c <= "9" def ascii_is_special(c): allowed = "~#$%'*+-.^_`|~" return c in allowed i = 0 while i < len(user_agent): c = user_agent[i] if ( not ascii_is_alpha(c) and not ascii_is_numeric(c) and not ascii_is_special(c) ): break i += 1 return user_agent[:i] def seen_any_agent(self): return self._seen_global_agent or self._seen_specific_agent def handle_robots_start(self): # This is a new robots.txt file, so we need to reset all the instance member variables. # Ref: https://github.com/google/robotstxt/blob/master/robots.cc#L538 self._allow.clear() self._disallow.clear() self._seen_global_agent = False self._seen_specific_agent = False self._ever_seen_specific_agent = False self._seen_separator = False def handle_robots_end(self): # handle_robots_end is called at the end of parsing the robots.txt file. # For RobotsMatcher, this does nothing. pass def handle_user_agent(self, line_num, user_agent): # handle_user_agent is called for every "User-Agent:" line in robots.txt. # Ref: https://github.com/google/robotstxt/blob/master/robots.cc#L567 if self._seen_separator: self._seen_global_agent = False self._seen_specific_agent = False self._seen_separator = False # Google-specific optimization: a '*' followed by space and more characters # in a user-agent record is still regarded a global rule. if ( len(user_agent) >= 1 and user_agent[0] == "*" and (len(user_agent) == 1 or user_agent[1].isspace()) ): self._seen_global_agent = True else: user_agent = self.extract_user_agent(user_agent) for agent in self._user_agents: if agent.casefold() == user_agent.casefold(): self._ever_seen_specific_agent = True self._seen_specific_agent = True break def handle_allow(self, line_num, value): # handle_allow is called for every "Allow:" line in robots.txt. # Ref: https://github.com/google/robotstxt/blob/master/robots.cc#L589 if not self.seen_any_agent(): return self._seen_separator = True priority = self._match_strategy.match_allow(self._path, value) if priority >= 0: if self._seen_specific_agent: if self._allow._specific.priority < priority: self._allow._specific.set(priority, line_num) else: if not self._seen_global_agent: raise SyntaxError("Not seen global agent") if self._allow._global.priority < priority: self._allow._global.set(priority, line_num) else: # Google-specific optimization: 'index.htm' and 'index.html' are normalized to '/' slash_pos = value.rfind("/") if slash_pos != -1 and value[slash_pos:].startswith("/index.htm"): new_pattern = value[: slash_pos + 1] + "$" self.handle_allow(line_num, new_pattern) def handle_disallow(self, line_num, value): # handle_disallow is called for every "Disallow:" line in robots.txt. # Ref: https://github.com/google/robotstxt/blob/master/robots.cc#L622 if not self.seen_any_agent(): return self._seen_separator = True priority = self._match_strategy.match_disallow(self._path, value) if priority >= 0: if self._seen_specific_agent: if self._disallow._specific.priority < priority: self._disallow._specific.set(priority, line_num) else: if not self._seen_global_agent: raise SyntaxError("Not seen global agent") if self._disallow._global.priority < priority: self._disallow._global.set(priority, line_num) def handle_sitemap(self, line_num, value): # handle_sitemap is called for every "Sitemap:" line in robots.txt. # For RobotsMatcher, this does nothing. # Ref: https://github.com/google/robotstxt/blob/master/robots.cc#L650 pass def handle_unknown_action(self, line_num, action, value): # handle_unknown_action is called for every unrecognized line in robots.txt. # For RobotsMatcher, this does nothing. # Ref: https://github.com/google/robotstxt/blob/master/robots.cc#L652 pass def disallow(self): # Ref: https://github.com/google/robotstxt/blob/master/robots.cc#L506 if self._allow._specific.priority > 0 or self._disallow._specific.priority > 0: return self._disallow._specific.priority > self._allow._specific.priority if self._ever_seen_specific_agent: return False if self._allow._global.priority > 0 or self._disallow._global.priority > 0: return self._disallow._global.priority > self._allow._global.priority return False def allowed_by_robots(self, robots_body, user_agents, url): # Ref: https://github.com/google/robotstxt/blob/master/robots.cc#L487 try: urlparse(url) except: return False if isinstance(robots_body, str): robots_body = robots_body.encode("utf-8") path: str = get_path_params_query(url) self.init_user_agents_and_path(user_agents, path) parser = RobotsTxtParser(robots_body, self) parser.parse() return not self.disallow() def one_agent_allowed_by_robots(self, robots_txt, user_agent, url): return self.allowed_by_robots(robots_txt, [user_agent], url) def is_valid_user_agent_to_obey(self, user_agent): return len(user_agent) > 0 and self.extract_user_agent(user_agent) == user_agent # Path: gpyrobotstxt/robotstxtparser.py class RobotsTxtParser: def __init__(self, robots_body, handler): self._robots_body = robots_body self._handler = handler def get_key_and_value_from(self, line: str): # get_key_and_value_from attempts to parse a line of robots.txt into a key/value pair. # On success, the parsed key and value, and true, are returned. # If parsing is unsuccessful, parseKeyAndValue returns two empty strings and false. # Remove comments from the current robots.txt line comment = line.find("#") if comment != -1: line = line[:comment] line = line.strip() # Rules must match the following pattern: # <key>[ \t]*:[ \t]*<value> sep = line.find(":") if sep == -1: # Google-specific optimization: some people forget the colon, so we need to # accept whitespace in its stead. white = re.compile("|".join([" ", "\t"])) sep = white.search(line) if sep is not None: sep = sep.start() val = line[sep + 1 :] if len(val) == 0: raise SyntaxError("Syntax error in 'robots.txt' file.") if white.search(val) is not None: # We only accept whitespace as a separator if there are exactly two # sequences of non-whitespace characters. If we get here, there were # more than 2 such sequences since we stripped trailing whitespace above. return "", "", False if sep == -1: return "", "", False # Couldn't find a separator. key = line[:sep].strip() if len(key) == 0: return "", "", False value = line[sep + 1 :].strip() return key, value, True def need_escape_value_for_key(self, key): key_type = key.type() if key_type in [ ParsedRobotsKey.KeyType.USER_AGENT, ParsedRobotsKey.KeyType.SITEMAP, ]: return False else: return True def maybe_escape_pattern(self, path: str): need_capitalize = False num_to_escape = 0 def s(i): if i < len(path): return path[i] return "" # First, scan the buffer to see if changes are needed. Most don't. for i in range(len(path)): # (a) % escape sequence. if path[i] == "%" and ishexdigit(s(i + 1)) and ishexdigit(s(i + 2)): if s(i + 1).islower() or s(i + 2).islower(): need_capitalize = True elif not path[i].isascii(): # (b) needs escaping. num_to_escape += 1 # (c) Already escaped and escape-characters normalized (eg. %2f -> %2F). # Return if no changes needed. if num_to_escape == 0 and not need_capitalize: return path dst = io.BytesIO() i = 0 while (i < len(path)): if path[i] == '%' and ishexdigit(s(i + 1)) and ishexdigit(s(i + 2)): # (a) Normalize %-escaped sequence (eg. %2f -> %2F). dst.write(b'%') i += 1 dst.write(path[i].upper().encode()) i += 1 dst.write(path[i].upper().encode()) elif not path[i].isascii(): # (b) %-escape octets whose highest bit is set. These are outside the ASCII range dst.write(b'%') dst.write(path[i].encode().hex('%').upper().encode()) else: # (c) Normal character, no modification needed. dst.write(path[i].encode()) i += 1 return dst.getvalue().decode('utf-8') def emit_key_value_to_handler(self, line, key, value, handler): key_type = key.type() if key_type == ParsedRobotsKey.KeyType.USER_AGENT: handler.handle_user_agent(line, value) elif key_type == ParsedRobotsKey.KeyType.ALLOW: handler.handle_allow(line, value) elif key_type == ParsedRobotsKey.KeyType.DISALLOW: handler.handle_disallow(line, value) elif key_type == ParsedRobotsKey.KeyType.SITEMAP: handler.handle_sitemap(line, value) elif key_type == ParsedRobotsKey.KeyType.UNKNOWN: handler.handle_unknown_action(line, key.unknown_key(), value) def parse_and_emit_line(self, current_line: int, line: str): string_key, value, ok = self.get_key_and_value_from(line) if not ok: return key = ParsedRobotsKey() key.parse(string_key) if self.need_escape_value_for_key(key): value = self.maybe_escape_pattern(value) self.emit_key_value_to_handler(current_line, key, value, self._handler) def parse(self): utf_bom = bytes([0xEF, 0xBB, 0xBF]) # Certain browsers limit the URL length to 2083 bytes. In a robots.txt, it's # fairly safe to assume any valid line isn't going to be more than many times # that max url length of 2KB. We want some padding for # UTF-8 encoding/nulls/etc. but a much smaller bound would be okay as well. # If so, we can ignore the chars on a line past that. kmax_line_len = 2083 * 8 self._handler.handle_robots_start() length = len(self._robots_body) cur = 0 # Skip BOM if present - including partial BOMs. for i in range(len(utf_bom)): if cur == length: break b = self._robots_body[cur] if b != utf_bom[i]: break cur += 1 line_num = 0 last_was_carriage_return = False start = cur end = cur while True: if cur == length: break b = self._robots_body[cur] cur += 1 if b != 0x0A and b != 0x0D: # Non-line-ending char case. # Add to current line, as long as there's room. if end - start < kmax_line_len - 1: end += 1 else: is_CRLF_continuation = ( (end == start) and last_was_carriage_return and (b == 0x0A) ) if not is_CRLF_continuation: line_num += 1 self.parse_and_emit_line(line_num, self._robots_body[start:end].decode('utf-8', 'replace')) start = cur end = cur last_was_carriage_return = b == 0x0D line_num += 1 self.parse_and_emit_line(line_num, self._robots_body[start:end].decode('utf-8', 'replace')) self._handler.handle_robots_end() # Path: test/test_robots_matcher.py import unittest from gpyrobotstxt.robots_cc import RobotsMatcher from gpyrobotstxt.robotstxtparser import RobotsTxtParser self.digest(line_num) def handle_sitemap(self, line_num, value): self.digest(line_num) self._sitemap += value def handle_unknown_action(self, line_num, action, value): self._last_line_seen = line_num self._unknown_directives += 1 def digest(self, line_num): assert line_num >= self._last_line_seen self._last_line_seen = line_num self._valid_directives += 1 @property def last_line_seen(self): return self._last_line_seen @property def valid_directives(self): return self._valid_directives @property def unknown_directives(self): return self._unknown_directives @property def sitemap(self): return self._sitemap class TestRobotsStatsReporter(unittest.TestCase): def setUp(self): self.report = RobotsStatsReporter() # Different kinds of line endings are all supported: %x0D / %x0A / %x0D.0A def test_ID_LinesNumbersAreCountedCorrectly(self): unix_file = ( "User-Agent: foo\n" "Allow: /some/path\n" "User-Agent: bar\n" "\n" "\n" "Disallow: /\n" ) parser = RobotsTxtParser(unix_file.encode("UTF-8"), self.report) parser.parse() self.assertEqual(4, self.report.valid_directives) self.assertEqual(6, self.report.last_line_seen) dos_file = ( "User-Agent: foo\r\n" "Allow: /some/path\r\n" "User-Agent: bar\r\n" "\r\n" "\r\n" "Disallow: /\r\n" ) parser = RobotsTxtParser(dos_file.encode("UTF-8"), self.report) parser.parse() self.assertEqual(4, self.report.valid_directives) self.assertEqual(6, self.report.last_line_seen) mac_file = ( "User-Agent: foo\r\n" "Allow: /some/path\r\n" "User-Agent: bar\r\n" "\r\n" "\r\n" "Disallow: /\r\n" ) parser = RobotsTxtParser(mac_file.encode("UTF-8"), self.report) parser.parse() self.assertEqual(4, self.report.valid_directives) self.assertEqual(6, self.report.last_line_seen) no_finale_new_line = ( "User-Agent: foo\n" "Allow: /some/path\n" "User-Agent: bar\n" "\n" "\n" "Disallow: /" ) parser = RobotsTxtParser(no_finale_new_line.encode("UTF-8"), self.report) parser.parse() self.assertEqual(4, self.report.valid_directives) self.assertEqual(6, self.report.last_line_seen) mixed_file = ( "User-Agent: foo\n" "Allow: /some/path\r\n" "User-Agent: bar\n" "\r\n" "\n" "Disallow: /" ) parser = RobotsTxtParser(mixed_file.encode("UTF-8"), self.report) parser.parse() self.assertEqual(4, self.report.valid_directives) self.assertEqual(6, self.report.last_line_seen) # BOM characters are unparseable and thus skipped. The rules following the line are used. def test_ID_UTF8ByteOrderMarkIsSkipped(self): utf8_file_full_BOM = b"\xEF\xBB\xBF" b"User-Agent: foo\n" b"Allow: /AnyValue\n" parser = RobotsTxtParser(utf8_file_full_BOM, self.report) parser.parse() self.assertEqual(2, self.report.valid_directives) self.assertEqual(0, self.report.unknown_directives) utf8_file_partial2BOM = b"\xEF\xBB" b"User-Agent: foo\n" b"Allow: /AnyValue\n" # We allow as well partial ByteOrderMarks. parser = RobotsTxtParser(utf8_file_partial2BOM, self.report) parser.parse() self.assertEqual(2, self.report.valid_directives) self.assertEqual(0, self.report.unknown_directives) utf8_file_partial1BOM = b"\xEF" b"User-Agent: foo\n" b"Allow: /AnyValue\n" parser = RobotsTxtParser(utf8_file_partial1BOM, self.report)
parser.parse()
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: baiyimeng/LabelCraft # Path: trainer.py class Trainer(object): def __init__(self, flags_obj, cm, dm, new_config=None): self.cm = cm #context manager self.dm = dm #dataset manager self.flags_obj = flags_obj self.recommender = CM.set_recommender(flags_obj, cm.workspace, dm, new_config) self.device = CM.set_device(self.flags_obj) self.recommender.transfer_model(self.device) self.lr_rec = self.flags_obj.lr_rec self.lr_label = self.flags_obj.lr_label self.set_train_dataloader() self.set_valid_dataloader() self.set_test_dataloader() set_device_for_topk(self.device) self.topk_model = TopK_custom(k=10, epsilon=1e-4).to(self.device) if self.flags_obj.dataset_name == 'kuaishou': if self.flags_obj.normalization == 1: def normalize_play_time(tensor): mask = tensor <= 50.0 y = torch.zeros_like(tensor) y[mask] = tensor[mask] / 50.0 * 0.2 if len(mask) < len(tensor): y[~mask] = torch.min( (tensor[~mask]-50.0) / (800.0-50.0) * 0.8 + 0.2, torch.tensor([1.0]).to(self.device))[0] return y def normalize_duration(tensor): mask = tensor <= 235.0 y = torch.zeros_like(tensor) y[mask] = tensor[mask] / 235.0 * 0.2 if len(mask) < len(tensor): y[~mask] = torch.min( (tensor[~mask]-235.0) / (3600.0-235.0) * 0.8 + 0.2, torch.tensor([1.0]).to(self.device))[0] return y else: def normalize_play_time(tensor): return tensor def normalize_duration(tensor): return tensor elif self.flags_obj.dataset_name == 'wechat': if self.flags_obj.normalization == 1: def normalize_play_time(tensor): mask = tensor <= 51.3 y = torch.zeros_like(tensor) y[mask] = tensor[mask] / 51.3 * 0.2 if len(mask) < len(tensor): y[~mask] = torch.min( (tensor[~mask]-51.3) / (8514.0-51.3) * 0.8 + 0.2, torch.tensor([1.0]).to(self.device))[0] return y def normalize_duration(tensor): mask = tensor <= 59.0 y = torch.zeros_like(tensor) y[mask] = tensor[mask] / 59.0 * 0.2 if len(mask) < len(tensor): y[~mask] = torch.min( (tensor[~mask]-59.0) / (10275.0-59.0) * 0.8 + 0.2, torch.tensor([1.0]).to(self.device))[0] return y else: def normalize_play_time(tensor): return tensor def normalize_duration(tensor): return tensor self.normalize_duration = normalize_duration self.normalize_play_time = normalize_play_time def set_train_dataloader(self): self.train_dataset = self.recommender.get_dataset(const_util.train_file, self.dm, True) self.train_dataloader = get_dataloader( data_set = self.train_dataset, bs = self.dm.batch_size, collate_fn = self.train_dataset.collate_func, shuffle = True ) def set_valid_dataloader(self, k=10): self.valid_dataset = self.recommender.get_dataset(const_util.valid_file, self.dm, False) self.valid_user_counts = self.valid_dataset.sampler.record.groupby('user_id').size().to_dict() self.valid_user_counts= {key: value for key, value in self.valid_user_counts.items() if value > k} self.valid_dataloader = get_dataloader( data_set = self.valid_dataset, bs = self.dm.batch_size, collate_fn = self.valid_dataset.collate_func, shuffle = False ) def set_test_dataloader(self, k=10): self.test_dataset = self.recommender.get_dataset(const_util.test_file, self.dm, False) self.test_user_counts = self.test_dataset.sampler.record.groupby('user_id').size().to_dict() self.test_user_counts= {key: value for key, value in self.test_user_counts.items() if value > k} self.test_dataloader = get_dataloader( data_set = self.test_dataset, bs = self.dm.batch_size, collate_fn = self.test_dataset.collate_func, shuffle = False ) def test(self, k=10, user_counts=None, dataset=None): with torch.no_grad(): model = self.recommender.model result_test_k = dict() test_user_num = len(user_counts) test_user_weight = list(user_counts.values()) temp = sum(test_user_weight) test_user_weight = [x / temp for x in test_user_weight] for u in list(user_counts.keys()): items_info, feedbacks_info, scores = self.get_score_test(u, model, dataset=dataset) play_time = feedbacks_info[:, 0].float() duration = feedbacks_info[:, 1].float() lfc = feedbacks_info[:, 2].float() if len(play_time) > k: _, top_indices = torch.topk(scores, k=k) pos_weight = torch.log2(torch.arange(2, k+2)).to(self.device) duration_result = torch.std(duration[top_indices]).cpu().numpy() top_play_time_pos = torch.dot(pos_weight, torch.topk(play_time, k=k)[0]) top_play_time_pos_by_score = torch.dot(pos_weight, play_time[top_indices]) play_time_pos_result = (top_play_time_pos_by_score / top_play_time_pos).cpu().numpy() if top_play_time_pos > 0 else np.array(1.0) top_lfc_pos = torch.dot(pos_weight, torch.topk(lfc, k=k)[0]) top_lfc_pos_by_score = torch.dot(pos_weight, lfc[top_indices]) lfc_pos_result = (top_lfc_pos_by_score / top_lfc_pos).cpu().numpy() if top_lfc_pos > 0 else np.array(1.0) result_test_k[u] = [duration_result, play_time_pos_result, lfc_pos_result] temp = [v[0] for v in list(result_test_k.values())] duration_average_result = np.sum(temp) / test_user_num duration_weighted_result = sum([test_user_weight[i] * temp[i] for i in range(len(test_user_weight))]) print("top@{} {} duration std:{}".format(k, 'average', duration_average_result)) print("top@{} {} duration std:{}".format(k, 'weighted', duration_weighted_result)) temp = [v[1] for v in list(result_test_k.values())] play_time_pos_average_result = np.sum(temp) / test_user_num play_time_pos_weighted_result = sum([test_user_weight[i] * temp[i] for i in range(len(test_user_weight))]) print("top@{} {} play time ratio:{}".format(k, 'average', play_time_pos_average_result)) print("top@{} {} play time ratio:{}".format(k, 'weighted', play_time_pos_weighted_result)) temp = [v[2] for v in list(result_test_k.values())] lfc_pos_average_result = np.sum(temp) / test_user_num lfc_pos_weighted_result = sum([test_user_weight[i] * temp[i] for i in range(len(test_user_weight))]) print("top@{} {} lfc ratio:{}".format(k, 'average', lfc_pos_average_result)) print("top@{} {} lfc ratio:{}".format(k, 'weighted', lfc_pos_weighted_result)) result = [duration_average_result, duration_weighted_result, play_time_pos_average_result, play_time_pos_weighted_result, lfc_pos_average_result, lfc_pos_weighted_result] return result def get_score_test(self, user, model, params_updated=None, dataset=None): sample = dataset.get_user_batch_final(user) sample = [[k.to(self.device) for k in i] if type(i) == list else i.to(self.device) for i in sample] input_data, feedbacks = sample[:-1], sample[3] scores = model.forward(input_data=input_data, params_updated=params_updated) # shape: [B] items_info = sample[1] feedbacks_info = sample[3] return items_info, feedbacks_info, scores def train_and_test(self): train_loss = [] #store every training loss valid_metric = [] #store every validation metric not_better = 0 best_metric = 0 save_name = '' for name_str, name_val in self.recommender.model_config.items(): save_name += name_str + '_' + str(name_val) + '_' for epoch in range(self.flags_obj.epochs): loss = self.train_one_epoch(epoch, self.train_dataloader) print("TRAIN") print("train loss:{}".format(loss)) train_loss.append(loss) if epoch % 1 == 0: print("VALIDATE") valid_result = self.test(k=10, user_counts=self.valid_user_counts, dataset=self.valid_dataset) valid_loss = self.get_loss(self.valid_dataloader) print("valid loss:", valid_loss) valid_metric.append(valid_result[3]) print("TEST") test_result = self.test(k=10, user_counts=self.test_user_counts, dataset=self.test_dataset) test_loss = self.get_loss(self.test_dataloader) print("test loss:", test_loss) if valid_result[3] > best_metric + 1e-4: not_better = 0 best_metric = valid_result[3] torch.save(self.recommender.model.state_dict(), './workspace/ckpt/rec_' + self.flags_obj.extra_name + '_' + save_name + '.pth') torch.save(self.recommender.labeler.state_dict(), './workspace/ckpt/labeler_' + self.flags_obj.extra_name + '_' + save_name + '.pth') else: not_better += 1 if not_better >= 5: print("end at epoch {}".format(epoch)) print("train loss", train_loss) print("valid metric", valid_metric) break print('best result:') self.recommender.model.load_state_dict(torch.load('./workspace/ckpt/rec_' + self.flags_obj.extra_name + '_' + save_name + '.pth')) self.recommender.labeler.load_state_dict(torch.load('./workspace/ckpt/labeler_' + self.flags_obj.extra_name + '_' + save_name + '.pth')) valid_result = self.test(k=10, user_counts=self.valid_user_counts, dataset=self.valid_dataset) test_result = self.test(k=10, user_counts=self.test_user_counts, dataset=self.test_dataset) def train_one_epoch(self, epoch, dataloader): self.recommender.model.train() self.recommender.labeler.train() loss_train = 0 for step, sample in enumerate(dataloader): #t0 = time() sample = [[k.to(self.device) for k in i] if type(i) == list else i.to(self.device) for i in sample] #t1 = time() #print("Time: sample to device ", t1-t0) model_assume = copy.deepcopy(self.recommender.model).to(self.device) for param in model_assume.parameters(): param.grad = None input_data, feedbacks = sample[:-1], sample[-1] labels = self.recommender.labeler(feedbacks).squeeze(-1) loss_assume = model_assume.forward(input_data, labels) grads = torch.autograd.grad(loss_assume, model_assume.parameters(), create_graph=True, retain_graph=True) params_assume_updated = list() for i, param in enumerate(model_assume.parameters()): param_updated = param - self.lr_rec * grads[i] params_assume_updated.append(param_updated) #t2 = time() #print("Time: substep1 ", t2-t1) valid_user_num = len(self.valid_user_counts) sampled_users = random.sample(list(self.valid_user_counts.keys()), int(valid_user_num * self.flags_obj.sample_ratio)) result = dict() for u in sampled_users: result[u] = self.get_score_test(u, model_assume, params_assume_updated, self.valid_dataset) total_play_time, total_duration, total_lfc= self.get_metric(result=result, k=10) total_play_time = torch.stack(total_play_time) total_duration = torch.stack(total_duration) total_lfc = torch.stack(total_lfc) metric_play_time, metric_duration, metric_lfc = sum(total_play_time), sum(total_duration), sum(total_lfc) grads_alpha_play_time = torch.autograd.grad(metric_play_time, self.recommender.labeler.parameters(), retain_graph=True) grads_alpha_duration = torch.autograd.grad(metric_duration, self.recommender.labeler.parameters(), retain_graph=True) grads_alpha_lfc = torch.autograd.grad(metric_lfc, self.recommender.labeler.parameters(), retain_graph=True) grads_alpha_play_time_fc = self.flatten_and_concatenate(grads_alpha_play_time) grads_alpha_duration_fc = self.flatten_and_concatenate(grads_alpha_duration) grads_alpha_lfc_fc = self.flatten_and_concatenate(grads_alpha_lfc) if self.flags_obj.adapt == 0: weight = torch.tensor([1/3, 1/3, 1/3], dtype=torch.float32) elif self.flags_obj.disable > 0: weight = torch.ones(3, dtype=torch.float32) weight[self.flags_obj.disable - 1] = 0 else: weight = torch.stack([metric_play_time, metric_duration, metric_lfc]) while torch.min(weight) < 1: weight = weight * 10 weight = torch.exp(-self.flags_obj.adapt * weight) weight = weight / torch.sum(weight) total_metric = metric_play_time * weight[0] + metric_duration * weight[1] + metric_lfc * weight[2] for i, param in enumerate(self.recommender.labeler.parameters()): param.data = param.data + self.lr_label * (grads_alpha_play_time[i] * weight[0] + grads_alpha_duration[i] * weight[1] + grads_alpha_lfc[i] * weight[2]) #t3 = time() #print("Time: substep2 ", t3-t2) #self.rec_optimizer.zero_grad() with torch.no_grad(): labels = self.recommender.labeler(feedbacks).squeeze(-1) loss = self.recommender.model.forward(input_data, labels) loss_train += loss.detach().cpu().numpy() grads_final = torch.autograd.grad(loss, self.recommender.model.parameters()) for i, param in enumerate(self.recommender.model.parameters()): param.data = param.data - self.lr_rec * grads_final[i] #t4 = time() #print("Time: substep3 ", t4-t3) print("epoch:{}, step:{}, loss_assume:{}".format(epoch, step, loss_assume.data)) print("metric_play_time:{}, metric_duration:{}, metric_lfc:{}".format(metric_play_time, metric_duration, metric_lfc)) print("weight:{}, total_metric:{}".format(weight.data.cpu().numpy(), total_metric)) print("loss:{}".format(loss)) print("\n") return loss_train / step def get_loss(self, dataloader): with torch.no_grad(): model = self.recommender.model labeler = self.recommender.labeler result = 0 for step, sample in enumerate(dataloader): sample = [[k.to(self.device) for k in i] if type(i) == list else i.to(self.device) for i in sample] input_data, feedbacks = sample[:-1], sample[-1] labels = labeler(feedbacks).squeeze(-1) loss = model.forward(input_data, labels) result += loss.detach().cpu().numpy() return result / step def flatten_and_concatenate(self, tensor_list): flat_tensor_list = [] for tensor in tensor_list: flat_tensor = torch.flatten(tensor) flat_tensor_list.append(flat_tensor) concatenated_tensor = torch.cat(flat_tensor_list, dim=0) return concatenated_tensor def get_metric(self, result, k=10): total_play_time = [] total_duration = [] total_lfc = [] for user, info in result.items(): items_info = info[0] # id,duration,tag feedbacks_info = info[1] # play_time, duration, like follow comment play_time = feedbacks_info[:, 0].float() duration = feedbacks_info[:, 1].float() lfc = feedbacks_info[:, 2].float() scores = info[-1] N = items_info.shape[0] if N < k: continue is_topk = self.topk_model(scores.unsqueeze(dim=0))[0] is_topk = torch.sum(torch.sum(is_topk, dim=0), dim=1) play_time = self.normalize_play_time(play_time) duration = self.normalize_duration(duration) total_play_time.append(torch.dot(is_topk, play_time)/k) total_duration.append(torch.std(is_topk * duration)) total_lfc.append(torch.dot(is_topk, lfc)/k) return total_play_time, total_duration, total_lfc # Path: recommender.py class Recommender(object): def __init__(self, flags_obj, workspace, dm, nc=None): self.dm = dm # dataset manager self.model_name = flags_obj.model self.flags_obj = flags_obj self.load_model_config() self.set_model() self.set_labeler() self.workspace = workspace def load_model_config(self): path = './config/{}_{}.yaml'.format(self.model_name, self.dm.dataset_name) f = open(path) self.model_config = yaml.load(f, Loader=yaml.FullLoader) def set_model(self): self.model = DIN(config=self.model_config) def set_labeler(self): self.labeler = Labeler(feedback_num=self.model_config['feedback_num'], dim_num=self.model_config['dim_num']) def transfer_model(self, device): self.model = self.model.to(device) self.labeler = self.labeler.to(device) def get_dataset(self, *args): return getattr(data, f'DIN_Dataset')(*args) # Path: utils/Context.py import os import torch import config.const as const_util from trainer import Trainer from recommender import Recommender class ContextManager(object): def __init__(self, flags_obj): self.workspace = flags_obj.workspace self.set_workspace()
