sha
stringlengths
40
40
text
stringlengths
0
13.4M
id
stringlengths
2
117
tags
sequence
created_at
stringlengths
25
25
metadata
stringlengths
2
31.7M
last_modified
stringlengths
25
25
6fef3d2cfc13f70cb2a4dcfda0485c202db55e39
Not a serious or useable dataset, just used this https://github.com/Pleias/marginalia library and edited this [notebook](https://colab.research.google.com/drive/1dbliAbWRoidQgMqFPq4Rs8qooJ4S0Ye1?usp=sharing) to check the quality of the selections in the jondurbin/truthy-dpo-v0.1 dataset
eren23/truthy-dpo-v0.1-pruning-test-result
[ "region:us" ]
2024-02-17T15:57:03+00:00
{"dataset_info": {"features": [{"name": "original_source", "dtype": "string"}, {"name": "reference_evaluate", "dtype": "string"}, {"name": "reference_result", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1241977, "num_examples": 909}], "download_size": 622347, "dataset_size": 1241977}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-17T16:00:48+00:00
73814861a571b238b12417d4ac8bd4195ce3247d
damerajee/long-context-hindi
[ "region:us" ]
2024-02-17T15:57:36+00:00
{}
2024-02-17T15:58:15+00:00
2d5a42b97183d91a9c60a51e52ff628589863b53
Raja99hug/Auto_English_Thanglish_dataset
[ "region:us" ]
2024-02-17T15:58:18+00:00
{}
2024-02-17T16:00:01+00:00
d8e1b3521cf2047e30907fed5655fb7ae266a0cb
CyberHarem/delacey_neuralcloud
[ "region:us" ]
2024-02-17T15:59:31+00:00
{}
2024-02-17T16:00:46+00:00
156ca922a6c621448d5e05d40aa521357f32be99
# Dataset of antonina/アントニーナ/安冬妮娜 (Neural Cloud) This is the dataset of antonina/アントニーナ/安冬妮娜 (Neural Cloud), containing 34 images and their tags. The core tags of this character are `long_hair, yellow_eyes, hat, headphones, bangs, hair_between_eyes, white_headwear, aqua_hair, green_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:----------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 34 | 55.54 MiB | [Download](https://huggingface.co/datasets/CyberHarem/antonina_neuralcloud/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 34 | 27.67 MiB | [Download](https://huggingface.co/datasets/CyberHarem/antonina_neuralcloud/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 72 | 54.94 MiB | [Download](https://huggingface.co/datasets/CyberHarem/antonina_neuralcloud/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 34 | 45.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/antonina_neuralcloud/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 72 | 83.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/antonina_neuralcloud/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/antonina_neuralcloud', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 34 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, solo, black_gloves, holding, long_sleeves, jacket, blush, closed_mouth, open_clothes, black_thighhighs, sitting, black_shirt | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | black_gloves | holding | long_sleeves | jacket | blush | closed_mouth | open_clothes | black_thighhighs | sitting | black_shirt | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:---------------|:----------|:---------------|:---------|:--------|:---------------|:---------------|:-------------------|:----------|:--------------| | 0 | 34 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/antonina_neuralcloud
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-02-17T15:59:32+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-02-17T16:08:19+00:00
54e96e381906fa487acf1a4d77217e581efc148d
100k Sentence Pairs for Nepali Spelling Correction
dura-garage/nep-spell-100k
[ "license:mit", "region:us" ]
2024-02-17T15:59:51+00:00
{"license": "mit"}
2024-02-17T16:01:55+00:00
456facbd213224925103afeb4e42cc3b19be1fdf
ramixpe/rfc3261
[ "region:us" ]
2024-02-17T16:02:48+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 91790, "num_examples": 335}], "download_size": 47236, "dataset_size": 91790}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-17T16:02:50+00:00
8fde8356170be70518f5ce64793af11233387d51
natnitaract/teetouchjaknamon-faissbatchall-index-2
[ "license:cc-by-3.0", "region:us" ]
2024-02-17T16:02:55+00:00
{"license": "cc-by-3.0"}
2024-02-17T16:07:22+00:00
37fcd93d6e30fec318c4cfccf1b7044e764b0394
# Dataset Card for Evaluation run of vilm/Quyen-Mini-v0.1 <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [vilm/Quyen-Mini-v0.1](https://huggingface.co/vilm/Quyen-Mini-v0.1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_vilm__Quyen-Mini-v0.1", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-02-17T16:04:03.826177](https://huggingface.co/datasets/open-llm-leaderboard/details_vilm__Quyen-Mini-v0.1/blob/main/results_2024-02-17T16-04-03.826177.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.43840376506422085, "acc_stderr": 0.03434968269403666, "acc_norm": 0.4413503435966419, "acc_norm_stderr": 0.03507262298104947, "mc1": 0.2974296205630355, "mc1_stderr": 0.016002651487360988, "mc2": 0.4643634101883703, "mc2_stderr": 0.015588466941925255 }, "harness|arc:challenge|25": { "acc": 0.3703071672354949, "acc_stderr": 0.014111298751674948, "acc_norm": 0.39334470989761094, "acc_norm_stderr": 0.014275101465693024 }, "harness|hellaswag|10": { "acc": 0.4660426209918343, "acc_stderr": 0.004978260641742204, "acc_norm": 0.6056562437761402, "acc_norm_stderr": 0.004877104939356237 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.29, "acc_stderr": 0.045604802157206845, "acc_norm": 0.29, "acc_norm_stderr": 0.045604802157206845 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.37037037037037035, "acc_stderr": 0.041716541613545426, "acc_norm": 0.37037037037037035, "acc_norm_stderr": 0.041716541613545426 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.48026315789473684, "acc_stderr": 0.04065771002562605, "acc_norm": 0.48026315789473684, "acc_norm_stderr": 0.04065771002562605 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.46, "acc_stderr": 0.05009082659620332, "acc_norm": 0.46, "acc_norm_stderr": 0.05009082659620332 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.44150943396226416, "acc_stderr": 0.03056159042673184, "acc_norm": 0.44150943396226416, "acc_norm_stderr": 0.03056159042673184 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.4513888888888889, "acc_stderr": 0.04161402398403279, "acc_norm": 0.4513888888888889, "acc_norm_stderr": 0.04161402398403279 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.24, "acc_stderr": 0.04292346959909284, "acc_norm": 0.24, "acc_norm_stderr": 0.04292346959909284 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.34, "acc_stderr": 0.04760952285695235, "acc_norm": 0.34, "acc_norm_stderr": 0.04760952285695235 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.04688261722621505, "acc_norm": 0.32, "acc_norm_stderr": 0.04688261722621505 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.36416184971098264, "acc_stderr": 0.03669072477416907, "acc_norm": 0.36416184971098264, "acc_norm_stderr": 0.03669072477416907 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.17647058823529413, "acc_stderr": 0.0379328118530781, "acc_norm": 0.17647058823529413, "acc_norm_stderr": 0.0379328118530781 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.55, "acc_stderr": 0.049999999999999996, "acc_norm": 0.55, "acc_norm_stderr": 0.049999999999999996 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.4297872340425532, "acc_stderr": 0.03236214467715563, "acc_norm": 0.4297872340425532, "acc_norm_stderr": 0.03236214467715563 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.24561403508771928, "acc_stderr": 0.040493392977481425, "acc_norm": 0.24561403508771928, "acc_norm_stderr": 0.040493392977481425 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.47586206896551725, "acc_stderr": 0.041618085035015295, "acc_norm": 0.47586206896551725, "acc_norm_stderr": 0.041618085035015295 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.328042328042328, "acc_stderr": 0.02418049716437689, "acc_norm": 0.328042328042328, "acc_norm_stderr": 0.02418049716437689 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.21428571428571427, "acc_stderr": 0.03670066451047181, "acc_norm": 0.21428571428571427, "acc_norm_stderr": 0.03670066451047181 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.33, "acc_stderr": 0.047258156262526045, "acc_norm": 0.33, "acc_norm_stderr": 0.047258156262526045 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.4870967741935484, "acc_stderr": 0.028434533152681855, "acc_norm": 0.4870967741935484, "acc_norm_stderr": 0.028434533152681855 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.35467980295566504, "acc_stderr": 0.0336612448905145, "acc_norm": 0.35467980295566504, "acc_norm_stderr": 0.0336612448905145 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.4, "acc_stderr": 0.049236596391733084, "acc_norm": 0.4, "acc_norm_stderr": 0.049236596391733084 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.5575757575757576, "acc_stderr": 0.03878372113711274, "acc_norm": 0.5575757575757576, "acc_norm_stderr": 0.03878372113711274 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.5707070707070707, "acc_stderr": 0.03526552724601199, "acc_norm": 0.5707070707070707, "acc_norm_stderr": 0.03526552724601199 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.538860103626943, "acc_stderr": 0.03597524411734577, "acc_norm": 0.538860103626943, "acc_norm_stderr": 0.03597524411734577 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.41794871794871796, "acc_stderr": 0.02500732988246122, "acc_norm": 0.41794871794871796, "acc_norm_stderr": 0.02500732988246122 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.25555555555555554, "acc_stderr": 0.02659393910184409, "acc_norm": 0.25555555555555554, "acc_norm_stderr": 0.02659393910184409 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.4957983193277311, "acc_stderr": 0.0324773433444811, "acc_norm": 0.4957983193277311, "acc_norm_stderr": 0.0324773433444811 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.31125827814569534, "acc_stderr": 0.03780445850526733, "acc_norm": 0.31125827814569534, "acc_norm_stderr": 0.03780445850526733 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.5596330275229358, "acc_stderr": 0.02128431062376155, "acc_norm": 0.5596330275229358, "acc_norm_stderr": 0.02128431062376155 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.3101851851851852, "acc_stderr": 0.03154696285656628, "acc_norm": 0.3101851851851852, "acc_norm_stderr": 0.03154696285656628 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.4803921568627451, "acc_stderr": 0.03506612560524866, "acc_norm": 0.4803921568627451, "acc_norm_stderr": 0.03506612560524866 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.5611814345991561, "acc_stderr": 0.032302649315470375, "acc_norm": 0.5611814345991561, "acc_norm_stderr": 0.032302649315470375 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.4349775784753363, "acc_stderr": 0.033272833702713445, "acc_norm": 0.4349775784753363, "acc_norm_stderr": 0.033272833702713445 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.48091603053435117, "acc_stderr": 0.04382094705550988, "acc_norm": 0.48091603053435117, "acc_norm_stderr": 0.04382094705550988 }, "harness|hendrycksTest-international_law|5": { "acc": 0.6776859504132231, "acc_stderr": 0.042664163633521685, "acc_norm": 0.6776859504132231, "acc_norm_stderr": 0.042664163633521685 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.5648148148148148, "acc_stderr": 0.04792898170907062, "acc_norm": 0.5648148148148148, "acc_norm_stderr": 0.04792898170907062 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.4601226993865031, "acc_stderr": 0.03915857291436972, "acc_norm": 0.4601226993865031, "acc_norm_stderr": 0.03915857291436972 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4017857142857143, "acc_stderr": 0.04653333146973647, "acc_norm": 0.4017857142857143, "acc_norm_stderr": 0.04653333146973647 }, "harness|hendrycksTest-management|5": { "acc": 0.6310679611650486, "acc_stderr": 0.0477761518115674, "acc_norm": 0.6310679611650486, "acc_norm_stderr": 0.0477761518115674 }, "harness|hendrycksTest-marketing|5": { "acc": 0.7606837606837606, "acc_stderr": 0.027951826808924333, "acc_norm": 0.7606837606837606, "acc_norm_stderr": 0.027951826808924333 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.44, "acc_stderr": 0.049888765156985884, "acc_norm": 0.44, "acc_norm_stderr": 0.049888765156985884 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.5363984674329502, "acc_stderr": 0.01783252407959326, "acc_norm": 0.5363984674329502, "acc_norm_stderr": 0.01783252407959326 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.5289017341040463, "acc_stderr": 0.026874085883518348, "acc_norm": 0.5289017341040463, "acc_norm_stderr": 0.026874085883518348 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.23575418994413408, "acc_stderr": 0.014196375686290804, "acc_norm": 0.23575418994413408, "acc_norm_stderr": 0.014196375686290804 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.5424836601307189, "acc_stderr": 0.02852638345214263, "acc_norm": 0.5424836601307189, "acc_norm_stderr": 0.02852638345214263 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.44694533762057875, "acc_stderr": 0.02823776942208533, "acc_norm": 0.44694533762057875, "acc_norm_stderr": 0.02823776942208533 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.4845679012345679, "acc_stderr": 0.0278074900442762, "acc_norm": 0.4845679012345679, "acc_norm_stderr": 