Datasets:
Tasks:
Translation
Formats:
csv
Size:
10K - 100K
ArXiv:
Tags:
machine-translation
quality-estimation
post-editing
translation
behavioral-data
multidimensional-quality-metric
License:
Update README.md
Browse files
README.md
CHANGED
@@ -327,4 +327,128 @@ The following is an example of the subject `oracle_t1` post-editing for segment
|
|
327 |
"pe_chrf_mean": 79.173,
|
328 |
"pe_chrf_std": 13.679,
|
329 |
"pe_ter_max": 100.0,
|
330 |
-
"pe_ter_min": 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
"pe_chrf_mean": 79.173,
|
328 |
"pe_chrf_std": 13.679,
|
329 |
"pe_ter_max": 100.0,
|
330 |
+
"pe_ter_min": 0.0,
|
331 |
+
"pe_ter_mean": 28.814,
|
332 |
+
"pe_ter_std": 28.827,
|
333 |
+
"pe_comet_max": 0.977,
|
334 |
+
"pe_comet_min": 0.851,
|
335 |
+
"pe_comet_mean": 0.937,
|
336 |
+
"pe_comet_std": 0.035,
|
337 |
+
"pe_xcomet_qe": 0.984,
|
338 |
+
"pe_xcomet_errors": "[]",
|
339 |
+
# Behavioral data
|
340 |
+
"doc_num_edits": 103,
|
341 |
+
"doc_edit_order": 20,
|
342 |
+
"doc_edit_time": 118,
|
343 |
+
"doc_edit_time_filtered": 118,
|
344 |
+
"doc_keys_per_min": 52.37,
|
345 |
+
"doc_chars_per_min": 584.24,
|
346 |
+
"doc_words_per_min": 79.83,
|
347 |
+
"segment_num_edits": 9,
|
348 |
+
"segment_edit_order": 3,
|
349 |
+
"segment_edit_time": 9,
|
350 |
+
"segment_edit_time_filtered": 9,
|
351 |
+
"segment_keys_per_min": 60.0,
|
352 |
+
"segment_chars_per_min": 906.67,
|
353 |
+
"segment_words_per_min": 106.67,
|
354 |
+
"num_enter_actions": 2,
|
355 |
+
"remove_highlights": False,
|
356 |
+
# Texts and annotations
|
357 |
+
"src_text": "The speed of its emerging growth frequently outpaces the development of quality assurance and education.",
|
358 |
+
"mt_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.",
|
359 |
+
"mt_text_highlighted": "De snelheid van de opkomende groei is vaak <minor>sneller</minor> dan de ontwikkeling van kwaliteitsborging en <major>onderwijs.</major>",
|
360 |
+
"pe_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.",
|
361 |
+
"mt_pe_word_aligned": "MT: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.\n" \
|
362 |
+
"PE: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.\n" \
|
363 |
+
" S",
|
364 |
+
"mt_pe_char_aligned": "MT: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.\n" \
|
365 |
+
"PE: De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.\n" \
|
366 |
+
" SS SS SS ",
|
367 |
+
"highlights": """[
|
368 |
+
{
|
369 |
+
'text': 'sneller',
|
370 |
+
'severity': 'minor',
|
371 |
+
'start': 43,
|
372 |
+
'end': 50
|
373 |
+
},
|
374 |
+
{
|
375 |
+
'text': 'onderwijs.',
|
376 |
+
'severity': 'major',
|
377 |
+
'start': 96,
|
378 |
+
'end': 106
|
379 |
+
}
|
380 |
+
]"""
|
381 |
+
# QA annotations
|
382 |
+
"qa_mt_annotator_id": 'qa_nld_3',
|
383 |
+
"qa_pe_annotator_id": 'qa_nld_1',
|
384 |
+
"qa_mt_esa_rating": 100.0,
|
385 |
+
"qa_pe_esa_rating": 80.0,
|
386 |
+
"qa_mt_annotated_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.",
|
387 |
+
"qa_pe_annotated_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en opleiding.",
|
388 |
+
"qa_mt_fixed_text": "De snelheid van de opkomende groei is vaak sneller dan de ontwikkeling van kwaliteitsborging en onderwijs.",
|
389 |
+
"qa_pe_fixed_text": "De snelheid van de ontluikende groei overtreft vaak de ontwikkeling van kwaliteitsborging en onderwijs.",
|
390 |
+
"qa_mt_mqm_errors": "[]",
|
391 |
+
"qa_pe_mqm_errors": """[
|
392 |
+
{
|
393 |
+
"text": "opkomende",
|
394 |
+
"text_start": 19,
|
395 |
+
"text_end": 28,
|
396 |
+
"correction":
|
397 |
+
"ontluikende",
|
398 |
+
"correction_start": 19,
|
399 |
+
"correction_end": 30,
|
400 |
+
"description": "Mistranslation - not the correct word",
|
401 |
+
"mqm_category": "Mistranslation",
|
402 |
+
"severity": "Minor",
|
403 |
+
"comment": "",
|
404 |
+
"edit_order": 1
|
405 |
+
}
|
406 |
+
]"""
|
407 |
+
|
408 |
+
}
|
409 |
+
```
|
410 |
+
|
411 |
+
The text is provided as-is, without further preprocessing or tokenization.