def set_workspace(self):
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: strollby/graphene-directives # Path: graphene_directives/schema.py class Schema(GrapheneSchema): def __init__( self, query: graphene.ObjectType = None, mutation: graphene.ObjectType = None, subscription: graphene.ObjectType = None, types: list[graphene.ObjectType] = None, directives: Union[Collection[GraphQLDirective], None] = None, auto_camelcase: bool = True, schema_directives: Collection[SchemaDirective] = None, include_graphql_spec_directives: bool = True, ): """ Schema Definition. Args: query (Type[ObjectType]): Root query *ObjectType*. Describes entry point for fields to *read* data in your Schema. mutation (Optional[Type[ObjectType]]): Root mutation *ObjectType*. Describes entry point for fields to *create, update or delete* data in your API. subscription (Optional[Type[ObjectType]]): Root subscription *ObjectType*. Describes entry point for fields to receive continuous updates. types (Optional[Collection[Type[ObjectType]]]): List of any types to include in schema that may not be introspected through root types. directives (List[GraphQLDirective], optional): List of custom directives to include in the GraphQL schema. auto_camelcase (bool): Fieldnames will be transformed in Schema's TypeMap from snake_case to camelCase (preferred by GraphQL standard). Default True. schema_directives (Collection[SchemaDirective]): Directives that can be defined at DIRECTIVE_LOCATION.SCHEMA with their argument values. include_graphql_spec_directives (bool): Includes directives defined by GraphQL spec (@include, @skip, @deprecated, @specifiedBy) """ self.custom_directives = directives or [] self.schema_directives = schema_directives or [] self.auto_camelcase = auto_camelcase self.directives_used: dict[str, GraphQLDirective] = {} directives = tuple(self.custom_directives) + ( tuple(specified_directives) if include_graphql_spec_directives else () ) super().__init__( query=query, mutation=mutation, subscription=subscription, types=types, directives=directives, auto_camelcase=auto_camelcase, ) def field_name_to_type_attribute( self, model: graphene.ObjectType ) -> Callable[[str], str]: """ Create field name conversion method (from schema name to actual graphene_type attribute name). Args: model (ObjectType): model whose field name is to be converted Returns: (str) -> (str) """ field_names = {} if self.auto_camelcase: field_names = { to_camel_case(attr_name): attr_name for attr_name in getattr(model._meta, "fields", []) # noqa } return lambda schema_field_name: field_names.get( schema_field_name, schema_field_name ) def type_attribute_to_field_name(self, attribute: str) -> str: """ Create a conversion method to convert from graphene_type attribute name to the schema field name. """ if self.auto_camelcase: return to_camel_case(attribute) return attribute def _add_argument_decorators( self, entity_name: str, required_directive_field_types: set[DirectiveLocation], args: dict[str, GraphQLArgument], ) -> str: """ For a given field, go through all its args and see if any directive decorator needs to be added. """ if not args: return "" # If every arg does not have a description, print them on one line. print_single_line = not any(arg.description for arg in args.values()) indentation: str = " " new_args = [] str_field = "(" if print_single_line else "(\n" for i, (name, arg) in enumerate(args.items()): if print_single_line: base_str = f"{print_input_value(name, arg)} " else: base_str = ( print_description(arg, f" {indentation}", not i) + f" {indentation}" + f"{print_input_value(name, arg)} " ) directives = [] for directive in self.custom_directives: if has_field_attribute(arg, directive): directive_values = get_field_attribute_value(arg, directive) meta_data: CustomDirectiveMeta = getattr( directive, "_graphene_directive" ) if ( not required_directive_field_types.intersection( set(directive.locations) ) and len(required_directive_field_types) != 0 ): raise DirectiveValidationError( "\n".join( [ f"{str(directive)} cannot be used at argument {name} level", f"\tat {entity_name}", f"\tallowed: {directive.locations}", f"\trequired: {required_directive_field_types}", ] ) ) for directive_value in directive_values: if meta_data.input_transform is not None: directive_value = arg_camel_case( meta_data.input_transform( arg_snake_case(directive_value), self ) ) directive_str = decorator_string(directive, **directive_value) directives.append(directive_str) new_args.append(base_str + " ".join(directives)) if print_single_line: str_field += ", ".join(new_args) + ")" else: str_field += "\n".join(new_args) + f"\n{indentation})" return str_field def _add_field_decorators(self, graphene_types: set, string_schema: str) -> str: """ For a given entity, go through all its fields and see if any directive decorator needs to be added. This method simply goes through the fields that need to be modified and replace them with their annotated version in the schema string representation. """ for graphene_type in graphene_types: entity_name = graphene_type._meta.name # noqa entity_type = self.graphql_schema.get_type(entity_name) get_field_graphene_type = self.field_name_to_type_attribute(graphene_type) required_directive_locations = set() if is_object_type(entity_type) or is_interface_type(entity_type): required_directive_locations.union( { DirectiveLocation.FIELD_DEFINITION, DirectiveLocation.ARGUMENT_DEFINITION, } ) elif is_enum_type(entity_type): required_directive_locations.add(DirectiveLocation.ENUM_VALUE) elif is_input_type(entity_type): required_directive_locations.add( DirectiveLocation.INPUT_FIELD_DEFINITION ) else: continue if is_enum_type(entity_type): fields: dict = entity_type.values else: fields: dict = entity_type.fields str_fields = [] for field_name, field in fields.items(): if is_enum_type(entity_type): str_field = enum_type_to_fields_string( get_single_field_type( entity_type, field_name, field, is_enum_type=True ) ) elif isinstance(field, GraphQLInputField): str_field = input_type_to_fields_string( get_single_field_type(entity_type, field_name, field) ) elif isinstance(field, GraphQLField): str_field = entity_type_to_fields_string( get_single_field_type(entity_type, field_name, field) ) # Replace Arguments with directives if hasattr(entity_type, "_fields"): _arg = entity_type._fields.args[0] # noqa if hasattr(_arg, self.type_attribute_to_field_name(field_name)): arg_field = getattr( _arg, self.type_attribute_to_field_name(field_name) ) else: arg_field = {} if ( hasattr(arg_field, "args") and arg_field.args is not None and isinstance(arg_field.args, dict) ): original_args = print_args( args=field.args, indentation=" " ) replacement_args = self._add_argument_decorators( entity_name=entity_name, required_directive_field_types=required_directive_locations, args=arg_field.args, ) str_field = str_field.replace( original_args, replacement_args ) else: continue # Check if we need to annotate the field by checking if it has the decorator attribute set on the field. field = getattr( graphene_type, get_field_graphene_type(field_name), None ) if field is None: # Append the string, but skip the directives str_fields.append(str_field) continue for directive in self.custom_directives: if not has_field_attribute(field, directive): continue directive_values = get_field_attribute_value(field, directive) meta_data: CustomDirectiveMeta = getattr( directive, "_graphene_directive" ) if ( not required_directive_locations.intersection( set(directive.locations) ) and len(required_directive_locations) != 0 ): raise DirectiveValidationError( "\n".join( [ f"{str(directive)} cannot be used at field level", f"\tat {entity_name}", f"\tallowed: {directive.locations}", f"\trequired: {required_directive_locations}", ] ) ) for directive_value in directive_values: if ( meta_data.field_validator is not None and not meta_data.field_validator( entity_type, field, arg_snake_case(directive_value), self, ) ): raise DirectiveCustomValidationError( ", ".join( [ f"Custom Validation Failed for {str(directive)} with args: ({directive_value})" f"at field level {entity_name}:{field}" ] ) ) if meta_data.input_transform is not None: directive_value = arg_camel_case( meta_data.input_transform( arg_snake_case(directive_value), self ) ) str_field += ( f" {decorator_string(directive, **directive_value)}" ) str_fields.append(str_field) str_fields_annotated = "\n".join(str_fields) # Replace the original field declaration by the annotated one if is_object_type(entity_type): entity_type_name = "type" str_fields_original = entity_type_to_fields_string(entity_type) elif is_interface_type(entity_type): entity_type_name = "interface" str_fields_original = entity_type_to_fields_string(entity_type) elif is_enum_type(entity_type): entity_type_name = "enum" str_fields_original = enum_type_to_fields_string(entity_type) elif is_input_type(entity_type): entity_type_name = "input" str_fields_original = input_type_to_fields_string(entity_type) else: continue pattern = re.compile( r"(%s\s%s\s[^\{]*)\{\s*%s\s*\}" # noqa % (entity_type_name, entity_name, re.escape(str_fields_original)) ) string_schema = pattern.sub( r"\g<1> {\n%s\n}" % str_fields_annotated, string_schema ) return string_schema def add_non_field_decorators( self, non_fields_type: set[GraphQLNamedType], string_schema: str ) -> str: for non_field in non_fields_type: entity_name = non_field._meta.name # noqa entity_type = self.graphql_schema.get_type(entity_name) required_directive_locations = set() if is_scalar_type(entity_type): non_field_pattern = rf"(scalar {entity_name})" required_directive_locations.add(DirectiveLocation.SCALAR) elif is_union_type(entity_type): non_field_pattern = rf"(union {entity_name} )" required_directive_locations.add(DirectiveLocation.UNION) elif is_object_type(entity_type): non_field_pattern = rf"(type {entity_name} [^\{{]*)" required_directive_locations.add(DirectiveLocation.OBJECT) elif is_interface_type(entity_type): non_field_pattern = rf"(interface {entity_name} [^\{{]*)" required_directive_locations.add(DirectiveLocation.INTERFACE) elif is_enum_type(entity_type): non_field_pattern = rf"(enum {entity_name} [^\{{]*)" required_directive_locations.add(DirectiveLocation.ENUM) elif is_input_type(entity_type): non_field_pattern = rf"(input {entity_name} [^\{{]*)" required_directive_locations.add(DirectiveLocation.INPUT_OBJECT) else: continue directive_annotations = [] for directive in self.custom_directives: if has_non_field_attribute(non_field, directive): meta_data: CustomDirectiveMeta = getattr( directive, "_graphene_directive" ) directive_values = get_non_field_attribute_value( non_field, directive ) if ( not required_directive_locations.intersection( set(directive.locations) ) and len(required_directive_locations) != 0 ): raise DirectiveValidationError( "\n".join( [ f"{str(directive)} cannot be used at non field level", f"\tat {entity_name}", f"\tallowed: {directive.locations}", f"\trequired: {required_directive_locations}", ] ) ) for directive_value in directive_values: if ( meta_data.non_field_validator is not None and not meta_data.non_field_validator( non_field, arg_snake_case(directive_value), self ) ): raise DirectiveCustomValidationError( ", ".join( [ f"Custom Validation Failed for {str(directive)} with args: ({directive_value})" f"at non-field level {entity_name}" ] ) ) if meta_data.input_transform is not None: directive_value = arg_camel_case( meta_data.input_transform( arg_snake_case(directive_value), self ) ) directive_annotations.append( f"{decorator_string(directive, **directive_value)}" ) annotation = " ".join(directive_annotations) annotation = ( f" {annotation}" if is_scalar_type(entity_type) else f"{annotation} " ) replace_str = rf"\1{annotation}" pattern = re.compile(non_field_pattern) string_schema = pattern.sub(replace_str, string_schema) return string_schema def _get_directive_applied_non_field_types(self) -> set: """ Find all the directive applied non-field types from the schema. """ directives_types = set() schema_types = { **self.graphql_schema.type_map, **{ "Query": self.graphql_schema.query_type, "Mutation": self.graphql_schema.mutation_type, }, } for schema_type in schema_types.values(): if not hasattr(schema_type, "graphene_type"): continue for directive in self.custom_directives: if has_non_field_attribute(schema_type.graphene_type, directive): self.directives_used[directive.name] = directive directives_types.add(schema_type.graphene_type) return directives_types def _get_directive_applied_field_types(self) -> set: """ Find all the directive applied field types from the schema. """ directives_fields = set() schema_types = { **self.graphql_schema.type_map, **{ "Query": self.graphql_schema.query_type, # noqa "Mutation": self.graphql_schema.mutation_type, # noqa }, } for _, entity_type in schema_types.items(): if ( not hasattr(entity_type, "graphene_type") # noqa:SIM101 or isinstance(entity_type.graphene_type._meta, UnionOptions) # noqa or isinstance(entity_type.graphene_type._meta, ScalarOptions) # noqa ): continue fields = ( list(entity_type.values.values()) # Enum class fields if is_enum_type(entity_type) else list(entity_type.fields) # noqa ) for field in fields: field_type = ( # auto-camelcasing can cause problems getattr(entity_type.graphene_type, to_camel_case(field), None) or getattr(entity_type.graphene_type, to_snake_case(field), None) if not is_enum_type(entity_type) else field.value ) for directive_ in self.custom_directives: if has_field_attribute(field_type, directive_): self.directives_used[directive_.name] = directive_ directives_fields.add(entity_type.graphene_type) # Handle Argument Decorators if ( hasattr(field_type, "args") and field_type.args is not None and isinstance(field_type.args, dict) ): for arg_name, arg_type in field_type.args.items(): if has_field_attribute(arg_type, directive_): if ( DirectiveLocation.ARGUMENT_DEFINITION not in directive_.locations ): raise DirectiveValidationError( f"{directive_} cannot be used at argument level at {entity_type}->{field}" ) self.directives_used[directive_.name] = directive_ directives_fields.add(entity_type.graphene_type) return directives_fields def get_directives_used(self) -> list[GraphQLDirective]: """ Returns a list of directives used in the schema """ self._get_directive_applied_field_types() self._get_directive_applied_non_field_types() return list(self.directives_used.values()) def __str__(self): string_schema = "" string_schema += extend_schema_string(string_schema, self.schema_directives) string_schema += print_schema(self.graphql_schema) field_types = self._get_directive_applied_field_types() non_field_types = self._get_directive_applied_non_field_types() string_schema = self._add_field_decorators(field_types, string_schema) string_schema = self.add_non_field_decorators(non_field_types, string_schema) for directive in self.custom_directives: meta_data: CustomDirectiveMeta = getattr(directive, "_graphene_directive") if not meta_data.add_definition_to_schema: string_schema = string_schema.replace( print_directive(directive) + "\n\n", "" ) return string_schema.strip() # Path: graphene_directives/data_models/schema_directive.py class SchemaDirective: target_directive: GraphQLDirective arguments: dict[str, Any] def __post_init__(self): if GrapheneDirectiveLocation.SCHEMA not in self.target_directive.locations: raise DirectiveValidationError( ". ".join( [ f"{self.target_directive} cannot be used as schema directive", "Missing DirectiveLocation.SCHEMA in locations", ] ) ) # Path: graphene_directives/directive.py def CustomDirective( # noqa name: str, locations: Collection[DirectiveLocation], args: Optional[Dict[str, GraphQLArgument]] = None, is_repeatable: bool = False, description: Optional[str] = None, extensions: Optional[Dict[str, Any]] = None, ast_node: Optional[ast.DirectiveDefinitionNode] = None, allow_all_directive_locations: bool = False, add_definition_to_schema: bool = True, non_field_validator: Callable[[Any, dict[str, Any], Any], bool] = None, field_validator: Callable[[Any, Any, dict[str, Any], Any], bool] = None, input_transform: Callable[[dict[str, Any], Any], dict[str, Any]] = None, ) -> GraphQLDirective: def directive( target_directive: GraphQLDirective, *, field: Optional[Any] = None, **_kwargs: Any ) -> Callable: def decorator(type_: Any) -> Any: def directive_decorator(target_directive: GraphQLDirective) -> directive: # Path: graphene_directives/exceptions.py class DirectiveCustomValidationError(Exception): def __init__(self, message: str): super().__init__(message) # Path: graphene_directives/exceptions.py class DirectiveValidationError(Exception): def __init__(self, message: str): super().__init__(message) # Path: graphene_directives/parsers.py def arg_camel_case(inputs: dict) -> dict: return {to_camel_case(k): v for k, v in inputs.items()} # Path: graphene_directives/parsers.py def arg_snake_case(inputs: dict) -> dict: return {to_snake_case(k): v for k, v in inputs.items()} # Path: graphene_directives/parsers.py def decorator_string(directive: GraphQLDirective, **kwargs: dict) -> str: directive_name = str(directive) if len(directive.args) == 0: return directive_name # Format each keyword argument as a string, considering its type formatted_args = [ ( f"{to_camel_case(key)}: " + (f'"{value}"' if isinstance(value, str) else json.dumps(value)) ) for key, value in kwargs.items() if value is not None and to_camel_case(key) in directive.args ] # Construct the directive string return f"{directive_name}({', '.join(formatted_args)})" # Path: graphene_directives/parsers.py def entity_type_to_fields_string( field: Union[GraphQLObjectType, GraphQLInterfaceType], ) -> str: return _remove_block(print_fields(field)) # Path: graphene_directives/parsers.py def enum_type_to_fields_string(graphene_type: GraphQLEnumType) -> str: fields = print_enum(graphene_type).replace( print_description(graphene_type) + f"enum {graphene_type.name}", "" ) return _remove_block(fields) # Path: graphene_directives/parsers.py def extend_schema_string( string_schema: str, schema_directives: Collection[SchemaDirective] ) -> str: schema_directives_strings = [] for schema_directive in schema_directives: args = parse_argument_values( schema_directive.target_directive, { to_camel_case(field): value for (field, value) in schema_directive.arguments.items() }, ) schema_directives_strings.append( "\t" + decorator_string(schema_directive.target_directive, **args) ) if len(schema_directives_strings) != 0: string_schema += ( "extend schema\n" + "\n".join(schema_directives_strings) + "\n\n" ) return string_schema # Path: graphene_directives/parsers.py def input_type_to_fields_string(graphene_type: GraphQLInputObjectType) -> str: fields = print_input_object(graphene_type).replace( print_description(graphene_type) + f"input {graphene_type.name}", "" ) return _remove_block(fields) # Path: graphene_directives/utils.py def get_field_attribute_value( type_: Any, target_directive: GraphQLDirective ) -> list[dict]: return getattr(type_, field_attribute_name(target_directive)) # Path: graphene_directives/utils.py def get_non_field_attribute_value( type_: Any, target_directive: GraphQLDirective ) -> list[dict]: return getattr(type_, non_field_attribute_name(target_directive)) # Path: graphene_directives/utils.py def get_single_field_type( entity: Union[GraphQLEnumType, GraphQLInputObjectType, GraphQLObjectType], field_name: str, field_type: Union[GraphQLInputField, GraphQLField], is_enum_type: bool = False, ) -> Union[GraphQLEnumType, GraphQLInputObjectType, GraphQLObjectType]: """ Generates the schema for a type with just one given field """ new_entity = deepcopy(entity) setattr( new_entity, "values" if is_enum_type else "fields", {field_name: field_type} ) return new_entity # Path: graphene_directives/utils.py def has_field_attribute(type_: Any, target_directive: GraphQLDirective) -> bool: return hasattr(type_, field_attribute_name(target_directive)) # Path: graphene_directives/utils.py def has_non_field_attribute(type_: Any, target_directive: GraphQLDirective) -> bool: return hasattr(type_, non_field_attribute_name(target_directive)) # Path: graphene_directives/schema.py import re import graphene from typing import Callable, Collection, Union from graphene import Schema as GrapheneSchema from graphene.types.scalars import ScalarOptions from graphene.types.union import UnionOptions from graphene.utils.str_converters import to_camel_case, to_snake_case from graphql import ( DirectiveLocation, GraphQLArgument, GraphQLDirective, GraphQLField, GraphQLInputField, GraphQLNamedType, is_enum_type, is_input_type, is_interface_type, is_object_type, is_scalar_type, is_union_type, print_schema, ) from graphql import specified_directives from graphql.utilities.print_schema import ( print_args, print_description, print_directive, print_input_value, ) from .data_models.schema_directive import SchemaDirective from .directive import CustomDirectiveMeta from .exceptions import DirectiveCustomValidationError, DirectiveValidationError from .parsers import ( arg_camel_case, arg_snake_case, decorator_string, entity_type_to_fields_string, enum_type_to_fields_string, extend_schema_string, input_type_to_fields_string, ) from .utils import ( get_field_attribute_value, get_non_field_attribute_value, get_single_field_type, has_field_attribute, has_non_field_attribute, ) class Schema(GrapheneSchema): def __init__( self, query: graphene.ObjectType = None, mutation: graphene.ObjectType = None, subscription: graphene.ObjectType = None,
types: list[graphene.ObjectType] = None,
