smahbub commited on
Commit
2f6aa73
•
1 Parent(s): 13f8a83

Update readme for MRL

Browse files
Files changed (1) hide show
  1. README.md +7 -1
README.md CHANGED
@@ -147,6 +147,12 @@ configs:
147
  * 10-fold cross-validation split
148
  * Mean ribosome load prediction from Sample et al. (2019) [2]
149
  * input sequence: 5'UTR
 
 
 
 
 
 
150
  * Transcript abundance prediction from Outeiral and Deane (2024) [3]
151
  * 7 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, S. cerevisiae, H. volcanii, and P. pastoris
152
  * input sequence: CDS
@@ -175,4 +181,4 @@ The datasets listed below are collected following the setting in Wang et al. (20
175
  1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
176
  2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
177
  3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
178
- 4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.
 
147
  * 10-fold cross-validation split
148
  * Mean ribosome load prediction from Sample et al. (2019) [2]
149
  * input sequence: 5'UTR
150
+ * ouput: mean ribosome load
151
+ * the original data source: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114002
152
+ * Similar to the previous studies [2, 4], we also split the data into the following three
153
+ * train: total 76.3k samples
154
+ * val: total 7600 samples (also called as Random 7600 in [4])
155
+ * test: total 7600 samples (also called as Human 7600 in [4])
156
  * Transcript abundance prediction from Outeiral and Deane (2024) [3]
157
  * 7 organisms: A. thaliana, D. melanogaster, E.coli, H. sapiens, S. cerevisiae, H. volcanii, and P. pastoris
158
  * input sequence: CDS
 
181
  1. Yanyi Chu, Dan Yu, Yupeng Li, Kaixuan Huang, Yue Shen, Le Cong, Jason Zhang, and Mengdi Wang. A 5 utr language model for decoding untranslated regions of mrna and function predictions. Nature Machine Intelligence, pages 1–12, 2024.
182
  2. Paul J Sample, Ban Wang, David W Reid, Vlad Presnyak, Iain J McFadyen, David R Morris, and Georg Seelig. Human 5 utr design and variant effect prediction from a massively parallel translation assay. Nature biotechnology, 37(7):803–809, 2019.
183
  3. Carlos Outeiral and Charlotte M Deane. Codon language embeddings provide strong signals for use in protein engineering. Nature Machine Intelligence, 6(2):170–179, 2024.
184
+ 4. Xi Wang, Ruichu Gu, Zhiyuan Chen, Yongge Li, Xiaohong Ji, Guolin Ke, and HanWen. Uni-rna: universal pre-trained models revolutionize rna research. bioRxiv, pages 2023–07, 2023.