url
stringlengths 61
61
| repository_url
stringclasses 1
value | labels_url
stringlengths 75
75
| comments_url
stringlengths 70
70
| events_url
stringlengths 68
68
| html_url
stringlengths 49
51
| id
int64 1.4B
1.83B
| node_id
stringlengths 18
19
| number
int64 5.08k
6.1k
| title
stringlengths 1
290
| user
dict | labels
list | state
stringclasses 2
values | locked
bool 1
class | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[s] | updated_at
timestamp[s] | closed_at
timestamp[s] | author_association
stringclasses 3
values | active_lock_reason
null | body
stringlengths 3
33.9k
⌀ | reactions
dict | timeline_url
stringlengths 70
70
| performed_via_github_app
null | state_reason
stringclasses 3
values | draft
bool 2
classes | pull_request
dict | is_pull_request
bool 2
classes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/6100 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6100/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6100/comments | https://api.github.com/repos/huggingface/datasets/issues/6100/events | https://github.com/huggingface/datasets/issues/6100 | 1,828,118,930 | I_kwDODunzps5s9uGS | 6,100 | TypeError when loading from GCP bucket | {
"login": "bilelomrani1",
"id": 16692099,
"node_id": "MDQ6VXNlcjE2NjkyMDk5",
"avatar_url": "https://avatars.githubusercontent.com/u/16692099?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bilelomrani1",
"html_url": "https://github.com/bilelomrani1",
"followers_url": "https://api.github.com/users/bilelomrani1/followers",
"following_url": "https://api.github.com/users/bilelomrani1/following{/other_user}",
"gists_url": "https://api.github.com/users/bilelomrani1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bilelomrani1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bilelomrani1/subscriptions",
"organizations_url": "https://api.github.com/users/bilelomrani1/orgs",
"repos_url": "https://api.github.com/users/bilelomrani1/repos",
"events_url": "https://api.github.com/users/bilelomrani1/events{/privacy}",
"received_events_url": "https://api.github.com/users/bilelomrani1/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-07-30T23:03:00 | 2023-07-30T23:03:00 | null | NONE | null | ### Describe the bug
Loading a dataset from a GCP bucket raises a type error. This bug was introduced recently (either in 2.14 or 2.14.1), and appeared during a migration from 2.13.1.
### Steps to reproduce the bug
Load any file from a GCP bucket:
```python
import datasets
datasets.load_dataset("json", data_files=["gs://..."])
```
The following exception is raised:
```python
Traceback (most recent call last):
...
packages/datasets/data_files.py", line 335, in resolve_pattern
protocol_prefix = fs.protocol + "://" if fs.protocol != "file" else ""
TypeError: can only concatenate tuple (not "str") to tuple
```
With a `GoogleFileSystem`, the attribute `fs.protocol` is a tuple `('gs', 'gcs')` and hence cannot be concatenated with a string.
### Expected behavior
The file should be loaded without exception.
### Environment info
- `datasets` version: 2.14.1
- Platform: macOS-13.2.1-x86_64-i386-64bit
- Python version: 3.10.12
- Huggingface_hub version: 0.16.4
- PyArrow version: 12.0.1
- Pandas version: 2.0.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6100/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6100/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6099 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6099/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6099/comments | https://api.github.com/repos/huggingface/datasets/issues/6099/events | https://github.com/huggingface/datasets/issues/6099 | 1,827,893,576 | I_kwDODunzps5s83FI | 6,099 | How do i get "amazon_us_reviews | {
"login": "IqraBaluch",
"id": 57810189,
"node_id": "MDQ6VXNlcjU3ODEwMTg5",
"avatar_url": "https://avatars.githubusercontent.com/u/57810189?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/IqraBaluch",
"html_url": "https://github.com/IqraBaluch",
"followers_url": "https://api.github.com/users/IqraBaluch/followers",
"following_url": "https://api.github.com/users/IqraBaluch/following{/other_user}",
"gists_url": "https://api.github.com/users/IqraBaluch/gists{/gist_id}",
"starred_url": "https://api.github.com/users/IqraBaluch/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/IqraBaluch/subscriptions",
"organizations_url": "https://api.github.com/users/IqraBaluch/orgs",
"repos_url": "https://api.github.com/users/IqraBaluch/repos",
"events_url": "https://api.github.com/users/IqraBaluch/events{/privacy}",
"received_events_url": "https://api.github.com/users/IqraBaluch/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [] | 2023-07-30T11:02:17 | 2023-07-30T11:02:17 | null | NONE | null | ### Feature request
I have been trying to load 'amazon_us_dataset" but unable to do so.