0.0278074900442762 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.3049645390070922, "acc_stderr": 0.027464708442022128, "acc_norm": 0.3049645390070922, "acc_norm_stderr": 0.027464708442022128 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.3520208604954368, "acc_stderr": 0.012198140605353599, "acc_norm": 0.3520208604954368, "acc_norm_stderr": 0.012198140605353599 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.35661764705882354, "acc_stderr": 0.02909720956841194, "acc_norm": 0.35661764705882354, "acc_norm_stderr": 0.02909720956841194 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.40032679738562094, "acc_stderr": 0.01982184368827178, "acc_norm": 0.40032679738562094, "acc_norm_stderr": 0.01982184368827178 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.509090909090909, "acc_stderr": 0.0478833976870286, "acc_norm": 0.509090909090909, "acc_norm_stderr": 0.0478833976870286 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.5551020408163265, "acc_stderr": 0.031814251181977865, "acc_norm": 0.5551020408163265, "acc_norm_stderr": 0.031814251181977865 }, "harness|hendrycksTest-sociology|5": { "acc": 0.5771144278606966, "acc_stderr": 0.034932317774212816, "acc_norm": 0.5771144278606966, "acc_norm_stderr": 0.034932317774212816 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.59, "acc_stderr": 0.04943110704237102, "acc_norm": 0.59, "acc_norm_stderr": 0.04943110704237102 }, "harness|hendrycksTest-virology|5": { "acc": 0.42168674698795183, "acc_stderr": 0.03844453181770917, "acc_norm": 0.42168674698795183, "acc_norm_stderr": 0.03844453181770917 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.5380116959064327, "acc_stderr": 0.03823727092882307, "acc_norm": 0.5380116959064327, "acc_norm_stderr": 0.03823727092882307 }, "harness|truthfulqa:mc|0": { "mc1": 0.2974296205630355, "mc1_stderr": 0.016002651487360988, "mc2": 0.4643634101883703, "mc2_stderr": 0.015588466941925255 }, "harness|winogrande|5": { "acc": 0.5911602209944752, "acc_stderr": 0.013816954295135686 }, "harness|gsm8k|5": { "acc": 0.2744503411675512, "acc_stderr": 0.0122915811708149 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_vilm__Quyen-Mini-v0.1
[ "region:us" ]
2024-02-17T16:06:12+00:00
{"pretty_name": "Evaluation run of vilm/Quyen-Mini-v0.1", "dataset_summary": "Dataset automatically created during the evaluation run of model [vilm/Quyen-Mini-v0.1](https://huggingface.co/vilm/Quyen-Mini-v0.1) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_vilm__Quyen-Mini-v0.1\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-02-17T16:04:03.826177](https://huggingface.co/datasets/open-llm-leaderboard/details_vilm__Quyen-Mini-v0.1/blob/main/results_2024-02-17T16-04-03.826177.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.43840376506422085,\n \"acc_stderr\": 0.03434968269403666,\n \"acc_norm\": 0.4413503435966419,\n \"acc_norm_stderr\": 0.03507262298104947,\n \"mc1\": 0.2974296205630355,\n \"mc1_stderr\": 0.016002651487360988,\n \"mc2\": 0.4643634101883703,\n \"mc2_stderr\": 0.015588466941925255\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.3703071672354949,\n \"acc_stderr\": 0.014111298751674948,\n \"acc_norm\": 0.39334470989761094,\n \"acc_norm_stderr\": 0.014275101465693024\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.4660426209918343,\n \"acc_stderr\": 0.004978260641742204,\n \"acc_norm\": 0.6056562437761402,\n \"acc_norm_stderr\": 0.004877104939356237\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.29,\n \"acc_stderr\": 0.045604802157206845,\n \"acc_norm\": 0.29,\n \"acc_norm_stderr\": 0.045604802157206845\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.37037037037037035,\n \"acc_stderr\": 0.041716541613545426,\n \"acc_norm\": 0.37037037037037035,\n \"acc_norm_stderr\": 0.041716541613545426\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.48026315789473684,\n \"acc_stderr\": 0.04065771002562605,\n \"acc_norm\": 0.48026315789473684,\n \"acc_norm_stderr\": 0.04065771002562605\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.46,\n \"acc_stderr\": 0.05009082659620332,\n \"acc_norm\": 0.46,\n \"acc_norm_stderr\": 0.05009082659620332\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.44150943396226416,\n \"acc_stderr\": 0.03056159042673184,\n \"acc_norm\": 0.44150943396226416,\n \"acc_norm_stderr\": 0.03056159042673184\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.4513888888888889,\n \"acc_stderr\": 0.04161402398403279,\n \"acc_norm\": 0.4513888888888889,\n \"acc_norm_stderr\": 0.04161402398403279\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.24,\n \"acc_stderr\": 0.04292346959909284,\n \"acc_norm\": 0.24,\n \"acc_norm_stderr\": 0.04292346959909284\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.34,\n \"acc_stderr\": 0.04760952285695235,\n \"acc_norm\": 0.34,\n \"acc_norm_stderr\": 0.04760952285695235\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.04688261722621505,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.04688261722621505\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.36416184971098264,\n \"acc_stderr\": 0.03669072477416907,\n \"acc_norm\": 0.36416184971098264,\n \"acc_norm_stderr\": 0.03669072477416907\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.17647058823529413,\n \"acc_stderr\": 0.0379328118530781,\n \"acc_norm\": 0.17647058823529413,\n \"acc_norm_stderr\": 0.0379328118530781\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.55,\n \"acc_stderr\": 0.049999999999999996,\n \"acc_norm\": 0.55,\n \"acc_norm_stderr\": 0.049999999999999996\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.4297872340425532,\n \"acc_stderr\": 0.03236214467715563,\n \"acc_norm\": 0.4297872340425532,\n \"acc_norm_stderr\": 0.03236214467715563\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.24561403508771928,\n \"acc_stderr\": 0.040493392977481425,\n \"acc_norm\": 0.24561403508771928,\n \"acc_norm_stderr\": 0.040493392977481425\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.47586206896551725,\n \"acc_stderr\": 0.041618085035015295,\n \"acc_norm\": 0.47586206896551725,\n \"acc_norm_stderr\": 0.041618085035015295\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.328042328042328,\n \"acc_stderr\": 0.02418049716437689,\n \"acc_norm\": 0.328042328042328,\n \"acc_norm_stderr\": 0.02418049716437689\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.21428571428571427,\n \"acc_stderr\": 0.03670066451047181,\n \"acc_norm\": 0.21428571428571427,\n \"acc_norm_stderr\": 0.03670066451047181\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.33,\n \"acc_stderr\": 0.047258156262526045,\n \"acc_norm\": 0.33,\n \"acc_norm_stderr\": 0.047258156262526045\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.4870967741935484,\n \"acc_stderr\": 0.028434533152681855,\n \"acc_norm\": 0.4870967741935484,\n \"acc_norm_stderr\": 0.028434533152681855\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.35467980295566504,\n \"acc_stderr\": 0.0336612448905145,\n \"acc_norm\": 0.35467980295566504,\n \"acc_norm_stderr\": 0.0336612448905145\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.4,\n \"acc_stderr\": 0.049236596391733084,\n \"acc_norm\": 0.4,\n \"acc_norm_stderr\": 0.049236596391733084\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.5575757575757576,\n \"acc_stderr\": 0.03878372113711274,\n \"acc_norm\": 0.5575757575757576,\n \"acc_norm_stderr\": 0.03878372113711274\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.5707070707070707,\n \"acc_stderr\": 0.03526552724601199,\n \"acc_norm\": 0.5707070707070707,\n \"acc_norm_stderr\": 0.03526552724601199\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.538860103626943,\n \"acc_stderr\": 0.03597524411734577,\n \"acc_norm\": 0.538860103626943,\n \"acc_norm_stderr\": 0.03597524411734577\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.41794871794871796,\n \"acc_stderr\": 0.02500732988246122,\n \"acc_norm\": 0.41794871794871796,\n \"acc_norm_stderr\": 0.02500732988246122\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.25555555555555554,\n \"acc_stderr\": 0.02659393910184409,\n \"acc_norm\": 0.25555555555555554,\n \"acc_norm_stderr\": 0.02659393910184409\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.4957983193277311,\n \"acc_stderr\": 0.0324773433444811,\n \"acc_norm\": 0.4957983193277311,\n \"acc_norm_stderr\": 0.0324773433444811\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.31125827814569534,\n \"acc_stderr\": 0.03780445850526733,\n \"acc_norm\": 0.31125827814569534,\n \"acc_norm_stderr\": 0.03780445850526733\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.5596330275229358,\n \"acc_stderr\": 0.02128431062376155,\n \"acc_norm\": 0.5596330275229358,\n \"acc_norm_stderr\": 0.02128431062376155\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.3101851851851852,\n \"acc_stderr\": 0.03154696285656628,\n \"acc_norm\": 0.3101851851851852,\n \"acc_norm_stderr\": 0.03154696285656628\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.4803921568627451,\n \"acc_stderr\": 0.03506612560524866,\n \"acc_norm\": 0.4803921568627451,\n \"acc_norm_stderr\": 0.03506612560524866\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.5611814345991561,\n \"acc_stderr\": 0.032302649315470375,\n \"acc_norm\": 0.5611814345991561,\n \"acc_norm_stderr\": 0.032302649315470375\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.4349775784753363,\n \"acc_stderr\": 0.033272833702713445,\n \"acc_norm\": 0.4349775784753363,\n \"acc_norm_stderr\": 0.033272833702713445\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.48091603053435117,\n \"acc_stderr\": 0.04382094705550988,\n \"acc_norm\": 0.48091603053435117,\n \"acc_norm_stderr\": 0.04382094705550988\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.6776859504132231,\n \"acc_stderr\": 0.042664163633521685,\n \"acc_norm\": 0.6776859504132231,\n \"acc_norm_stderr\": 0.042664163633521685\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.5648148148148148,\n \"acc_stderr\": 0.04792898170907062,\n \"acc_norm\": 0.5648148148148148,\n \"acc_norm_stderr\": 0.04792898170907062\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.4601226993865031,\n \"acc_stderr\": 0.03915857291436972,\n \"acc_norm\": 0.4601226993865031,\n \"acc_norm_stderr\": 0.03915857291436972\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4017857142857143,\n \"acc_stderr\": 0.04653333146973647,\n \"acc_norm\": 0.4017857142857143,\n \"acc_norm_stderr\": 0.04653333146973647\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.6310679611650486,\n \"acc_stderr\": 0.0477761518115674,\n \"acc_norm\": 0.6310679611650486,\n \"acc_norm_stderr\": 0.0477761518115674\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.7606837606837606,\n \"acc_stderr\": 0.027951826808924333,\n \"acc_norm\": 0.7606837606837606,\n \"acc_norm_stderr\": 0.027951826808924333\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.44,\n \"acc_stderr\": 0.049888765156985884,\n \"acc_norm\": 0.44,\n \"acc_norm_stderr\": 0.049888765156985884\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.5363984674329502,\n \"acc_stderr\": 0.01783252407959326,\n \"acc_norm\": 0.5363984674329502,\n \"acc_norm_stderr\": 0.01783252407959326\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.5289017341040463,\n \"acc_stderr\": 0.026874085883518348,\n \"acc_norm\": 0.5289017341040463,\n \"acc_norm_stderr\": 0.026874085883518348\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.23575418994413408,\n \"acc_stderr\": 0.014196375686290804,\n \"acc_norm\": 0.23575418994413408,\n \"acc_norm_stderr\": 0.014196375686290804\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.5424836601307189,\n \"acc_stderr\": 0.02852638345214263,\n \"acc_norm\": 0.5424836601307189,\n \"acc_norm_stderr\": 0.02852638345214263\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.44694533762057875,\n \"acc_stderr\": 0.02823776942208533,\n \"acc_norm\": 0.44694533762057875,\n \"acc_norm_stderr\": 0.02823776942208533\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.4845679012345679,\n \"acc_stderr\": 0.0278074900442762,\n \"acc_norm\": 0.4845679012345679,\n \"acc_norm_stderr\": 0.0278074900442762\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.3049645390070922,\n \"acc_stderr\": 0.027464708442022128,\n \"acc_norm\": 0.3049645390070922,\n \"acc_norm_stderr\": 0.027464708442022128\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.3520208604954368,\n \"acc_stderr\": 0.012198140605353599,\n \"acc_norm\": 0.3520208604954368,\n \"acc_norm_stderr\": 0.012198140605353599\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.35661764705882354,\n \"acc_stderr\": 0.02909720956841194,\n \"acc_norm\": 0.35661764705882354,\n \"acc_norm_stderr\": 0.02909720956841194\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.40032679738562094,\n \"acc_stderr\": 0.01982184368827178,\n \"acc_norm\": 0.40032679738562094,\n \"acc_norm_stderr\": 0.01982184368827178\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.509090909090909,\n \"acc_stderr\": 0.0478833976870286,\n \"acc_norm\": 0.509090909090909,\n \"acc_norm_stderr\": 0.0478833976870286\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.5551020408163265,\n \"acc_stderr\": 0.031814251181977865,\n \"acc_norm\": 0.5551020408163265,\n \"acc_norm_stderr\": 0.031814251181977865\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.5771144278606966,\n \"acc_stderr\": 0.034932317774212816,\n \"acc_norm\": 0.5771144278606966,\n \"acc_norm_stderr\": 0.034932317774212816\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.59,\n \"acc_stderr\": 0.04943110704237102,\n \"acc_norm\": 0.59,\n \"acc_norm_stderr\": 0.04943110704237102\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.42168674698795183,\n \"acc_stderr\": 0.03844453181770917,\n \"acc_norm\": 0.42168674698795183,\n \"acc_norm_stderr\": 0.03844453181770917\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.5380116959064327,\n \"acc_stderr\": 0.03823727092882307,\n \"acc_norm\": 0.5380116959064327,\n \"acc_norm_stderr\": 0.03823727092882307\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.2974296205630355,\n \"mc1_stderr\": 0.016002651487360988,\n \"mc2\": 0.4643634101883703,\n \"mc2_stderr\": 0.015588466941925255\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.5911602209944752,\n \"acc_stderr\": 0.013816954295135686\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.2744503411675512,\n \"acc_stderr\": 0.0122915811708149\n }\n}\n```", "repo_url": "https://huggingface.co/vilm/Quyen-Mini-v0.1", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "clementine@hf.co", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|arc:challenge|25_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|gsm8k|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hellaswag|10_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-management|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-virology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-management|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-virology|5_2024-02-17T16-04-03.826177.