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: weijiawu/CisDQ # Path: mask2former/modeling/transformer_decoder/position_encoding.py class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, x, mask=None): if mask is None: mask = torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4 ).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos def __repr__(self, _repr_indent=4): head = "Positional encoding " + self.__class__.__name__ body = [ "num_pos_feats: {}".format(self.num_pos_feats), "temperature: {}".format(self.temperature), "normalize: {}".format(self.normalize), "scale: {}".format(self.scale), ] # _repr_indent = 4 lines = [head] + [" " * _repr_indent + line for line in body] return "\n".join(lines) # Path: mask2former/modeling/transformer_decoder/transformer.py def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) # Path: mask2former/modeling/transformer_decoder/transformer.py def _get_activation_fn(activation): """Return an activation function given a string""" if activation == "relu": return F.relu if activation == "gelu": return F.gelu if activation == "glu": return F.glu raise RuntimeError(f"activation should be relu/gelu, not {activation}.") # Path: mask2former/modeling/pixel_decoder/ops/modules/ms_deform_attn.py class MSDeformAttn(nn.Module): def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4): """ Multi-Scale Deformable Attention Module :param d_model hidden dimension :param n_levels number of feature levels :param n_heads number of attention heads :param n_points number of sampling points per attention head per feature level """ super().__init__() if d_model % n_heads != 0: raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads)) _d_per_head = d_model // n_heads # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation if not _is_power_of_2(_d_per_head): warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 " "which is more efficient in our CUDA implementation.") self.im2col_step = 128 self.d_model = d_model self.n_levels = n_levels self.n_heads = n_heads self.n_points = n_points self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2) self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points) self.value_proj = nn.Linear(d_model, d_model) self.output_proj = nn.Linear(d_model, d_model) self._reset_parameters() def _reset_parameters(self): constant_(self.sampling_offsets.weight.data, 0.) thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) constant_(self.attention_weights.weight.data, 0.) constant_(self.attention_weights.bias.data, 0.) xavier_uniform_(self.value_proj.weight.data) constant_(self.value_proj.bias.data, 0.) xavier_uniform_(self.output_proj.weight.data) constant_(self.output_proj.bias.data, 0.) def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None): """ :param query (N, Length_{query}, C) :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes :param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C) :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})] :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}] :param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements :return output (N, Length_{query}, C) """ N, Len_q, _ = query.shape N, Len_in, _ = input_flatten.shape assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in value = self.value_proj(input_flatten) if input_padding_mask is not None: value = value.masked_fill(input_padding_mask[..., None], float(0)) value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2) attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points) attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points) # N, Len_q, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1) sampling_locations = reference_points[:, :, None, :, None, :] \ + sampling_offsets / offset_normalizer[None, None, None, :, None, :] elif reference_points.shape[-1] == 4: sampling_locations = reference_points[:, :, None, :, None, :2] \ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 else: raise ValueError( 'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1])) try: output = MSDeformAttnFunction.apply( value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step) except: # CPU output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights) # # For FLOPs calculation only # output = ms_deform_attn_core_pytorch(value, input_spatial_shapes, sampling_locations, attention_weights) output = self.output_proj(output) return output # Path: mask2former/modeling/pixel_decoder/msdeformattn.py import logging import numpy as np import fvcore.nn.weight_init as weight_init import torch from typing import Callable, Dict, List, Optional, Tuple, Union from torch import nn from torch.nn import functional as F from torch.nn.init import xavier_uniform_, constant_, uniform_, normal_ from torch.cuda.amp import autocast from detectron2.config import configurable from detectron2.layers import Conv2d, ShapeSpec, get_norm from detectron2.modeling import SEM_SEG_HEADS_REGISTRY from ..transformer_decoder.position_encoding import PositionEmbeddingSine from ..transformer_decoder.transformer import _get_clones, _get_activation_fn from .ops.modules import MSDeformAttn num_encoder_layers=6, dim_feedforward=1024, dropout=0.1, activation="relu", num_feature_levels=4, enc_n_points=4, ): super().__init__() self.d_model = d_model self.nhead = nhead encoder_layer = MSDeformAttnTransformerEncoderLayer(d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points) self.encoder = MSDeformAttnTransformerEncoder(encoder_layer, num_encoder_layers) self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model)) self._reset_parameters() def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) for m in self.modules(): if isinstance(m, MSDeformAttn): m._reset_parameters() normal_(self.level_embed) def get_valid_ratio(self, mask): _, H, W = mask.shape valid_H = torch.sum(~mask[:, :, 0], 1) valid_W = torch.sum(~mask[:, 0, :], 1) valid_ratio_h = valid_H.float() / H valid_ratio_w = valid_W.float() / W valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) return valid_ratio def forward(self, srcs, pos_embeds): masks = [torch.zeros((x.size(0), x.size(2), x.size(3)), device=x.device, dtype=torch.bool) for x in srcs] # prepare input for encoder src_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)): bs, c, h, w = src.shape spatial_shape = (h, w) spatial_shapes.append(spatial_shape) src = src.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) src_flatten.append(src) mask_flatten.append(mask) src_flatten = torch.cat(src_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1) # encoder memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten) return memory, spatial_shapes, level_start_index class MSDeformAttnTransformerEncoderLayer(nn.Module): def __init__(self, d_model=256, d_ffn=1024, dropout=0.1, activation="relu", n_levels=4, n_heads=8, n_points=4): super().__init__() # self attention self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points) self.dropout1 = nn.Dropout(dropout) self.norm1 = nn.LayerNorm(d_model) # ffn self.linear1 = nn.Linear(d_model, d_ffn) self.activation = _get_activation_fn(activation) self.dropout2 = nn.Dropout(dropout) self.linear2 = nn.Linear(d_ffn, d_model) self.dropout3 = nn.Dropout(dropout) self.norm2 = nn.LayerNorm(d_model) @staticmethod def with_pos_embed(tensor, pos): return tensor if pos is None else tensor + pos def forward_ffn(self, src): src2 = self.linear2(self.dropout2(self.activation(self.linear1(src)))) src = src + self.dropout3(src2) src = self.norm2(src) return src def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, padding_mask=None): # self attention src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, padding_mask) src = src + self.dropout1(src2) src = self.norm1(src) # ffn src = self.forward_ffn(src) return src class MSDeformAttnTransformerEncoder(nn.Module): def __init__(self, encoder_layer, num_layers): super().__init__() self.layers = _get_clones(encoder_layer, num_layers) self.num_layers = num_layers @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): reference_points_list = [] for lvl, (H_, W_) in enumerate(spatial_shapes):
ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: KieDani/Towards_3D_Object_Localization # Path: helper.py def img_to_cam(coords, Mint, original_size, resized_size): ''' coords: (..., 3) with ordering (y, x, z) Mint: (3, 3) or (B, 3, 3) original_size: order (height, width) resized_size: order (height, width) ---------------- return: (..., 3) with ordering (y, x, z) ''' coords_c = coords.clone() coords_c[..., :2] = resized_to_original_keypopints(coords_c[..., :2], original_size, resized_size) coords_c[..., [0, 1]] = coords_c[..., [1, 0]] * coords[..., 2:3] if len(Mint.shape) == 3: inv_Mint = torch.linalg.inv(Mint[:, :3, :3]) coords_c = torch.einsum('b i d, b ... d -> b ... i', inv_Mint, coords_c) elif len(Mint.shape) == 2: inv_Mint = torch.linalg.inv(Mint[:3, :3]) coords_c = torch.einsum('i d, ... d -> ... i', inv_Mint, coords_c) else: raise ValueError('Mint should be 2D or 3D tensor') coords_c[..., [0, 1, 2]] = coords_c[..., [1, 0, 2]] return coords_c # Path: helper.py def cam_to_world(coords_c, extrinsic_matrix): #coords_c[..., [0, 1]] = coords_c[..., [1, 0]] tmp = coords_c[..., [1, 0, 2]] inverse_extrinsic_matrix = torch.linalg.inv(extrinsic_matrix) #coords_c = torch.cat((coords_c, torch.ones_like(coords_c[..., 0:1])), dim=-1) tmp = torch.cat((tmp, torch.ones_like(tmp[..., 0:1])), dim=-1) if len(tmp.shape) == 3: inverse_extrinsic_matrix = inverse_extrinsic_matrix.unsqueeze(-3) #coords_w = torch.einsum('i d, ... d -> ... i', inverse_extrinsic_matrix, coords_c) coords_w = torch.einsum('... i d, ... d -> ... i', inverse_extrinsic_matrix, tmp) coords_w = coords_w[..., :3] / coords_w[..., 3:4] return coords_w # Path: helper.py def load_models(identifier, epoch, path=None, device='cuda:0'): if path is None: assert identifier is None and epoch is None path = os.path.join(get_logs_path(), 'checkpoints', identifier, f'{epoch}.pth') checkpoint = torch.load(path, map_location=device) return checkpoint # Path: helper.py def seed_worker(worker_id): worker_seed = torch.initial_seed() % 2**32 numpy.random.seed(worker_seed) random.seed(worker_seed) # Path: helper.py def get_logs_path(): return logs_path # Path: general/model.py def get_PEN(name='resnet34', depth_mode='depthmap', environment_name=None): assert name in ['resnet34', 'resnet50', 'convnext', 'hrnet', 'convnextv2'] if name in ['resnet34', 'resnet50', 'convnext', 'hrnet', 'convnextv2']: model = ResNetPyramid(depth_mode=depth_mode, backbone=name) else: if depth_mode != 'depthmap': raise NotImplementedError else: raise ValueError if environment_name in ['realball']: model.min_depth = 0.05 model.max_depth = 3 elif environment_name in ['parcour_singleenv_singlecam', 'parcour_singleenv_multicam', 'parcour_multienv_singlecam', 'parcour_multienv_multicam', 'falling', 'carousel', 'parcour_dualenv_multicam']: model.min_depth = 2 model.max_depth = 12 else: raise ValueError return model # Path: general/config.py class EvalConfig(BaseConfig): def __init__(self, sin_title, environment_name, identifier, folder): super(EvalConfig, self).__init__() self.sin_title = sin_title self.environment_name = map_environment_name(environment_name) self.ident = identifier self.folder = folder self.BATCH_SIZE = 1 # Path: general/transforms.py class Normalize(object): class Compose(object): class DeNormalize(object): def __init__(self, mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]): def __call__(self, x): def __init__(self, transforms): def __call__(self, x): def __init__(self, mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]): def __call__(self, x): # Path: paths.py # Path: general/evaluate.py import os import argparse import torch import numpy as np import einops as eo import matplotlib.pyplot as plt import io import cv2 import random import json import general.dataset as my_dataset from tqdm import tqdm from helper import img_to_cam, cam_to_world, load_models, seed_worker, get_logs_path from general.model import get_PEN from general.config import EvalConfig from torch.utils.tensorboard import SummaryWriter from general.transforms import val_transform, denorm from paths import checkpoint_path as ch_pa img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) if imsave: save_image(img, f'img{t:04d}.png', im_path) heat = np.uint8(heatmaps[t]) heat = eo.rearrange(heat, 'c h w -> h w c') heat = np.uint8((heat - heatmaps.min()) * (255 / (heatmaps.max() - heatmaps.min()))) heat = cv2.applyColorMap(heat, cv2.COLORMAP_JET) if imsave: save_image(heat, f'heat{t:04d}.png', im_path) depth = depthmaps[t] if len(depth.shape) > 3: #Filter if depth was regression output instead of depth_map depth = np.zeros_like(heat) else: depth = eo.rearrange(depth, 'c h w -> h w c') depth = np.uint8((depth - depthmaps.min()) * (255 / (depthmaps.max() - depthmaps.min()) + 1e-7)) depth = cv2.applyColorMap(depth, cv2.COLORMAP_JET) if imsave: save_image(depth, f'depth{t:04d}.png', im_path) plot2d = np.uint8(plots2d[t]) plot2d = cv2.cvtColor(plot2d, cv2.COLOR_BGRA2BGR) if imsave: save_image(plot2d, f'plot2d{t:04d}.png', im_path, size=(1024, 1024)) plot2d = cv2.resize(plot2d, (W, H), interpolation=cv2.INTER_AREA) plot3d_c = np.uint8(plots3d_c[t]) plot3d_c = cv2.cvtColor(plot3d_c, cv2.COLOR_BGRA2BGR) if imsave: save_image(plot3d_c, f'plot3d_c{t:04d}.png', im_path, size=(1024, 1024)) plot3d_c = cv2.resize(plot3d_c, (W, H), interpolation=cv2.INTER_AREA) plot3d_w = np.uint8(plots3d_w[t]) plot3d_w = cv2.cvtColor(plot3d_w, cv2.COLOR_BGRA2BGR) if imsave: save_image(plot3d_w, f'plot3d_w{t:04d}.png', im_path, size=(1024, 1024)) plot3d_w = cv2.resize(plot3d_w, (W, H), interpolation=cv2.INTER_AREA) frame = np.hstack((np.vstack((img, heat)), np.vstack((depth, plot2d)), np.vstack((plot3d_c, plot3d_w)))) out.write(frame) out.release() def save_image(image, name, path, size=(512, 512)): image = cv2.resize(image, size, interpolation=cv2.INTER_AREA) cv2.imwrite(os.path.join(path, name), image) def calc_metrics(checkpoint_path, config, device='cpu'): torch.manual_seed(42) random.seed(42) np.random.seed(42) g = torch.Generator() g.manual_seed(0) num_bins = 3 min_depth, max_depth = (0.05, 1.5) if config.environment_name == 'realball' else (4., 10.) checkpoint = load_models(None, None, checkpoint_path, device) coord_model_state_dict = checkpoint['coord_model_state_dict'] coord_model = get_PEN(config.sin_title, environment_name=config.environment_name) coord_model.load_state_dict(coord_model_state_dict) coord_model = coord_model.to(device) coord_model.eval() testset = my_dataset.get_dataset(config.environment_name, mode='test', transforms=val_transform) testloader = torch.utils.data.DataLoader(testset, batch_size=config.BATCH_SIZE, shuffle=False, num_workers=8, worker_init_fn=seed_worker, generator=g) original_size = testset.original_size with torch.no_grad(): num_cameras = testloader.sampler.data_source.num_cameras num_environments = testloader.sampler.data_source.num_environments with torch.no_grad(): distances = {i:{j:[] for j in range(num_cameras)} for i in range(num_environments)} number = {i:{j:0 for j in range(num_cameras)} for i in range(num_environments)} distances_bins = {i:{j:{k:[] for k in range(num_bins)} for j in range(num_cameras)} for i in range(num_environments)} number_bins = {i:{j:{k:0 for k in range(num_bins)} for j in range(num_cameras)} for i in range(num_environments)} for i, data_dict in enumerate(tqdm(testloader)): for xml_num, stuff in data_dict.items(): video, vidlabel, vidheatmap, eM, iM, d3label, cam_num, timestamps = stuff images_all, d3labels_all = video.to(device), d3label.to(device) eM, iM = eM.to(device), iM.to(device) __, T, __, H, W = images_all.shape images_all = eo.rearrange(images_all, 'b t c h w -> (b t) c h w') heatmap_all, depthmap_all = coord_model(images_all) coords_all = coord_model.get_coords3D(heatmap_all, depthmap_all) coords_all = eo.rearrange(coords_all, '(b t) d -> b t d', t=T) coords_all = img_to_cam(coords_all, iM, original_size, (H, W)) distance = (coords_all - d3labels_all).double().pow(2).sum(2).sqrt() for cn in range(cam_num.shape[0]): cn_ind = cam_num[cn].item() for t in range(distance.shape[1]): distances[xml_num][cn_ind].append(distance[cn, t].item()) number[xml_num][cn_ind] += 1 bin_width = (max_depth - min_depth) / num_bins for b in range(num_bins): if min_depth + bin_width * b <= d3labels_all[cn, t, 2].item() < min_depth + bin_width * (b + 1): distances_bins[xml_num][cn_ind][b].append(distance[cn, t].item()) number_bins[xml_num][cn_ind][b] += 1 merge = lambda x: [item for sublist in x for item in sublist] # mean and std per camera dtgs_cam = {xml_num:{cn:np.mean(distances[xml_num][cn]) for cn in range(num_cameras)} for xml_num in range(num_environments)} dtgs_cam_std = {xml_num:{cn:np.std(distances[xml_num][cn]) for cn in range(num_cameras)} for xml_num in range(num_environments)} dtgs_cam_bin = {xml_num:{cn:[np.mean(distances_bins[xml_num][cn][b]) for b in range(num_bins)] for cn in range(num_cameras)} for xml_num in range(num_environments)} dtgs_cam_bin_std = {xml_num:{cn:[np.std(distances_bins[xml_num][cn][b]) for b in range(num_bins)] for cn in range(num_cameras)} for xml_num in range(num_environments)} # mean and std per environment dtgs_env = {xml_num:np.mean(merge([distances[xml_num][cn] for cn in range(num_cameras)])) for xml_num in range(num_environments)} dtgs_env_std = {xml_num:np.std(merge([distances[xml_num][cn] for cn in range(num_cameras)])) for xml_num in range(num_environments)} dtgs_env_bin = {xml_num:[np.mean(merge([distances_bins[xml_num][cn][b] for cn in range(num_cameras)])) for b in range(num_bins)] for xml_num in range(num_environments)} dtgs_env_bin_std = {xml_num:[np.std(merge([distances_bins[xml_num][cn][b] for cn in range(num_cameras)])) for b in range(num_bins)] for xml_num in range(num_environments)} # mean and std for the whole dataset dtg = np.mean(merge([distances[xml_num][cn] for xml_num in range(num_environments) for cn in range(num_cameras)])) dtg_std = np.std(merge([distances[xml_num][cn] for xml_num in range(num_environments) for cn in range(num_cameras)]))
dtg_bin = [np.mean(merge([distances_bins[xml_num][cn][b] for xml_num in range(num_environments) for cn in range(num_cameras)])) for b in range(num_bins)]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: aliyun/pai-python-sdk # Path: pai/libs/alibabacloud_eas20210701/models.py class CreateServiceRequest(TeaModel): def __init__( self, develop: str = None, labels: Dict[str, str] = None, body: str = None, ): self.develop = develop self.labels = labels self.body = body def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.develop is not None: result['Develop'] = self.develop if self.labels is not None: result['Labels'] = self.labels if self.body is not None: result['body'] = self.body return result def from_map(self, m: dict = None): m = m or dict() if m.get('Develop') is not None: self.develop = m.get('Develop') if m.get('Labels') is not None: self.labels = m.get('Labels') if m.get('body') is not None: self.body = m.get('body') return self # Path: pai/libs/alibabacloud_eas20210701/models.py class CreateServiceResponseBody(TeaModel): def __init__( self, internet_endpoint: str = None, intranet_endpoint: str = None, region: str = None, request_id: str = None, service_id: str = None, service_name: str = None, status: str = None, ): self.internet_endpoint = internet_endpoint self.intranet_endpoint = intranet_endpoint self.region = region self.request_id = request_id self.service_id = service_id self.service_name = service_name self.status = status def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.internet_endpoint is not None: result['InternetEndpoint'] = self.internet_endpoint if self.intranet_endpoint is not None: result['IntranetEndpoint'] = self.intranet_endpoint if self.region is not None: result['Region'] = self.region if self.request_id is not None: result['RequestId'] = self.request_id if self.service_id is not None: result['ServiceId'] = self.service_id if self.service_name is not None: result['ServiceName'] = self.service_name if self.status is not None: result['Status'] = self.status return result def from_map(self, m: dict = None): m = m or dict() if m.get('InternetEndpoint') is not None: self.internet_endpoint = m.get('InternetEndpoint') if m.get('IntranetEndpoint') is not None: self.intranet_endpoint = m.get('IntranetEndpoint') if m.get('Region') is not None: self.region = m.get('Region') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') if m.get('ServiceId') is not None: self.service_id = m.get('ServiceId') if m.get('ServiceName') is not None: self.service_name = m.get('ServiceName') if m.get('Status') is not None: self.status = m.get('Status') return self # Path: pai/libs/alibabacloud_eas20210701/models.py class DescribeMachineSpecRequest(TeaModel): def __init__( self, headers: Dict[str, str] = None, query: DescribeMachineSpecQuery = None, ): self.headers = headers self.query = query def validate(self): if self.query: self.query.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.headers is not None: result['headers'] = self.headers if self.query is not None: result['query'] = self.query.to_map() return result def from_map(self, m: dict = None): m = m or dict() if m.get('headers') is not None: self.headers = m.get('headers') if m.get('query') is not None: temp_model = DescribeMachineSpecQuery() self.query = temp_model.from_map(m['query']) return self # Path: pai/libs/alibabacloud_eas20210701/models.py class DescribeMachineSpecResponseBody(TeaModel): def __init__( self, request_id: str = None, instance_metas: List[DescribeMachineSpecResponseBodyInstanceMetas] = None, types: List[DescribeMachineSpecResponseBodyTypes] = None, ): self.request_id = request_id self.instance_metas = instance_metas self.types = types def validate(self): self.validate_required(self.request_id, 'request_id') self.validate_required(self.instance_metas, 'instance_metas') if self.instance_metas: for k in self.instance_metas: if k: k.validate() self.validate_required(self.types, 'types') if self.types: for k in self.types: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.request_id is not None: result['RequestId'] = self.request_id result['InstanceMetas'] = [] if self.instance_metas is not None: for k in self.instance_metas: result['InstanceMetas'].append(k.to_map() if k else None) result['Types'] = [] if self.types is not None: for k in self.types: result['Types'].append(k.to_map() if k else None) return result def from_map(self, m: dict = None): m = m or dict() if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.instance_metas = [] if m.get('InstanceMetas') is not None: for k in m.get('InstanceMetas'): temp_model = DescribeMachineSpecResponseBodyInstanceMetas() self.instance_metas.append(temp_model.from_map(k)) self.types = [] if m.get('Types') is not None: for k in m.get('Types'): temp_model = DescribeMachineSpecResponseBodyTypes() self.types.append(temp_model.from_map(k)) return self # Path: pai/libs/alibabacloud_eas20210701/models.py class ListServicesRequest(TeaModel): def __init__( self, filter: str = None, group_name: str = None, label: Dict[str, str] = None, order: str = None, page_number: int = None, page_size: int = None, parent_service_uid: str = None, service_type: str = None, sort: str = None, ): # 关键字搜索。 self.filter = filter # 所属的group。 self.group_name = group_name self.label = label # 排序顺序,支持升序或将序。 self.order = order # 页号。 self.page_number = page_number # 每页大小。 self.page_size = page_size # Band类型服务主服务的UID self.parent_service_uid = parent_service_uid # 服务的类型,例如Async, OfflineTask和Standard等 self.service_type = service_type # 排序字段。 self.sort = sort def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.filter is not None: result['Filter'] = self.filter if self.group_name is not None: result['GroupName'] = self.group_name if self.label is not None: result['Label'] = self.label if self.order is not None: result['Order'] = self.order if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.parent_service_uid is not None: result['ParentServiceUid'] = self.parent_service_uid if self.service_type is not None: result['ServiceType'] = self.service_type if self.sort is not None: result['Sort'] = self.sort return result def from_map(self, m: dict = None): m = m or dict() if m.get('Filter') is not None: self.filter = m.get('Filter') if m.get('GroupName') is not None: self.group_name = m.get('GroupName') if m.get('Label') is not None: self.label = m.get('Label') if m.get('Order') is not None: self.order = m.get('Order') if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('ParentServiceUid') is not None: self.parent_service_uid = m.get('ParentServiceUid') if m.get('ServiceType') is not None: self.service_type = m.get('ServiceType') if m.get('Sort') is not None: self.sort = m.get('Sort') return self # Path: pai/libs/alibabacloud_eas20210701/models.py class ListServicesResponseBody(TeaModel): def __init__( self, page_number: int = None, page_size: int = None, request_id: str = None, services: List[Service] = None, total_count: int = None, ): # 页码。 self.page_number = page_number # 每页显示的服务数。 self.page_size = page_size # 请求ID。 self.request_id = request_id # 服务列表。 self.services = services # 服务总数。 self.total_count = total_count def validate(self): if self.services: for k in self.services: if k: k.validate() def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.page_number is not None: result['PageNumber'] = self.page_number if self.page_size is not None: result['PageSize'] = self.page_size if self.request_id is not None: result['RequestId'] = self.request_id result['Services'] = [] if self.services is not None: for k in self.services: result['Services'].append(k.to_map() if k else None) if self.total_count is not None: result['TotalCount'] = self.total_count return result def from_map(self, m: dict = None): m = m or dict() if m.get('PageNumber') is not None: self.page_number = m.get('PageNumber') if m.get('PageSize') is not None: self.page_size = m.get('PageSize') if m.get('RequestId') is not None: self.request_id = m.get('RequestId') self.services = [] if m.get('Services') is not None: for k in m.get('Services'): temp_model = Service() self.services.append(temp_model.from_map(k)) if m.get('TotalCount') is not None: self.total_count = m.get('TotalCount') return self # Path: pai/libs/alibabacloud_eas20210701/models.py class ReleaseServiceRequest(TeaModel): def __init__( self, traffic_state: str = None, weight: int = None, ): self.traffic_state = traffic_state self.weight = weight def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.traffic_state is not None: result['TrafficState'] = self.traffic_state if self.weight is not None: result['Weight'] = self.weight return result def from_map(self, m: dict = None): m = m or dict() if m.get('TrafficState') is not None: self.traffic_state = m.get('TrafficState') if m.get('Weight') is not None: self.weight = m.get('Weight') return self # Path: pai/libs/alibabacloud_eas20210701/models.py class UpdateServiceRequest(TeaModel): def __init__( self, body: str = None, ): self.body = body def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.body is not None: result['body'] = self.body return result def from_map(self, m: dict = None): m = m or dict() if m.get('body') is not None: self.body = m.get('body') return self # Path: pai/libs/alibabacloud_eas20210701/models.py class UpdateServiceVersionRequest(TeaModel): def __init__( self, version: int = None, ): self.version = version def validate(self): pass def to_map(self): _map = super().to_map() if _map is not None: return _map result = dict() if self.version is not None: result['Version'] = self.version return result def from_map(self, m: dict = None): m = m or dict() if m.get('Version') is not None: self.version = m.get('Version') return self # Path: pai/api/base.py class PaginatedResult(object): """A class represent response of a pagination call to PAI service.""" items: List[Union[Dict[str, Any], str]] = None total_count: int = None def __init__(self, items: List[Union[Dict[str, Any], str]], total_count: int): self.items = items self.total_count = total_count # Path: pai/api/base.py class ResourceAPI(with_metaclass(ABCMeta, object)): """Class that provide APIs to operate the resource.""" BACKEND_SERVICE_NAME = None def __init__( self, acs_client: Client, header: Optional[Dict[str, str]] = None, runtime: Optional[RuntimeOptions] = None, ): """Initialize a ResourceAPI object. Args: acs_client (Client): A basic client used to communicate with a specific PAI service. header (Dict[str, str], optional): Header set in the HTTP request. Defaults to None. runtime (RuntimeOptions, optional): Options configured for the client runtime behavior, such as read_timeout, connection_timeout, etc. Defaults to None. """ self.acs_client = acs_client self.header = header self.runtime = runtime def _make_extra_request_options(self): """Returns headers and runtime for client.""" return self.header or dict(), self.runtime or RuntimeOptions() def _do_request(self, method_: str, *args, **kwargs): headers, runtime = self._make_extra_request_options() if "headers" not in kwargs: kwargs["headers"] = headers if "runtime" not in kwargs: kwargs["runtime"] = runtime request_method = getattr(self.acs_client, method_) return request_method(*args, **kwargs).body def get_api_object_by_resource_id(self, resource_id): raise NotImplementedError def refresh_entity(self, id_, entity): """Refresh entity using API object from service.""" if not isinstance(id_, six.string_types) and not isinstance( id_, six.integer_types ): raise ValueError( "Expected integer type or string type for id, but given type %s" % type(id_) ) api_obj = self.get_api_object_by_resource_id(resource_id=id_) return entity.patch_from_api_object(api_obj) @classmethod def make_paginated_result( cls, data: Union[Dict[str, Any], TeaModel], item_key=None, ) -> "PaginatedResult": """Make a paginated result from response. Args: data: Response data. item_key: Returns: """ if isinstance(data, TeaModel): data = data.to_map() total_count = data.pop("TotalCount") if item_key: items = data[item_key] else: values = list([val for val in data.values() if isinstance(val, list)]) if len(values) != 1: raise ValueError("Requires item key to make paginated result.") items = values[0] return PaginatedResult(items=items, total_count=total_count) # Path: pai/api/base.py class ServiceName(object): # Service provided by PAI. PAI_DLC = "pai-dlc" PAI_EAS = "pai-eas" PAI_WORKSPACE = "aiworkspace" PAI_STUDIO = "pai" PAIFLOW = "paiflow" # Other services provided by Alibaba Cloud. STS = "sts" # Path: pai/api/service.py import json import logging import typing from typing import Any, Dict, Union from ..libs.alibabacloud_eas20210701.models import ( CreateServiceRequest, CreateServiceResponseBody, DescribeMachineSpecRequest, DescribeMachineSpecResponseBody, ListServicesRequest, ListServicesResponseBody, ReleaseServiceRequest, UpdateServiceRequest, UpdateServiceVersionRequest, ) from .base import PaginatedResult, ResourceAPI, ServiceName # Copyright 2023 Alibaba, Inc. or its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. logger = logging.getLogger(__name__) class ServiceAPI(ResourceAPI): BACKEND_SERVICE_NAME = ServiceName.PAI_EAS _create_method = "create_service_with_options" _update_method = "update_service_with_options" _update_version_method = "update_service_version_with_options" _list_method = "list_services_with_options" _get_method = "describe_service_with_options" _start_method = "start_service_with_options" _stop_method = "stop_service_with_options" _delete_method = "delete_service_with_options" _release_method = "release_service_with_options" _get_group_method = "describe_group_with_options" _list_groups_method = "list_group_with_options" _describe_machine_method = "describe_machine_spec_with_options" def __init__(self, region_id, acs_client, **kwargs): super(ServiceAPI, self).__init__(acs_client=acs_client, **kwargs)
