Datasets:

Modalities:
Text
Formats:
parquet
Languages:
code
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova's picture
Update citation information
d53259b verified
|
raw
history blame
6.31 kB
metadata
annotations_creators:
  - expert-generated
language_creators:
  - found
language:
  - code
license:
  - c-uda
multilinguality:
  - other-programming-languages
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - translation
task_ids: []
pretty_name: CodeXGlueCcCodeToCodeTrans
tags:
  - code-to-code
dataset_info:
  features:
    - name: id
      dtype: int32
    - name: java
      dtype: string
    - name: cs
      dtype: string
  splits:
    - name: train
      num_bytes: 4372657
      num_examples: 10300
    - name: validation
      num_bytes: 226415
      num_examples: 500
    - name: test
      num_bytes: 418595
      num_examples: 1000
  download_size: 4876035
  dataset_size: 5017667

Dataset Card for "code_x_glue_cc_code_to_code_trans"

Table of Contents

Dataset Description

Dataset Summary

CodeXGLUE code-to-code-trans dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans

The dataset is collected from several public repos, including Lucene(http://lucene.apache.org/), POI(http://poi.apache.org/), JGit(https://github.com/eclipse/jgit/) and Antlr(https://github.com/antlr/). We collect both the Java and C# versions of the codes and find the parallel functions. After removing duplicates and functions with the empty body, we split the whole dataset into training, validation and test sets.

Supported Tasks and Leaderboards

  • machine-translation: The dataset can be used to train a model for translating code in Java to C# and vice versa.

Languages

  • Java programming language
  • C# programming language

Dataset Structure

Data Instances

An example of 'validation' looks as follows.

{
    "cs": "public DVRecord(RecordInputStream in1){_option_flags = in1.ReadInt();_promptTitle = ReadUnicodeString(in1);_errorTitle = ReadUnicodeString(in1);_promptText = ReadUnicodeString(in1);_errorText = ReadUnicodeString(in1);int field_size_first_formula = in1.ReadUShort();_not_used_1 = in1.ReadShort();_formula1 = NPOI.SS.Formula.Formula.Read(field_size_first_formula, in1);int field_size_sec_formula = in1.ReadUShort();_not_used_2 = in1.ReadShort();_formula2 = NPOI.SS.Formula.Formula.Read(field_size_sec_formula, in1);_regions = new CellRangeAddressList(in1);}\n", 
    "id": 0, 
    "java": "public DVRecord(RecordInputStream in) {_option_flags = in.readInt();_promptTitle = readUnicodeString(in);_errorTitle = readUnicodeString(in);_promptText = readUnicodeString(in);_errorText = readUnicodeString(in);int field_size_first_formula = in.readUShort();_not_used_1 = in.readShort();_formula1 = Formula.read(field_size_first_formula, in);int field_size_sec_formula = in.readUShort();_not_used_2 = in.readShort();_formula2 = Formula.read(field_size_sec_formula, in);_regions = new CellRangeAddressList(in);}\n"
}

Data Fields

In the following each data field in go is explained for each config. The data fields are the same among all splits.

default

field name type description
id int32 Index of the sample
java string The java version of the code
cs string The C# version of the code

Data Splits

name train validation test
default 10300 500 1000

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

https://github.com/microsoft, https://github.com/madlag

Licensing Information

Computational Use of Data Agreement (C-UDA) License.

Citation Information

@article{DBLP:journals/corr/abs-2102-04664,
  author    = {Shuai Lu and
               Daya Guo and
               Shuo Ren and
               Junjie Huang and
               Alexey Svyatkovskiy and
               Ambrosio Blanco and
               Colin B. Clement and
               Dawn Drain and
               Daxin Jiang and
               Duyu Tang and
               Ge Li and
               Lidong Zhou and
               Linjun Shou and
               Long Zhou and
               Michele Tufano and
               Ming Gong and
               Ming Zhou and
               Nan Duan and
               Neel Sundaresan and
               Shao Kun Deng and
               Shengyu Fu and
               Shujie Liu},
  title     = {CodeXGLUE: {A} Machine Learning Benchmark Dataset for Code Understanding
               and Generation},
  journal   = {CoRR},
  volume    = {abs/2102.04664},
  year      = {2021}
}

Contributions

Thanks to @madlag (and partly also @ncoop57) for adding this dataset.