`amazon_us_reviews = load_dataset('amazon_us_reviews')`
`print(amazon_us_reviews)`
> [ValueError: Config name is missing.
Please pick one among the available configs: ['Wireless_v1_00', 'Watches_v1_00', 'Video_Games_v1_00', 'Video_DVD_v1_00', 'Video_v1_00', 'Toys_v1_00', 'Tools_v1_00', 'Sports_v1_00', 'Software_v1_00', 'Shoes_v1_00', 'Pet_Products_v1_00', 'Personal_Care_Appliances_v1_00', 'PC_v1_00', 'Outdoors_v1_00', 'Office_Products_v1_00', 'Musical_Instruments_v1_00', 'Music_v1_00', 'Mobile_Electronics_v1_00', 'Mobile_Apps_v1_00', 'Major_Appliances_v1_00', 'Luggage_v1_00', 'Lawn_and_Garden_v1_00', 'Kitchen_v1_00', 'Jewelry_v1_00', 'Home_Improvement_v1_00', 'Home_Entertainment_v1_00', 'Home_v1_00', 'Health_Personal_Care_v1_00', 'Grocery_v1_00', 'Gift_Card_v1_00', 'Furniture_v1_00', 'Electronics_v1_00', 'Digital_Video_Games_v1_00', 'Digital_Video_Download_v1_00', 'Digital_Software_v1_00', 'Digital_Music_Purchase_v1_00', 'Digital_Ebook_Purchase_v1_00', 'Camera_v1_00', 'Books_v1_00', 'Beauty_v1_00', 'Baby_v1_00', 'Automotive_v1_00', 'Apparel_v1_00', 'Digital_Ebook_Purchase_v1_01', 'Books_v1_01', 'Books_v1_02']
Example of usage:
`load_dataset('amazon_us_reviews', 'Wireless_v1_00')`]
__________________________________________________________________________
`amazon_us_reviews = load_dataset('amazon_us_reviews', 'Watches_v1_00')
print(amazon_us_reviews)`
**ERROR**
`Generating` train split: 0%
0/960872 [00:00<?, ? examples/s]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/datasets/builder.py in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)
1692 )
-> 1693 example = self.info.features.encode_example(record) if self.info.features is not None else record
1694 writer.write(example, key)
11 frames
KeyError: 'marketplace'
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/datasets/builder.py in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)
1710 if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
1711 e = e.__context__
-> 1712 raise DatasetGenerationError("An error occurred while generating the dataset") from e
1713
1714 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the dataset
### Motivation
The dataset I'm using
https://huggingface.co/datasets/amazon_us_reviews
### Your contribution
What is the best way to load this data | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6099/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6099/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6098 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6098/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6098/comments | https://api.github.com/repos/huggingface/datasets/issues/6098/events | https://github.com/huggingface/datasets/pull/6098 | 1,827,655,071 | PR_kwDODunzps5WuCn1 | 6,098 | Expanduser in save_to_disk() | {
"login": "Unknown3141592",
"id": 51715864,
"node_id": "MDQ6VXNlcjUxNzE1ODY0",
"avatar_url": "https://avatars.githubusercontent.com/u/51715864?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Unknown3141592",
"html_url": "https://github.com/Unknown3141592",
"followers_url": "https://api.github.com/users/Unknown3141592/followers",
"following_url": "https://api.github.com/users/Unknown3141592/following{/other_user}",
"gists_url": "https://api.github.com/users/Unknown3141592/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Unknown3141592/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Unknown3141592/subscriptions",
"organizations_url": "https://api.github.com/users/Unknown3141592/orgs",
"repos_url": "https://api.github.com/users/Unknown3141592/repos",
"events_url": "https://api.github.com/users/Unknown3141592/events{/privacy}",
"received_events_url": "https://api.github.com/users/Unknown3141592/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-07-29T20:50:45 | 2023-07-29T20:58:57 | null | NONE | null | Fixes #5651. The same problem occurs when loading from disk so I fixed it there too.