self.region_id = region_id
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: mpenning/ciscoconfparse2 # Path: ciscoconfparse2/protocol_values.py ASA_TCP_PORTS = { "aol": 5190, "bgp": 179, "chargen": 19, "cifs": 3020, "citrix-ica": 1494, "cmd": 514, "ctiqbe": 2748, "daytime": 13, "discard": 9, "domain": 53, "echo": 7, "exec": 512, "finger": 79, "ftp": 20, "ftp-data": 21, "gopher": 70, "h323": 1720, "hostname": 101, "http": 80, "https": 443, "ident": 113, "imap4": 143, "irc": 194, "kerberos": 88, "klogin": 543, "kshell": 544, "ldap": 389, "ldaps": 636, "login": 513, "lotusnotes": 1352, "lpd": 515, "netbios-ssn": 139, "nfs": 2049, "nntp": 119, "pcanywhere-data": 5631, "pim-auto-rp": 496, "pop2": 109, "pop3": 110, "pptp": 1723, "rsh": 514, "rtsp": 554, "sip": 5060, "smtp": 25, "sqlnet": 1521, "ssh": 22, "sunrpc": 111, "tacacs": 49, "talk": 517, "telnet": 23, "uucp": 540, "whois": 43, "www": 80, } # Path: ciscoconfparse2/protocol_values.py ASA_UDP_PORTS = { "biff": 512, "bootpc": 68, "bootps": 67, "cifs": 3020, "discard": 9, "dnsix": 90, "domain": 53, "echo": 7, "http": 80, "isakmp": 500, "kerberos": 88, "mobile-ip": 434, "nameserver": 42, "netbios-dgm": 138, "netbios-ns": 137, "nfs": 2049, "ntp": 123, "pcanywhere-status": 5632, "pim-auto-rp": 496, "radius": 1812, "radius-acct": 1813, "rip": 520, "rtsp": 5004, "secureid-udp": 5500, "sip": 5060, "snmp": 161, "snmptrap": 162, "sunrpc": 111, "syslog": 514, "tacacs": 49, "talk": 517, "tftp": 69, "time": 37, "who": 513, "www": 80, "xdmcp": 177, } # Path: ciscoconfparse2/errors.py class DuplicateMember(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class InvalidParameters(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class InvalidMember(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class MismatchedType(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class UntypedError(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class InvalidShellVariableMapping(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class NoRegexMatch(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class PythonOptimizeException(BaseError): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class DynamicAddressException(Exception): """Throw this if you try to get an address object from a dhcp interface""" def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class ListItemMissingAttribute(Exception): """Raise this error if a list() item is missing a required attribute.""" def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class UnexpectedType(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class InvalidCiscoInterface(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class InvalidCiscoRange(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class DNSTimeoutError(Exception): def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/errors.py class RequirementFailure(BaseError): """Raise this error instead of using assert foo in non-test code""" def __init__(self, msg=""): super().__init__(msg) self.msg = msg # Path: ciscoconfparse2/ccp_util.py from typing import Optional, Callable, Any, Union, List from operator import attrgetter from functools import wraps from collections.abc import Sequence from collections import UserList from ipaddress import IPv4Network, IPv6Network, IPv4Address, IPv6Address from ipaddress import collapse_addresses as ipaddr_collapse_addresses from ipaddress import AddressValueError from macaddress import EUI48, EUI64 from dns.exception import DNSException from dns.resolver import Resolver from dns import reversename, query, zone from deprecated import deprecated from loguru import logger from ciscoconfparse2.protocol_values import ASA_TCP_PORTS, ASA_UDP_PORTS from ciscoconfparse2.errors import DuplicateMember, InvalidParameters, InvalidMember, MismatchedType, UntypedError from ciscoconfparse2.errors import InvalidShellVariableMapping from ciscoconfparse2.errors import NoRegexMatch from ciscoconfparse2.errors import PythonOptimizeException from ciscoconfparse2.errors import DynamicAddressException from ciscoconfparse2.errors import ListItemMissingAttribute from ciscoconfparse2.errors import UnexpectedType from ciscoconfparse2.errors import InvalidCiscoInterface from ciscoconfparse2.errors import InvalidCiscoRange from ciscoconfparse2.errors import DNSTimeoutError from ciscoconfparse2.errors import RequirementFailure import subprocess import locale import socket import shlex import time import copy import sys import re import os import attrs import ciscoconfparse2 get_regex : str Returns the regex string used for an IPv6 Address netmask : :class:`ipaddress.IPv6Address` An :class:`ipaddress.IPv6Address` object containing the netmask network_offset : int Returns the integer difference between host number and network number. This must be less than `numhosts` numhosts : int An integer representing the number of host addresses contained in the network prefixlen : int An integer representing the length of the netmask broadcast: raises `NotImplementedError`; IPv6 doesn't use broadcast addresses hostmask : :class:`ipaddress.IPv6Address` An :class:`ipaddress.IPv6Address` representing the hostmask numhosts : int An integer representing the number of hosts contained in the network """ if isinstance(debug, int): if debug > 0: logger.info(f"IPv6Obj(v6input='{v6input}', strict={strict}, debug={debug}) was called") else: error = f"IPv6Obj() debug must be an int, but `debug`=`{debug}` was called." logger.critical(error) raise ValueError(error) if v6input is not None: try: if isinstance(v6input, (str, int, IPv6Obj)) is False: raise ValueError() except ValueError as eee: error = f"Could not parse '{v6input}' (type: {type(v6input)}) into an IPv6 Address. {eee}" logger.error(error) raise AddressValueError(error) except BaseException as eee: error = f"Could not parse '{v6input}' (type: {type(v6input)}) into an IPv6 Address. {eee}" logger.error(error) raise AddressValueError(error) # Initialize attributes self.ip_object = None self.network_object = None self.finished_parsing = False self.v6input = v6input self.dna = "IPv6Obj" self.strict = strict self.debug = debug self.empty = False self.__setstate__ = None if v6input is None: self.empty = True elif isinstance(v6input, str): if len(v6input) > IPV6_MAXSTR_LEN: raise RequirementFailure() tmp = re.split(r"\s+", v6input.strip()) if len(tmp) == 2: v6input = "/".join(tmp) elif len(tmp) == 1: v6input = tmp[0] else: raise NotImplementedError(v6input.strip()) v6_str_rgx = _RGX_IPV6ADDR.search(v6input.strip()) # Example 'v6_groupdict' # v6_groupdict = {'addr': '2b00:cd80:14:10::1', 'opt1': None, 'opt2': None, 'opt3': None, 'opt4': None, 'opt5': '2b00:cd80:14:10::1', 'opt6': None, 'opt7': None, 'opt8': None, 'opt9': None, 'opt10': None, 'masklen': '64'} v6_groupdict = v6_str_rgx.groupdict() for key in ["addr", "opt1", "opt2", "opt3", "opt4", "opt5", "opt6", "opt7", "opt8", "opt9", "opt10", "opt11"]: _ipv6 = v6_groupdict[key] if _ipv6 is not None: break else: _ipv6 = "::1" if _ipv6 is None: raise RequirementFailure() self.ip_object = IPv6Address(_ipv6) if isinstance(v6_groupdict["masklen"], str): netstr = _ipv6 + "/" + v6_groupdict["masklen"] # FIXME - this probably should be removed... #elif isinstance(v6_groupdict["netmask"], str): # netstr = ipv6 + "/" + v6_groupdict["netmask"] else: netstr = _ipv6 + "/128" self.network_object = IPv6Network(netstr, strict=False) elif isinstance(v6input, int): if not (0 <= v6input <= IPV6_MAXINT): raise RequirementFailure() self.ip_object = IPv6Address(v6input) self.network_object = IPv6Network(v6input, strict=False) elif isinstance(v6input, IPv6Obj): self.ip_object = IPv6Address(v6input.ip) self.network_object = IPv6Network(v6input.as_cidr_net, strict=False) else: raise AddressValueError(f"Could not parse '{v6input}' {type(v6input)} into an IPv6 Address") # On IPv6Obj() def __repr__(self): # Detect IPv4_mapped IPv6 addresses... if self.empty is True: return f"""<IPv6Obj None empty={self.empty}>""" elif self.is_ipv4_mapped: return f"""<IPv6Obj ::ffff:{self.ip.ipv4_mapped}/{self.prefixlen}>""" else: return f"""<IPv6Obj {str(self.ip)}/{self.prefixlen}>""" # On IPv6Obj() def __eq__(self, val): if self.empty is True: if val.empty is True: return True else: return False
try:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: xraychen/OFA-Wav2Vec2 # Path: fairseq/data/fairseq_dataset.py class FairseqDataset(torch.utils.data.Dataset, EpochListening): """A dataset that provides helpers for batching.""" def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError def collater(self, samples): """Merge a list of samples to form a mini-batch. Args: samples (List[dict]): samples to collate Returns: dict: a mini-batch suitable for forwarding with a Model """ raise NotImplementedError def num_tokens(self, index): """Return the number of tokens in a sample. This value is used to enforce ``--max-tokens`` during batching.""" raise NotImplementedError def num_tokens_vec(self, indices): """Return the number of tokens for a set of positions defined by indices. This value is used to enforce ``--max-tokens`` during batching.""" raise NotImplementedError def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" raise NotImplementedError def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" return np.arange(len(self), dtype=np.int64) @property def supports_prefetch(self): """Whether this dataset supports prefetching.""" return False def attr(self, attr: str, index: int): return getattr(self, attr, None) def prefetch(self, indices): """Prefetch the data required for this epoch.""" raise NotImplementedError def get_batch_shapes(self): """ Return a list of valid batch shapes, for example:: [(8, 512), (16, 256), (32, 128)] The first dimension of each tuple is the batch size and can be ``None`` to automatically infer the max batch size based on ``--max-tokens``. The second dimension of each tuple is the max supported length as given by :func:`fairseq.data.FairseqDataset.num_tokens`. This will be used by :func:`fairseq.data.FairseqDataset.batch_by_size` to restrict batch shapes. This is useful on TPUs to avoid too many dynamic shapes (and recompilations). """ return None def batch_by_size( self, indices, max_tokens=None, max_sentences=None, required_batch_size_multiple=1, ): """ Given an ordered set of indices, return batches according to *max_tokens*, *max_sentences* and *required_batch_size_multiple*. """ from fairseq.data import data_utils fixed_shapes = self.get_batch_shapes() if fixed_shapes is not None: def adjust_bsz(bsz, num_tokens): if bsz is None: assert max_tokens is not None, "Must specify --max-tokens" bsz = max_tokens // num_tokens if max_sentences is not None: bsz = min(bsz, max_sentences) elif ( bsz >= required_batch_size_multiple and bsz % required_batch_size_multiple != 0 ): bsz -= bsz % required_batch_size_multiple return bsz fixed_shapes = np.array( [ [adjust_bsz(bsz, num_tokens), num_tokens] for (bsz, num_tokens) in fixed_shapes ] ) try: num_tokens_vec = self.num_tokens_vec(indices).astype("int64") except NotImplementedError: num_tokens_vec = None return data_utils.batch_by_size( indices, num_tokens_fn=self.num_tokens, num_tokens_vec=num_tokens_vec, max_tokens=max_tokens, max_sentences=max_sentences, required_batch_size_multiple=required_batch_size_multiple, fixed_shapes=fixed_shapes, ) def filter_indices_by_size(self, indices, max_sizes): """ Filter a list of sample indices. Remove those that are longer than specified in *max_sizes*. WARNING: don't update, override method in child classes Args: indices (np.array): original array of sample indices max_sizes (int or list[int] or tuple[int]): max sample size, can be defined separately for src and tgt (then list or tuple) Returns: np.array: filtered sample array list: list of removed indices """ if isinstance(max_sizes, float) or isinstance(max_sizes, int): if hasattr(self, "sizes") and isinstance(self.sizes, np.ndarray): ignored = indices[self.sizes[indices] > max_sizes].tolist() indices = indices[self.sizes[indices] <= max_sizes] elif ( hasattr(self, "sizes") and isinstance(self.sizes, list) and len(self.sizes) == 1 ): ignored = indices[self.sizes[0][indices] > max_sizes].tolist() indices = indices[self.sizes[0][indices] <= max_sizes] else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) else: indices, ignored = data_utils._filter_by_size_dynamic( indices, self.size, max_sizes ) return indices, ignored @property def supports_fetch_outside_dataloader(self): """Whether this dataset supports fetching outside the workers of the dataloader.""" return True # Path: fairseq/data/data_utils.py def compute_mask_indices( shape: Tuple[int, int], padding_mask: Optional[torch.Tensor], mask_prob: float, mask_length: int, mask_type: str = "static", mask_other: float = 0.0, min_masks: int = 0, no_overlap: bool = False, min_space: int = 0, require_same_masks: bool = True, mask_dropout: float = 0.0, ) -> np.ndarray: """ Computes random mask spans for a given shape Args: shape: the the shape for which to compute masks. should be of size 2 where first element is batch size and 2nd is timesteps padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by number of timesteps divided by length of mask span to mask approximately this percentage of all elements. however due to overlaps, the actual number will be smaller (unless no_overlap is True) mask_type: how to compute mask lengths static = fixed size uniform = sample from uniform distribution [mask_other, mask_length*2] normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element poisson = sample from possion distribution with lambda = mask length min_masks: minimum number of masked spans no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans require_same_masks: if true, will randomly drop out masks until same amount of masks remains in each sample mask_dropout: randomly dropout this percentage of masks in each example """ bsz, all_sz = shape mask = np.full((bsz, all_sz), False) all_num_mask = int( # add a random number for probabilistic rounding mask_prob * all_sz / float(mask_length) + np.random.rand() ) all_num_mask = max(min_masks, all_num_mask) mask_idcs = [] for i in range(bsz): if padding_mask is not None: sz = all_sz - padding_mask[i].long().sum().item() num_mask = int( # add a random number for probabilistic rounding mask_prob * sz / float(mask_length) + np.random.rand() ) num_mask = max(min_masks, num_mask) else: sz = all_sz num_mask = all_num_mask if mask_type == "static": lengths = np.full(num_mask, mask_length) elif mask_type == "uniform": lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask) elif mask_type == "normal": lengths = np.random.normal(mask_length, mask_other, size=num_mask) lengths = [max(1, int(round(x))) for x in lengths] elif mask_type == "poisson": lengths = np.random.poisson(mask_length, size=num_mask) lengths = [int(round(x)) for x in lengths] else: raise Exception("unknown mask selection " + mask_type) if sum(lengths) == 0: lengths[0] = min(mask_length, sz - 1) if no_overlap: mask_idc = [] def arrange(s, e, length, keep_length): span_start = np.random.randint(s, e - length) mask_idc.extend(span_start + i for i in range(length)) new_parts = [] if span_start - s - min_space >= keep_length: new_parts.append((s, span_start - min_space + 1)) if e - span_start - length - min_space > keep_length: new_parts.append((span_start + length + min_space, e)) return new_parts parts = [(0, sz)] min_length = min(lengths) for length in sorted(lengths, reverse=True): lens = np.fromiter( (e - s if e - s >= length + min_space else 0 for s, e in parts), np.int, ) l_sum = np.sum(lens) if l_sum == 0: break probs = lens / np.sum(lens) c = np.random.choice(len(parts), p=probs) s, e = parts.pop(c) parts.extend(arrange(s, e, length, min_length)) mask_idc = np.asarray(mask_idc) else: min_len = min(lengths) if sz - min_len <= num_mask: min_len = sz - num_mask - 1 mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) mask_idc = np.asarray( [ mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j]) ] ) mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) min_len = min([len(m) for m in mask_idcs]) for i, mask_idc in enumerate(mask_idcs): if len(mask_idc) > min_len and require_same_masks: mask_idc = np.random.choice(mask_idc, min_len, replace=False) if mask_dropout > 0: num_holes = np.rint(len(mask_idc) * mask_dropout).astype(int) mask_idc = np.random.choice( mask_idc, len(mask_idc) - num_holes, replace=False ) mask[i, mask_idc] = True return mask # Path: fairseq/data/data_utils.py def get_buckets(sizes, num_buckets): buckets = np.unique( np.percentile( sizes, np.linspace(0, 100, num_buckets + 1), interpolation="lower", )[1:] ) return buckets # Path: fairseq/data/data_utils.py def get_bucketed_sizes(orig_sizes, buckets): sizes = np.copy(orig_sizes) assert np.min(sizes) >= 0 start_val = -1 for end_val in buckets: mask = (sizes > start_val) & (sizes <= end_val) sizes[mask] = end_val start_val = end_val return sizes # Path: fairseq/data/audio/audio_utils.py def parse_path(path: str) -> Tuple[str, List[int]]: """Parse data path which is either a path to 1. a .npy/.wav/.flac/.ogg file 2. a stored ZIP file with slicing info: "[zip_path]:[offset]:[length]" Args: path (str): the data path to parse Returns: file_path (str): the file path slice_ptr (list of int): empty in case 1; byte offset and length for the slice in case 2 """ if Path(path).suffix in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS: _path, slice_ptr = path, [] else: _path, *slice_ptr = path.split(":") if not Path(_path).is_file(): raise FileNotFoundError(f"File not found: {_path}") assert len(slice_ptr) in {0, 2}, f"Invalid path: {path}" slice_ptr = [int(i) for i in slice_ptr] return _path, slice_ptr # Path: fairseq/data/audio/audio_utils.py def read_from_stored_zip(zip_path: str, offset: int, length: int) -> bytes: return mmap_read(zip_path, offset, length) # Path: fairseq/data/audio/audio_utils.py def is_sf_audio_data(data: bytes) -> bool: is_wav = data[0] == 82 and data[1] == 73 and data[2] == 70 is_flac = data[0] == 102 and data[1] == 76 and data[2] == 97 is_ogg = data[0] == 79 and data[1] == 103 and data[2] == 103 return is_wav or is_flac or is_ogg # Path: fairseq/data/text_compressor.py class TextCompressor(object): def __init__( self, level: TextCompressionLevel, max_input_byte_length: int = 2**16 ): self.level = level self.max_input_length = max_input_byte_length def compress(self, text: str) -> bytes: if self.level == TextCompressionLevel.low: import zlib # zlib: built-in, fast return zlib.compress(text.encode(), level=0) elif self.level == TextCompressionLevel.high: try: import unishox2 # unishox2: optimized for short text but slower except ImportError: raise ImportError( "Please install unishox2 for the text compression feature: " "pip install unishox2-py3" ) assert len(text.encode()) <= self.max_input_length return unishox2.compress(text)[0] else: return text.encode() def decompress(self, compressed: bytes) -> str: if self.level == TextCompressionLevel.low: import zlib return zlib.decompress(compressed).decode() elif self.level == TextCompressionLevel.high: try: import unishox2 except ImportError: raise ImportError( "Please install unishox2 for the text compression feature: " "pip install unishox2-py3" ) return unishox2.decompress(compressed, self.max_input_length) else: return compressed.decode() # Path: fairseq/data/text_compressor.py class TextCompressionLevel(Enum): none = 0 low = 1 high = 2 # Path: fairseq/data/audio/raw_audio_dataset.py import logging import os import sys import io import numpy as np import torch import torch.nn.functional as F import pyarrow import soundfile as sf import soundfile as sf from .. import FairseqDataset from ..data_utils import compute_mask_indices, get_buckets, get_bucketed_sizes from fairseq.data.audio.audio_utils import ( parse_path, read_from_stored_zip, is_sf_audio_data, ) from fairseq.data.text_compressor import TextCompressor, TextCompressionLevel from torch.nn.utils.rnn import pad_sequence from fairseq.data import data_utils, Dictionary compute_mask_indices=compute_mask_indices, **mask_compute_kwargs, ) self.text_compressor = TextCompressor(level=text_compression_level) skipped = 0 self.fnames = [] sizes = [] self.skipped_indices = set() with open(manifest_path, "r") as f: self.root_dir = f.readline().strip() for i, line in enumerate(f): items = line.strip().split("\t") assert len(items) == 2, line sz = int(items[1]) if min_sample_size is not None and sz < min_sample_size: skipped += 1 self.skipped_indices.add(i) continue self.fnames.append(self.text_compressor.compress(items[0])) sizes.append(sz) logger.info(f"loaded {len(self.fnames)}, skipped {skipped} samples") self.sizes = np.array(sizes, dtype=np.int64) try: self.fnames = pyarrow.array(self.fnames) except: logger.debug( "Could not create a pyarrow array. Please install pyarrow for better performance" ) pass self.set_bucket_info(num_buckets) self.alpha_root = alpha_root self.boundaries_root = boundaries_root def __getitem__(self, index): fn = self.fnames[index] fn = fn if isinstance(self.fnames, list) else fn.as_py() fn = self.text_compressor.decompress(fn) path_or_fp = os.path.join(self.root_dir, fn) _path, slice_ptr = parse_path(path_or_fp) if len(slice_ptr) == 2: byte_data = read_from_stored_zip(_path, slice_ptr[0], slice_ptr[1]) assert is_sf_audio_data(byte_data) path_or_fp = io.BytesIO(byte_data) wav, curr_sample_rate = sf.read(path_or_fp, dtype="float32") feats = torch.from_numpy(wav).float() feats = self.postprocess(feats, curr_sample_rate) output = {"id": index, "source": feats} # load alpha if self.alpha_root != "": alpha = torch.load(os.path.join(self.alpha_root, fn.split('.')[0] + '.pt')) output.update({"alpha": alpha}) if self.boundaries_root != "": boundaries = torch.load(os.path.join(self.boundaries_root, fn.split('.')[0] + '.pt')) output.update({"boundaries": boundaries}) return output def collater(self, samples): samples = [s for s in samples if s["source"] is not None] if len(samples) == 0: return {} sources = [s["source"] for s in samples] sizes = [len(s) for s in sources] if self.pad: target_size = min(max(sizes), self.max_sample_size) else: target_size = min(min(sizes), self.max_sample_size) collated_sources = sources[0].new_zeros(len(sources), target_size) padding_mask = ( torch.BoolTensor(collated_sources.shape).fill_(False) if self.pad else None ) for i, (source, size) in enumerate(zip(sources, sizes)): diff = size - target_size if diff == 0: collated_sources[i] = source elif diff < 0: assert self.pad collated_sources[i] = torch.cat( [source, source.new_full((-diff,), 0.0)] ) padding_mask[i, diff:] = True else: collated_sources[i] = self.crop_to_max_size(source, target_size) input = {"source": collated_sources} out = {"id": torch.LongTensor([s["id"] for s in samples])} if self.pad: input["padding_mask"] = padding_mask if hasattr(self, "num_buckets") and self.num_buckets > 0: assert self.pad, "Cannot bucket without padding first." bucket = max(self._bucketed_sizes[s["id"]] for s in samples) num_pad = bucket - collated_sources.size(-1) if num_pad: input["source"] = self._bucket_tensor(collated_sources, num_pad, 0) input["padding_mask"] = self._bucket_tensor(padding_mask, num_pad, True) if self.compute_mask_indices: B = input["source"].size(0) T = self._get_mask_indices_dims(input["source"].size(-1)) padding_mask_reshaped = input["padding_mask"].clone() extra = padding_mask_reshaped.size(1) % T if extra > 0: padding_mask_reshaped = padding_mask_reshaped[:, :-extra]