|
412 |
+
|
413 |
+
### Dataset Creation
|
414 |
+
|
415 |
+
The datasets were parsed from GroTE inputs, logs and outputs for the QE4PE study, available in this repository. Processed dataframes using the `qe4pe process_task_data` command. Refer to the [QE4PE Github repository](https://github.com/gsarti/qe4pe) for additional details. The overall structure and processing of the dataset were inspired by the [DivEMT dataset](https://huggingface.co/datasets/GroNLP/divemt).
|
416 |
+
|
417 |
+
### QA Annotations
|
418 |
+
|
419 |
+
MQM annotations were collected using Google Sheets and highlights were parsed from HTML exported output, ensuring their compliance with well-formedness checks. Out of the original 51 docs (324 segments) in `main`, 24 docs (10 biomedical, 14 social, totaling 148 segments) were samples at random and annotated by professional translators.
|
420 |
+
|
421 |
+
## Additional Information
|
422 |
+
|
423 |
+
### Metric signatures
|
424 |
+
|
425 |
+
The following signatures correspond to the metrics reported in the processed dataframes:
|
426 |
+
|
427 |
+
```shell
|
428 |
+
# Computed using SacreBLEU: https://github.com/mjpost/sacrebleu
|
429 |
+
BLEU: case:mixed|eff:yes|tok:13a|smooth:exp|version:2.3.1
|
430 |
+
ChrF: case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1
|
431 |
+
TER: case:lc|tok:tercom|norm:no|punct:yes|asian:no|version:2.3.1
|
432 |
+
|
433 |
+
# Computed using Unbabel COMET: https://github.com/Unbabel/COMET
|
434 |
+
Comet: Python3.11.9|Comet2.2.2|fp32|Unbabel/wmt22-comet-da
|
435 |
+
XComet: Python3.10.12|Comet2.2.1|fp32|Unbabel/XCOMET-XXL
|
436 |
+
```
|
437 |
+
|
438 |
+
### Dataset Curators
|
439 |
+
|
440 |
+
For problems related to this 🤗 Datasets version, please contact me at [gabriele.sarti996@gmail.com](mailto:gabriele.sarti996@gmail.com).
|
441 |
+
|
442 |
+
### Citation Information
|
443 |
+
|
444 |
+
```bibtex
|
445 |
+
@misc{sarti-etal-2024-qe4pe,
|
446 |
+
title={{QE4PE}: Word-level Quality Estimation for Human Post-Editing},
|
447 |
+
author={Gabriele Sarti and Vilém Zouhar and Grzegorz Chrupała and Ana Guerberof-Arenas and Malvina Nissim and Arianna Bisazza},
|
448 |
+
year={2025},
|
449 |
+
eprint={2503.03044},
|
450 |
+
archivePrefix={arXiv},
|
451 |
+
primaryClass={cs.CL},
|
452 |
+
url={https://arxiv.org/abs/2503.03044},
|
453 |
+
}
|
454 |
+
```
|