Datasets:

Modalities:
Text
Formats:
parquet
Languages:
code
ArXiv:
Libraries:
Datasets
pandas
License:

Support streaming

#3
by albertvillanova HF staff - opened
Files changed (3) hide show
  1. README.md +32 -4
  2. common.py +1 -1
  3. dataset_infos.json +0 -1
README.md CHANGED
@@ -69,13 +69,15 @@ dataset_info:
69
  ## Dataset Description
70
 
71
  - **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
 
72
 
73
  ### Dataset Summary
74
 
75
  CodeXGLUE code-to-code-trans dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
76
 
77
  The dataset is collected from several public repos, including Lucene(http://lucene.apache.org/), POI(http://poi.apache.org/), JGit(https://github.com/eclipse/jgit/) and Antlr(https://github.com/antlr/).
78
- We collect both the Java and C# versions of the codes and find the parallel functions. After removing duplicates and functions with the empty body, we split the whole dataset into training, validation and test sets.
 
79
 
80
  ### Supported Tasks and Leaderboards
81
 
@@ -174,9 +176,35 @@ Computational Use of Data Agreement (C-UDA) License.
174
  ### Citation Information
175
 
176
  ```
177
- @article{CodeXGLUE,
178
- title={CodeXGLUE: A Benchmark Dataset and Open Challenge for Code Intelligence},
179
- year={2020},}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
180
  ```
181
 
182
  ### Contributions
 
69
  ## Dataset Description
70
 
71
  - **Homepage:** https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
72
+ - **Paper:** https://arxiv.org/abs/2102.04664
73
 
74
  ### Dataset Summary
75
 
76
  CodeXGLUE code-to-code-trans dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans
77
 
78
  The dataset is collected from several public repos, including Lucene(http://lucene.apache.org/), POI(http://poi.apache.org/), JGit(https://github.com/eclipse/jgit/) and Antlr(https://github.com/antlr/).
79
+
80
+ We collect both the Java and C# versions of the codes and find the parallel functions. After removing duplicates and functions with the empty body, we split the whole dataset into training, validation and test sets.
81
 
82
  ### Supported Tasks and Leaderboards
83
 
 
176
  ### Citation Information
177
 
178
  ```
179
+ @article{DBLP:journals/corr/abs-2102-04664,
180
+ author = {Shuai Lu and
181
+ Daya Guo and
182
+ Shuo Ren and
183
+ Junjie Huang and
184
+ Alexey Svyatkovskiy and
185
+ Ambrosio Blanco and
186
+ Colin B. Clement and
187
+ Dawn Drain and
188
+ Daxin Jiang and
189
+ Duyu Tang and
190
+ Ge Li and
191
+ Lidong Zhou and
192
+ Linjun Shou and
193
+ Long Zhou and
194
+ Michele Tufano and
195
+ Ming Gong and
196
+ Ming Zhou and
197
+ Nan Duan and
198
+ Neel Sundaresan and
199
+ Shao Kun Deng and
200
+ Shengyu Fu and
201
+ Shujie Liu},
202
+ title = {CodeXGLUE: {A} Machine Learning Benchmark Dataset for Code Understanding
203
+ and Generation},
204
+ journal = {CoRR},
205
+ volume = {abs/2102.04664},
206
+ year = {2021}
207
+ }
208
  ```
209
 
210
  ### Contributions
common.py CHANGED
@@ -47,7 +47,7 @@ class Child:
47
 
48
  downloaded_files = {}
49
  for k, v in urls_to_download.items():
50
- downloaded_files[k] = dl_manager.download_and_extract(v)
51
 
52
  return [
53
  datasets.SplitGenerator(
 
47
 
48
  downloaded_files = {}
49
  for k, v in urls_to_download.items():
50
+ downloaded_files[k] = dl_manager.download(v)
51
 
52
  return [
53
  datasets.SplitGenerator(
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "CodeXGLUE code-to-code-trans dataset, available at https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans\n\nThe dataset is collected from several public repos, including Lucene(http://lucene.apache.org/), POI(http://poi.apache.org/), JGit(https://github.com/eclipse/jgit/) and Antlr(https://github.com/antlr/).\n We collect both the Java and C# versions of the codes and find the parallel functions. After removing duplicates and functions with the empty body, we split the whole dataset into training, validation and test sets.", "citation": "@article{DBLP:journals/corr/abs-2102-04664,\n author = {Shuai Lu and\n Daya Guo and\n Shuo Ren and\n Junjie Huang and\n Alexey Svyatkovskiy and\n Ambrosio Blanco and\n Colin B. Clement and\n Dawn Drain and\n Daxin Jiang and\n Duyu Tang and\n Ge Li and\n Lidong Zhou and\n Linjun Shou and\n Long Zhou and\n Michele Tufano and\n Ming Gong and\n Ming Zhou and\n Nan Duan and\n Neel Sundaresan and\n Shao Kun Deng and\n Shengyu Fu and\n Shujie Liu},\n title = {CodeXGLUE: {A} Machine Learning Benchmark Dataset for Code Understanding\n and Generation},\n journal = {CoRR},\n volume = {abs/2102.04664},\n year = {2021}\n}", "homepage": "https://github.com/madlag/CodeXGLUE/tree/main/Code-Code/code-to-code-trans", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "java": {"dtype": "string", "id": null, "_type": "Value"}, "cs": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "code_x_glue_cc_code_to_code_trans", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4372657, "num_examples": 10300, "dataset_name": "code_x_glue_cc_code_to_code_trans"}, "validation": {"name": "validation", "num_bytes": 226415, "num_examples": 500, "dataset_name": "code_x_glue_cc_code_to_code_trans"}, "test": {"name": "test", "num_bytes": 418595, "num_examples": 1000, "dataset_name": "code_x_glue_cc_code_to_code_trans"}}, "download_checksums": {"https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/code-to-code-trans/data/train.java-cs.txt.cs": {"num_bytes": 2387613, "checksum": "8f9e154e38b17cf19840a44c50a00b6fa16397336c302e3cf514b29ddfafa0e9"}, "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/code-to-code-trans/data/train.java-cs.txt.java": {"num_bytes": 1861428, "checksum": "3d2ba1a8f5de30688663ce76bf9b061574d330fc54eb08c4b7eccda74f42be67"}, "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/code-to-code-trans/data/valid.java-cs.txt.cs": {"num_bytes": 124022, "checksum": "687c61db799e9e3369a0822184ba67bb5b007c48025f25d44084cc6f525ce4ea"}, "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/code-to-code-trans/data/valid.java-cs.txt.java": {"num_bytes": 96385, "checksum": "aed88f2a31af5b6367100bfbca6d9c4888fa63685502b21db817d8b0f0ad5272"}, "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/code-to-code-trans/data/test.java-cs.txt.cs": {"num_bytes": 229147, "checksum": "4137527f96c898372e368c75deb3ec8c17c1187ac5a1ae641da1df65e143cd2d"}, "https://raw.githubusercontent.com/madlag/CodeXGLUE/main/Code-Code/code-to-code-trans/data/test.java-cs.txt.java": {"num_bytes": 177440, "checksum": "cad0fb08ae59443baeeb1f58de3af83786358dac8ce3a81fd026708ca1b9b2ee"}}, "download_size": 4876035, "post_processing_size": null, "dataset_size": 5017667, "size_in_bytes": 9893702}}