padding_mask_reshaped = padding_mask_reshaped.view(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: zihuixue/AlignEgoExo # Path: utils/config.py # Path: utils/load_model.py def load_ckpt(backbone, ckpt_name): print(f'Loading pre-trained model: {ckpt_name}') ckpt = torch.load( ckpt_name, map_location=lambda storage, loc: storage, ) def remove_first_module(key): return ".".join(key.split(".")[1:]) key = "state_dict" if "state_dict" in ckpt.keys() else "model_state" state_dict = { remove_first_module(k): v for k, v in ckpt[key].items() } missing_keys, unexpected_keys = backbone.load_state_dict( state_dict, strict=False ) print('missing', missing_keys) print('unexpected', unexpected_keys) # Path: models/embedder.py class Embedder(nn.Module): def __init__(self, args): super(Embedder, self).__init__() self.args = args self.num_context_steps = args.num_context_steps if args.base_model_name == 'resnet50': self.base_model = resnet50(pretrained=True) del self.base_model.layer4 del self.base_model.fc elif args.base_model_name == 'resnet18': self.base_model = resnet18(pretrained=False) del self.base_model.layer4 del self.base_model.fc elif args.base_model_name == 'vgg11': self.base_model = BaseVGG11(pretrained=False) else: raise NotImplementedError if args.freeze_base: self.freeze_base_model() c = 1024 if 'resnet' in args.base_model_name else 512 self.conv_layers = nn.Sequential( nn.Conv3d(c, 256, kernel_size=3, padding=1), nn.BatchNorm3d(256), nn.ReLU(), nn.Conv3d(256, 256, kernel_size=3, padding=1), nn.BatchNorm3d(256), nn.ReLU(), ) self.fc_layers = nn.Sequential( nn.Dropout(0.1), nn.Linear(256, 256), nn.ReLU(), nn.Dropout(0.1), nn.Linear(256, 256), nn.ReLU(), ) if args.input_size == 224: self.ksize = 14 elif args.input_size == 168: self.ksize = 11 if 'resnet' in args.base_model_name else 5 else: raise NotImplementedError self.maxpool = nn.MaxPool3d( (self.num_context_steps, self.ksize, self.ksize) ) self.embedding_layer = nn.Linear(256, args.embedding_size) self.dropout = nn.Dropout(0.1) def freeze_base_model(self): for param in self.base_model.parameters(): param.requires_grad = False def forward(self, x, bbox=None): # x: (bs, ts=32, 3, 224/168, 224/168) bs, ts, c, h, w = x.size() x = x.reshape(-1, c, h, w) x = self.base_model(x) # (bs, 3, 168, 168) -> (bs, 1024, 11, 11) _, c, h, w = x.size() x = x.contiguous().view(-1, c, self.num_context_steps, h, w) x = self.dropout(x) x = self.conv_layers(x) x = self.maxpool(x) _, c, _, _, _ = x.size() x = x.reshape(bs, -1, c) x = self.fc_layers(x) x = self.embedding_layer(x.contiguous()) return x # Path: models/embedder.py class RoIPosEmbedder(Embedder): def __init__(self, args): super(RoIPosEmbedder, self).__init__(args) self.roi_output_size = 4 self.n_boxes = 4 # 2 hand + 2 object self.n_tokens = self.n_boxes + 1 # 4 local + 1 global self.dim = args.hidden_dim self.n_layers = args.n_layers self.n_heads = 4 self.dp_rate = 0.1 self.use_mask = args.use_mask self.use_bbox_pe = args.use_bbox_pe self.weigh_token_by_bbox = args.weigh_token_by_bbox self.maxpool_context = nn.MaxPool3d( (self.num_context_steps, 1, 1) ) self.roi_align = torchvision.ops.RoIAlign(output_size=(self.roi_output_size, self.roi_output_size), spatial_scale=0.25, sampling_ratio=-1) self.proj_local = nn.Linear(64 * self.roi_output_size * self.roi_output_size, self.dim) self.proj_global = nn.Linear(256, self.dim) self.scale_factors = torch.tensor([1 / self.args.input_size] * 4 + [1], dtype=torch.float32) self.pos_embed = nn.Parameter(torch.randn(5, self.dim), requires_grad=True) self.token_embed = nn.Parameter(torch.randn(1, self.n_tokens, self.dim), requires_grad=True) self.transformer_encoder = nn.TransformerEncoder( encoder_layer=nn.TransformerEncoderLayer(d_model=self.dim, nhead=self.n_heads, dropout=self.dp_rate, batch_first=True), num_layers=self.n_layers ) self.ln = nn.LayerNorm(self.dim) self.embedding_layer = nn.Sequential( nn.LayerNorm(self.dim), nn.Linear(self.dim, args.embedding_size) ) def pool_context_frames(self, x): _, c, h, w = x.size() x = x.contiguous().view(-1, c, self.num_context_steps, h, w) x = self.dropout(x) return self.maxpool_context(x).squeeze() def forward(self, x, bbox): bs, ts, c, h, w = x.size() x = x.reshape(-1, c, h, w) bbox = bbox.reshape(-1, bbox.shape[2], bbox.shape[3]) bbox_list = torch.chunk(bbox[:, :, 0:4], chunks=bbox.shape[0], dim=0) bbox_list = [b.squeeze() for b in bbox_list] bbox_id = bbox[:, :, -1].long() x_mid, x = self.base_model(x, middle=True) # (bs, 3, 168, 168) -> (bs, 256, 42, 42) -> (bs, 1024, 11, 11) x_mid = self.pool_context_frames(x_mid) # (bs*ts, 64, 56, 56) x_roi = self.roi_align(x_mid, bbox_list) # (bs*ts*4, 64, 4, 4) x_roi = x_roi.reshape(-1, self.n_boxes, *(x_roi.shape[1:])) # (bs, ts, 64, 4, 4) x_local = torch.flatten(x_roi, start_dim=2) # (bs, ts, 1024) x_local = self.proj_local(x_local) if self.use_bbox_pe: bbox_pe = bbox[:, :, 0:5] * self.scale_factors.to(bbox.device) local_pe = torch.matmul(bbox_pe, self.pos_embed) x_local = x_local + local_pe x_local = x_local + self.token_embed[0][bbox_id] if self.weigh_token_by_bbox: bbox_prob = bbox[:, :, 4].unsqueeze(-1) x_local = x_local * bbox_prob _, c, h, w = x.size() x = x.contiguous().view(-1, c, self.num_context_steps, h, w) x = self.dropout(x) x = self.conv_layers(x) x = self.maxpool(x) x_global = self.proj_global(x.squeeze().unsqueeze(1)) x_global = x_global + self.token_embed[:, -1, :] x = torch.cat((x_local, x_global), dim=1) # (bs*ts/2, n_tokens, dim) x = self.ln(x) if self.use_mask: mask_local = bbox_id.eq(-1) mask_global = torch.full((mask_local.size(0), 1), False, dtype=torch.bool, device=mask_local.device) # do not mask mask = torch.cat([mask_local, mask_global], dim=1) output = self.transformer_encoder(x, src_key_padding_mask=mask) else: output = self.transformer_encoder(x) y = output.mean(dim=1) y = self.embedding_layer(y) return y.reshape(bs, -1, y.shape[-1]) # Path: dataset/video_align_dataset.py class VideoAlignmentDownstreamDataset(VideoAlignmentDataset): def __init__(self, args, mode): args.merge_all = True super(VideoAlignmentDownstreamDataset, self).__init__(args, mode) self.video_paths1 = sorted(self.video_paths1) self._load_label() self._construct_frame_path() def _construct_frame_path(self): self.frame_path_list = [] self.video_len_list = [] self.video_ego_id = [] for video in self.video_paths1: video_frames_count = get_num_frames(video) self.video_len_list.append(video_frames_count) video_name = video.replace('.mp4', '').split('/')[-1] view = video.split('/')[-2] labels = self.label_dict[video_name] assert video_frames_count == len(labels) for frame_id in range(video_frames_count): self.frame_path_list.append([video, frame_id, labels[frame_id]]) if view == 'ego': self.video_ego_id.append(1) else: self.video_ego_id.append(0) print(f'Finish constructing frames path list, total len {len(self.frame_path_list)}') def _load_label(self): file_path = os.path.join(self.data_path, 'label.pickle') with open(file_path, 'rb') as handle: self.label_dict = pickle.load(handle) def __len__(self): return len(self.frame_path_list) def __getitem__(self, idx): video_path, frame_id, frame_label = self.frame_path_list[idx] h5_file_name = _extract_frames_h5py(video_path, self.frame_save_path) context_frame_id = max(0, frame_id - self.frame_stride) frame = self.get_frames_h5py(h5_file_name, [context_frame_id, frame_id]) frame = np.array(frame).astype(np.float32) # (2, 168, 168, 3) return frame, frame_label, video_path # Path: dataset/video_align_dataset_bbox.py class VideoAlignmentBboxDownstreamDataset(VideoAlignmentDownstreamDataset): def __init__(self, args, mode): super(VideoAlignmentBboxDownstreamDataset, self).__init__(args, mode) self.bbox_threshold = args.bbox_threshold self._load_bounding_box() if args.dataset != 'tennis_forehand': sx = self.args.input_size / self.video_res[0] sy = self.args.input_size / self.video_res[1] self.scale_factor = np.array([sx, sy, sx, sy]) else: sx_ego, sy_ego = self.args.input_size / self.video_res_ego[0], self.args.input_size / \ self.video_res_ego[1] sx_exo, sy_exo = self.args.input_size / self.video_res_exo[0], self.args.input_size / \ self.video_res_exo[1] self.scale_factor_ego = np.array([sx_ego, sy_ego, sx_ego, sy_ego]) self.scale_factor_exo = np.array([sx_exo, sy_exo, sx_exo, sy_exo]) self.expansion_ratio = args.bbox_expansion_ratio def _load_bounding_box(self): with open(os.path.join(self.data_path, 'det_bounding_box.pickle'), 'rb') as handle: self.bounding_box_dict = pickle.load(handle) if self.bbox_threshold > 0.0: for key, value in self.bounding_box_dict.items(): mask = value[:, :, 4] < self.bbox_threshold replacement = np.zeros_like(value) replacement[..., -1] = -1 value[mask] = replacement[mask] self.bounding_box_dict[key] = value def __getitem__(self, idx): video_path, frame_id, frame_label = self.frame_path_list[idx] h5_file_name = _extract_frames_h5py(video_path, self.frame_save_path) context_frame_id = max(0, frame_id - self.frame_stride) frame = self.get_frames_h5py(h5_file_name, [context_frame_id, frame_id]) frame = np.array(frame).astype(np.float32) # (2, 168, 168, 3) video_name = video_path.replace('ego/', 'ego_').replace('exo/', 'exo_').replace('.mp4', '').split('/')[-1] bounding_box = self.bounding_box_dict[video_name].copy() if self.dataset == 'tennis_forehand': if 'exo' in video_name: bounding_box[:, :, 0:4] = bounding_box[:, :, 0:4] * self.scale_factor_exo else: bounding_box[:, :, 0:4] = bounding_box[:, :, 0:4] * self.scale_factor_ego else: bounding_box[:, :, 0:4] = bounding_box[:, :, 0:4] * self.scale_factor bounding_box = expand_bbox(bounding_box, self.expansion_ratio) if self.args.one_object_bbox: bounding_box[:, -1, -1] = -1 # set last object detection result to be null bounding_box = bounding_box[frame_id] return frame, frame_label, video_path, bounding_box.astype(np.float32) # Path: evaluation/kendalls_tau.py def kendalls_tau(save_path, video_len_list, video_paths, mode, detailed_view=False): embs = np.load(f'{save_path}/{mode}_embeds.npy') cur_idx = 0 ego_embs_list, exo_embs_list = [], [] embs_list = [] for i in range(len(video_len_list)): video_len = video_len_list[i] tmp = embs[cur_idx: cur_idx + video_len, :] if 'ego' in video_paths[i]: ego_embs_list.append(tmp) else: exo_embs_list.append(tmp) embs_list.append(tmp) cur_idx = cur_idx + video_len if detailed_view: print(len(ego_embs_list), len(exo_embs_list), len(embs_list)) print(f'Ego-Ego Kendall Tau {get_kendalls_tau_twolists(ego_embs_list, ego_embs_list, True):.4f}') print(f'Exo-Exo Kendall Tau {get_kendalls_tau_twolists(exo_embs_list, exo_embs_list, True):.4f}') print(f'Ego-Exo Kendall Tau {get_kendalls_tau_twolists(ego_embs_list, exo_embs_list, False):.4f}') print(f'Exo-Ego Kendall Tau {get_kendalls_tau_twolists(exo_embs_list, ego_embs_list, False):.4f}') tau = get_kendalls_tau(embs_list) return tau # Path: evaluation/frame_retrieval.py def frame_retrieval(save_path, video_len_list, video_paths): val_embs = np.load(f'{save_path}/val_embeds.npy') val_labels = np.load(f'{save_path}/val_label.npy') regular = retrieval_ap_at_k(video_len_list, video_paths, val_embs, val_labels, [10], cross_view=False) ego2exo, exo2ego = retrieval_ap_at_k(video_len_list, video_paths, val_embs, val_labels, [10], cross_view=True) return regular, ego2exo, exo2ego # Path: evaluation/event_completion.py def compute_progression_value(save_path, train_video_len_list, val_video_len_list, modify_embeddings=False): train_embs, train_labels, val_embs, val_labels = load_embeds_and_labels(save_path) train_embs, train_labels = construct_embs_labels_list(train_embs, train_labels, train_video_len_list, modify_embeddings) val_embs, val_labels = construct_embs_labels_list(val_embs, val_labels, val_video_len_list, modify_embeddings) lin_model = VectorRegression(sklearn.linear_model.LinearRegression()) lin_model.fit(train_embs, train_labels) train_score = lin_model.score(train_embs, train_labels) val_score = lin_model.score(val_embs, val_labels) return train_score, val_score # Path: evaluation/classification.py def classification(save_path, train_video_ego_id, val_video_ego_id): train_embs, train_labels, val_embs, val_labels = load_embeds_and_labels(save_path) regular_f1 = fit_svm_model(train_embs, train_labels, val_embs, val_labels, cal_f1_score=True) train_ego_idx = np.array(train_video_ego_id) == 1 train_exo_idx = np.array(train_video_ego_id) == 0 val_ego_idx = np.array(val_video_ego_id) == 1 val_exo_idx = np.array(val_video_ego_id) == 0 print(f'train: ego frames {np.sum(train_ego_idx)}, exo frames {np.sum(train_exo_idx)} | ' f'val: ego frames {np.sum(val_ego_idx)}, exo frames {np.sum(val_exo_idx)}') ego2exo_val_f1 = fit_svm_model(train_embs[train_ego_idx], train_labels[train_ego_idx], val_embs[val_exo_idx], val_labels[val_exo_idx], cal_f1_score=True) exo2ego_val_f1 = fit_svm_model(train_embs[train_exo_idx], train_labels[train_exo_idx], val_embs[val_ego_idx], val_labels[val_ego_idx], cal_f1_score=True) return regular_f1, ego2exo_val_f1, exo2ego_val_f1 # Path: evaluation/evaluate_features.py import os import numpy as np import torch from tqdm import tqdm from torch.utils.data import DataLoader from utils.config import argparser from utils.load_model import load_ckpt from models.embedder import Embedder, RoIPosEmbedder from dataset.video_align_dataset import VideoAlignmentDownstreamDataset from dataset.video_align_dataset_bbox import VideoAlignmentBboxDownstreamDataset from evaluation.kendalls_tau import kendalls_tau from evaluation.frame_retrieval import frame_retrieval from evaluation.event_completion import compute_progression_value from evaluation.classification import classification def prepare_data_loader(args, mode, batch_size=1024, num_workers=0, bbox=False): if bbox: dataset = VideoAlignmentBboxDownstreamDataset(args, mode) else: dataset = VideoAlignmentDownstreamDataset(args, mode) data_loader = DataLoader( dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, drop_last=False, ) print(f'Data loader len {len(data_loader)}') return data_loader, dataset def extract_embedding(mode, data_loader, model, save_path, device, object_box=False): embeds_list = [] labels_list = [] for batch in tqdm(data_loader): if object_box: frame, frame_label, video_path, bbox = batch else: frame, frame_label, video_path = batch frame = frame.reshape(1, -1, *frame.shape[-3:]) # frame-(1, 64, 168, 168, 3) frame = frame.permute(0, 1, 4, 2, 3).float().to(device) # (1, 64, 3, 168, 168) with torch.no_grad(): if object_box: bbox = bbox.unsqueeze(0).to(device) embeds = model(frame, bbox) else: embeds = model(frame) embeds = embeds.squeeze().cpu().numpy() embeds_list.append(embeds) labels_list.append(frame_label.numpy()) embeds = np.concatenate(embeds_list, axis=0) np.save(f'{save_path}/{mode}_embeds.npy', embeds) print(f'Saved {mode} embeds to {save_path}/{mode}_embeds.npy') labels = np.concatenate(labels_list, axis=0) np.save(f'{save_path}/{mode}_label.npy', labels) print(f'Saved {mode} labels to {save_path}/{mode}_label.npy') def main(): device = torch.device("cuda:0") args = argparser.parse_args() assert args.eval_mode in ['val', 'test'] # prepare data loader object_bbox = True if 'bbox' in args.task else False loader_train, dataset_train = prepare_data_loader(args, 'train', batch_size=128, num_workers=args.num_workers, bbox=object_bbox) loader_val, dataset_val = prepare_data_loader(args, args.eval_mode, batch_size=128, num_workers=args.num_workers, bbox=object_bbox)
assert args.ckpt != ''
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: JunMa11/UHNSeg-Quiz # Path: nnunetv2/configuration.py ANISO_THRESHOLD = 3 # determines when a sample is considered anisotropic (3 means that the spacing in the low # Path: nnunetv2/evaluation/accumulate_cv_results.py def accumulate_cv_results(trained_model_folder, merged_output_folder: str, folds: Union[List[int], Tuple[int, ...]], num_processes: int = default_num_processes, overwrite: bool = True): """ There are a lot of things that can get fucked up, so the simplest way to deal with potential problems is to collect the cv results into a separate folder and then evaluate them again. No messing with summary_json files! """ if overwrite and isdir(merged_output_folder): shutil.rmtree(merged_output_folder) maybe_mkdir_p(merged_output_folder) dataset_json = load_json(join(trained_model_folder, 'dataset.json')) plans_manager = PlansManager(join(trained_model_folder, 'plans.json')) rw = plans_manager.image_reader_writer_class() shutil.copy(join(trained_model_folder, 'dataset.json'), join(merged_output_folder, 'dataset.json')) shutil.copy(join(trained_model_folder, 'plans.json'), join(merged_output_folder, 'plans.json')) did_we_copy_something = False for f in folds: expected_validation_folder = join(trained_model_folder, f'fold_{f}', 'validation') if not isdir(expected_validation_folder): raise RuntimeError(f"fold {f} of model {trained_model_folder} is missing. Please train it!") predicted_files = subfiles(expected_validation_folder, suffix=dataset_json['file_ending'], join=False) for pf in predicted_files: if overwrite and isfile(join(merged_output_folder, pf)): raise RuntimeError(f'More than one of your folds has a prediction for case {pf}') if overwrite or not isfile(join(merged_output_folder, pf)): shutil.copy(join(expected_validation_folder, pf), join(merged_output_folder, pf)) did_we_copy_something = True if did_we_copy_something or not isfile(join(merged_output_folder, 'summary.json')): label_manager = plans_manager.get_label_manager(dataset_json) gt_folder = join(nnUNet_raw, plans_manager.dataset_name, 'labelsTr') if not isdir(gt_folder): gt_folder = join(nnUNet_preprocessed, plans_manager.dataset_name, 'gt_segmentations') compute_metrics_on_folder(gt_folder, merged_output_folder, join(merged_output_folder, 'summary.json'), rw, dataset_json['file_ending'], label_manager.foreground_regions if label_manager.has_regions else label_manager.foreground_labels, label_manager.ignore_label, num_processes) # Path: nnunetv2/evaluation/evaluate_predictions.py def region_or_label_to_mask(segmentation: np.ndarray, region_or_label: Union[int, Tuple[int, ...]]) -> np.ndarray: if np.isscalar(region_or_label): return segmentation == region_or_label else: mask = np.zeros_like(segmentation, dtype=bool) for r in region_or_label: mask[segmentation == r] = True return mask # Path: nnunetv2/evaluation/evaluate_predictions.py def compute_metrics_on_folder(folder_ref: str, folder_pred: str, output_file: str, image_reader_writer: BaseReaderWriter, file_ending: str, regions_or_labels: Union[List[int], List[Union[int, Tuple[int, ...]]]], ignore_label: int = None, num_processes: int = default_num_processes, chill: bool = True) -> dict: """ output_file must end with .json; can be None """ if output_file is not None: assert output_file.endswith('.json'), 'output_file should end with .json' files_pred = subfiles(folder_pred, suffix=file_ending, join=False) files_ref = subfiles(folder_ref, suffix=file_ending, join=False) if not chill: present = [isfile(join(folder_pred, i)) for i in files_ref] assert all(present), "Not all files in folder_pred exist in folder_ref" files_ref = [join(folder_ref, i) for i in files_pred] files_pred = [join(folder_pred, i) for i in files_pred] with multiprocessing.get_context("spawn").Pool(num_processes) as pool: # for i in list(zip(files_ref, files_pred, [image_reader_writer] * len(files_pred), [regions_or_labels] * len(files_pred), [ignore_label] * len(files_pred))): # compute_metrics(*i) results = pool.starmap( compute_metrics, list(zip(files_ref, files_pred, [image_reader_writer] * len(files_pred), [regions_or_labels] * len(files_pred), [ignore_label] * len(files_pred))) ) # mean metric per class metric_list = list(results[0]['metrics'][regions_or_labels[0]].keys()) means = {} for r in regions_or_labels: means[r] = {} for m in metric_list: means[r][m] = np.nanmean([i['metrics'][r][m] for i in results]) # foreground mean foreground_mean = {} for m in metric_list: values = [] for k in means.keys(): if k == 0 or k == '0': continue values.append(means[k][m]) foreground_mean[m] = np.mean(values) [recursive_fix_for_json_export(i) for i in results] recursive_fix_for_json_export(means) recursive_fix_for_json_export(foreground_mean) result = {'metric_per_case': results, 'mean': means, 'foreground_mean': foreground_mean} if output_file is not None: save_summary_json(result, output_file) return result # print('DONE') # Path: nnunetv2/evaluation/evaluate_predictions.py def load_summary_json(filename: str): results = load_json(filename) # convert keys in mean metrics results['mean'] = {key_to_label_or_region(k): results['mean'][k] for k in results['mean'].keys()} # convert metric_per_case for i in range(len(results["metric_per_case"])): results["metric_per_case"][i]['metrics'] = \ {key_to_label_or_region(k): results["metric_per_case"][i]['metrics'][k] for k in results["metric_per_case"][i]['metrics'].keys()} return results # Path: nnunetv2/evaluation/evaluate_predictions.py def label_or_region_to_key(label_or_region: Union[int, Tuple[int]]): return str(label_or_region) # Path: nnunetv2/imageio/base_reader_writer.py class BaseReaderWriter(ABC): @staticmethod def _check_all_same(input_list): # compare all entries to the first for i in input_list[1:]: if i != input_list[0]: return False return True @staticmethod def _check_all_same_array(input_list): # compare all entries to the first for i in input_list[1:]: if i.shape != input_list[0].shape or not np.allclose(i, input_list[0]): return False return True @abstractmethod def read_images(self, image_fnames: Union[List[str], Tuple[str, ...]]) -> Tuple[np.ndarray, dict]: """ Reads a sequence of images and returns a 4d (!) np.ndarray along with a dictionary. The 4d array must have the modalities (or color channels, or however you would like to call them) in its first axis, followed by the spatial dimensions (so shape must be c,x,y,z where c is the number of modalities (can be 1)). Use the dictionary to store necessary meta information that is lost when converting to numpy arrays, for example the Spacing, Orientation and Direction of the image. This dictionary will be handed over to write_seg for exporting the predicted segmentations, so make sure you have everything you need in there! IMPORTANT: dict MUST have a 'spacing' key with a tuple/list of length 3 with the voxel spacing of the np.ndarray. Example: my_dict = {'spacing': (3, 0.5, 0.5), ...}. This is needed for planning and preprocessing. The ordering of the numbers must correspond to the axis ordering in the returned numpy array. So if the array has shape c,x,y,z and the spacing is (a,b,c) then a must be the spacing of x, b the spacing of y and c the spacing of z. In the case of 2D images, the returned array should have shape (c, 1, x, y) and the spacing should be (999, sp_x, sp_y). Make sure 999 is larger than sp_x and sp_y! Example: shape=(3, 1, 224, 224), spacing=(999, 1, 1) For images that don't have a spacing, set the spacing to 1 (2d exception with 999 for the first axis still applies!) :param image_fnames: :return: 1) a np.ndarray of shape (c, x, y, z) where c is the number of image channels (can be 1) and x, y, z are the spatial dimensions (set x=1 for 2D! Example: (3, 1, 224, 224) for RGB image). 2) a dictionary with metadata. This can be anything. BUT it HAS to include a {'spacing': (a, b, c)} where a is the spacing of x, b of y and c of z! If an image doesn't have spacing, just set this to 1. For 2D, set a=999 (largest spacing value! Make it larger than b and c) """ pass @abstractmethod def read_seg(self, seg_fname: str) -> Tuple[np.ndarray, dict]: """ Same requirements as BaseReaderWriter.read_image. Returned segmentations must have shape 1,x,y,z. Multiple segmentations are not (yet?) allowed If images and segmentations can be read the same way you can just `return self.read_image((image_fname,))` :param seg_fname: :return: 1) a np.ndarray of shape (1, x, y, z) where x, y, z are the spatial dimensions (set x=1 for 2D! Example: (1, 1, 224, 224) for 2D segmentation). 2) a dictionary with metadata. This can be anything. BUT it HAS to include a {'spacing': (a, b, c)} where a is the spacing of x, b of y and c of z! If an image doesn't have spacing, just set this to 1. For 2D, set a=999 (largest spacing value! Make it larger than b and c) """ pass @abstractmethod def write_seg(self, seg: np.ndarray, output_fname: str, properties: dict) -> None: """ Export the predicted segmentation to the desired file format. The given seg array will have the same shape and orientation as the corresponding image data, so you don't need to do any resampling or whatever. Just save :-) properties is the same dictionary you created during read_images/read_seg so you can use the information here to restore metadata IMPORTANT: Segmentations are always 3D! If your input images were 2d then the segmentation will have shape 1,x,y. You need to catch that and export accordingly (for 2d images you need to convert the 3d segmentation to 2d via seg = seg[0])! :param seg: A segmentation (np.ndarray, integer) of shape (x, y, z). For 2D segmentations this will be (1, y, z)! :param output_fname: :param properties: the dictionary that you created in read_images (the ones this segmentation is based on). Use this to restore metadata :return: """ pass # Path: nnunetv2/paths.py # Path: nnunetv2/utilities/file_path_utilities.py def folds_tuple_to_string(folds: Union[List[int], Tuple[int, ...]]): s = str(folds[0]) for f in folds[1:]: s += f"_{f}" return s # Path: nnunetv2/utilities/json_export.py def recursive_fix_for_json_export(my_dict: dict): # json is stupid. 'cannot serialize object of type bool_/int64/float64'. Come on bro. keys = list(my_dict.keys()) # cannot iterate over keys() if we change keys.... for k in keys: if isinstance(k, (np.int64, np.int32, np.int8, np.uint8)): tmp = my_dict[k] del my_dict[k] my_dict[int(k)] = tmp del tmp k = int(k) if isinstance(my_dict[k], dict): recursive_fix_for_json_export(my_dict[k]) elif isinstance(my_dict[k], np.ndarray): assert my_dict[k].ndim == 1, 'only 1d arrays are supported' my_dict[k] = fix_types_iterable(my_dict[k], output_type=list) elif isinstance(my_dict[k], (np.bool_,)): my_dict[k] = bool(my_dict[k]) elif isinstance(my_dict[k], (np.int64, np.int32, np.int8, np.uint8)): my_dict[k] = int(my_dict[k]) elif isinstance(my_dict[k], (np.float32, np.float64, np.float16)): my_dict[k] = float(my_dict[k]) elif isinstance(my_dict[k], list): my_dict[k] = fix_types_iterable(my_dict[k], output_type=type(my_dict[k])) elif isinstance(my_dict[k], tuple): my_dict[k] = fix_types_iterable(my_dict[k], output_type=tuple) elif isinstance(my_dict[k], torch.device): my_dict[k] = str(my_dict[k]) else: pass # pray it can be serialized # Path: nnunetv2/utilities/plans_handling/plans_handler.py class PlansManager(object): def __init__(self, plans_file_or_dict: Union[str, dict]): """ Why do we need this? 1) resolve inheritance in configurations 2) expose otherwise annoying stuff like getting the label manager or IO class from a string 3) clearly expose the things that are in the plans instead of hiding them in a dict 4) cache shit This class does not prevent you from going wild. You can still use the plans directly if you prefer (PlansHandler.plans['key']) """ self.plans = plans_file_or_dict if isinstance(plans_file_or_dict, dict) else load_json(plans_file_or_dict) def __repr__(self): return self.plans.