I am not sure why the case distinction between local and remote filesystems is even necessary for `DatasetDict` when saving to disk. Imo this could be removed (leaving only `fs.makedirs(dataset_dict_path, exist_ok=True)`). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6098/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6098/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6098",
"html_url": "https://github.com/huggingface/datasets/pull/6098",
"diff_url": "https://github.com/huggingface/datasets/pull/6098.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6098.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6097 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6097/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6097/comments | https://api.github.com/repos/huggingface/datasets/issues/6097/events | https://github.com/huggingface/datasets/issues/6097 | 1,827,054,143 | I_kwDODunzps5s5qI_ | 6,097 | Dataset.get_nearest_examples does not return all feature values for the k most similar datapoints - side effect of Dataset.set_format | {
"login": "aschoenauer-sebag",
"id": 2538048,
"node_id": "MDQ6VXNlcjI1MzgwNDg=",
"avatar_url": "https://avatars.githubusercontent.com/u/2538048?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/aschoenauer-sebag",
"html_url": "https://github.com/aschoenauer-sebag",
"followers_url": "https://api.github.com/users/aschoenauer-sebag/followers",
"following_url": "https://api.github.com/users/aschoenauer-sebag/following{/other_user}",
"gists_url": "https://api.github.com/users/aschoenauer-sebag/gists{/gist_id}",
"starred_url": "https://api.github.com/users/aschoenauer-sebag/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/aschoenauer-sebag/subscriptions",
"organizations_url": "https://api.github.com/users/aschoenauer-sebag/orgs",
"repos_url": "https://api.github.com/users/aschoenauer-sebag/repos",
"events_url": "https://api.github.com/users/aschoenauer-sebag/events{/privacy}",
"received_events_url": "https://api.github.com/users/aschoenauer-sebag/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Actually, my bad -- specifying\r\n```python\r\nfoo.set_format('numpy', ['vectors'], output_all_columns=True)\r\n```\r\nfixes it."
] | 2023-07-28T20:31:59 | 2023-07-28T20:49:58 | 2023-07-28T20:49:58 | NONE | null | ### Describe the bug
Hi team!
I observe that there seems to be a side effect of `Dataset.set_format`: after setting a format and creating a FAISS index, the method `get_nearest_examples` from the `Dataset` class, fails to retrieve anything else but the embeddings themselves - not super useful. This is not the case if not using the `set_format` method: you can also retrieve any other feature value, such as an index/id/etc.
Are you able to reproduce what I observe?
### Steps to reproduce the bug
```python
from datasets import Dataset
import numpy as np
foo = {'vectors': np.random.random((100,1024)), 'ids': [str(u) for u in range(100)]}
foo = Dataset.from_dict(foo)
foo.set_format('numpy', ['vectors'])
foo.add_faiss_index('vectors')
new_vector = np.random.random(1024)
scores, res = foo.get_nearest_examples('vectors', new_vector, k=3)
```
This will return, for the resulting most similar vectors to `new_vector` - in particular it will not return the `ids` feature:
```
{'vectors': array([[random values ...]])}
```
### Expected behavior
The expected behavior happens when the `set_format` method is not called:
```python
from datasets import Dataset
import numpy as np
foo = {'vectors': np.random.random((100,1024)), 'ids': [str(u) for u in range(100)]}
foo = Dataset.from_dict(foo)
# foo.set_format('numpy', ['vectors'])
foo.add_faiss_index('vectors')
new_vector = np.random.random(1024)
scores, res = foo.get_nearest_examples('vectors', new_vector, k=3)
```
This *will* return the `ids` of the similar vectors - with unfortunately a list of lists in lieu of the array I think for caching reasons - read it elsewhere
```
{'vectors': [[random values on multiple lines...]], 'ids': ['x', 'y', 'z']}
```
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-5.4.0-155-generic-x86_64-with-glibc2.31
- Python version: 3.10.6
- Huggingface_hub version: 0.15.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6097/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6097/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6096 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6096/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6096/comments | https://api.github.com/repos/huggingface/datasets/issues/6096/events | https://github.com/huggingface/datasets/pull/6096 | 1,826,731,091 | PR_kwDODunzps5Wq9Hb | 6,096 | Add `fsspec` support for `to_json`, `to_csv`, and `to_parquet` | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6096). All of your documentation changes will be reflected on that endpoint."