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-management|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-virology|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|truthfulqa:mc|0_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["**/details_harness|winogrande|5_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-02-17T16-04-03.826177.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_02_17T16_04_03.826177", "path": ["results_2024-02-17T16-04-03.826177.parquet"]}, {"split": "latest", "path": ["results_2024-02-17T16-04-03.826177.parquet"]}]}]}
2024-02-17T16:06:39+00:00
8853543eac22fd6463809276d3f35a7c34a85b63
fahmiaziz/alpaca-new
[ "region:us" ]
2024-02-17T16:07:24+00:00
{"dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2010022, "num_examples": 2000}], "download_size": 1242409, "dataset_size": 2010022}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-17T16:08:40+00:00
ffaedaa7aedd58825c0ea8385607bb6839bacf77
GiulioZ94/test
[ "region:us" ]
2024-02-17T16:17:05+00:00
{}
2024-02-17T16:17:25+00:00
5a6ee4a27482addf31eb78ee73750872816fda0d
# Dataset of sol/ソル/苏尔 (Neural Cloud) This is the dataset of sol/ソル/苏尔 (Neural Cloud), containing 21 images and their tags. The core tags of this character are `long_hair, blonde_hair, hair_between_eyes, yellow_eyes, ponytail, very_long_hair, bangs, breasts`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:-----------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 21 | 26.74 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sol_neuralcloud/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 21 | 17.03 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sol_neuralcloud/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 38 | 28.18 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sol_neuralcloud/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 21 | 24.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sol_neuralcloud/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 38 | 36.53 MiB | [Download](https://huggingface.co/datasets/CyberHarem/sol_neuralcloud/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/sol_neuralcloud', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 21 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, smile, fingerless_gloves, black_gloves, looking_at_viewer, white_shirt, belt, crop_top, midriff, navel, necklace, orange_jacket, open_jacket, black_pants, long_sleeves, standing, fur-trimmed_jacket, holding, outdoors, black_choker, boots, sky | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | smile | fingerless_gloves | black_gloves | looking_at_viewer | white_shirt | belt | crop_top | midriff | navel | necklace | orange_jacket | open_jacket | black_pants | long_sleeves | standing | fur-trimmed_jacket | holding | outdoors | black_choker | boots | sky | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:--------------------|:---------------|:--------------------|:--------------|:-------|:-----------|:----------|:--------|:-----------|:----------------|:--------------|:--------------|:---------------|:-----------|:---------------------|:----------|:-----------|:---------------|:--------|:------| | 0 | 21 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/sol_neuralcloud
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-02-17T16:20:02+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-02-17T16:24:39+00:00
281d8501ac7efd9106cb17dec83e22f24f1b6cb5
CyberHarem/banxsy_neuralcloud
[ "region:us" ]
2024-02-17T16:20:25+00:00
{}
2024-02-17T16:22:45+00:00
9b273331fc34c69aeec9d09ee956cb147a88eb60
alisson40889/globo
[ "license:openrail", "region:us" ]
2024-02-17T16:23:39+00:00
{"license": "openrail"}
2024-02-17T16:24:30+00:00
260babeff49226e42d5370000ea2470867dd2474
arbitropy/squad_bn_nested
[ "region:us" ]
2024-02-17T16:30:26+00:00
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "story", "dtype": "string"}, {"name": "questions", "sequence": "string"}, {"name": "answers", "sequence": "string"}], "splits": [{"name": "train", "num_bytes": 61464060, "num_examples": 20079}, {"name": "test", "num_bytes": 4237327, "num_examples": 2503}, {"name": "validation", "num_bytes": 4137887, "num_examples": 2500}], "download_size": 25632628, "dataset_size": 69839274}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}, {"split": "validation", "path": "data/validation-*"}]}]}
2024-02-17T16:30:37+00:00
db0f5f74ba59b7d7419f9bd21ec1b74c89178855
Olivacker/ratoputo
[ "license:openrail", "region:us" ]
2024-02-17T16:31:19+00:00
{"license": "openrail"}
2024-02-17T16:31:44+00:00
8142451dad8abee86f239d61ca09e60d9474a36d
CyberHarem/earhart_neuralcloud
[ "region:us" ]
2024-02-17T16:34:55+00:00
{}
2024-02-17T16:35:45+00:00
24a786ac7e4153e368cef1536280e3645ff4919c
# Dataset of evelyn/イヴリン/伊芙琳 (Neural Cloud) This is the dataset of evelyn/イヴリン/伊芙琳 (Neural Cloud), containing 19 images and their tags. The core tags of this character are `long_hair, red_eyes, eyepatch, bangs, breasts, white_hair, large_breasts, grey_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 19 | 38.60 MiB | [Download](https://huggingface.co/datasets/CyberHarem/evelyn_neuralcloud/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 19 | 19.90 MiB | [Download](https://huggingface.co/datasets/CyberHarem/evelyn_neuralcloud/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 49 | 39.33 MiB | [Download](https://huggingface.co/datasets/CyberHarem/evelyn_neuralcloud/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 19 | 33.99 MiB | [Download](https://huggingface.co/datasets/CyberHarem/evelyn_neuralcloud/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 49 | 58.28 MiB | [Download](https://huggingface.co/datasets/CyberHarem/evelyn_neuralcloud/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/evelyn_neuralcloud', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, nipples, solo, cum_on_breasts, nude, blush, closed_mouth, navel, pussy | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | 1girl, solo, closed_mouth, holding_gun, pantyhose, red_gloves, tactical_clothes, black_footwear, boots, cape, bulletproof_vest, handgun, long_sleeves, looking_at_viewer, outdoors, pouch, rifle, shotgun_shell, standing | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | nipples | solo | cum_on_breasts | nude | blush | closed_mouth | navel | pussy | holding_gun | pantyhose | red_gloves | tactical_clothes | black_footwear | boots | cape | bulletproof_vest | handgun | long_sleeves | outdoors | pouch | rifle | shotgun_shell | standing | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:----------|:-------|:-----------------|:-------|:--------|:---------------|:--------|:--------|:--------------|:------------|:-------------|:-------------------|:-----------------|:--------|:-------|:-------------------|:----------|:---------------|:-----------|:--------|:--------|:----------------|:-----------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | | | | | | | | | | | | | | | | | 1 | 7 | ![](samples/1/clu1-sample0.png) | ![](samples/1/clu1-sample1.png) | ![](samples/1/clu1-sample2.png) | ![](samples/1/clu1-sample3.png) | ![](samples/1/clu1-sample4.png) | X | X | | X | | | | X | | | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/evelyn_neuralcloud
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-02-17T16:35:07+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-02-17T16:41:38+00:00
11af94e2b80b422ebb6081a18de65921330180b3
CyberHarem/nora_neuralcloud
[ "region:us" ]
2024-02-17T16:35:22+00:00
{}
2024-02-17T16:36:14+00:00
9129570552b03519306f3084d489b144f5f0d034
# Dataset Card for "Gold-alpaca-med-small" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
hemanth955/Gold-alpaca-med-small
[ "region:us" ]
2024-02-17T16:39:32+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "Input", "dtype": "string"}, {"name": "Output", "dtype": "int64"}, {"name": "Instruction", "dtype": "string"}, {"name": "Text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 47684340, "num_examples": 27360}], "download_size": 0, "dataset_size": 47684340}}
2024-02-17T16:53:09+00:00
954d50162ffedba0f3bfc4d7a8b317f0e8e6d944
# BEE-spoke-data/consumer-finance-complaints `consumer-finance-complaints` but in a format that actually works. Pulled Feb 2024
BEE-spoke-data/consumer-finance-complaints
[ "task_categories:text-classification", "task_categories:text-generation", "source_datasets:consumer-finance-complaints", "license:cc0-1.0", "region:us" ]
2024-02-17T16:42:13+00:00
{"language": ["en"], "license": "cc0-1.0", "size_categories": ["1M<n<10M"], "source_datasets": "consumer-finance-complaints", "task_categories": ["text-classification", "text-generation"], "dataset_info": [{"config_name": "default", "features": [{"name": "Date received", "dtype": "string"}, {"name": "Product", "dtype": "string"}, {"name": "Sub-product", "dtype": "string"}, {"name": "Issue", "dtype": "string"}, {"name": "Sub-issue", "dtype": "string"}, {"name": "Consumer complaint narrative", "dtype": "string"}, {"name": "Company public response", "dtype": "string"}, {"name": "Company", "dtype": "string"}, {"name": "State", "dtype": "string"}, {"name": "ZIP code", "dtype": "string"}, {"name": "Tags", "dtype": "string"}, {"name": "Consumer consent provided?", "dtype": "string"}, {"name": "Submitted via", "dtype": "string"}, {"name": "Date sent to company", "dtype": "string"}, {"name": "Company response to consumer", "dtype": "string"}, {"name": "Timely response?", "dtype": "string"}, {"name": "Consumer disputed?", "dtype": "string"}, {"name": "Complaint ID", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3427420677, "num_examples": 4707579}], "download_size": 1061488683, "dataset_size": 3427420677}, {"config_name": "has-text", "features": [{"name": "Date received", "dtype": "string"}, {"name": "Product", "dtype": "string"}, {"name": "Sub-product", "dtype": "string"}, {"name": "Issue", "dtype": "string"}, {"name": "Sub-issue", "dtype": "string"}, {"name": "Consumer complaint narrative", "dtype": "string"}, {"name": "Company public response", "dtype": "string"}, {"name": "Company", "dtype": "string"}, {"name": "State", "dtype": "string"}, {"name": "ZIP code", "dtype": "string"}, {"name": "Tags", "dtype": "string"}, {"name": "Consumer consent provided?", "dtype": "string"}, {"name": "Submitted via", "dtype": "string"}, {"name": "Date sent to company", "dtype": "string"}, {"name": "Company response to consumer", "dtype": "string"}, {"name": "Timely response?", "dtype": "string"}, {"name": "Consumer disputed?", "dtype": "string"}, {"name": "Complaint ID", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 1229876941.3934054, "num_examples": 1689573}], "download_size": 925128908, "dataset_size": 1229876941.3934054}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "has-text", "data_files": [{"split": "train", "path": "has-text/train-*"}]}], "tags": ["finance", "government data", "2024"]}
2024-02-17T16:46:00+00:00
823a938a918efc6b56214d575875c60d633c0973
alirzb/SeizureClassifier_Wav2Vec_U_43828667_on_UnBal_43845380
[ "region:us" ]
2024-02-17T16:43:36+00:00
{"dataset_info": {"features": [{"name": "array", "sequence": "float64"}, {"name": "label_true", "dtype": "int64"}, {"name": "label_pred", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 3693924, "num_examples": 9}], "download_size": 1095957, "dataset_size": 3693924}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-17T16:43:40+00:00
a1ac9a2fac73c3deac49abf59dc036377340e78f
CyberHarem/undine_neuralcloud
[ "region:us" ]
2024-02-17T16:44:31+00:00
{}
2024-02-17T16:45:00+00:00
53a1781ba62188ec9b507f07a2ae9fb2f8b11ddf