__repr__() def _internal_resolve_configuration_inheritance(self, configuration_name: str, visited: Tuple[str, ...] = None) -> dict: if configuration_name not in self.plans['configurations'].keys(): raise ValueError(f'The configuration {configuration_name} does not exist in the plans I have. Valid ' f'configuration names are {list(self.plans["configurations"].keys())}.') configuration = deepcopy(self.plans['configurations'][configuration_name]) if 'inherits_from' in configuration: parent_config_name = configuration['inherits_from'] if visited is None: visited = (configuration_name,) else: if parent_config_name in visited: raise RuntimeError(f"Circular dependency detected. The following configurations were visited " f"while solving inheritance (in that order!): {visited}. " f"Current configuration: {configuration_name}. Its parent configuration " f"is {parent_config_name}.") visited = (*visited, configuration_name) base_config = self._internal_resolve_configuration_inheritance(parent_config_name, visited) base_config.update(configuration) configuration = base_config return configuration @lru_cache(maxsize=10) def get_configuration(self, configuration_name: str): if configuration_name not in self.plans['configurations'].keys(): raise RuntimeError(f"Requested configuration {configuration_name} not found in plans. " f"Available configurations: {list(self.plans['configurations'].keys())}") configuration_dict = self._internal_resolve_configuration_inheritance(configuration_name) return ConfigurationManager(configuration_dict) @property def dataset_name(self) -> str: return self.plans['dataset_name'] @property def plans_name(self) -> str: return self.plans['plans_name'] @property def original_median_spacing_after_transp(self) -> List[float]: return self.plans['original_median_spacing_after_transp'] @property def original_median_shape_after_transp(self) -> List[float]: return self.plans['original_median_shape_after_transp'] @property @lru_cache(maxsize=1) def image_reader_writer_class(self) -> Type[BaseReaderWriter]: return recursive_find_reader_writer_by_name(self.plans['image_reader_writer']) @property def transpose_forward(self) -> List[int]: return self.plans['transpose_forward'] @property def transpose_backward(self) -> List[int]: return self.plans['transpose_backward'] @property def available_configurations(self) -> List[str]: return list(self.plans['configurations'].keys()) @property @lru_cache(maxsize=1) def experiment_planner_class(self) -> Type[ExperimentPlanner]: planner_name = self.experiment_planner_name experiment_planner = recursive_find_python_class(join(nnunetv2.__path__[0], "experiment_planning"), planner_name, current_module="nnunetv2.experiment_planning") return experiment_planner @property def experiment_planner_name(self) -> str: return self.plans['experiment_planner_used'] @property @lru_cache(maxsize=1) def label_manager_class(self) -> Type[LabelManager]: return get_labelmanager_class_from_plans(self.plans) def get_label_manager(self, dataset_json: dict, **kwargs) -> LabelManager: return self.label_manager_class(label_dict=dataset_json['labels'], regions_class_order=dataset_json.get('regions_class_order'), **kwargs) @property def foreground_intensity_properties_per_channel(self) -> dict: if 'foreground_intensity_properties_per_channel' not in self.plans.keys(): if 'foreground_intensity_properties_by_modality' in self.plans.keys(): return self.plans['foreground_intensity_properties_by_modality'] return self.plans['foreground_intensity_properties_per_channel'] # Path: nnunetv2/postprocessing/remove_connected_components.py import argparse import multiprocessing import shutil import numpy as np from multiprocessing import Pool from typing import Union, Tuple, List, Callable from acvl_utils.morphology.morphology_helper import remove_all_but_largest_component from batchgenerators.utilities.file_and_folder_operations import load_json, subfiles, maybe_mkdir_p, join, isfile, \ isdir, save_pickle, load_pickle, save_json from nnunetv2.configuration import default_num_processes from nnunetv2.evaluation.accumulate_cv_results import accumulate_cv_results from nnunetv2.evaluation.evaluate_predictions import region_or_label_to_mask, compute_metrics_on_folder, \ load_summary_json, label_or_region_to_key from nnunetv2.imageio.base_reader_writer import BaseReaderWriter from nnunetv2.paths import nnUNet_raw from nnunetv2.utilities.file_path_utilities import folds_tuple_to_string from nnunetv2.utilities.json_export import recursive_fix_for_json_export from nnunetv2.utilities.plans_handling.plans_handler import PlansManager def remove_all_but_largest_component_from_segmentation(segmentation: np.ndarray, labels_or_regions: Union[int, Tuple[int, ...], List[Union[int, Tuple[int, ...]]]], background_label: int = 0) -> np.ndarray: mask = np.zeros_like(segmentation, dtype=bool) if not isinstance(labels_or_regions, list):
labels_or_regions = [labels_or_regions]
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: Inflectra/spira-jira-migration-advanced # Path: utility.py def convert_jira_markup_to_html(jira_connection_dict, skip_ssl, jira_markup: str): render_markup_url = jira_connection_dict["jira_base_url"] + "/rest/api/1.0/render" if jira_markup is None or jira_markup == "": return "--EMPTY--" # Strip all the \x unicode chars. jira_markup = re.sub(r"\\x([0-9a-fA-F]{2})", "", jira_markup) # Try to dump a string to json. If it fails return a standard string and warning messages. if not try_json_dump_string(jira_markup): return "--MIGRATION OF TEXT FAILED because of error during JSON validation--" headers = { "Content-Type": "application/json", } body = { "rendererType": "atlassian-wiki-renderer", "unrenderedMarkup": jira_markup, } response = requests.request( "POST", render_markup_url, headers=headers, verify=(not skip_ssl), data=json.dumps(body), ) if response.status_code != 200: print(response.text) print("Conversion of text from jira markup to html failed for text:") print(jira_markup) print(repr(jira_markup)) return "--MIGRATION OF TEXT FAILED because of jira renderer error--" else: return response.text # Path: convert_jira_to_spira_issues.py def find_spira_user_id_by_email(users, person_field, issue): if not issue["fields"][person_field]: return 1 else: user = next( filter( lambda x: x["EmailAddress"] == issue["fields"][person_field]["emailAddress"], users, ), None, ) if user: return user["UserId"] else: return 1 # Path: convert_jira_to_spira_issues.py def get_jira_data_from_custom_field(issue, jira_custom_fields, jira_field_name): customfield = next( filter(lambda x: x["name"] == jira_field_name, jira_custom_fields), None ) if customfield and customfield["id"] in issue["fields"]: custom_value = issue["fields"][customfield["id"]] try: if is_datetime(str(custom_value)): custom_value = convert_datetime(custom_value) except Exception as e: print(e) return custom_value else: return None # Path: convert_jira_to_spira_issues.py def add_custom_properties( issue, spira_metadata, jira_metadata, custom_props_mapping, artifact_type, jira_connection_dict, # Needed for the rich_text_conversion skip_ssl, # Needed for the rich_text_conversion ) -> list: custom_properties = [ # Special case for Jira id as it's not in the fields part of the issue jira_string_field_to_spira_custom_prop( spira_metadata, artifact_type, "Jira Id", issue["key"] ) ] custom_prop_to_add = None # Go through all the mappings of the custom props for prop in custom_props_mapping: # Check if it's a datetime type of the custom prop if prop["type"] == "date_time" or prop["type"] == "date": # Check if its a custom field, starting with if it's not if prop["jira_key"] is not None: time = issue["fields"][prop["jira_key"]] custom_prop_to_add = jira_datetime_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], time ) # Handle it if the value is in a custom field else: time = get_jira_data_from_custom_field( issue, jira_metadata["customfields"], prop["jira_custom_field_name"] ) custom_prop_to_add = jira_datetime_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], time ) # Check if it's a text type custom prop elif prop["type"] == "text": if prop["jira_key"] is not None: # Try to dump a string to json. If it fails set a standard string with a warning message. if not try_json_dump_string(issue["fields"][prop["jira_key"]]): issue["fields"][ prop["jira_key"] ] = "--MIGRATION OF TEXT FAILED because of error during JSON validation--" custom_prop_to_add = jira_string_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], issue["fields"][prop["jira_key"]], ) else: text = get_jira_data_from_custom_field( issue, jira_metadata["customfields"], prop["jira_custom_field_name"] ) custom_prop_to_add = jira_string_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], text ) # Check if it's a decimal custom prop elif prop["type"] == "decimal": if prop["jira_key"] is not None: custom_prop_to_add = jira_decimal_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], issue["fields"][prop["jira_key"]], ) else: number = get_jira_data_from_custom_field( issue, jira_metadata["customfields"], prop["jira_custom_field_name"] ) custom_prop_to_add = jira_decimal_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], number ) # Check if it's a rich text custom prop elif prop["type"] == "rich_text": if jira_connection_dict is None: print("No jira connection dict present, can't convert rich text") continue # Check if it's a jira key, if prop["jira_key"] is not None: custom_prop_to_add = jira_textarea_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], issue["fields"][prop["jira_key"]], jira_connection_dict, skip_ssl, ) # Else it is a custom field else: text = get_jira_data_from_custom_field( issue, jira_metadata["customfields"], prop["jira_custom_field_name"] ) custom_prop_to_add = jira_textarea_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], text, # type: ignore jira_connection_dict, skip_ssl, ) # Check if it's a list custom prop elif prop["type"] == "list": if prop["jira_key"] is not None: custom_prop_to_add = jira_list_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], issue["fields"][prop["jira_key"]]["value"], ) else: list_value = get_jira_data_from_custom_field( issue, jira_metadata["customfields"], prop["jira_custom_field_name"] ) custom_prop_to_add = jira_list_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], list_value ) # Check if it's a multiselect list custom prop elif prop["type"] == "multiselect_list": # Check if it's a jira key, # This is not tested since there are no standards fields as multiselect list at the moment. if prop["jira_key"] is not None: custom_prop_to_add = jira_multiselect_list_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], issue["fields"][prop["jira_key"]], ) else: list_of_values = get_jira_data_from_custom_field( issue, jira_metadata["customfields"], prop["jira_custom_field_name"] ) custom_prop_to_add = jira_multiselect_list_field_to_spira_custom_prop( spira_metadata, artifact_type, prop["spira_name"], list_of_values ) custom_properties.append(custom_prop_to_add) return custom_properties # Path: convert_jira_to_spira_issues.py def get_mapped_spira_type_name(type_mapping, jira_issue_type) -> str | None: spira_mapped_type_name = None for spira_type in type_mapping: jira_types = type_mapping[spira_type] if isinstance(jira_types, list) and jira_issue_type in type_mapping[spira_type]: spira_mapped_type_name = spira_type break elif ( isinstance(jira_types, str) and jira_issue_type == type_mapping[spira_type] ): spira_mapped_type_name = spira_type break return spira_mapped_type_name # Path: convert_jira_to_spira_issues.py def jira_status_to_spira_status_id(mapping, status_types, issue_status_name) -> int: mapped_name = mapping[issue_status_name] status_object = next(filter(lambda x: x["Name"] == mapped_name, status_types), None) if status_object and "StatusId" in status_object: return int(status_object["StatusId"]) elif status_object and "RequirementStatusId" in status_object: return int(status_object["RequirementStatusId"]) elif status_object and "IncidentStatusId" in status_object: return int(status_object["IncidentStatusId"]) elif status_object and "TaskStatusId" in status_object: return int(status_object["TaskStatusId"]) elif status_object and "CapabilityStatusId" in status_object: return int(status_object["CapabilityStatusId"]) else: return 0 # Path: convert_jira_to_spira_issues.py def get_mapped_spira_type_name(type_mapping, jira_issue_type) -> str | None: spira_mapped_type_name = None for spira_type in type_mapping: jira_types = type_mapping[spira_type] if isinstance(jira_types, list) and jira_issue_type in type_mapping[spira_type]: spira_mapped_type_name = spira_type break elif ( isinstance(jira_types, str) and jira_issue_type == type_mapping[spira_type] ): spira_mapped_type_name = spira_type break return spira_mapped_type_name # Path: convert_jira_to_spira_program.py import json from utility import convert_jira_markup_to_html from convert_jira_to_spira_issues import ( find_spira_user_id_by_email, get_jira_data_from_custom_field, add_custom_properties, get_mapped_spira_type_name, jira_status_to_spira_status_id, get_mapped_spira_type_name, ) issue, spira_metadata, jira_metadata, mapping_dict["custom_props"]["capabilities"], "capability", jira_connection_dict, skip_ssl, ) capability["payload"] = payload capability["parent_link"] = get_jira_data_from_custom_field( issue, jira_metadata["customfields"], "Parent Link" ) capability["epic_link"] = get_jira_data_from_custom_field( issue, jira_metadata["customfields"], "Epic Link" ) output_dict["program"].append(capability) json.dump(output_dict, conversion_output, indent=4) conversion_output.close() def convert_jira_versions_to_spira_program_milestones( capabilities, jira_output_versions_dict, mapping_dict, spira_program_metadata ): milestones_to_spira = open("temp/milestones_to_spira.json", "w") input_versions = jira_output_versions_dict["versions"] to_spira_dict = {"milestones": []} versions = [] for capability in capabilities: affectedVersions = capability["fields"]["versions"] fixVersions = capability["fields"]["fixVersions"] if len(affectedVersions) > 0: print("For JIRA key: " + capability["key"]) print( "This script does not handle affectedVersions, but they are still present:" ) print(str(affectedVersions)) if len(fixVersions) > 1: print("For JIRA key: " + capability["key"]) print( "Spira can't handle more than one fixVersion, the first one will be set. These are the other versions not handled:" ) print(str(fixVersions[1:])) if len(fixVersions) > 0: found_version = next( filter( lambda x: x["name"] == fixVersions[0]["name"], input_versions, ), None, ) # This might not work as identical objects might not be detected as such. if found_version not in versions and found_version is not None: versions.append(found_version) for version in versions: milestone = {} payload = { # MilestoneId - READ ONLY - assigned on creation # Guid - READ ONLY # CreatorId - Jira does not record creator of versions # CreatorName # OwnerId - Jira does not record owner of versions # OwnerName "StatusId": calculate_milestone_status_id( version, mapping_dict["milestone_statuses"], spira_program_metadata["statuses"]["milestone"], ), # StatusIsOpen - READ ONLY # StatusName # TypeId - TODO # TypeName "Name": version["name"] if "name" in version else "", "Description": version["description"] if "description" in version else " ", # ProjectGroupId # ProjectGroupName "StartDate": (version["startDate"] + "T00:00:00.000") if "startDate" in version else "1970-01-01T00:00:00", # ChildrenStartDate - probably read only "EndDate": (version["releaseDate"] + "T00:00:00.000") if "releaseDate" in version else "1970-01-01T00:00:00", # ChildrenEndDate - probably read only # CreationDate - probably read only - need to use custom properties # LastUpdateDate - probably read only - need to sue custom properties # PercentComplete - READ ONLY # ReleaseCount - READ ONLY # RequirementCount - READ ONLY # ConcurrencyGuid - READ ONLY # CustomProperties - TODO } milestone["payload"] = payload to_spira_dict["milestones"].append(milestone) json.dump(to_spira_dict, milestones_to_spira, indent=4) milestones_to_spira.close() def get_milestone_id_from_jira_issue(issue, milestones): affectedVersions = issue["fields"]["versions"] fixVersions = issue["fields"]["fixVersions"] if len(affectedVersions) > 0: print("For JIRA key: " + issue["key"])
print(
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: RWTH-EBC/vclibpy # Path: vclibpy/datamodels.py class Inputs(VariableContainer): """ Class defining inputs to calculate the FlowsheetState. While the inputs are pre-defined, you may add further ones using the `set` method. Args: n (float): Relative compressor speed between 0 and 1. T_eva_in (float): Secondary side evaporator inlet temperature. T_con_in (float): Secondary side condenser inlet temperature. m_flow_eva (float): Secondary side evaporator mass flow rate. m_flow_con (float): Secondary side condenser mass flow rate. dT_eva_superheating (float): Super-heating after evaporator. dT_con_subcooling (float): Subcooling after condenser. T_ambient (float): Ambient temperature of the machine. """ def __init__( self, n: float = None, T_eva_in: float = None, T_con_in: float = None, m_flow_eva: float = None, m_flow_con: float = None, dT_eva_superheating: float = None, dT_con_subcooling: float = None, T_ambient: float = None ): """ Initializes an Inputs object with parameters representing external conditions for the vapor compression cycle. Args: n (float): Relative compressor speed between 0 and 1 (unit: -). T_eva_in (float): Secondary side evaporator inlet temperature (unit: K). T_con_in (float): Secondary side condenser inlet temperature (unit: K). m_flow_eva (float): Secondary side evaporator mass flow rate (unit: kg/s). m_flow_con (float): Secondary side condenser mass flow rate (unit: kg/s). dT_eva_superheating (float): Super-heating after evaporator (unit: K). dT_con_subcooling (float): Subcooling after condenser (unit: K). T_ambient (float): Ambient temperature of the machine (unit: K). """ super().__init__() self.set( name="n", value=n, unit="-", description="Relative compressor speed" ) self.set( name="T_eva_in", value=T_eva_in, unit="K", description="Secondary side evaporator inlet temperature" ) self.set( name="T_con_in", value=T_con_in, unit="K", description="Secondary side condenser inlet temperature" ) self.set( name="m_flow_con", value=m_flow_con, unit="kg/s", description="Secondary side condenser mass flow rate" ) self.set( name="m_flow_eva", value=m_flow_eva, unit="kg/s", description="Secondary side evaporator mass flow rate" ) self.set( name="dT_eva_superheating", value=dT_eva_superheating, unit="K", description="Super-heating after evaporator" ) self.set( name="dT_con_subcooling", value=dT_con_subcooling, unit="K", description="Subcooling after condenser" ) if T_ambient is None: T_ambient = T_eva_in self.set( name="T_ambient", value=T_ambient, unit="K", description="Ambient temperature of machine" ) # Path: vclibpy/flowsheets/base.py class BaseCycle: """ Base class for a heat pump. More complex systems may inherit from this class All HP have a compressor, two HE and a source and sink. Therefore, the parameters defined here are general parameters. Args: fluid (str): Name of the fluid evaporator (HeatExchanger): Instance of a heat exchanger used for the evaporator condenser (HeatExchanger): Instance of a heat exchanger used for the condenser """ flowsheet_name: str = "BaseCLass of all HP classes - not to use for map generation" def __init__( self, fluid: str, evaporator: HeatExchanger, condenser: HeatExchanger ): self.fluid: str = fluid self.evaporator = evaporator self.condenser = condenser # Instantiate dummy values self.med_prop = None self._p_min = 10000 # So that p>0 at all times self._p_max = None # Is set by med-prop def __str__(self): return self.flowsheet_name def setup_new_fluid(self, fluid): # Only do so if new fluid is given if self.med_prop is not None: if self.med_prop.fluid_name == fluid: return self.med_prop.terminate() # Else create new instance of MedProp med_prop_class, med_prop_kwargs = media.get_global_med_prop_and_kwargs() self.med_prop = med_prop_class(fluid_name=fluid, **med_prop_kwargs) # Write the instance to the components for component in self.get_all_components(): component.med_prop = self.med_prop component.start_secondary_med_prop() # Get max and min pressure _, self._p_max, _ = self.med_prop.get_critical_point() self.fluid = fluid def terminate(self): self.med_prop.terminate() for component in self.get_all_components(): component.terminate_secondary_med_prop() def get_all_components(self) -> List[BaseComponent]: return [self.condenser, self.evaporator] def calc_steady_state(self, inputs: Inputs, fluid: str = None, **kwargs): """ Calculate the steady-state performance of a vapor compression cycle based on given inputs and assumptions. This function ensures consistent assumptions across different cycles. It calculates the performance of the heat pump under specific conditions while adhering to several general assumptions. General Assumptions: --------------------- - Isenthalpic expansion valves: The enthalpy at the inlet equals the enthalpy at the outlet. - No heat losses in any component: The heat input to the condenser equals the heat output of the evaporator plus the power input. - Input to the evaporator is always in the two-phase region. - Output of the evaporator and output of the condenser maintain a constant overheating or subcooling (can be set in Inputs). Args: inputs (Inputs): An instance of the Inputs class containing the necessary parameters to calculate the flowsheet state. fluid (str): The fluid to be used in the calculations. Required only if 'fluid' is not specified during the object's initialization. Keyword Arguments: min_iteration_step (int): The minimum step size for iterations (default: 1). save_path_plots (str or None): The path to save plots (default: None). If None, no plots are created. show_iteration (bool): Whether to display iteration progress (default: False). T_max (float): Maximum temperature allowed (default: 273.15 + 150). use_quick_solver (bool): Whether to use a quick solver (default: True). max_err_ntu (float): Maximum allowable error for the heat exchanger in percent (default: 0.5). max_err_dT_min (float): Maximum allowable error for minimum temperature difference in K (default: 0.1). max_num_iterations (int or None): Maximum number of iterations allowed (default: None). Returns: fs_state (FlowsheetState): An instance of the FlowsheetState class representing the calculated state of the vapor compression cycle. """ # Settings min_iteration_step = kwargs.pop("min_iteration_step", 1) save_path_plots = kwargs.get("save_path_plots", None) input_name = ";".join([k + "=" + str(np.round(v.value, 3)).replace(".", "_") for k, v in inputs.get_variables().items()]) show_iteration = kwargs.get("show_iteration", False) use_quick_solver = kwargs.pop("use_quick_solver", True) err_ntu = kwargs.pop("max_err_ntu", 0.5) err_dT_min = kwargs.pop("max_err_dT_min", 0.1) max_num_iterations = kwargs.pop("max_num_iterations", 1e5) p_1_history = [] p_2_history = [] if use_quick_solver: step_p1 = kwargs.get("step_max", 10000) step_p2 = kwargs.get("step_max", 10000) else: step_p1 = min_iteration_step step_p2 = min_iteration_step # Setup fluid: if fluid is None: fluid = self.fluid self.setup_new_fluid(fluid) # First: Iterate with given conditions to get the 4 states and the mass flow rate: T_1_start = inputs.T_eva_in - inputs.dT_eva_superheating T_3_start = inputs.T_con_in + inputs.dT_con_subcooling p_1_start = self.med_prop.calc_state("TQ", T_1_start, 1).p p_2_start = self.med_prop.calc_state("TQ", T_3_start, 0).p p_1_next = p_1_start p_2_next = p_2_start fs_state = FlowsheetState() # Always log what is happening in the whole flowsheet fs_state.set(name="Q_con", value=1, unit="W", description="Condenser heat flow rate") fs_state.set(name="COP", value=0, unit="-", description="Coefficient of performance") if show_iteration: fig_iterations, ax_iterations = plt.subplots(2) num_iterations = 0 while True: if isinstance(max_num_iterations, (int, float)): if num_iterations > max_num_iterations: logger.warning("Maximum number of iterations %s exceeded. Stopping.", max_num_iterations) return if (num_iterations + 1) % (0.1 * max_num_iterations) == 0: logger.info("Info: %s percent of max_num_iterations %s used", 100 * (num_iterations + 1) / max_num_iterations, max_num_iterations) p_1 = p_1_next p_2 = p_2_next p_1_history.append(p_1) p_2_history.append(p_2) if show_iteration: ax_iterations[0].cla() ax_iterations[1].cla() ax_iterations[0].scatter(list(range(len(p_1_history))), p_1_history) ax_iterations[1].scatter(list(range(len(p_2_history))), p_2_history) plt.draw() plt.pause(1e-5) # Increase counter num_iterations += 1 # Check critical pressures: if p_2 >= self._p_max: if step_p2 == min_iteration_step: logger.error("Pressure too high. Configuration is infeasible.") return p_2_next = p_2 - step_p2 step_p2 /= 10 continue if p_1 <= self._p_min: if p_1_next == min_iteration_step: logger.error("Pressure too low. Configuration is infeasible.") return p_1_next = p_1 + step_p1 step_p1 /= 10 continue # Calculate the states based on the given flowsheet try: self.calc_states(p_1, p_2, inputs=inputs, fs_state=fs_state) except ValueError as err: logger.error("An error occurred while calculating states. " "Can't guess next pressures, thus, exiting: %s", err) return if save_path_plots is not None and num_iterations == 1 and show_iteration: self.plot_cycle(save_path=save_path_plots.joinpath(f"{input_name}_initialization.png"), inputs=inputs) # Check heat exchangers: error_eva, dT_min_eva = self.evaporator.calc(inputs=inputs, fs_state=fs_state) if not isinstance(error_eva, float): print(error_eva) if error_eva < 0: p_1_next = p_1 - step_p1 continue else: if step_p1 > min_iteration_step: p_1_next = p_1 + step_p1 step_p1 /= 10 continue elif error_eva > err_ntu and dT_min_eva > err_dT_min: step_p1 = 1000 p_1_next = p_1 + step_p1 continue error_con, dT_min_con = self.condenser.calc(inputs=inputs, fs_state=fs_state) if error_con < 0: p_2_next = p_2 + step_p2 continue else: if step_p2 > min_iteration_step: p_2_next = p_2 - step_p2 step_p2 /= 10 continue elif error_con > err_ntu and dT_min_con > err_dT_min: p_2_next = p_2 - step_p2 step_p2 = 1000 continue # If still here, and the values are equal, we may break. if p_1 == p_1_next and p_2 == p_2_next: # Check if solution was too far away. If so, jump back # And decrease the iteration step by factor 10. if step_p2 > min_iteration_step: p_2_next = p_2 - step_p2 step_p2 /= 10 continue if step_p1 > min_iteration_step: p_1_next = p_1 + step_p1 step_p1 /= 10 continue logger.info("Breaking: Converged") break # Check if values are not converging at all: p_1_unique = set(p_1_history[-10:]) p_2_unique = set(p_2_history[-10:]) if len(p_1_unique) == 2 and len(p_2_unique) == 2 \ and step_p1 == min_iteration_step and step_p2 == min_iteration_step: logger.critical("Breaking: not converging at all") break if show_iteration: plt.close(fig_iterations) # Calculate the heat flow rates for the selected states. Q_con = self.condenser.calc_Q_flow() Q_con_outer = self.condenser.calc_secondary_Q_flow(Q_con) Q_eva = self.evaporator.calc_Q_flow() Q_eva_outer = self.evaporator.calc_secondary_Q_flow(Q_eva) self.evaporator.calc(inputs=inputs, fs_state=fs_state) self.condenser.calc(inputs=inputs, fs_state=fs_state) P_el = self.calc_electrical_power(fs_state=fs_state, inputs=inputs) T_con_out = inputs.T_con_in + Q_con_outer / self.condenser.m_flow_secondary_cp # COP based on P_el and Q_con: COP_inner = Q_con / P_el COP_outer = Q_con_outer / P_el # Calculate carnot quality as a measure of reliability of model: COP_carnot = (T_con_out / (T_con_out - inputs.T_eva_in)) carnot_quality = COP_inner / COP_carnot # Calc return temperature: fs_state.set( name="P_el", value=P_el, unit="W", description="Power consumption" ) fs_state.set( name="carnot_quality", value=carnot_quality, unit="-", description="Carnot Quality" ) fs_state.set( name="Q_con", value=Q_con, unit="W", description="Condenser refrigerant heat flow rate" ) # COP based on P_el and Q_con: fs_state.set( name="Q_con_outer", value=Q_con_outer, unit="W", description="Secondary medium condenser heat flow rate" ) fs_state.set( name="Q_eva_outer", value=Q_eva_outer, unit="W", description="Secondary medium evaporator heat flow rate" ) fs_state.set( name="COP", value=COP_inner, unit="-", description="Coefficient of Performance" ) fs_state.set( name="COP_outer", value=COP_outer, unit="-", description="Outer COP, including heat losses" ) if save_path_plots is not None: self.plot_cycle(save_path=save_path_plots.joinpath(f"{input_name}_final_result.png"), inputs=inputs) return fs_state @abstractmethod def get_states_in_order_for_plotting(self): """ Function to return all thermodynamic states of cycle in the correct order for plotting. Include phase change states to see if your simulation runs plausible cycles. Returns: - List with tuples, first entry being the state and second the mass flow rate """ return [] def set_evaporator_outlet_based_on_superheating(self, p_eva: float, inputs: Inputs): """ Calculate the outlet state of the evaporator based on the required degree of superheating. Args: p_eva (float): Evaporation pressure inputs (Inputs): Inputs with superheating level """ T_1 = self.med_prop.calc_state("PQ", p_eva, 1).T + inputs.dT_eva_superheating if inputs.dT_eva_superheating > 0: self.evaporator.state_outlet = self.med_prop.calc_state("PT", p_eva, T_1) else: self.evaporator.state_outlet = self.med_prop.calc_state("PQ", p_eva, 1) def set_condenser_outlet_based_on_subcooling(self, p_con: float, inputs: Inputs): """ Calculate the outlet state of the evaporator based on the required degree of superheating. Args: p_con (float): Condensing pressure inputs (Inputs): Inputs with superheating level """ T_3 = self.med_prop.calc_state("PQ", p_con, 0).T - inputs.dT_con_subcooling if inputs.dT_con_subcooling > 0: self.condenser.state_outlet = self.med_prop.calc_state("PT", p_con, T_3) else: self.condenser.state_outlet = self.med_prop.calc_state("PQ", p_con, 0) def plot_cycle(self, save_path: bool, inputs: Inputs, states: list = None): """Function to plot the resulting flowsheet of the steady state config.""" if states is None: states = self.get_states_in_order_for_plotting() states.append(states[0]) # Plot full cycle # Unpack state var: h_T = np.array([state.h for state in states]) / 1000 T = [state.T - 273.15 for state in states] p = np.array([state.p for state in states]) h_p = h_T fig, ax = plt.subplots(2, 1, sharex=True) ax[0].set_ylabel("$T$ in °C") ax[1].set_xlabel("$h$ in kJ/kgK") # Two phase limits ax[0].plot( self.med_prop.get_two_phase_limits("h") / 1000, self.med_prop.get_two_phase_limits("T") - 273.15, color="black" ) ax[0].plot(h_T, T, color="r", marker="s") self._plot_secondary_heat_flow_rates(ax=ax[0], inputs=inputs) ax[1].plot(h_p, np.log(p), marker="s", color="r") # Two phase limits ax[1].plot( self.med_prop.get_two_phase_limits("h") / 1000, np.log(self.med_prop.get_two_phase_limits("p")), color="black" ) plt.plot() ax[1].set_ylabel("$log(p)$") ax[1].set_ylim([np.min(np.log(p)) * 0.9, np.max(np.log(p)) * 1.1]) ax[0].set_ylim([np.min(T) - 5, np.max(T) + 5]) ax[1].set_xlim([np.min(h_T) * 0.9, np.max(h_T) * 1.1]) ax[0].set_xlim([np.min(h_T) * 0.9, np.max(h_T) * 1.1]) fig.tight_layout() fig.savefig(save_path) plt.close(fig) def _plot_secondary_heat_flow_rates(self, ax, inputs): Q_con = self.condenser.calc_Q_flow() Q_eva = self.evaporator.calc_Q_flow() delta_H_con = np.array([ self.condenser.state_outlet.h * self.condenser.m_flow, self.condenser.state_outlet.h * self.condenser.m_flow + Q_con ]) / self.condenser.m_flow delta_H_eva = np.array([ self.evaporator.state_outlet.h * self.evaporator.m_flow, self.evaporator.state_outlet.h * self.evaporator.m_flow - Q_eva ]) / self.evaporator.m_flow self.condenser.m_flow_secondary = inputs.m_flow_con self.condenser.calc_secondary_cp(T=inputs.T_con_in) self.evaporator.m_flow_secondary = inputs.m_flow_eva self.evaporator.calc_secondary_cp(T=inputs.T_eva_in) ax.plot(delta_H_con / 1000, [ inputs.T_con_in - 273.15, inputs.T_con_in + Q_con / self.condenser.m_flow_secondary_cp - 273.15 ], color="b") ax.plot(delta_H_eva / 1000, [ inputs.T_eva_in - 273.15, inputs.T_eva_in - Q_eva / self.evaporator.m_flow_secondary_cp - 273.15 ], color="b") @abstractmethod def calc_electrical_power(self, inputs: Inputs, fs_state: FlowsheetState): """Function to calc the electrical power consumption based on the flowsheet used""" raise NotImplementedError @abstractmethod def calc_states(self, p_1, p_2, inputs: Inputs, fs_state: FlowsheetState): """ Function to calculate the states and mass flow rates of the flowsheet and set these into each component based on the given pressure levels p_1 and p_2. Args: p_1 (float): Lower pressure level. If no pressure losses are assumed, this equals the evaporation pressure and the compressor inlet pressure. p_2 (float): Higher pressure level. If no pressure losses are assumed, this equals the condensing pressure and the compressor outlet pressure. inputs (Inputs): Inputs of calculation. fs_state (FlowsheetState): Flowsheet state to save important variables. """ raise NotImplementedError # Path: vclibpy/utils/nominal_design.py import time import logging from vclibpy import Inputs from vclibpy.flowsheets import BaseCycle logger = logging.getLogger(__name__) def nominal_hp_design( heat_pump: BaseCycle, inputs: Inputs, fluid: str, dT_con: float = None, dT_eva: float = None,
**kwargs) -> dict:
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: LQH-is-newbe/gaussian-splatting-regularization # Path: scene/colmap_loader.py def read_extrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ images = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() image_id = int(elems[0]) qvec = np.array(tuple(map(float, elems[1:5]))) tvec = np.array(tuple(map(float, elems[5:8]))) camera_id = int(elems[8]) image_name = elems[9] elems = fid.readline().split() xys = np.column_stack([tuple(map(float, elems[0::3])), tuple(map(float, elems[1::3]))]) point3D_ids = np.array(tuple(map(int, elems[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_text(path): """ Taken from https://github.com/colmap/colmap/blob/dev/scripts/python/read_write_model.py """ cameras = {} with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() camera_id = int(elems[0]) model = elems[1] assert model == "PINHOLE", "While the loader support other types, the rest of the code assumes PINHOLE" width = int(elems[2]) height = int(elems[3]) params = np.array(tuple(map(float, elems[4:]))) cameras[camera_id] = Camera(id=camera_id, model=model, width=width, height=height, params=params) return cameras # Path: scene/colmap_loader.py def qvec2rotmat(qvec): return np.array([ [1 - 2 * qvec[2]**2 - 2 * qvec[3]**2, 2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3], 2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]], [2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3], 1 - 2 * qvec[1]**2 - 2 * qvec[3]**2, 2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]], [2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2], 2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1], 1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]]) # Path: scene/colmap_loader.py def read_extrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadImagesBinary(const std::string& path) void Reconstruction::WriteImagesBinary(const std::string& path) """ images = {} with open(path_to_model_file, "rb") as fid: num_reg_images = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_reg_images): binary_image_properties = read_next_bytes( fid, num_bytes=64, format_char_sequence="idddddddi") image_id = binary_image_properties[0] qvec = np.array(binary_image_properties[1:5]) tvec = np.array(binary_image_properties[5:8]) camera_id = binary_image_properties[8] image_name = "" current_char = read_next_bytes(fid, 1, "c")[0] while current_char != b"\x00": # look for the ASCII 0 entry image_name += current_char.decode("utf-8") current_char = read_next_bytes(fid, 1, "c")[0] num_points2D = read_next_bytes(fid, num_bytes=8, format_char_sequence="Q")[0] x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D, format_char_sequence="ddq"*num_points2D) xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])), tuple(map(float, x_y_id_s[1::3]))]) point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3]))) images[image_id] = Image( id=image_id, qvec=qvec, tvec=tvec, camera_id=camera_id, name=image_name, xys=xys, point3D_ids=point3D_ids) return images # Path: scene/colmap_loader.py def read_intrinsics_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::WriteCamerasBinary(const std::string& path) void Reconstruction::ReadCamerasBinary(const std::string& path) """ cameras = {} with open(path_to_model_file, "rb") as fid: num_cameras = read_next_bytes(fid, 8, "Q")[0] for _ in range(num_cameras): camera_properties = read_next_bytes( fid, num_bytes=24, format_char_sequence="iiQQ") camera_id = camera_properties[0] model_id = camera_properties[1] model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name width = camera_properties[2] height = camera_properties[3] num_params = CAMERA_MODEL_IDS[model_id].num_params params = read_next_bytes(fid, num_bytes=8*num_params, format_char_sequence="d"*num_params) cameras[camera_id] = Camera(id=camera_id, model=model_name, width=width, height=height, params=np.array(params)) assert len(cameras) == num_cameras return cameras # Path: scene/colmap_loader.py def read_points3D_binary(path_to_model_file): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DBinary(const std::string& path) void Reconstruction::WritePoints3DBinary(const std::string& path) """ with open(path_to_model_file, "rb") as fid: num_points = read_next_bytes(fid, 8, "Q")[0] xyzs = np.empty((num_points, 3)) rgbs = np.empty((num_points, 3)) errors = np.empty((num_points, 1)) for p_id in range(num_points): binary_point_line_properties = read_next_bytes( fid, num_bytes=43, format_char_sequence="QdddBBBd") xyz = np.array(binary_point_line_properties[1:4]) rgb = np.array(binary_point_line_properties[4:7]) error = np.array(binary_point_line_properties[7]) track_length = read_next_bytes( fid, num_bytes=8, format_char_sequence="Q")[0] track_elems = read_next_bytes( fid, num_bytes=8*track_length, format_char_sequence="ii"*track_length) xyzs[p_id] = xyz rgbs[p_id] = rgb errors[p_id] = error return xyzs, rgbs, errors # Path: scene/colmap_loader.py def read_points3D_text(path): """ see: src/base/reconstruction.cc void Reconstruction::ReadPoints3DText(const std::string& path) void Reconstruction::WritePoints3DText(const std::string& path) """ xyzs = None rgbs = None errors = None num_points = 0 with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": num_points += 1 xyzs = np.empty((num_points, 3)) rgbs = np.empty((num_points, 3)) errors = np.empty((num_points, 1)) count = 0 with open(path, "r") as fid: while True: line = fid.readline() if not line: break line = line.strip() if len(line) > 0 and line[0] != "#": elems = line.split() xyz = np.array(tuple(map(float, elems[1:4]))) rgb = np.array(tuple(map(int, elems[4:7]))) error = np.array(float(elems[7])) xyzs[count] = xyz rgbs[count] = rgb errors[count] = error count += 1 return xyzs, rgbs, errors # Path: utils/graphics_utils.py def getWorld2View2(R, t, translate=np.array([.0, .0, .0]), scale=1.0): Rt = np.zeros((4, 4)) Rt[:3, :3] = R.transpose() Rt[:3, 3] = t Rt[3, 3] = 1.0 C2W = np.linalg.inv(Rt) cam_center = C2W[:3, 3] cam_center = (cam_center + translate) * scale C2W[:3, 3] = cam_center Rt = np.linalg.inv(C2W) return np.float32(Rt) # Path: utils/graphics_utils.py def focal2fov(focal, pixels): return 2*math.atan(pixels/(2*focal)) # Path: utils/graphics_utils.py def fov2focal(fov, pixels): return pixels / (2 * math.tan(fov / 2)) # Path: utils/sh_utils.py def SH2RGB(sh): return sh * C0 + 0.5 # Path: scene/gaussian_model.py class GaussianModel: def setup_functions(self): def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): def __init__(self, sh_degree : int): def capture(self): def restore(self, model_args, training_args): def get_scaling(self): def get_rotation(self): def get_xyz(self): def get_features(self): def get_opacity(self): def get_covariance(self, scaling_modifier = 1): def oneupSHdegree(self): def create_from_pcd(self, pcd : BasicPointCloud, spatial_lr_scale : float): def training_setup(self, training_args): def update_learning_rate(self, iteration): def construct_list_of_attributes(self): def save_ply(self, path): def reset_opacity(self): def load_ply(self, path): def replace_tensor_to_optimizer(self, tensor, name): def _prune_optimizer(self, mask): def prune_points(self, mask): def cat_tensors_to_optimizer(self, tensors_dict): def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation): def densify_and_split(self, grads, grad_threshold, scene_extent, N=2): def densify_and_clone(self, grads, grad_threshold, scene_extent): def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size): def add_densification_stats(self, viewspace_point_tensor, update_filter, denom_acc=1): L = build_scaling_rotation(scaling_modifier * scaling, rotation) # Path: scene/dataset_readers.py import os import sys import numpy as np import json from PIL import Image from typing import NamedTuple from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \ read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal from pathlib import Path from plyfile import PlyData, PlyElement from utils.sh_utils import SH2RGB from scene.gaussian_model import BasicPointCloud image_path = os.path.join(images_folder, os.path.basename(extr.name)) image_name = os.path.basename(image_path).split(".")[0] image = Image.open(image_path) cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image, image_path=image_path, image_name=image_name, width=width, height=height) cam_infos.append(cam_info) sys.stdout.write('\n') return cam_infos def fetchPly(path): plydata = PlyData.read(path) vertices = plydata['vertex'] positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0 normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T return BasicPointCloud(points=positions, colors=colors, normals=normals) def storePly(path, xyz, rgb): # Define the dtype for the structured array dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] normals = np.zeros_like(xyz) elements = np.empty(xyz.shape[0], dtype=dtype) attributes = np.concatenate((xyz, normals, rgb), axis=1) elements[:] = list(map(tuple, attributes)) # Create the PlyData object and write to file vertex_element = PlyElement.describe(elements, 'vertex') ply_data = PlyData([vertex_element]) ply_data.write(path) def readColmapSceneInfo(path, images, eval, llffhold=2): try: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) except: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) reading_dir = "images" if images == None else images cam_infos_unsorted = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir)) cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name) if eval: # train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0] # test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0] train_cam_infos = [c for idx, c in enumerate(cam_infos) if c.image_name.startswith("train")] test_cam_infos = [c for idx, c in enumerate(cam_infos) if c.image_name.startswith("test")] else: train_cam_infos = cam_infos test_cam_infos = [] nerf_normalization = getNerfppNorm(train_cam_infos) ply_path = os.path.join(path, "sparse/0/points3D.ply") bin_path = os.path.join(path, "sparse/0/points3D.bin") txt_path = os.path.join(path, "sparse/0/points3D.txt") if not os.path.exists(ply_path): print("Converting point3d.bin to .ply, will happen only the first time you open the scene.") try: xyz, rgb, _ = read_points3D_binary(bin_path) except: xyz, rgb, _ = read_points3D_text(txt_path) storePly(ply_path, xyz, rgb) try: pcd = fetchPly(ply_path) except: pcd = None scene_info = SceneInfo(point_cloud=pcd, train_cameras=train_cam_infos, test_cameras=test_cam_infos, nerf_normalization=nerf_normalization, ply_path=ply_path) return scene_info def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"): cam_infos = [] with open(os.path.join(path, transformsfile)) as json_file: contents = json.load(json_file) fovx = contents["camera_angle_x"] frames = contents["frames"] for idx, frame in enumerate(frames): cam_name = os.path.join(path, frame["file_path"] + extension) # NeRF 'transform_matrix' is a camera-to-world transform c2w = np.array(frame["transform_matrix"]) # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) c2w[:3, 1:3] *= -1 # get the world-to-camera transform and set R, T w2c = np.linalg.inv(c2w) R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code T = w2c[:3, 3] image_path = os.path.join(path, cam_name) image_name = Path(cam_name).stem image = Image.open(image_path) im_data = np.array(image.convert("RGBA")) bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0]) norm_data = im_data / 255.0 arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4]) image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB") fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1]) FovY = fovy
FovX = fovx
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: malcolmchetwyn/realestate_investment_app # Path: investment_finder.py def real_estate_investment_analysis(purchase_price, renovation_cost, loan_amount, interest_rate, loan_term, rental_income, operating_expenses, vacancy_rate, appreciation_rate, sale_year, location_score, market_growth_rate): # Validating input data if purchase_price <= 0 or loan_amount <= 0 or rental_income <= 0: return "Invalid input data" monthly_interest_rate = interest_rate / 12 / 100 number_of_payments = loan_term * 12 # Monthly mortgage payment calculation monthly_mortgage = loan_amount * (monthly_interest_rate * (1 + monthly_interest_rate)**number_of_payments) / ((1 + monthly_interest_rate)**number_of_payments - 1) yearly_cash_flows, property_values, remaining_loan_balances = [], [], [] current_loan_balance = loan_amount property_value = purchase_price + renovation_cost # Stamp duty and total initial investment calculation stamp_duty = calculate_stamp_duty(purchase_price) total_investment = purchase_price + renovation_cost + stamp_duty capital_investment_required = total_investment - loan_amount for year in range(1, sale_year + 1): property_value *= (1 + (appreciation_rate + market_growth_rate) / 100) adjusted_rental_income = rental_income * 12 * (1 - vacancy_rate / 100) net_operating_income = adjusted_rental_income - (operating_expenses * 12) annual_mortgage_payment = monthly_mortgage * 12 cash_flow = net_operating_income - annual_mortgage_payment yearly_cash_flows.append(cash_flow) property_values.append(property_value) interest_for_year = current_loan_balance * interest_rate / 100 principal_paid_for_year = annual_mortgage_payment - interest_for_year current_loan_balance -= principal_paid_for_year remaining_loan_balances.append(max(current_loan_balance, 0)) total_cash_flow = sum(yearly_cash_flows) sale_proceeds = property_values[-1] - remaining_loan_balances[-1] roi = ((sale_proceeds + total_cash_flow - total_investment) / total_investment) * 100 * location_score cash_on_cash_return = (yearly_cash_flows[0] / capital_investment_required) * 100 # Corrected DSCR, GRM, BEP calculations annual_rental_income = rental_income * 12 dscr = net_operating_income / annual_mortgage_payment if annual_mortgage_payment > 0 else float('-inf') grm = purchase_price / annual_rental_income if annual_rental_income > 0 else float('inf') bep = (operating_expenses * 12) / adjusted_rental_income if adjusted_rental_income > 0 else float('inf') # Valid investment check valid_investment = dscr > 1 and grm > 0 and bep >= 0 and bep <= 1 # Investment score based on normalized metrics normalized_dscr = (dscr - 1) if dscr > 1 else 0 normalized_grm = 1 / grm if grm > 0 else 0 normalized_bep = 1 - bep if bep >= 0 and bep <= 1 else 0 investment_score = (normalized_dscr + normalized_grm + normalized_bep) / 3 * 10 if valid_investment else 0 return { "Yearly Cash Flows": yearly_cash_flows, "Property Values": property_values, "Remaining Loan Balances": remaining_loan_balances, "Sale Proceeds": sale_proceeds, "ROI (%)": roi, "Cash on Cash Return (%)": cash_on_cash_return, "Stamp Duty": stamp_duty, "Total Investment": total_investment, "Capital Investment Required": capital_investment_required, "Interest Rate": interest_rate, "Renovation Cost": renovation_cost, "Operating Expenses": operating_expenses, "DSCR": dscr, "GRM": grm, "BEP": bep, "Investment Score": investment_score, "Valid Investment": valid_investment } # Path: investment_finder.py def calculate_additional_metrics_and_score(results): # Extract necessary values from the results dictionary renovation_cost = results["Renovation Cost"] purchase_price = results["Total Investment"] - results["Stamp Duty"] - renovation_cost loan_amount = results["Remaining Loan Balances"][0] interest_rate = results["Interest Rate"] operating_expenses = results["Operating Expenses"] annual_rental_income = results["Yearly Cash Flows"][0] + (loan_amount * (interest_rate / 12 / 100) * 12) dscr = results["DSCR"] grm = results["GRM"] bep = results["BEP"] # Adjusting weights for DSCR, GRM, and BEP weight_dscr = 0.5 # Assuming DSCR is most critical weight_grm = 0.3 weight_bep = 0.2 # Assuming valid investment criteria are met valid_investment = dscr > 1 and grm > 0 and bep >= 0 and bep <= 1 # Updated normalization and scoring normalized_dscr = min((results["DSCR"] - 1) / (5 - 1), 1) if results["DSCR"] > 1 else 0 normalized_grm = min((12 - results["GRM"]) / (12 - 1), 1) if results["GRM"] >= 1 and results["GRM"] <= 12 else 0 normalized_bep = 1 - results["BEP"] if results["BEP"] >= 0 and results["BEP"] <= 1 else 0 # Weighted score calculation investment_score = (normalized_dscr * weight_dscr + normalized_grm * weight_grm + normalized_bep * weight_bep) * 10 investment_score = min(investment_score, 10) return { "DSCR": dscr, "GRM": grm, "BEP": bep, "Investment Score": investment_score, "Valid Investment": valid_investment } # Path: get_rental_value.py def submit_address_and_get_data(url, address): data = {} normalized_address = normalize_address(address) if address_needs_normalization(address) else address with webdriver.Chrome(service=Service(ChromeDriverManager().install())) as driver: driver.get(url) # Handle cookie consent or any pop-ups try: cookie_consent_button = WebDriverWait(driver, 10).until( EC.element_to_be_clickable((By.CSS_SELECTOR, "button[class*='accept-cookies'],button[id*='cookie'],div[id*='cookie']")) ) cookie_consent_button.click() except Exception: pass # No cookie consent or pop-up found address_field = driver.find_element(By.ID, "da_optional_address_text") address_field.send_keys(normalized_address) WebDriverWait(driver, 10).until( EC.visibility_of_element_located((By.ID, "da_optional_address_suggest")) ) suggestion_box = driver.find_element(By.ID, "da_optional_address_suggest") if "Address/Suburb not found" in suggestion_box.text: data["Error"] = "Address not found. Please check the address and try again." return data suggestions = suggestion_box.find_elements(By.CLASS_NAME, "da_optional_address_item") if suggestions: driver.execute_script("arguments[0].click();", suggestions[0]) submit_button = driver.find_element(By.ID, "da_optional_address_button") submit_button.click() # Wait for the new page to load time.sleep(5) cards = driver.find_elements(By.CLASS_NAME, "da-card") for card in cards: title_parts = card.find_elements(By.CLASS_NAME, "da-card-title") card_title = " ".join([part.text.strip() for part in title_parts]) card_value = card.find_element(By.CLASS_NAME, "da-card-value").text.strip() if card.find_elements(By.CLASS_NAME, "da-card-value") else "N/A" card_footer = card.find_element(By.CLASS_NAME, "da-card-footer").text.strip() if card.find_elements(By.CLASS_NAME, "da-card-footer") else "N/A" formatted_title = ' '.join(card_title.split()) data[formatted_title] = {"Value": card_value, "Footer": card_footer} return data # Path: get_sale_history_2.py def get_appreciate_rate(address): with webdriver.Chrome(service=Service(ChromeDriverManager().install()), options=chrome_options) as driver: driver.get("https://www.domain.com.au/property-profile") # Wait for the popup banner to appear popup_banner = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.CSS_SELECTOR, 'section[data-testid="popupbanner-wrapper"]')) ) # Find the close button and click it close_button = popup_banner.find_element(By.CSS_SELECTOR, 'button[data-testid="popupbanner-wrapper__close-cta"]') close_button.click() # Wait for the input field to be clickable WebDriverWait(driver, 10).until( EC.element_to_be_clickable((By.CSS_SELECTOR, 'input[type="search"]')) ) # Find the input field and send the address input_field = driver.find_element(By.CSS_SELECTOR, 'input[type="search"]') input_field.send_keys(address) # Press the space bar to trigger the list input_field.send_keys(Keys.SPACE) # Wait for the results to load (you might need to adjust the waiting condition here) WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.ID, 'downshift-0-item-0')) ) # Click on the first record to make it work first_record = driver.find_element(By.ID, 'downshift-0-item-0') first_record.click() # Extracting property entries try: mid_value_text = None try: # Locating all containers that might contain the 'Mid' value mid_containers = driver.find_elements(By.XPATH, "//div[contains(@class, 'css-8nlvsz')][div[text()='Mid']]") # Iterate through each container found for container in mid_containers: currency_element = container.find_element(By.XPATH, ".