metadata
license: apache-2.0
configs:
- config_name: places
data_files: release/dt=*/places/parquet/*.parquet
- config_name: categories
data_files: release/dt=*/categories/parquet/*.parquet
Access FSQ OS Places
With Foursquare’s Open Source Places, you can access free data to accelerate geospatial innovation and insights. View the Places OS Data Schemas for a full list of available attributes.
Prerequisites
In order to access Foursquare's Open Source Places data, it is recommended to use Spark. Here is how to load the Places data in Spark from Hugging Face.
- For Spark 3, you can use the
read_parquet
helper function from the HF Spark documentation. It provides an easy API to load a Spark Dataframe from Hugging Face, without having to download the full dataset locally:places = read_parquet("hf://datasets/foursquare/fsq-os-places/release/dt=*/places/parquet/*.parquet")
- For Spark 4, there will be an official Hugging Face Spark data source available.
Alternatively you can download the following files to your local disk or cluster:
- Parquet Files:
- Places - release/dt=2024-12-03/places/parquet
- Categories - release/dt=2024-12-03/categories/parquet
Hugging Face provides the following download options.
Example Queries
The following are examples on how to query FSQ Open Source Places using Athena and Spark:
- Filter Categories by the parent level
- Filter out non-commercial venues
- Find open and recently active POI
Filter by Parent Level Category
SparkSQL
WITH places_exploded_categories AS (
-- Unnest categories array
SELECT fsq_place_id,
name,
explode(fsq_category_ids) as fsq_category_id
FROM places
),
distinct_places AS (
SELECT
DISTINCT(fsq_place_id) -- Get distinct ids to reduce duplicates from explode function
FROM places_exploded_categories p
JOIN categories c -- Join to categories to filter on Level 2 Category
ON p.fsq_category_id = c.category_id
WHERE c.level2_category_id = '4d4b7105d754a06374d81259' -- Restaurants
)
SELECT * FROM places
WHERE fsq_place_id IN (SELECT fsq_place_id FROM distinct_places)
Filter out Non-Commercial Categories
SparkSQL
SELECT * FROM places
WHERE arrays_overlap(fsq_category_ids, array('4bf58dd8d48988d1f0931735', -- Airport Gate
'62d587aeda6648532de2b88c', -- Beer Festival
'4bf58dd8d48988d12b951735', -- Bus Line
'52f2ab2ebcbc57f1066b8b3b', -- Christmas Market
'50aa9e094b90af0d42d5de0d', -- City
'5267e4d9e4b0ec79466e48c6', -- Conference
'5267e4d9e4b0ec79466e48c9', -- Convention
'530e33ccbcbc57f1066bbff7', -- Country
'5345731ebcbc57f1066c39b2', -- County
'63be6904847c3692a84b9bb7', -- Entertainment Event
'4d4b7105d754a06373d81259', -- Event
'5267e4d9e4b0ec79466e48c7', -- Festival
'4bf58dd8d48988d132951735', -- Hotel Pool
'52f2ab2ebcbc57f1066b8b4c', -- Intersection
'50aaa4314b90af0d42d5de10', -- Island
'58daa1558bbb0b01f18ec1fa', -- Line
'63be6904847c3692a84b9bb8', -- Marketplace
'4f2a23984b9023bd5841ed2c', -- Moving Target
'5267e4d9e4b0ec79466e48d1', -- Music Festival
'4f2a25ac4b909258e854f55f', -- Neighborhood
'5267e4d9e4b0ec79466e48c8', -- Other Event
'52741d85e4b0d5d1e3c6a6d9', -- Parade
'4bf58dd8d48988d1f7931735', -- Plane
'4f4531504b9074f6e4fb0102', -- Platform
'4cae28ecbf23941eb1190695', -- Polling Place
'4bf58dd8d48988d1f9931735', -- Road
'5bae9231bedf3950379f89c5', -- Sporting Event
'530e33ccbcbc57f1066bbff8', -- State
'530e33ccbcbc57f1066bbfe4', -- States and Municipalities
'52f2ab2ebcbc57f1066b8b54', -- Stoop Sale
'5267e4d8e4b0ec79466e48c5', -- Street Fair
'53e0feef498e5aac066fd8a9', -- Street Food Gathering
'4bf58dd8d48988d130951735', -- Taxi
'530e33ccbcbc57f1066bbff3', -- Town
'5bae9231bedf3950379f89c3', -- Trade Fair
'4bf58dd8d48988d12a951735', -- Train
'52e81612bcbc57f1066b7a24', -- Tree
'530e33ccbcbc57f1066bbff9', -- Village
)) = false
Find Open and Recently Active POI
SparkSQL
SELECT * FROM places p
WHERE p.date_closed IS NULL
AND p.date_refreshed >= DATE_SUB(current_date(), 365);
Appendix
Non-Commercial Categories Table
Category Name | Category ID |
---|---|
Airport Gate | 4bf58dd8d48988d1f0931735 |
Beer Festival | 62d587aeda6648532de2b88c |
Bus Line | 4bf58dd8d48988d12b951735 |
Christmas Market | 52f2ab2ebcbc57f1066b8b3b |
City | 50aa9e094b90af0d42d5de0d |
Conference | 5267e4d9e4b0ec79466e48c6 |
Convention | 5267e4d9e4b0ec79466e48c9 |
Country | 530e33ccbcbc57f1066bbff7 |
County | 5345731ebcbc57f1066c39b2 |
Entertainment Event | 63be6904847c3692a84b9bb7 |
Event | 4d4b7105d754a06373d81259 |
Festival | 5267e4d9e4b0ec79466e48c7 |
Hotel Pool | 4bf58dd8d48988d132951735 |
Intersection | 52f2ab2ebcbc57f1066b8b4c |
Island | 50aaa4314b90af0d42d5de10 |
Line | 58daa1558bbb0b01f18ec1fa |
Marketplace | 63be6904847c3692a84b9bb8 |
Moving Target | 4f2a23984b9023bd5841ed2c |
Music Festival | 5267e4d9e4b0ec79466e48d1 |
Neighborhood | 4f2a25ac4b909258e854f55f |
Other Event | 5267e4d9e4b0ec79466e48c8 |
Parade | 52741d85e4b0d5d1e3c6a6d9 |
Plane | 4bf58dd8d48988d1f7931735 |
Platform | 4f4531504b9074f6e4fb0102 |
Polling Place | 4cae28ecbf23941eb1190695 |
Road | 4bf58dd8d48988d1f9931735 |
State | 530e33ccbcbc57f1066bbff8 |
States and Municipalities | 530e33ccbcbc57f1066bbfe4 |
Stopp Sale | 52f2ab2ebcbc57f1066b8b54 |
Street Fair | 5267e4d8e4b0ec79466e48c5 |
Street Food Gathering | 53e0feef498e5aac066fd8a9 |
Taxi | 4bf58dd8d48988d130951735 |
Town | 530e33ccbcbc57f1066bbff3 |
Trade Fair | 5bae9231bedf3950379f89c3 |
Train | 4bf58dd8d48988d12a951735 |
Tree | 52e81612bcbc57f1066b7a24 |
Village | 530e33ccbcbc57f1066bbff9 |