# Dataset of turing/チューリング/图灵 (Neural Cloud) This is the dataset of turing/チューリング/图灵 (Neural Cloud), containing 22 images and their tags. The core tags of this character are `animal_ears, brown_hair, long_hair, hair_ornament, breasts, bangs, animal_ear_fluff, large_breasts, braid, hair_between_eyes, tail`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 22 | 34.58 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turing_neuralcloud/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 22 | 17.91 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turing_neuralcloud/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 53 | 39.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turing_neuralcloud/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 22 | 29.57 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turing_neuralcloud/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 53 | 57.05 MiB | [Download](https://huggingface.co/datasets/CyberHarem/turing_neuralcloud/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/turing_neuralcloud', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 22 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, solo, smile, white_shirt, simple_background, yellow_gloves, cleavage_cutout, closed_mouth, black_pants, open_clothes, white_background, id_card, long_sleeves, white_jacket | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | smile | white_shirt | simple_background | yellow_gloves | cleavage_cutout | closed_mouth | black_pants | open_clothes | white_background | id_card | long_sleeves | white_jacket | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:--------|:--------------|:--------------------|:----------------|:------------------|:---------------|:--------------|:---------------|:-------------------|:----------|:---------------|:---------------| | 0 | 22 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/turing_neuralcloud
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-02-17T16:44:37+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-02-17T16:50:22+00:00
b7079b0d26e381e689896975034429a9feb049aa
CyberHarem/magnhilda_neuralcloud
[ "region:us" ]
2024-02-17T16:44:49+00:00
{}
2024-02-17T16:46:07+00:00
c7dceb8ff5f7348d5c3ba37fb39b1e6f4c3cd245
MITCriticalData/dataset_rio_de_janeiro_2018_2023
[ "license:mit", "region:us" ]
2024-02-17T16:46:35+00:00
{"license": "mit"}
2024-02-17T16:46:35+00:00
dd382831addcffdecab68b96b411e2222bfcf2d8
0: ENOUGH_INFO 1: NOT_ENOUGH_INFO
iestynmullinor/evidence_reranker_fever_balanced
[ "region:us" ]
2024-02-17T16:46:56+00:00
{}
2024-02-17T17:27:53+00:00
72fff341279b97921e9c6cac578d596f9b9873aa
alisson40889/thuca
[ "license:openrail", "region:us" ]
2024-02-17T16:47:45+00:00
{"license": "openrail"}
2024-02-17T16:48:40+00:00
081e3f0bf57b882d24f950056a3823065d89f764
Clonadordoely/marcos
[ "license:openrail", "region:us" ]
2024-02-17T16:47:50+00:00
{"license": "openrail"}
2024-02-17T16:48:43+00:00
8f344b292b1d35da6eaf09dba8acce269dada4f5
# Dataset Card for Evaluation run of DreadPoor/JustToSuffer-7B-slerp <!-- Provide a quick summary of the dataset. --> Dataset automatically created during the evaluation run of model [DreadPoor/JustToSuffer-7B-slerp](https://huggingface.co/DreadPoor/JustToSuffer-7B-slerp) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). The dataset is composed of 63 configuration, each one coresponding to one of the evaluated task. The dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The "train" split is always pointing to the latest results. An additional configuration "results" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)). To load the details from a run, you can for instance do the following: ```python from datasets import load_dataset data = load_dataset("open-llm-leaderboard/details_DreadPoor__JustToSuffer-7B-slerp", "harness_winogrande_5", split="train") ``` ## Latest results These are the [latest results from run 2024-02-17T16:45:59.965925](https://huggingface.co/datasets/open-llm-leaderboard/details_DreadPoor__JustToSuffer-7B-slerp/blob/main/results_2024-02-17T16-45-59.965925.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the "latest" split for each eval): ```python { "all": { "acc": 0.6495053299013857, "acc_stderr": 0.03213728048297641, "acc_norm": 0.6511170368490796, "acc_norm_stderr": 0.03278191957728323, "mc1": 0.4541003671970624, "mc1_stderr": 0.017429593091323522, "mc2": 0.6269022526171036, "mc2_stderr": 0.015516860373603584 }, "harness|arc:challenge|25": { "acc": 0.6604095563139932, "acc_stderr": 0.013839039762820167, "acc_norm": 0.689419795221843, "acc_norm_stderr": 0.013522292098053067 }, "harness|hellaswag|10": { "acc": 0.7030472017526389, "acc_stderr": 0.00455981758918207, "acc_norm": 0.8678550089623581, "acc_norm_stderr": 0.003379562298387565 }, "harness|hendrycksTest-abstract_algebra|5": { "acc": 0.38, "acc_stderr": 0.048783173121456316, "acc_norm": 0.38, "acc_norm_stderr": 0.048783173121456316 }, "harness|hendrycksTest-anatomy|5": { "acc": 0.6370370370370371, "acc_stderr": 0.04153948404742398, "acc_norm": 0.6370370370370371, "acc_norm_stderr": 0.04153948404742398 }, "harness|hendrycksTest-astronomy|5": { "acc": 0.7039473684210527, "acc_stderr": 0.03715062154998904, "acc_norm": 0.7039473684210527, "acc_norm_stderr": 0.03715062154998904 }, "harness|hendrycksTest-business_ethics|5": { "acc": 0.6, "acc_stderr": 0.04923659639173309, "acc_norm": 0.6, "acc_norm_stderr": 0.04923659639173309 }, "harness|hendrycksTest-clinical_knowledge|5": { "acc": 0.7132075471698113, "acc_stderr": 0.027834912527544067, "acc_norm": 0.7132075471698113, "acc_norm_stderr": 0.027834912527544067 }, "harness|hendrycksTest-college_biology|5": { "acc": 0.7569444444444444, "acc_stderr": 0.035868792800803406, "acc_norm": 0.7569444444444444, "acc_norm_stderr": 0.035868792800803406 }, "harness|hendrycksTest-college_chemistry|5": { "acc": 0.49, "acc_stderr": 0.05024183937956912, "acc_norm": 0.49, "acc_norm_stderr": 0.05024183937956912 }, "harness|hendrycksTest-college_computer_science|5": { "acc": 0.52, "acc_stderr": 0.050211673156867795, "acc_norm": 0.52, "acc_norm_stderr": 0.050211673156867795 }, "harness|hendrycksTest-college_mathematics|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-college_medicine|5": { "acc": 0.6820809248554913, "acc_stderr": 0.0355068398916558, "acc_norm": 0.6820809248554913, "acc_norm_stderr": 0.0355068398916558 }, "harness|hendrycksTest-college_physics|5": { "acc": 0.4215686274509804, "acc_stderr": 0.049135952012744975, "acc_norm": 0.4215686274509804, "acc_norm_stderr": 0.049135952012744975 }, "harness|hendrycksTest-computer_security|5": { "acc": 0.74, "acc_stderr": 0.04408440022768079, "acc_norm": 0.74, "acc_norm_stderr": 0.04408440022768079 }, "harness|hendrycksTest-conceptual_physics|5": { "acc": 0.5787234042553191, "acc_stderr": 0.03227834510146268, "acc_norm": 0.5787234042553191, "acc_norm_stderr": 0.03227834510146268 }, "harness|hendrycksTest-econometrics|5": { "acc": 0.5087719298245614, "acc_stderr": 0.04702880432049615, "acc_norm": 0.5087719298245614, "acc_norm_stderr": 0.04702880432049615 }, "harness|hendrycksTest-electrical_engineering|5": { "acc": 0.5310344827586206, "acc_stderr": 0.04158632762097828, "acc_norm": 0.5310344827586206, "acc_norm_stderr": 0.04158632762097828 }, "harness|hendrycksTest-elementary_mathematics|5": { "acc": 0.40476190476190477, "acc_stderr": 0.025279850397404904, "acc_norm": 0.40476190476190477, "acc_norm_stderr": 0.025279850397404904 }, "harness|hendrycksTest-formal_logic|5": { "acc": 0.42857142857142855, "acc_stderr": 0.0442626668137991, "acc_norm": 0.42857142857142855, "acc_norm_stderr": 0.0442626668137991 }, "harness|hendrycksTest-global_facts|5": { "acc": 0.32, "acc_stderr": 0.046882617226215034, "acc_norm": 0.32, "acc_norm_stderr": 0.046882617226215034 }, "harness|hendrycksTest-high_school_biology|5": { "acc": 0.7903225806451613, "acc_stderr": 0.023157879349083525, "acc_norm": 0.7903225806451613, "acc_norm_stderr": 0.023157879349083525 }, "harness|hendrycksTest-high_school_chemistry|5": { "acc": 0.5073891625615764, "acc_stderr": 0.035176035403610105, "acc_norm": 0.5073891625615764, "acc_norm_stderr": 0.035176035403610105 }, "harness|hendrycksTest-high_school_computer_science|5": { "acc": 0.67, "acc_stderr": 0.04725815626252609, "acc_norm": 0.67, "acc_norm_stderr": 0.04725815626252609 }, "harness|hendrycksTest-high_school_european_history|5": { "acc": 0.7757575757575758, "acc_stderr": 0.03256866661681102, "acc_norm": 0.7757575757575758, "acc_norm_stderr": 0.03256866661681102 }, "harness|hendrycksTest-high_school_geography|5": { "acc": 0.7929292929292929, "acc_stderr": 0.028869778460267042, "acc_norm": 0.7929292929292929, "acc_norm_stderr": 0.028869778460267042 }, "harness|hendrycksTest-high_school_government_and_politics|5": { "acc": 0.8911917098445595, "acc_stderr": 0.022473253332768776, "acc_norm": 0.8911917098445595, "acc_norm_stderr": 0.022473253332768776 }, "harness|hendrycksTest-high_school_macroeconomics|5": { "acc": 0.6692307692307692, "acc_stderr": 0.023854795680971125, "acc_norm": 0.6692307692307692, "acc_norm_stderr": 0.023854795680971125 }, "harness|hendrycksTest-high_school_mathematics|5": { "acc": 0.337037037037037, "acc_stderr": 0.02882088466625326, "acc_norm": 0.337037037037037, "acc_norm_stderr": 0.02882088466625326 }, "harness|hendrycksTest-high_school_microeconomics|5": { "acc": 0.6932773109243697, "acc_stderr": 0.02995382389188704, "acc_norm": 0.6932773109243697, "acc_norm_stderr": 0.02995382389188704 }, "harness|hendrycksTest-high_school_physics|5": { "acc": 0.36423841059602646, "acc_stderr": 0.03929111781242742, "acc_norm": 0.36423841059602646, "acc_norm_stderr": 0.03929111781242742 }, "harness|hendrycksTest-high_school_psychology|5": { "acc": 0.8550458715596331, "acc_stderr": 0.015094215699700476, "acc_norm": 0.8550458715596331, "acc_norm_stderr": 0.015094215699700476 }, "harness|hendrycksTest-high_school_statistics|5": { "acc": 0.5324074074074074, "acc_stderr": 0.03402801581358966, "acc_norm": 0.5324074074074074, "acc_norm_stderr": 0.03402801581358966 }, "harness|hendrycksTest-high_school_us_history|5": { "acc": 0.8382352941176471, "acc_stderr": 0.025845017986926917, "acc_norm": 0.8382352941176471, "acc_norm_stderr": 0.025845017986926917 }, "harness|hendrycksTest-high_school_world_history|5": { "acc": 0.810126582278481, "acc_stderr": 0.02553010046023349, "acc_norm": 0.810126582278481, "acc_norm_stderr": 0.02553010046023349 }, "harness|hendrycksTest-human_aging|5": { "acc": 0.7040358744394619, "acc_stderr": 0.030636591348699813, "acc_norm": 0.7040358744394619, "acc_norm_stderr": 0.030636591348699813 }, "harness|hendrycksTest-human_sexuality|5": { "acc": 0.7557251908396947, "acc_stderr": 0.03768335959728744, "acc_norm": 0.7557251908396947, "acc_norm_stderr": 0.03768335959728744 }, "harness|hendrycksTest-international_law|5": { "acc": 0.7768595041322314, "acc_stderr": 0.03800754475228733, "acc_norm": 0.7768595041322314, "acc_norm_stderr": 0.03800754475228733 }, "harness|hendrycksTest-jurisprudence|5": { "acc": 0.7962962962962963, "acc_stderr": 0.03893542518824847, "acc_norm": 0.7962962962962963, "acc_norm_stderr": 0.03893542518824847 }, "harness|hendrycksTest-logical_fallacies|5": { "acc": 0.7852760736196319, "acc_stderr": 0.032262193772867744, "acc_norm": 0.7852760736196319, "acc_norm_stderr": 0.032262193772867744 }, "harness|hendrycksTest-machine_learning|5": { "acc": 0.4642857142857143, "acc_stderr": 0.04733667890053756, "acc_norm": 0.4642857142857143, "acc_norm_stderr": 0.04733667890053756 }, "harness|hendrycksTest-management|5": { "acc": 0.7766990291262136, "acc_stderr": 0.04123553189891431, "acc_norm": 0.7766990291262136, "acc_norm_stderr": 0.04123553189891431 }, "harness|hendrycksTest-marketing|5": { "acc": 0.8846153846153846, "acc_stderr": 0.02093019318517933, "acc_norm": 0.8846153846153846, "acc_norm_stderr": 0.02093019318517933 }, "harness|hendrycksTest-medical_genetics|5": { "acc": 0.73, "acc_stderr": 0.0446196043338474, "acc_norm": 0.73, "acc_norm_stderr": 0.0446196043338474 }, "harness|hendrycksTest-miscellaneous|5": { "acc": 0.822477650063857, "acc_stderr": 0.013664230995834838, "acc_norm": 0.822477650063857, "acc_norm_stderr": 0.013664230995834838 }, "harness|hendrycksTest-moral_disputes|5": { "acc": 0.7398843930635838, "acc_stderr": 0.023618678310069363, "acc_norm": 0.7398843930635838, "acc_norm_stderr": 0.023618678310069363 }, "harness|hendrycksTest-moral_scenarios|5": { "acc": 0.40893854748603353, "acc_stderr": 0.016442830654715544, "acc_norm": 0.40893854748603353, "acc_norm_stderr": 0.016442830654715544 }, "harness|hendrycksTest-nutrition|5": { "acc": 0.7516339869281046, "acc_stderr": 0.02473998135511359, "acc_norm": 0.7516339869281046, "acc_norm_stderr": 0.02473998135511359 }, "harness|hendrycksTest-philosophy|5": { "acc": 0.7170418006430869, "acc_stderr": 0.025583062489984813, "acc_norm": 0.7170418006430869, "acc_norm_stderr": 0.025583062489984813 }, "harness|hendrycksTest-prehistory|5": { "acc": 0.7469135802469136, "acc_stderr": 0.024191808600712992, "acc_norm": 0.7469135802469136, "acc_norm_stderr": 0.024191808600712992 }, "harness|hendrycksTest-professional_accounting|5": { "acc": 0.475177304964539, "acc_stderr": 0.02979071924382972, "acc_norm": 0.475177304964539, "acc_norm_stderr": 0.02979071924382972 }, "harness|hendrycksTest-professional_law|5": { "acc": 0.46088657105606257, "acc_stderr": 0.012731102790504515, "acc_norm": 0.46088657105606257, "acc_norm_stderr": 0.012731102790504515 }, "harness|hendrycksTest-professional_medicine|5": { "acc": 0.6985294117647058, "acc_stderr": 0.027875982114273168, "acc_norm": 0.6985294117647058, "acc_norm_stderr": 0.027875982114273168 }, "harness|hendrycksTest-professional_psychology|5": { "acc": 0.6584967320261438, "acc_stderr": 0.019184639328092487, "acc_norm": 0.6584967320261438, "acc_norm_stderr": 0.019184639328092487 }, "harness|hendrycksTest-public_relations|5": { "acc": 0.6727272727272727, "acc_stderr": 0.0449429086625209, "acc_norm": 0.6727272727272727, "acc_norm_stderr": 0.0449429086625209 }, "harness|hendrycksTest-security_studies|5": { "acc": 0.7183673469387755, "acc_stderr": 0.02879518557429129, "acc_norm": 0.7183673469387755, "acc_norm_stderr": 0.02879518557429129 }, "harness|hendrycksTest-sociology|5": { "acc": 0.845771144278607, "acc_stderr": 0.025538433368578337, "acc_norm": 0.845771144278607, "acc_norm_stderr": 0.025538433368578337 }, "harness|hendrycksTest-us_foreign_policy|5": { "acc": 0.85, "acc_stderr": 0.03588702812826371, "acc_norm": 0.85, "acc_norm_stderr": 0.03588702812826371 }, "harness|hendrycksTest-virology|5": { "acc": 0.5120481927710844, "acc_stderr": 0.03891364495835817, "acc_norm": 0.5120481927710844, "acc_norm_stderr": 0.03891364495835817 }, "harness|hendrycksTest-world_religions|5": { "acc": 0.8421052631578947, "acc_stderr": 0.027966785859160893, "acc_norm": 0.8421052631578947, "acc_norm_stderr": 0.027966785859160893 }, "harness|truthfulqa:mc|0": { "mc1": 0.4541003671970624, "mc1_stderr": 0.017429593091323522, "mc2": 0.6269022526171036, "mc2_stderr": 0.015516860373603584 }, "harness|winogrande|5": { "acc": 0.8003157063930545, "acc_stderr": 0.011235328382625856 }, "harness|gsm8k|5": { "acc": 0.5974222896133434, "acc_stderr": 0.013508523063663423 } } ``` ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
open-llm-leaderboard/details_DreadPoor__JustToSuffer-7B-slerp