//div[@data-testid='currency']") mid_value_text = currency_element.text break if mid_value_text is not None: print(f"Mid Value Text: {mid_value_text}") else: print("Mid value text not found.") except Exception as e: print(f"An error occurred: {e}") if mid_value_text is not None: #mid_price_text = mid_price_element.text mid_price = convert_price(mid_value_text) # print(f"Mid price: ${mid_value_text}") # Current year and the target year (5 years ago) current_year = datetime.now().year target_year = current_year - 5 click_view_more_results(driver) # Waiting for property entries to load property_entries = WebDriverWait(driver, 10).until( EC.presence_of_all_elements_located((By.CSS_SELECTOR, 'li.css-16ezjtx')) ) # Initialize variables closest_sale_year = None closest_sale_price = None smallest_year_difference = float('inf') # Iterate through each property entry to extract the information for entry in property_entries: category_elements = entry.find_elements(By.CSS_SELECTOR, 'div[data-testid="fe-co-property-timeline-card-category"]') # Skip entry if category element is not found if not category_elements: continue category_text = category_elements[0].text # Processing if category is 'SOLD' if category_text == 'SOLD': year = int(entry.find_element(By.CSS_SELECTOR, 'div.css-1qi20sy').text) price_text = entry.find_element(By.CSS_SELECTOR, 'span.css-b27lqk').text price = convert_price(price_text) year_difference = abs(year - target_year) if year_difference < smallest_year_difference: smallest_year_difference = year_difference closest_sale_year = year closest_sale_price = price if closest_sale_price is not None: print(f"Selected Sale: Year - {closest_sale_year}, Price - ${closest_sale_price}") years_difference = current_year - closest_sale_year if years_difference > 0: appreciation_rate = calculate_yearly_appreciation_rate(closest_sale_price, mid_price, years_difference) formatted_rate = round(appreciation_rate, 2) return {"appreciation_rate": formatted_rate, "property_mid_price": mid_price} else: print("No appreciation calculation due to same year sale.") return {"appreciation_rate": get_average_appreciation_rate(), "property_mid_price": mid_price} else: print("No suitable sale found within 5 years.") return {"appreciation_rate": get_average_appreciation_rate(), "property_mid_price": mid_price} except Exception as e: print("An error occurred:", e) mid_price = None return {"appreciation_rate": get_average_appreciation_rate(), "property_mid_price": mid_price} # Path: process_properties.py import re import time import random import sys import numpy as np import numpy_financial as npf from investment_finder import real_estate_investment_analysis, calculate_additional_metrics_and_score from get_rental_value import submit_address_and_get_data from get_sale_history_2 import get_appreciate_rate investment_amount_ability = 50000 def extract_median_asking_rent(data): for key, value in data.items(): if "MEDIAN ASKING RENT" in key: rent_value = value.get("Value", "") rent_numbers = re.findall(r'\d+', rent_value) return ''.join(rent_numbers) if rent_numbers else "Data not available" return "Data not available" def write_investment_details_to_file(address, url, investment_score, file_path="good_investments.txt"): with open(file_path, "a") as file: file.write(f"Address: {address}, URL: {url}, Investment Score: {investment_score}\n") def calculate_break_even(cash_flows): cumulative_cash_flow = np.cumsum(cash_flows) break_even_year = np.where(cumulative_cash_flow >= 0)[0] return break_even_year[0] + 1 if break_even_year.size > 0 else None def calculate_roi_and_irr(total_investment, cash_flows, sale_proceeds): total_cash_flow = sum(cash_flows) + sale_proceeds roi = ((total_cash_flow - total_investment) / total_investment) * 100 # Adding a zero initial cash flow for IRR calculation irr_cash_flows = [-total_investment] + cash_flows + [sale_proceeds] irr = npf.irr(irr_cash_flows) * 100
return roi, irr if not np.isnan(irr) else None
You will be given python files from a code repository, with the current file being shown last. Your task is to predict the next line of code in the current file. NOTE: You should only predict the next line in the current file. Do not produce more than one line, and do not provide any explanation. ====REPOSITORY==== # Repo Name: soumik-kanad/diffssl # Path: ssl_diff/ssl_model_feedback_fusion.py class DiffSSLModelFeedbackFusion(nn.Module): """ SSL model with feedback loop between the decoder features of the UNet and the encoder features of the UNet """ def __init__(self, encoder, diffusion, head, device, mode='freeze', feedback_arch="C_B_R_C", use_feedback=False, feedback_b_list=None, first_fw_b_list=None, second_fw_b_list=None): super().__init__() self.encoder = encoder self.diffusion = diffusion self.head = head self.use_feedback = use_feedback self.feedback_b_list = feedback_b_list self.first_fw_b_list = first_fw_b_list self.second_fw_b_list = second_fw_b_list self.mode = mode assert self.mode in ['freeze', 'update', 'mult_fpn', 'add_fpn', 'multi_scale_freeze', "finetune"], f"Mode {self.mode} not supported" if self.mode == 'freeze' and not use_feedback: for param in self.encoder.parameters(): param.requires_grad = False else: # including fusion finetune, feedback finetune, feedback freeze # print("=======Freezed param=======") frozen_decoder_idx = max(self.first_fw_b_list + self.second_fw_b_list) - 19 # -19 to convert block idx to decoder idx for name, param in self.encoder.named_parameters(): if name.startswith("out."): param.requires_grad = False # print(name) elif name.startswith("output_blocks"): if int(name.split(".")[1]) >= frozen_decoder_idx: param.requires_grad = False # print(name) self.device = device if use_feedback: """ generate feedback layers Feedback Architecture: feedback_arch = "C_B_R_C" = Conv, BN, ReLU, Conv """ feedback_layers = [] for feedback_b in self.feedback_b_list: in_dim = DM_FEAT_DIM_DICT[feedback_b] out_dim = DM_FEAT_DIM_DICT[38-feedback_b] sequential_model_lst = self.make_layers(feedback_arch, in_dim, out_dim) feedback_layers.append(nn.Sequential(*sequential_model_lst)) self.feedback_layers = nn.ModuleList(feedback_layers) def make_layers(self, feedback_arch, in_dim, out_dim): sequential_model_lst = [] for j in range(len(feedback_arch)): if feedback_arch[j] == "Res": """ Use first block to change in_dim to out_dim and then the rest operate on out_dim """ if j == 0: # if the first resblock sequential_model_lst.append(ResBlock(in_dim, dropout=0.0, out_channels=out_dim, use_conv=False)) else: # if the last resblock sequential_model_lst.append(ResBlock(out_dim, dropout=0.0, out_channels=out_dim, use_conv=False)) elif feedback_arch[j] == "R": sequential_model_lst.append(nn.ReLU(inplace=True)) elif feedback_arch[j] == "B": sequential_model_lst.append(nn.BatchNorm2d(out_dim)) elif feedback_arch[j] == "C": """ Use first conv to change in_dim to out_dim and then the rest operate on out_dim """ if j == 0: sequential_model_lst.append(nn.Conv2d(in_dim, out_dim, kernel_size=1, stride=1, padding=0, bias=False)) else: sequential_model_lst.append(nn.Conv2d(out_dim, out_dim, kernel_size=3, stride=1, padding=1, groups=out_dim, bias=False)) elif feedback_arch[j] == "C2": """ Operate on in_dim the entire time and then for the last conv, change in_dim to out_dim """ if j == len(feedback_arch) - 1: sequential_model_lst.append(nn.Conv2d(in_dim, out_dim, kernel_size=1, stride=1, padding=0, bias=False)) else: sequential_model_lst.append(nn.Conv2d(in_dim, in_dim, kernel_size=3, stride=1, padding=1, groups=in_dim, bias=False)) elif feedback_arch[j] == "S": sequential_model_lst.append(nn.SiLU(inplace=True)) elif feedback_arch[j] == "G": # want to use this as a group norm layer sequential_model_lst.append(nn.GroupNorm(num_groups=32, num_channels=out_dim, dtype=self.encoder.dtype)) return sequential_model_lst def generate_feedback(self, features): """ generate feedback features from decoder features """ feedback_features = [] for idx, b in enumerate(self.feedback_b_list): feedback_features.append(self.feedback_layers[idx](features[b-1])) return feedback_features def forward(self, x, t, unet_model_kwargs={}): first_fw_feat = [] second_fw_feat = [] for t_ in t: t_ = t_*torch.ones(x.shape[0],).long().to(self.device) x_start = x.to(self.device) x_start = x_start.type(torch.float16) if self.use_fp16 else x_start.type(torch.float32) noise = torch.randn_like(x_start) x_t = self.diffusion.q_sample(x_start, t_, noise=noise) # encoder_features = self.encoder.get_encoder_features(x_t, self.diffusion._scale_timesteps(t), **unet_model_kwargs) # print([x.shape for x in encoder_features]) """ extract encoder features and decoder features depending on the mode """ if self.use_feedback: with torch.no_grad(): # TODO : getting all features wastes GPU memory encoder_features, _, mid_feature, decoder_features = self.encoder.get_all_features(x_t, self.diffusion._scale_timesteps(t_), 0, ['encoder_features', 'resume_encoder_feature', 'mid_feature', 'decoder_features'], **unet_model_kwargs) features = encoder_features + mid_feature + decoder_features first_fw_feat.append([features[b-1].detach().float() for b in self.first_fw_b_list]) else: block_feat_lst = self.encoder.get_multiple_features(x_t, self.diffusion._scale_timesteps(t_), block_num_lst = self.first_fw_b_list, **unet_model_kwargs) first_fw_feat.append([block_feat.float() for block_feat in block_feat_lst]) if self.use_feedback: # use feedback """ generate feedback features from decoder features """ feedback_features = self.generate_feedback(features) feedback_features = feedback_features[::-1] # reverse the list of feedback features """ generate the final features based on the mode """ block_feat_list = self.encoder.get_multiple_features_with_specified_feedback(x=x_t, timesteps=self.diffusion._scale_timesteps(t_), block_num_lst=self.second_fw_b_list, feedback_features=feedback_features, # list of features [0: len(input_blocks) - feedback_starting_point] feedback_b_list=self.feedback_b_list, **unet_model_kwargs) second_fw_feat.append([block_feat.float() for block_feat in block_feat_list]) x = self.head(self.first_fw_b_list, first_fw_feat, self.second_fw_b_list, second_fw_feat, t) return x def convert_to_fp16(self): """ Convert the torso of the model to float16. """ self.use_fp16 = True self.encoder.convert_to_fp16() if self.use_feedback: for idx in range(len(self.feedback_b_list)): self.feedback_layers[idx].apply(convert_module_to_f16) def convert_to_fp32(self): """ Convert the torso of the model to float32. """ self.use_fp16 = False self.encoder.convert_to_fp32() if self.use_feedback: for idx in range(len(self.feedback_b_list)): self.feedback_layers[idx].apply(convert_module_to_f32) # Path: ssl_diff/head.py class Head(nn.Module): def __init__(self, args, feature_dim_dict, feature_size_dict): super().__init__() self.fcs = nn.ModuleList() self.pool = nn.AdaptiveAvgPool2d(args.pre_pool_size) feature_dims = feature_dim_dict[args.first_fw_b_list[0]] * args.pre_pool_size * args.pre_pool_size if args.head_arc == '': self.fcs.append(nn.Linear(feature_dims, args.num_classes)) else: if '_' in args.head_arc: hidden_dims = args.head_arc.split('_') self.fcs.append(nn.Linear(feature_dims, int(hidden_dims[0]))) last_hidden = int(hidden_dims[0]) for hidden_dim in hidden_dims[1:]: self.fcs.append(nn.Linear(last_hidden, int(hidden_dim))) last_hidden = int(hidden_dim) self.fcs.append(nn.Linear(last_hidden, args.num_classes)) else: self.fcs.append(nn.Linear(feature_dims, int(args.head_arc))) self.fcs.append(nn.Linear(int(args.head_arc), args.num_classes)) def forward(self, first_fw_b_list, first_fw_feat, second_fw_b_list, second_fw_feat, t_list): x = first_fw_feat[0][0] x = self.pool(x) x = torch.flatten(x, start_dim=1) if len(self.fcs) == 1: return self.fcs[0](x) else: for fc in self.fcs[:-1]: x = nn.functional.relu(fc(x)) return self.fcs[-1](x) # Path: ssl_diff/attention_fusion.py class AttentionFusion(nn.Module): def __init__(self, args, feature_dim_dict, fature_size_dict=None): super(AttentionFusion, self).__init__() attention_dims = int(args.fusion_arc.split(',')[0].strip().split(':')[2]) pre_layer = {} for b in set(args.first_fw_b_list + args.second_fw_b_list): feat_size = min(fature_size_dict[b], args.pre_pool_size) norm = nn.BatchNorm2d(feature_dim_dict[b]) if args.norm_type == "batch" else nn.LayerNorm([feature_dim_dict[b], feat_size, feat_size]) pre_layer[str(b)] = nn.Sequential( nn.AdaptiveAvgPool2d(feat_size), norm, nn.Conv2d(feature_dim_dict[b], attention_dims, 1), LambdaLayer(lambda x: rearrange(x, 'b c h w -> b (h w) c')), ) self.pre_layer = nn.ModuleDict(pre_layer) self.intra_inter_block_attention = AttentionHead(args.fusion_arc.split("/")[0]) self.feature_dims = attention_dims * len(args.t_list) self.head = nn.Linear(self.feature_dims, args.num_classes) def forward(self, first_fw_b_list, first_fw_feat, second_fw_b_list, second_fw_feat, t_list): if t_list is None: t_list = [0] # for other than Diffusion Model inter_noise_step_feat = [] for t_idx, t in enumerate(t_list): block_feat = [] for b_idx, b in enumerate(first_fw_b_list): x = self.pre_layer[str(b)](first_fw_feat[t_idx][b_idx]) block_feat.append(x) for b_idx, b in enumerate(second_fw_b_list): x = self.pre_layer[str(b)](second_fw_feat[t_idx][b_idx]) block_feat.append(x) x = torch.concat(block_feat, dim=1) # print("DEBUG: intra_inter_block_feat.in.shape", x.shape) x = self.intra_inter_block_attention(x) # print("DEBUG: intra_inter_block_feat.out.shape", x.shape) inter_noise_step_feat.append(x) x = torch.concat(inter_noise_step_feat, dim=1) # print("DEBUG: inter_noise_feat.shape", x.shape) x = self.head(x) return x # Path: ssl_diff/const.py DM_FEAT_DIM_DICT = {} # Path: ssl_diff/const.py DM_FEAT_SIZE_DICT = {} # Path: guided_diffusion/image_datasets.py def load_data( *, data_dir, batch_size, image_size, class_cond=False, deterministic=False, random_crop=False, random_flip=True, ): """ For a dataset, create a generator over (images, kwargs) pairs. Each images is an NCHW float tensor, and the kwargs dict contains zero or more keys, each of which map to a batched Tensor of their own. The kwargs dict can be used for class labels, in which case the key is "y" and the values are integer tensors of class labels. :param data_dir: a dataset directory. :param batch_size: the batch size of each returned pair. :param image_size: the size to which images are resized. :param class_cond: if True, include a "y" key in returned dicts for class label. If classes are not available and this is true, an exception will be raised. :param deterministic: if True, yield results in a deterministic order. :param random_crop: if True, randomly crop the images for augmentation. :param random_flip: if True, randomly flip the images for augmentation. """ if not data_dir: raise ValueError("unspecified data directory") all_files = _list_image_files_recursively(data_dir) classes = None if class_cond: # Assume classes are the first part of the filename, # before an underscore. # class_names = [bf.basename(path).split("_")[0] for path in all_files] # Assume classes are the parent directory name class_names = [bf.basename(bf.dirname(path)) for path in all_files] sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))} classes = [sorted_classes[x] for x in class_names] dataset = ImageDataset( image_size, all_files, classes=classes, shard=get_rank(), num_shards=get_world_size(), random_crop=random_crop, random_flip=random_flip, ) if deterministic: loader = DataLoader( dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True ) else: loader = DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True ) return loader # Path: guided_diffusion/dist_util.py GPUS_PER_NODE = 8 SETUP_RETRY_COUNT = 3 def setup_dist(): def is_main_process(): def get_world_size(): def get_rank(): def dev(): def load_state_dict(path, **kwargs): def sync_params(params): def _find_free_port(): # Path: guided_diffusion/image_datasets.py def load_data( *, data_dir, batch_size, image_size, class_cond=False, deterministic=False, random_crop=False, random_flip=True, ): """ For a dataset, create a generator over (images, kwargs) pairs. Each images is an NCHW float tensor, and the kwargs dict contains zero or more keys, each of which map to a batched Tensor of their own. The kwargs dict can be used for class labels, in which case the key is "y" and the values are integer tensors of class labels. :param data_dir: a dataset directory. :param batch_size: the batch size of each returned pair. :param image_size: the size to which images are resized. :param class_cond: if True, include a "y" key in returned dicts for class label. If classes are not available and this is true, an exception will be raised. :param deterministic: if True, yield results in a deterministic order. :param random_crop: if True, randomly crop the images for augmentation. :param random_flip: if True, randomly flip the images for augmentation. """ if not data_dir: raise ValueError("unspecified data directory") all_files = _list_image_files_recursively(data_dir) classes = None if class_cond: # Assume classes are the first part of the filename, # before an underscore. # class_names = [bf.basename(path).split("_")[0] for path in all_files] # Assume classes are the parent directory name class_names = [bf.basename(bf.dirname(path)) for path in all_files] sorted_classes = {x: i for i, x in enumerate(sorted(set(class_names)))} classes = [sorted_classes[x] for x in class_names] dataset = ImageDataset( image_size, all_files, classes=classes, shard=get_rank(), num_shards=get_world_size(), random_crop=random_crop, random_flip=random_flip, ) if deterministic: loader = DataLoader( dataset, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=True ) else: loader = DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=1, drop_last=True ) return loader # Path: guided_diffusion/resample.py def create_named_schedule_sampler(name, diffusion): """ Create a ScheduleSampler from a library of pre-defined samplers. :param name: the name of the sampler. :param diffusion: the diffusion object to sample for. """ if name == "uniform": return UniformSampler(diffusion) elif name == "loss-second-moment": return LossSecondMomentResampler(diffusion) else: raise NotImplementedError(f"unknown schedule sampler: {name}") # Path: guided_diffusion/script_util.py def model_and_diffusion_defaults(): """ Defaults for image training. """ res = model_defaults() res.update(diffusion_defaults()) return res # Path: guided_diffusion/script_util.py def create_model_and_diffusion( image_size, class_cond, learn_sigma, num_channels, num_res_blocks, channel_mult, num_heads, num_head_channels, num_heads_upsample, attention_resolutions, dropout, diffusion_steps, noise_schedule, timestep_respacing, use_kl, predict_xstart, rescale_timesteps, rescale_learned_sigmas, use_checkpoint, use_scale_shift_norm, resblock_updown, use_fp16, use_new_attention_order, ): model = create_model( image_size, num_channels, num_res_blocks, channel_mult=channel_mult, learn_sigma=learn_sigma, class_cond=class_cond, use_checkpoint=use_checkpoint, attention_resolutions=attention_resolutions, num_heads=num_heads, num_head_channels=num_head_channels, num_heads_upsample=num_heads_upsample, use_scale_shift_norm=use_scale_shift_norm, dropout=dropout, resblock_updown=resblock_updown, use_fp16=use_fp16, use_new_attention_order=use_new_attention_order, ) diffusion = create_gaussian_diffusion( steps=diffusion_steps, learn_sigma=learn_sigma, noise_schedule=noise_schedule, use_kl=use_kl, predict_xstart=predict_xstart, rescale_timesteps=rescale_timesteps, rescale_learned_sigmas=rescale_learned_sigmas, timestep_respacing=timestep_respacing, ) return model, diffusion # Path: guided_diffusion/script_util.py def args_to_dict(args, keys): return {k: getattr(args, k) for k in keys} # Path: guided_diffusion/script_util.py def add_dict_to_argparser(parser, default_dict): for k, v in default_dict.items(): v_type = type(v) if v is None: v_type = str elif isinstance(v, bool): v_type = str2bool parser.add_argument(f"--{k}", default=v, type=v_type) # Path: finetune.py import argparse import torch import numpy as np import sys import os import glob import torch.distributed as dist import wandb from torch.nn.parallel import DistributedDataParallel as DDP from tqdm import tqdm from ssl_diff import DiffSSLModelFeedbackFusion from ssl_diff import AttentionFusion, Head from ssl_diff import DM_FEAT_DIM_DICT,DM_FEAT_SIZE_DICT from guided_diffusion.image_datasets import load_data from guided_diffusion import dist_util #, logger from guided_diffusion.image_datasets import load_data from guided_diffusion.resample import create_named_schedule_sampler from guided_diffusion.script_util import ( model_and_diffusion_defaults, create_model_and_diffusion, args_to_dict, add_dict_to_argparser, ) if use_feedback: optimized_params_lst.append({'params': model.feedback_layers.parameters()}) if args.mode == 'update': optimized_params_lst.append({'params': model.update_blocks.parameters()}) if args.mode == 'add_fpn' or args.mode == 'mult_fpn': optimized_params_lst.append({'params': model.fpn_blocks.parameters()}) if args.mode == "finetune": optimized_params_lst.append({'params': model.encoder.parameters()}) optimizer = torch.optim.SGD(optimized_params_lst, lr=lr) loss_fn = torch.nn.CrossEntropyLoss() scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 7, 0.1) if checkpoint_dict is not None: print(f"Loading model, optimizer, and scheduler from checkpoint from!") model.module.head.load_state_dict(checkpoint_dict['model_head']) if use_feedback: print("Loading feedback layers") model.module.feedback_layers.load_state_dict(checkpoint_dict['model_feedback']) if args.mode == 'update': print("Loading update blocks") model.module.update_blocks.load_state_dict(checkpoint_dict['model_update']) elif args.mode == 'add_fpn' or args.mode == 'mult_fpn': print("Loading fpn blocks") model.module.fpn_blocks.load_state_dict(checkpoint_dict['model_fpn']) optimizer.load_state_dict(checkpoint_dict['optimizer']) scheduler.load_state_dict(checkpoint_dict['scheduler']) start_epoch = checkpoint_dict['epoch'] else: start_epoch = 0 losses = [] model.train() batch_num = 0 for i in range(start_epoch, e): for batch in (tqdm(train_dataloader, total=len(train_dataloader))): # # measure execution time in pytorch # start = torch.cuda.Event(enable_timing=True) # end = torch.cuda.Event(enable_timing=True) # start.record() imgs, extra = batch #next(train_dataloader) imgs = imgs.to(dist_util.dev()) targets = extra["y"].to(dist_util.dev()) # end.record() # # Waits for everything to finish running # torch.cuda.synchronize() # print("Inputs: ", start.elapsed_time(end)) # start.record() output = model(imgs, args.t_list) # end.record() # # Waits for everything to finish running # torch.cuda.synchronize() # print("Forward: ", start.elapsed_time(end)) # start.record() #calculate loss loss = loss_fn(output, targets) # end.record() # # Waits for everything to finish running # torch.cuda.synchronize() # print("Loss: ", start.elapsed_time(end)) #backprop # start.record() optimizer.zero_grad() loss.backward() # store 'module.encoder.time_embed.0.bias' weight # import pdb;x pdb.set_trace() # print(old - model.module.encoder.time_embed[0].bias.clone().detach()) # old = model.module.encoder.time_embed[0].bias.clone().detach() optimizer.step() # end.record() # # Waits for everything to finish running # torch.cuda.synchronize() # print("Backward: ", start.elapsed_time(end)) # start.record() if len(losses) == 100: losses = losses[1:] losses.append(loss.item()) if dist_util.is_main_process(): if (batch_num + 1) % 100 == 0: print(f'Epoch: {i+1}/{e}, Batch Num: {batch_num+1}: Loss: {np.mean(losses):0.6f}', flush=True) if args.use_wandb: wandb.log({"Loss/train": np.mean(losses), "epoch": (batch_num+1) / len(train_dataloader)}) batch_num += 1 # end.record() # # Waits for everything to finish running # torch.cuda.synchronize() # print("Logging: ", start.elapsed_time(end)) scheduler.step() if (i + 1) % args.eval_interval == 0: test(model, test_dataloader, args, 'Val (Test)', i+1) # Save checkpoint every epoch if dist_util.is_main_process(): save_file = os.path.join(args.output_dir, f'epoch_latest.pth') print(f"Saving checkpoint @ Epoch: {i+1} to {save_file}") save_dict ={ 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), 'epoch': i+1 } save_dict['model_head'] = model.module.head.state_dict()
if use_feedback: