Update readme for MRL
Browse files
README.md
CHANGED
@@ -147,6 +147,12 @@ configs:
|
|
147 |
* 10-fold cross-validation split
|
148 |
* Mean ribosome load prediction from Sample et al. (2019) [2]
|
149 |
* input sequence: 5'UTR
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
* Transcript abundance prediction from Outeiral and Deane (2024) [3]
|
151 |
* 7 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, S. cerevisiae, H. volcanii, and P. pastoris
|
152 |
* input sequence: CDS
|
@@ -175,4 +181,4 @@ The datasets listed below are collected following the setting in Wang et al. (20
|
|
175 |
1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
|
176 |
2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
|
177 |
3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
|
178 |
-
4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.
|
|
|
147 |
* 10-fold cross-validation split
|
148 |
* Mean ribosome load prediction from Sample et al. (2019) [2]
|
149 |
* input sequence: 5'UTR
|
150 |
+
* ouput: mean ribosome load
|
151 |
+
* the original data source: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114002
|
152 |
+
* Similar to the previous studies [2, 4], we also split the data into the following three
|
153 |
+
* train: total 76.3k samples
|
154 |
+
* val: total 7600 samples (also called as Random 7600 in [4])
|
155 |
+
* test: total 7600 samples (also called as Human 7600 in [4])
|
156 |
* Transcript abundance prediction from Outeiral and Deane (2024) [3]
|
157 |
* 7 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, S. cerevisiae, H. volcanii, and P. pastoris
|
158 |
* input sequence: CDS
|
|
|
181 |
1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
|
182 |
2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
|
183 |
3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
|
184 |
+
4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.
|