[ "region:us" ]
2024-02-17T16:48:17+00:00
{"pretty_name": "Evaluation run of DreadPoor/JustToSuffer-7B-slerp", "dataset_summary": "Dataset automatically created during the evaluation run of model [DreadPoor/JustToSuffer-7B-slerp](https://huggingface.co/DreadPoor/JustToSuffer-7B-slerp) on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).\n\nThe dataset is composed of 63 configuration, each one coresponding to one of the evaluated task.\n\nThe dataset has been created from 1 run(s). Each run can be found as a specific split in each configuration, the split being named using the timestamp of the run.The \"train\" split is always pointing to the latest results.\n\nAn additional configuration \"results\" store all the aggregated results of the run (and is used to compute and display the aggregated metrics on the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)).\n\nTo load the details from a run, you can for instance do the following:\n```python\nfrom datasets import load_dataset\ndata = load_dataset(\"open-llm-leaderboard/details_DreadPoor__JustToSuffer-7B-slerp\",\n\t\"harness_winogrande_5\",\n\tsplit=\"train\")\n```\n\n## Latest results\n\nThese are the [latest results from run 2024-02-17T16:45:59.965925](https://huggingface.co/datasets/open-llm-leaderboard/details_DreadPoor__JustToSuffer-7B-slerp/blob/main/results_2024-02-17T16-45-59.965925.json)(note that their might be results for other tasks in the repos if successive evals didn't cover the same tasks. You find each in the results and the \"latest\" split for each eval):\n\n```python\n{\n \"all\": {\n \"acc\": 0.6495053299013857,\n \"acc_stderr\": 0.03213728048297641,\n \"acc_norm\": 0.6511170368490796,\n \"acc_norm_stderr\": 0.03278191957728323,\n \"mc1\": 0.4541003671970624,\n \"mc1_stderr\": 0.017429593091323522,\n \"mc2\": 0.6269022526171036,\n \"mc2_stderr\": 0.015516860373603584\n },\n \"harness|arc:challenge|25\": {\n \"acc\": 0.6604095563139932,\n \"acc_stderr\": 0.013839039762820167,\n \"acc_norm\": 0.689419795221843,\n \"acc_norm_stderr\": 0.013522292098053067\n },\n \"harness|hellaswag|10\": {\n \"acc\": 0.7030472017526389,\n \"acc_stderr\": 0.00455981758918207,\n \"acc_norm\": 0.8678550089623581,\n \"acc_norm_stderr\": 0.003379562298387565\n },\n \"harness|hendrycksTest-abstract_algebra|5\": {\n \"acc\": 0.38,\n \"acc_stderr\": 0.048783173121456316,\n \"acc_norm\": 0.38,\n \"acc_norm_stderr\": 0.048783173121456316\n },\n \"harness|hendrycksTest-anatomy|5\": {\n \"acc\": 0.6370370370370371,\n \"acc_stderr\": 0.04153948404742398,\n \"acc_norm\": 0.6370370370370371,\n \"acc_norm_stderr\": 0.04153948404742398\n },\n \"harness|hendrycksTest-astronomy|5\": {\n \"acc\": 0.7039473684210527,\n \"acc_stderr\": 0.03715062154998904,\n \"acc_norm\": 0.7039473684210527,\n \"acc_norm_stderr\": 0.03715062154998904\n },\n \"harness|hendrycksTest-business_ethics|5\": {\n \"acc\": 0.6,\n \"acc_stderr\": 0.04923659639173309,\n \"acc_norm\": 0.6,\n \"acc_norm_stderr\": 0.04923659639173309\n },\n \"harness|hendrycksTest-clinical_knowledge|5\": {\n \"acc\": 0.7132075471698113,\n \"acc_stderr\": 0.027834912527544067,\n \"acc_norm\": 0.7132075471698113,\n \"acc_norm_stderr\": 0.027834912527544067\n },\n \"harness|hendrycksTest-college_biology|5\": {\n \"acc\": 0.7569444444444444,\n \"acc_stderr\": 0.035868792800803406,\n \"acc_norm\": 0.7569444444444444,\n \"acc_norm_stderr\": 0.035868792800803406\n },\n \"harness|hendrycksTest-college_chemistry|5\": {\n \"acc\": 0.49,\n \"acc_stderr\": 0.05024183937956912,\n \"acc_norm\": 0.49,\n \"acc_norm_stderr\": 0.05024183937956912\n },\n \"harness|hendrycksTest-college_computer_science|5\": {\n \"acc\": 0.52,\n \"acc_stderr\": 0.050211673156867795,\n \"acc_norm\": 0.52,\n \"acc_norm_stderr\": 0.050211673156867795\n },\n \"harness|hendrycksTest-college_mathematics|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-college_medicine|5\": {\n \"acc\": 0.6820809248554913,\n \"acc_stderr\": 0.0355068398916558,\n \"acc_norm\": 0.6820809248554913,\n \"acc_norm_stderr\": 0.0355068398916558\n },\n \"harness|hendrycksTest-college_physics|5\": {\n \"acc\": 0.4215686274509804,\n \"acc_stderr\": 0.049135952012744975,\n \"acc_norm\": 0.4215686274509804,\n \"acc_norm_stderr\": 0.049135952012744975\n },\n \"harness|hendrycksTest-computer_security|5\": {\n \"acc\": 0.74,\n \"acc_stderr\": 0.04408440022768079,\n \"acc_norm\": 0.74,\n \"acc_norm_stderr\": 0.04408440022768079\n },\n \"harness|hendrycksTest-conceptual_physics|5\": {\n \"acc\": 0.5787234042553191,\n \"acc_stderr\": 0.03227834510146268,\n \"acc_norm\": 0.5787234042553191,\n \"acc_norm_stderr\": 0.03227834510146268\n },\n \"harness|hendrycksTest-econometrics|5\": {\n \"acc\": 0.5087719298245614,\n \"acc_stderr\": 0.04702880432049615,\n \"acc_norm\": 0.5087719298245614,\n \"acc_norm_stderr\": 0.04702880432049615\n },\n \"harness|hendrycksTest-electrical_engineering|5\": {\n \"acc\": 0.5310344827586206,\n \"acc_stderr\": 0.04158632762097828,\n \"acc_norm\": 0.5310344827586206,\n \"acc_norm_stderr\": 0.04158632762097828\n },\n \"harness|hendrycksTest-elementary_mathematics|5\": {\n \"acc\": 0.40476190476190477,\n \"acc_stderr\": 0.025279850397404904,\n \"acc_norm\": 0.40476190476190477,\n \"acc_norm_stderr\": 0.025279850397404904\n },\n \"harness|hendrycksTest-formal_logic|5\": {\n \"acc\": 0.42857142857142855,\n \"acc_stderr\": 0.0442626668137991,\n \"acc_norm\": 0.42857142857142855,\n \"acc_norm_stderr\": 0.0442626668137991\n },\n \"harness|hendrycksTest-global_facts|5\": {\n \"acc\": 0.32,\n \"acc_stderr\": 0.046882617226215034,\n \"acc_norm\": 0.32,\n \"acc_norm_stderr\": 0.046882617226215034\n },\n \"harness|hendrycksTest-high_school_biology|5\": {\n \"acc\": 0.7903225806451613,\n \"acc_stderr\": 0.023157879349083525,\n \"acc_norm\": 0.7903225806451613,\n \"acc_norm_stderr\": 0.023157879349083525\n },\n \"harness|hendrycksTest-high_school_chemistry|5\": {\n \"acc\": 0.5073891625615764,\n \"acc_stderr\": 0.035176035403610105,\n \"acc_norm\": 0.5073891625615764,\n \"acc_norm_stderr\": 0.035176035403610105\n },\n \"harness|hendrycksTest-high_school_computer_science|5\": {\n \"acc\": 0.67,\n \"acc_stderr\": 0.04725815626252609,\n \"acc_norm\": 0.67,\n \"acc_norm_stderr\": 0.04725815626252609\n },\n \"harness|hendrycksTest-high_school_european_history|5\": {\n \"acc\": 0.7757575757575758,\n \"acc_stderr\": 0.03256866661681102,\n \"acc_norm\": 0.7757575757575758,\n \"acc_norm_stderr\": 0.03256866661681102\n },\n \"harness|hendrycksTest-high_school_geography|5\": {\n \"acc\": 0.7929292929292929,\n \"acc_stderr\": 0.028869778460267042,\n \"acc_norm\": 0.7929292929292929,\n \"acc_norm_stderr\": 0.028869778460267042\n },\n \"harness|hendrycksTest-high_school_government_and_politics|5\": {\n \"acc\": 0.8911917098445595,\n \"acc_stderr\": 0.022473253332768776,\n \"acc_norm\": 0.8911917098445595,\n \"acc_norm_stderr\": 0.022473253332768776\n },\n \"harness|hendrycksTest-high_school_macroeconomics|5\": {\n \"acc\": 0.6692307692307692,\n \"acc_stderr\": 0.023854795680971125,\n \"acc_norm\": 0.6692307692307692,\n \"acc_norm_stderr\": 0.023854795680971125\n },\n \"harness|hendrycksTest-high_school_mathematics|5\": {\n \"acc\": 0.337037037037037,\n \"acc_stderr\": 0.02882088466625326,\n \"acc_norm\": 0.337037037037037,\n \"acc_norm_stderr\": 0.02882088466625326\n },\n \"harness|hendrycksTest-high_school_microeconomics|5\": {\n \"acc\": 0.6932773109243697,\n \"acc_stderr\": 0.02995382389188704,\n \"acc_norm\": 0.6932773109243697,\n \"acc_norm_stderr\": 0.02995382389188704\n },\n \"harness|hendrycksTest-high_school_physics|5\": {\n \"acc\": 0.36423841059602646,\n \"acc_stderr\": 0.03929111781242742,\n \"acc_norm\": 0.36423841059602646,\n \"acc_norm_stderr\": 0.03929111781242742\n },\n \"harness|hendrycksTest-high_school_psychology|5\": {\n \"acc\": 0.8550458715596331,\n \"acc_stderr\": 0.015094215699700476,\n \"acc_norm\": 0.8550458715596331,\n \"acc_norm_stderr\": 0.015094215699700476\n },\n \"harness|hendrycksTest-high_school_statistics|5\": {\n \"acc\": 0.5324074074074074,\n \"acc_stderr\": 0.03402801581358966,\n \"acc_norm\": 0.5324074074074074,\n \"acc_norm_stderr\": 0.03402801581358966\n },\n \"harness|hendrycksTest-high_school_us_history|5\": {\n \"acc\": 0.8382352941176471,\n \"acc_stderr\": 0.025845017986926917,\n \"acc_norm\": 0.8382352941176471,\n \"acc_norm_stderr\": 0.025845017986926917\n },\n \"harness|hendrycksTest-high_school_world_history|5\": {\n \"acc\": 0.810126582278481,\n \"acc_stderr\": 0.02553010046023349,\n \"acc_norm\": 0.810126582278481,\n \"acc_norm_stderr\": 0.02553010046023349\n },\n \"harness|hendrycksTest-human_aging|5\": {\n \"acc\": 0.7040358744394619,\n \"acc_stderr\": 0.030636591348699813,\n \"acc_norm\": 0.7040358744394619,\n \"acc_norm_stderr\": 0.030636591348699813\n },\n \"harness|hendrycksTest-human_sexuality|5\": {\n \"acc\": 0.7557251908396947,\n \"acc_stderr\": 0.03768335959728744,\n \"acc_norm\": 0.7557251908396947,\n \"acc_norm_stderr\": 0.03768335959728744\n },\n \"harness|hendrycksTest-international_law|5\": {\n \"acc\": 0.7768595041322314,\n \"acc_stderr\": 0.03800754475228733,\n \"acc_norm\": 0.7768595041322314,\n \"acc_norm_stderr\": 0.03800754475228733\n },\n \"harness|hendrycksTest-jurisprudence|5\": {\n \"acc\": 0.7962962962962963,\n \"acc_stderr\": 0.03893542518824847,\n \"acc_norm\": 0.7962962962962963,\n \"acc_norm_stderr\": 0.03893542518824847\n },\n \"harness|hendrycksTest-logical_fallacies|5\": {\n \"acc\": 0.7852760736196319,\n \"acc_stderr\": 0.032262193772867744,\n \"acc_norm\": 0.7852760736196319,\n \"acc_norm_stderr\": 0.032262193772867744\n },\n \"harness|hendrycksTest-machine_learning|5\": {\n \"acc\": 0.4642857142857143,\n \"acc_stderr\": 0.04733667890053756,\n \"acc_norm\": 0.4642857142857143,\n \"acc_norm_stderr\": 0.04733667890053756\n },\n \"harness|hendrycksTest-management|5\": {\n \"acc\": 0.7766990291262136,\n \"acc_stderr\": 0.04123553189891431,\n \"acc_norm\": 0.7766990291262136,\n \"acc_norm_stderr\": 0.04123553189891431\n },\n \"harness|hendrycksTest-marketing|5\": {\n \"acc\": 0.8846153846153846,\n \"acc_stderr\": 0.02093019318517933,\n \"acc_norm\": 0.8846153846153846,\n \"acc_norm_stderr\": 0.02093019318517933\n },\n \"harness|hendrycksTest-medical_genetics|5\": {\n \"acc\": 0.73,\n \"acc_stderr\": 0.0446196043338474,\n \"acc_norm\": 0.73,\n \"acc_norm_stderr\": 0.0446196043338474\n },\n \"harness|hendrycksTest-miscellaneous|5\": {\n \"acc\": 0.822477650063857,\n \"acc_stderr\": 0.013664230995834838,\n \"acc_norm\": 0.822477650063857,\n \"acc_norm_stderr\": 0.013664230995834838\n },\n \"harness|hendrycksTest-moral_disputes|5\": {\n \"acc\": 0.7398843930635838,\n \"acc_stderr\": 0.023618678310069363,\n \"acc_norm\": 0.7398843930635838,\n \"acc_norm_stderr\": 0.023618678310069363\n },\n \"harness|hendrycksTest-moral_scenarios|5\": {\n \"acc\": 0.40893854748603353,\n \"acc_stderr\": 0.016442830654715544,\n \"acc_norm\": 0.40893854748603353,\n \"acc_norm_stderr\": 0.016442830654715544\n },\n \"harness|hendrycksTest-nutrition|5\": {\n \"acc\": 0.7516339869281046,\n \"acc_stderr\": 0.02473998135511359,\n \"acc_norm\": 0.7516339869281046,\n \"acc_norm_stderr\": 0.02473998135511359\n },\n \"harness|hendrycksTest-philosophy|5\": {\n \"acc\": 0.7170418006430869,\n \"acc_stderr\": 0.025583062489984813,\n \"acc_norm\": 0.7170418006430869,\n \"acc_norm_stderr\": 0.025583062489984813\n },\n \"harness|hendrycksTest-prehistory|5\": {\n \"acc\": 0.7469135802469136,\n \"acc_stderr\": 0.024191808600712992,\n \"acc_norm\": 0.7469135802469136,\n \"acc_norm_stderr\": 0.024191808600712992\n },\n \"harness|hendrycksTest-professional_accounting|5\": {\n \"acc\": 0.475177304964539,\n \"acc_stderr\": 0.02979071924382972,\n \"acc_norm\": 0.475177304964539,\n \"acc_norm_stderr\": 0.02979071924382972\n },\n \"harness|hendrycksTest-professional_law|5\": {\n \"acc\": 0.46088657105606257,\n \"acc_stderr\": 0.012731102790504515,\n \"acc_norm\": 0.46088657105606257,\n \"acc_norm_stderr\": 0.012731102790504515\n },\n \"harness|hendrycksTest-professional_medicine|5\": {\n \"acc\": 0.6985294117647058,\n \"acc_stderr\": 0.027875982114273168,\n \"acc_norm\": 0.6985294117647058,\n \"acc_norm_stderr\": 0.027875982114273168\n },\n \"harness|hendrycksTest-professional_psychology|5\": {\n \"acc\": 0.6584967320261438,\n \"acc_stderr\": 0.019184639328092487,\n \"acc_norm\": 0.6584967320261438,\n \"acc_norm_stderr\": 0.019184639328092487\n },\n \"harness|hendrycksTest-public_relations|5\": {\n \"acc\": 0.6727272727272727,\n \"acc_stderr\": 0.0449429086625209,\n \"acc_norm\": 0.6727272727272727,\n \"acc_norm_stderr\": 0.0449429086625209\n },\n \"harness|hendrycksTest-security_studies|5\": {\n \"acc\": 0.7183673469387755,\n \"acc_stderr\": 0.02879518557429129,\n \"acc_norm\": 0.7183673469387755,\n \"acc_norm_stderr\": 0.02879518557429129\n },\n \"harness|hendrycksTest-sociology|5\": {\n \"acc\": 0.845771144278607,\n \"acc_stderr\": 0.025538433368578337,\n \"acc_norm\": 0.845771144278607,\n \"acc_norm_stderr\": 0.025538433368578337\n },\n \"harness|hendrycksTest-us_foreign_policy|5\": {\n \"acc\": 0.85,\n \"acc_stderr\": 0.03588702812826371,\n \"acc_norm\": 0.85,\n \"acc_norm_stderr\": 0.03588702812826371\n },\n \"harness|hendrycksTest-virology|5\": {\n \"acc\": 0.5120481927710844,\n \"acc_stderr\": 0.03891364495835817,\n \"acc_norm\": 0.5120481927710844,\n \"acc_norm_stderr\": 0.03891364495835817\n },\n \"harness|hendrycksTest-world_religions|5\": {\n \"acc\": 0.8421052631578947,\n \"acc_stderr\": 0.027966785859160893,\n \"acc_norm\": 0.8421052631578947,\n \"acc_norm_stderr\": 0.027966785859160893\n },\n \"harness|truthfulqa:mc|0\": {\n \"mc1\": 0.4541003671970624,\n \"mc1_stderr\": 0.017429593091323522,\n \"mc2\": 0.6269022526171036,\n \"mc2_stderr\": 0.015516860373603584\n },\n \"harness|winogrande|5\": {\n \"acc\": 0.8003157063930545,\n \"acc_stderr\": 0.011235328382625856\n },\n \"harness|gsm8k|5\": {\n \"acc\": 0.5974222896133434,\n \"acc_stderr\": 0.013508523063663423\n }\n}\n```", "repo_url": "https://huggingface.co/DreadPoor/JustToSuffer-7B-slerp", "leaderboard_url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard", "point_of_contact": "clementine@hf.co", "configs": [{"config_name": "harness_arc_challenge_25", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|arc:challenge|25_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|arc:challenge|25_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_gsm8k_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|gsm8k|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|gsm8k|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hellaswag_10", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hellaswag|10_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hellaswag|10_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-management|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-virology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-anatomy|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-astronomy|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-business_ethics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_biology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_chemistry|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_computer_science|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_mathematics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_medicine|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-college_physics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-computer_security|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-econometrics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-formal_logic|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-global_facts|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_biology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_geography|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_physics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-human_aging|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-human_sexuality|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-international_law|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-jurisprudence|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-machine_learning|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-management|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-marketing|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-medical_genetics|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-miscellaneous|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-moral_disputes|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-nutrition|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-philosophy|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-prehistory|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-professional_accounting|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-professional_law|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-professional_medicine|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-professional_psychology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-public_relations|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-security_studies|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-sociology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-virology|5_2024-02-17T16-45-59.965925.parquet", "**/details_harness|hendrycksTest-world_religions|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_abstract_algebra_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-abstract_algebra|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_anatomy_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-anatomy|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_astronomy_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-astronomy|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_business_ethics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-business_ethics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_clinical_knowledge_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-clinical_knowledge|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_biology_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_biology|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_chemistry_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_chemistry|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_computer_science_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_computer_science|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_mathematics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_mathematics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_medicine_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_medicine|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_college_physics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-college_physics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_computer_security_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-computer_security|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_conceptual_physics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-conceptual_physics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_econometrics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-econometrics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_electrical_engineering_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-electrical_engineering|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_elementary_mathematics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-elementary_mathematics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_formal_logic_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-formal_logic|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_global_facts_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-global_facts|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_biology_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_biology|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_chemistry_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_chemistry|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_computer_science_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_computer_science|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_european_history_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_european_history|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_geography_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_geography|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_government_and_politics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_government_and_politics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_macroeconomics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_macroeconomics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_mathematics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_mathematics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_microeconomics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_microeconomics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_physics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_physics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_psychology_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_psychology|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_statistics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_statistics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_us_history_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_us_history|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_high_school_world_history_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-high_school_world_history|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_aging_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_aging|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_human_sexuality_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-human_sexuality|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_international_law_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-international_law|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_jurisprudence_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-jurisprudence|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_logical_fallacies_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-logical_fallacies|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_machine_learning_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-machine_learning|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_management_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-management|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-management|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_marketing_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-marketing|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_medical_genetics_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-medical_genetics|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_miscellaneous_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-miscellaneous|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_disputes_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_disputes|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_moral_scenarios_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-moral_scenarios|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_nutrition_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-nutrition|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_philosophy_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-philosophy|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_prehistory_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-prehistory|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_accounting_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_accounting|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_law_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_law|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_medicine_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_medicine|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_professional_psychology_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-professional_psychology|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_public_relations_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-public_relations|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_security_studies_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-security_studies|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_sociology_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-sociology|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_us_foreign_policy_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-us_foreign_policy|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_virology_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-virology|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-virology|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_hendrycksTest_world_religions_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|hendrycksTest-world_religions|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_truthfulqa_mc_0", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|truthfulqa:mc|0_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|truthfulqa:mc|0_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "harness_winogrande_5", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["**/details_harness|winogrande|5_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["**/details_harness|winogrande|5_2024-02-17T16-45-59.965925.parquet"]}]}, {"config_name": "results", "data_files": [{"split": "2024_02_17T16_45_59.965925", "path": ["results_2024-02-17T16-45-59.965925.parquet"]}, {"split": "latest", "path": ["results_2024-02-17T16-45-59.965925.parquet"]}]}]}
2024-02-17T16:48:38+00:00
d5c2203314a1d0adb659c0dd3cc5828097dbe647
arbitropy/bcoqa-test
[ "region:us" ]
2024-02-17T16:48:51+00:00
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "story", "dtype": "string"}, {"name": "questions", "sequence": "string"}, {"name": "answers", "sequence": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 2764257.9446640317, "num_examples": 490}], "download_size": 1095052, "dataset_size": 2764257.9446640317}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-17T16:48:54+00:00
c5f220780786f38bcfdaca8d3c8d46581b5272ef
alirzb/SeizureClassifier_Wav2Vec_U_43828667_on_UnBal_43845590
[ "region:us" ]
2024-02-17T16:55:23+00:00
{"dataset_info": {"features": [{"name": "array", "sequence": "float64"}, {"name": "label_true", "dtype": "int64"}, {"name": "label_pred", "dtype": "int64"}, {"name": "id", "dtype": "string"}, {"name": "ws", "dtype": "image"}], "splits": [{"name": "train", "num_bytes": 4304681.0, "num_examples": 9}], "download_size": 1707867, "dataset_size": 4304681.0}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-17T17:08:44+00:00
7a5d4c3ef3cb7587acd180e6a79a9a6ab07bf2f1
CyberHarem/clotho_neuralcloud
[ "region:us" ]
2024-02-17T16:55:42+00:00
{}
2024-02-17T16:57:13+00:00
55b8e6131e6bb7d576c9b5a3bd1af46c0d6616ff
# Dataset of willow/ウィロウ/薇洛儿 (Neural Cloud) This is the dataset of willow/ウィロウ/薇洛儿 (Neural Cloud), containing 22 images and their tags. The core tags of this character are `pink_hair, breasts, red_eyes, short_hair, large_breasts, hat, eyewear_on_head, sunglasses, bangs, bow, hair_ornament, pink_eyes`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 22 | 44.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/willow_neuralcloud/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 22 | 19.86 MiB | [Download](https://huggingface.co/datasets/CyberHarem/willow_neuralcloud/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 52 | 43.38 MiB | [Download](https://huggingface.co/datasets/CyberHarem/willow_neuralcloud/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 22 | 36.47 MiB | [Download](https://huggingface.co/datasets/CyberHarem/willow_neuralcloud/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 52 | 71.15 MiB | [Download](https://huggingface.co/datasets/CyberHarem/willow_neuralcloud/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/willow_neuralcloud', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------| | 0 | 22 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, looking_at_viewer, gloves, open_mouth, black_thighhighs, jacket, smile, holding, bowtie, skirt, white_shirt | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | looking_at_viewer | gloves | open_mouth | black_thighhighs | jacket | smile | holding | bowtie | skirt | white_shirt | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:---------|:-------------|:-------------------|:---------|:--------|:----------|:---------|:--------|:--------------| | 0 | 22 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/willow_neuralcloud
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-02-17T16:55:50+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-02-17T17:05:02+00:00
143d5b2a9777a7162d3c167fec17cdbaa3be6982
# Dataset Card for Spider-Releastic This dataset variant contains only the Spider Realistic dataset used in "Structure-Grounded Pretraining for Text-to-SQL". The dataset is created based on the dev split of the Spider dataset (2020-06-07 version from https://yale-lily.github.io/spider). The authors of the dataset modified the original questions to remove the explicit mention of column names while keeping the SQL queries unchanged to better evaluate the model's capability in aligning the NL utterance and the DB schema. For more details, please refer to the authors paper https://arxiv.org/abs/2010.12773. The SQL queries and databases from the original Spider dataset are kept unchanged. For the official database files, please refer to the Spider release site: https://yale-lily.github.io/spider. This dataset was copied from Zenodo: https://zenodo.org/records/5205322. This dataset is distributed under the CC BY-SA 4.0 license. ## Paper Abstract > Learning to capture text-table alignment is essential for tasks like text-to-SQL. A model needs to correctly recognize natural language references to columns and values and to ground them in the given database schema. In this paper, we present a novel weakly supervised Structure-Grounded pretraining framework (StruG) for text-to-SQL that can effectively learn to capture text-table alignment based on a parallel text-table corpus. We identify a set of novel prediction tasks: column grounding, value grounding and column-value mapping, and leverage them to pretrain a text-table encoder. Additionally, to evaluate different methods under more realistic text-table alignment settings, we create a new evaluation set Spider-Realistic based on Spider dev set with explicit mentions of column names removed, and adopt eight existing text-to-SQL datasets for cross-database evaluation. STRUG brings significant improvement over BERT-LARGE in all settings. Compared with existing pretraining methods such as GRAPPA, STRUG achieves similar performance on Spider, and outperforms all baselines on more realistic sets. ## Citation Information If you use the dataset, please cite the following papers including the original Spider datasets, Finegan-Dollak et al., 2018 and the original datasets for Restaurants, GeoQuery, Scholar, Academic, IMDB, and Yelp. ``` @article{deng2020structure, title={Structure-Grounded Pretraining for Text-to-SQL}, author={Deng, Xiang and Awadallah, Ahmed Hassan and Meek, Christopher and Polozov, Oleksandr and Sun, Huan and Richardson, Matthew}, journal={arXiv preprint arXiv:2010.12773}, year={2020} } @inproceedings{Yu&al.18c, year = 2018, title = {Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task}, booktitle = {EMNLP}, author = {Tao Yu and Rui Zhang and Kai Yang and Michihiro Yasunaga and Dongxu Wang and Zifan Li and James Ma and Irene Li and Qingning Yao and Shanelle Roman and Zilin Zhang and Dragomir Radev } } @InProceedings{P18-1033, author = "Finegan-Dollak, Catherine and Kummerfeld, Jonathan K. and Zhang, Li and Ramanathan, Karthik and Sadasivam, Sesh and Zhang, Rui and Radev, Dragomir", title = "Improving Text-to-SQL Evaluation Methodology", booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", year = "2018", publisher = "Association for Computational Linguistics", pages = "351--360", location = "Melbourne, Australia", url = "http://aclweb.org/anthology/P18-1033" } @InProceedings{data-sql-imdb-yelp, dataset = {IMDB and Yelp}, author = {Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig}, title = {SQLizer: Query Synthesis from Natural Language}, booktitle = {International Conference on Object-Oriented Programming, Systems, Languages, and Applications, ACM}, month = {October}, year = {2017}, pages = {63:1--63:26}, url = {http://doi.org/10.1145/3133887}, } @article{data-academic, dataset = {Academic}, author = {Fei Li and H. V. Jagadish}, title = {Constructing an Interactive Natural Language Interface for Relational Databases}, journal = {Proceedings of the VLDB Endowment}, volume = {8}, number = {1}, month = {September}, year = {2014}, pages = {73--84}, url = {http://dx.doi.org/10.14778/2735461.2735468}, } @InProceedings{data-atis-geography-scholar, dataset = {Scholar, and Updated ATIS and Geography}, author = {Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer}, title = {Learning a Neural Semantic Parser from User Feedback}, booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, year = {2017}, pages = {963--973}, location = {Vancouver, Canada}, url = {http://www.aclweb.org/anthology/P17-1089}, } @inproceedings{data-geography-original dataset = {Geography, original}, author = {John M. Zelle and Raymond J. Mooney}, title = {Learning to Parse Database Queries Using Inductive Logic Programming}, booktitle = {Proceedings of the Thirteenth National Conference on Artificial Intelligence - Volume 2}, year = {1996}, pages = {1050--1055}, location = {Portland, Oregon}, url = {http://dl.acm.org/citation.cfm?id=1864519.1864543}, } @inproceedings{data-restaurants-logic, author = {Lappoon R. Tang and Raymond J. Mooney}, title = {Automated Construction of Database Interfaces: Intergrating Statistical and Relational Learning for Semantic Parsing}, booktitle = {2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora}, year = {2000}, pages = {133--141}, location = {Hong Kong, China}, url = {http://www.aclweb.org/anthology/W00-1317}, } @inproceedings{data-restaurants-original, author = {Ana-Maria Popescu, Oren Etzioni, and Henry Kautz}, title = {Towards a Theory of Natural Language Interfaces to Databases}, booktitle = {Proceedings of the 8th International Conference on Intelligent User Interfaces}, year = {2003}, location = {Miami, Florida, USA}, pages = {149--157}, url = {http://doi.acm.org/10.1145/604045.604070}, } @inproceedings{data-restaurants, author = {Alessandra Giordani and Alessandro Moschitti}, title = {Automatic Generation and Reranking of SQL-derived Answers to NL Questions}, booktitle = {Proceedings of the Second International Conference on Trustworthy Eternal Systems via Evolving Software, Data and Knowledge}, year = {2012}, location = {Montpellier, France}, pages = {59--76}, url = {https://doi.org/10.1007/978-3-642-45260-4_5}, } ```
aherntech/spider-realistic
[ "task_categories:text2text-generation", "size_categories:n<1K", "language:en", "license:cc-by-4.0", "text-to-sql", "arxiv:2010.12773", "region:us" ]
2024-02-17T17:00:56+00:00
{"language": ["en"], "license": "cc-by-4.0", "size_categories": ["n<1K"], "task_categories": ["text2text-generation"], "pretty_name": "Spider-Rea;ostoc", "tags": ["text-to-sql"]}
2024-02-17T17:19:05+00:00
d3ef3e2957d4568807ba310c2acc921f7502768e
# Dataset Card for "Gold-alpaca-med-new-small" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
hemanth955/Gold-alpaca-med-new-small
[ "region:us" ]
2024-02-17T17:06:37+00:00
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "Input", "dtype": "string"}, {"name": "Output", "dtype": "int64"}, {"name": "Instruction", "dtype": "string"}, {"name": "Text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5229084, "num_examples": 3000}], "download_size": 1204919, "dataset_size": 5229084}}
2024-02-17T17:06:41+00:00
4e92b1ddb9722c5f2358f2e68521896a8e75993a
uisikdag/embeddings_getstart
[ "license:apache-2.0", "region:us" ]
2024-02-17T17:10:07+00:00
{"license": "apache-2.0"}
2024-02-17T17:10:45+00:00
4d8a6247a05c59706a9e6a17cbf19ed0e0360fd0
# Annotation Each date in the Products-Real and Products-Synth datasets is annotated with class, bounding box coordinates, date transcription, image width, and height. There are four classes defined: date, due, prod, and code in the training sets. Expiration dates in the test set of Product-Real are specifically labeled as "exp" class for easy evaluation, unlike the training set of Product-Real. Each component in the Date-Real and Date-Synth datasets is annotated with class, bounding box, and transcription. The day, month, and year are used as the classes for each component of the dates. Moreover, Components-Real and Components-Synth datasets consist of the components of the day, month, and year and their transcriptions. # Citation Dataset published originally in `A Generalized Framework for Recognition of Expiration Date on Product Packages Using Fully Convolutional Networks` @article{seker2022generalized, title={A generalized framework for recognition of expiration dates on product packages using fully convolutional networks}, author={Seker, Ahmet Cagatay and Ahn, Sang Chul}, journal={Expert Systems with Applications}, pages={117310}, year={2022}, publisher={Elsevier} }
dimun/ExpirationDate
[ "task_categories:object-detection", "language:en", "license:afl-3.0", "region:us" ]
2024-02-17T17:16:08+00:00
{"language": ["en"], "license": "afl-3.0", "task_categories": ["object-detection"]}
2024-02-17T17:27:54+00:00
2305e7834fca367897ad93968493a07007577b27
SST with openai whisper large V3 for collect better part of the voices
sarpba/common_voice_16.1_hu_texts
[ "license:apache-2.0", "region:us" ]
2024-02-17T17:16:36+00:00
{"license": "apache-2.0"}
2024-02-17T17:19:07+00:00
1ce25dcb86d8c56e5c81697e48deefa094187d95
CyberHarem/mai_neuralcloud
[ "region:us" ]
2024-02-17T17:18:02+00:00
{}
2024-02-17T17:18:53+00:00
44a344e5439ca8ed2518c7f6e7603f3b55f9ebaf
CyberHarem/max_neuralcloud
[ "region:us" ]
2024-02-17T17:18:10+00:00
{}
2024-02-17T17:19:03+00:00
584ac0b15a0f6640bf66968485e1f607b4665548
CyberHarem/helix_neuralcloud
[ "region:us" ]
2024-02-17T17:18:13+00:00
{}
2024-02-17T17:18:48+00:00
a896c36711e6c69fcb5c69746ed1e88e5a4d15d9
alisson40889/cidadao
[ "license:openrail", "region:us" ]
2024-02-17T17:20:52+00:00
{"license": "openrail"}
2024-02-17T17:21:34+00:00
2330d906ebe06a5ba89655ac218cf79a4b98bd37
# Dataset of fresnel/フレネル/菲涅尔 (Neural Cloud) This is the dataset of fresnel/フレネル/菲涅尔 (Neural Cloud), containing 13 images and their tags. The core tags of this character are `purple_hair, purple_eyes, short_hair, goggles_on_head, bangs, breasts`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:---------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 13 | 26.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fresnel_neuralcloud/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 13 | 11.98 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fresnel_neuralcloud/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 32 | 25.65 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fresnel_neuralcloud/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 13 | 22.55 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fresnel_neuralcloud/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 32 | 39.26 MiB | [Download](https://huggingface.co/datasets/CyberHarem/fresnel_neuralcloud/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/fresnel_neuralcloud', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 13 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, looking_at_viewer, crop_top, goggles, shirt, midriff, navel, black_shorts, jacket, jewelry, open_clothes, white_background, bare_shoulders, long_sleeves, off_shoulder, closed_mouth, full_body | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | looking_at_viewer | crop_top | goggles | shirt | midriff | navel | black_shorts | jacket | jewelry | open_clothes | white_background | bare_shoulders | long_sleeves | off_shoulder | closed_mouth | full_body | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------------------|:-----------|:----------|:--------|:----------|:--------|:---------------|:---------|:----------|:---------------|:-------------------|:-----------------|:---------------|:---------------|:---------------|:------------| | 0 | 13 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/fresnel_neuralcloud
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-02-17T17:33:01+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-02-17T17:36:26+00:00
edcf1b3fd8142b60ad705f4490976c6e0ca96dbd
CyberHarem/groove_neuralcloud
[ "region:us" ]
2024-02-17T17:33:35+00:00
{}
2024-02-17T17:33:56+00:00
2dd80cfaf4e152479da599944b4935b0e469f801
# Dataset of hannah/ハンナ/汉娜 (Neural Cloud) This is the dataset of hannah/ハンナ/汉娜 (Neural Cloud), containing 12 images and their tags. The core tags of this character are `animal_ears, brown_hair, long_hair, animal_ear_fluff, bangs, hair_ornament, multicolored_hair, white_hair, bow, grey_eyes, twintails, streaked_hair, tail, very_long_hair, ahoge, hair_between_eyes, hair_bow, breasts, low_twintails`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:--------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 12 | 24.07 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hannah_neuralcloud/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 12 | 11.40 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hannah_neuralcloud/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 34 | 27.59 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hannah_neuralcloud/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 12 | 19.66 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hannah_neuralcloud/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 34 | 41.56 MiB | [Download](https://huggingface.co/datasets/CyberHarem/hannah_neuralcloud/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/hannah_neuralcloud', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:----------------------------------------------------------| | 0 | 12 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, looking_at_viewer, solo, smile, white_shirt, skirt | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | looking_at_viewer | solo | smile | white_shirt | skirt | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:--------------------|:-------|:--------|:--------------|:--------| | 0 | 12 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X |
CyberHarem/hannah_neuralcloud
[ "task_categories:text-to-image", "size_categories:n<1K", "license:mit", "art", "not-for-all-audiences", "region:us" ]
2024-02-17T17:33:59+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-02-17T17:36:59+00:00
615e1fc9f5cb590b31c79ae9e93d77cb873a4dee
rsalshalan/MGB3_V2
[ "region:us" ]
2024-02-17T17:36:14+00:00
{}
2024-02-17T17:36:14+00:00
017fde5eee0dacd52c4651d6ab22a3b3240ce06f
YXu120/NC_Education_dataset
[ "region:us" ]
2024-02-17T17:38:35+00:00
{}
2024-02-17T17:38:35+00:00
f56c78fe3fdd22795a6261b56e8659a8514be429
Hack90/virus_tiny
[ "region:us" ]
2024-02-17T17:41:16+00:00
{"dataset_info": {"features": [{"name": "Accession", "dtype": "string"}, {"name": "Organism_Name", "dtype": "string"}, {"name": "Submitters", "dtype": "string"}, {"name": "Organization", "dtype": "string"}, {"name": "Org_location", "dtype": "string"}, {"name": "Release_Date", "dtype": "string"}, {"name": "Isolate", "dtype": "string"}, {"name": "Species", "dtype": "string"}, {"name": "Genus", "dtype": "string"}, {"name": "Family", "dtype": "string"}, {"name": "Molecule_type", "dtype": "string"}, {"name": "Length", "dtype": "int64"}, {"name": "Sequence_Type", "dtype": "string"}, {"name": "Publications", "dtype": "float64"}, {"name": "Geo_Location", "dtype": "string"}, {"name": "Country", "dtype": "string"}, {"name": "Host", "dtype": "string"}, {"name": "Isolation_Source", "dtype": "string"}, {"name": "Collection_Date", "dtype": "string"}, {"name": "BioSample", "dtype": "string"}, {"name": "BioProject", "dtype": "string"}, {"name": "GenBank_Title", "dtype": "string"}, {"name": "Sequence", "dtype": "string"}, {"name": "__index_level_0__", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 172388184, "num_examples": 13829}], "download_size": 71753842, "dataset_size": 172388184}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
2024-02-17T17:41:20+00:00
56d70d717d94b10a64f87e347a83af740a297c97
LiukG/From_Genebank
[ "region:us" ]
2024-02-17T17:41:34+00:00
{}
2024-02-17T17:41:34+00:00
652ac6e49721442e74be2cca27bbd4f7343ac7ef
Rigoleto/drone-detection
[ "region:us" ]
2024-02-17T17:42:28+00:00
{}
2024-02-17T17:42:28+00:00
8e661bb46ab5fc89dd0a0b53b5ac214b4f59c308
# Dataset of dushevnaya/ドゥシェーヴヌイ/杜莎妮 (Neural Cloud) This is the dataset of dushevnaya/ドゥシェーヴヌイ/杜莎妮 (Neural Cloud), containing 30 images and their tags. The core tags of this character are `long_hair, animal_ears, braid, grey_hair, bangs, hair_between_eyes, breasts, green_eyes, blue_eyes, large_breasts, white_hair`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:------------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 30 | 44.58 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dushevnaya_neuralcloud/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 30 | 23.31 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dushevnaya_neuralcloud/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 69 | 48.72 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dushevnaya_neuralcloud/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 30 | 39.63 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dushevnaya_neuralcloud/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 69 | 76.02 MiB | [Download](https://huggingface.co/datasets/CyberHarem/dushevnaya_neuralcloud/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/dushevnaya_neuralcloud', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | blush, white_background, 1girl, open_mouth, simple_background, solo, green_hairband, holding, looking_at_viewer, bare_shoulders, collarbone, dress, hair_flower, official_alternate_costume, smile, upper_body | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | blush | white_background | 1girl | open_mouth | simple_background | solo | green_hairband | holding | looking_at_viewer | bare_shoulders | collarbone | dress | hair_flower | official_alternate_costume | smile | upper_body | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------------------|:--------|:-------------|:--------------------|:-------|:-----------------|:----------|:--------------------|:-----------------|:-------------|:--------|:--------------|:-----------------------------|:--------|:-------------| | 0 | 6 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/dushevnaya_neuralcloud
[ "region:us" ]
2024-02-17T17:42:52+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-02-17T17:42:52+00:00
1082a0c2b7c04724f7435d03717c6b5c4d65745a
CyberHarem/nascita_neuralcloud
[ "region:us" ]
2024-02-17T17:42:59+00:00
{}
2024-02-17T17:43:26+00:00
f5599486ea67d96ec6238d206149b5ac5b6bee7f
# Dataset of abigail/アビゲイル/阿比盖尔 (Neural Cloud) This is the dataset of abigail/アビゲイル/阿比盖尔 (Neural Cloud), containing 30 images and their tags. The core tags of this character are `animal_ears, blonde_hair, long_hair, blue_eyes, breasts, goggles_on_head, large_breasts, tail, bangs, fang`, which are pruned in this dataset. Images are crawled from many sites (e.g. danbooru, pixiv, zerochan ...), the auto-crawling system is powered by [DeepGHS Team](https://github.com/deepghs)([huggingface organization](https://huggingface.co/deepghs)). ## List of Packages | Name | Images | Size | Download | Type | Description | |:-----------------|---------:|:----------|:---------------------------------------------------------------------------------------------------------------------|:-----------|:---------------------------------------------------------------------| | raw | 30 | 29.39 MiB | [Download](https://huggingface.co/datasets/CyberHarem/abigail_neuralcloud/resolve/main/dataset-raw.zip) | Waifuc-Raw | Raw data with meta information (min edge aligned to 1400 if larger). | | 800 | 30 | 19.44 MiB | [Download](https://huggingface.co/datasets/CyberHarem/abigail_neuralcloud/resolve/main/dataset-800.zip) | IMG+TXT | dataset with the shorter side not exceeding 800 pixels. | | stage3-p480-800 | 65 | 36.79 MiB | [Download](https://huggingface.co/datasets/CyberHarem/abigail_neuralcloud/resolve/main/dataset-stage3-p480-800.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | | 1200 | 30 | 26.80 MiB | [Download](https://huggingface.co/datasets/CyberHarem/abigail_neuralcloud/resolve/main/dataset-1200.zip) | IMG+TXT | dataset with the shorter side not exceeding 1200 pixels. | | stage3-p480-1200 | 65 | 48.75 MiB | [Download](https://huggingface.co/datasets/CyberHarem/abigail_neuralcloud/resolve/main/dataset-stage3-p480-1200.zip) | IMG+TXT | 3-stage cropped dataset with the area not less than 480x480 pixels. | ### Load Raw Dataset with Waifuc We provide raw dataset (including tagged images) for [waifuc](https://deepghs.github.io/waifuc/main/tutorials/installation/index.html) loading. If you need this, just run the following code ```python import os import zipfile from huggingface_hub import hf_hub_download from waifuc.source import LocalSource # download raw archive file zip_file = hf_hub_download( repo_id='CyberHarem/abigail_neuralcloud', repo_type='dataset', filename='dataset-raw.zip', ) # extract files to your directory dataset_dir = 'dataset_dir' os.makedirs(dataset_dir, exist_ok=True) with zipfile.ZipFile(zip_file, 'r') as zf: zf.extractall(dataset_dir) # load the dataset with waifuc source = LocalSource(dataset_dir) for item in source: print(item.image, item.meta['filename'], item.meta['tags']) ``` ## List of Clusters List of tag clustering result, maybe some outfits can be mined here. ### Raw Text Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | Tags | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:------------------------------------------------------------------------------------------------------------| | 0 | 30 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | 1girl, solo, smile, open_mouth, shirt, cleavage, holding, goggles, shorts, blush, gloves, looking_at_viewer | ### Table Version | # | Samples | Img-1 | Img-2 | Img-3 | Img-4 | Img-5 | 1girl | solo | smile | open_mouth | shirt | cleavage | holding | goggles | shorts | blush | gloves | looking_at_viewer | |----:|----------:|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------------------------------|:--------|:-------|:--------|:-------------|:--------|:-----------|:----------|:----------|:---------|:--------|:---------|:--------------------| | 0 | 30 | ![](samples/0/clu0-sample0.png) | ![](samples/0/clu0-sample1.png) | ![](samples/0/clu0-sample2.png) | ![](samples/0/clu0-sample3.png) | ![](samples/0/clu0-sample4.png) | X | X | X | X | X | X | X | X | X | X | X | X |
CyberHarem/abigail_neuralcloud
[ "region:us" ]
2024-02-17T17:43:00+00:00
{"license": "mit", "size_categories": ["n<1K"], "task_categories": ["text-to-image"], "tags": ["art", "not-for-all-audiences"]}
2024-02-17T17:43:00+00:00