] | 2023-07-28T16:36:59 | 2023-07-29T21:25:24 | null | CONTRIBUTOR | null | Hi to whoever is reading this! 🤗 (Most likely @mariosasko)
## What's in this PR?
This PR replaces the `open` from Python with `fsspec.open` and adds the argument `storage_options` for the methods `to_json`, `to_csv`, and `to_parquet`, to allow users to export any 🤗`Dataset` into a file in a file-system as requested at #6086.
## What's missing in this PR?
As per `to_json`, `to_csv`, and `to_parquet` docstrings for the recently included `storage_options` arg, I've scoped it to 2.15.0, so we should check that before merging in case we want to scope that for 2.14.2 instead.
Additionally, should we also add `fsspec` support for the `from_csv`, `from_json`, and `from_parquet` methods? If you want me to do so @mariosasko just let me know and I'll create another PR to support that too! | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6096/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6096/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6096",
"html_url": "https://github.com/huggingface/datasets/pull/6096",
"diff_url": "https://github.com/huggingface/datasets/pull/6096.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6096.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6095 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6095/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6095/comments | https://api.github.com/repos/huggingface/datasets/issues/6095/events | https://github.com/huggingface/datasets/pull/6095 | 1,826,496,967 | PR_kwDODunzps5WqJtr | 6,095 | Fix deprecation of errors in TextConfig | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6095). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012497 / 0.011353 (0.001144) | 0.005355 / 0.011008 (-0.005654) | 0.106018 / 0.038508 (0.067510) | 0.093069 / 0.023109 (0.069960) | 0.394699 / 0.275898 (0.118801) | 0.449723 / 0.323480 (0.126243) | 0.006434 / 0.007986 (-0.001552) | 0.004187 / 0.004328 (-0.000141) | 0.079620 / 0.004250 (0.075370) | 0.062513 / 0.037052 (0.025460) | 0.410305 / 0.258489 (0.151816) | 0.467231 / 0.293841 (0.173390) | 0.048130 / 0.128546 (-0.080416) | 0.013747 / 0.075646 (-0.061899) | 0.357979 / 0.419271 (-0.061293) | 0.064764 / 0.043533 (0.021231) | 0.411029 / 0.255139 (0.155890) | 0.454734 / 0.283200 (0.171534) | 0.037215 / 0.141683 (-0.104468) | 1.801331 / 1.452155 (0.349176) | 1.951628 / 1.492716 (0.458912) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231073 / 0.018006 (0.213067) | 0.564179 / 0.000490 (0.563689) | 0.000947 / 0.000200 (0.000747) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030629 / 0.037411 (-0.006783) | 0.092522 / 0.014526 (0.077996) | 0.109781 / 0.176557 (-0.066775) | 0.183185 / 0.737135 (-0.553950) | 0.109679 / 0.296338 (-0.186660) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.600095 / 0.215209 (0.384886) | 6.072868 / 2.077655 (3.995213) | 2.684109 / 1.504120 (1.179989) | 2.436204 / 1.541195 (0.895010) | 2.514667 / 1.468490 (1.046177) | 0.865455 / 4.584777 (-3.719322) | 5.245561 / 3.745712 (1.499849) | 5.628688 / 5.269862 (0.358826) | 3.457343 / 4.565676 (-1.108333) | 0.107563 / 0.424275 (-0.316712) | 0.008803 / 0.007607 (0.001196) | 0.754014 / 0.226044 (0.527970) | 7.341226 / 2.268929 (5.072297) | 3.482090 / 55.444624 (-51.962534) | 2.726071 / 6.876477 (-4.150406) | 3.168494 / 2.142072 (1.026422) | 1.023517 / 4.805227 (-3.781710) | 0.207440 / 6.500664 (-6.293224) | 0.073642 / 0.075469 (-0.001827) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.588636 / 1.841788 (-0.253152) | 23.305257 / 8.074308 (15.230949) | 22.071476 / 10.191392 (11.880084) | 0.242044 / 0.680424 (-0.438379) | 0.028830 / 0.534201 (-0.505371) | 0.461414 / 0.579283 (-0.117869) | 0.591024 / 0.434364 (0.156660) | 0.548984 / 0.540337 (0.008646) | 0.783318 / 1.386936 (-0.603618) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008724 / 0.011353 (-0.002629) | 0.004638 / 0.011008 (-0.006371) | 0.081024 / 0.038508 (0.042516) | 0.077533 / 0.023109 (0.054423) | 0.444827 / 0.275898 (0.168929) | 0.507812 / 0.323480 (0.184332) | 0.006017 / 0.007986 (-0.001968) | 0.004204 / 0.004328 (-0.000124) | 0.082154 / 0.004250 (0.077904) | 0.063818 / 0.037052 (0.026765) | 0.463468 / 0.258489 (0.204979) | 0.536784 / 0.293841 (0.242943) | 0.046393 / 0.128546 (-0.082153) | 0.014349 / 0.075646 (-0.061298) | 0.089213 / 0.419271 (-0.330059) | 0.058313 / 0.043533 (0.014780) | 0.463674 / 0.255139 (0.208535) | 0.495865 / 0.283200 (0.212665) | 0.036586 / 0.141683 (-0.105096) | 1.801601 / 1.452155 (0.349447) | 1.871219 / 1.492716 (0.378502) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.273411 / 0.018006 (0.255405) | 0.531745 / 0.000490 (0.531255) | 0.000424 / 0.000200 (0.000224) | 0.000130 / 0.000054 (0.000076) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037689 / 0.037411 (0.000278) | 0.109544 / 0.014526 (0.095019) | 0.124053 / 0.176557 (-0.052504) | 0.179960 / 0.737135 (-0.557175) | 0.118218 / 0.296338 (-0.178120) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639859 / 0.215209 (0.424650) | 6.347385 / 2.077655 (4.269730) | 2.910188 / 1.504120 (1.406068) | 2.698821 / 1.541195 (1.157626) | 2.802652 / 1.468490 (1.334161) | 0.816109 / 4.584777 (-3.768668) | 5.190313 / 3.745712 (1.444601) | 4.642684 / 5.269862 (-0.627178) | 2.948092 / 4.565676 (-1.617584) | 0.095877 / 0.424275 (-0.328398) | 0.009631 / 0.007607 (0.002024) | 0.779136 / 0.226044 (0.553091) | 7.611586 / 2.268929 (5.342658) | 3.760804 / 55.444624 (-51.683820) | 3.139355 / 6.876477 (-3.737122) | 3.419660 / 2.142072 (1.277587) | 1.036397 / 4.805227 (-3.768831) | 0.224015 / 6.500664 (-6.276649) | 0.084037 / 0.075469 (0.008568) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.710608 / 1.841788 (-0.131179) | 24.447646 / 8.074308 (16.373338) | 21.345322 / 10.191392 (11.153930) | 0.232383 / 0.680424 (-0.448040) | 0.026381 / 0.534201 (-0.507820) | 0.475995 / 0.579283 (-0.103289) | 0.611939 / 0.434364 (0.177575) | 0.541441 / 0.540337 (0.001104) | 0.742796 / 1.386936 (-0.644140) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7929929525e734f7232cfc68d1d22fb8d53c54a3 \"CML watermark\")\n"
] | 2023-07-28T14:08:37 | 2023-07-28T14:17:56 | null | MEMBER | null | This PR fixes an issue with the deprecation of `errors` in `TextConfig` introduced by:
- #5974
```python
In [1]: ds = load_dataset("text", data_files="test.txt", errors="strict")
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-13-701c27131a5d> in <module>
----> 1 ds = load_dataset("text", data_files="test.txt", errors="strict")
~/huggingface/datasets/src/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
2107
2108 # Create a dataset builder
-> 2109 builder_instance = load_dataset_builder(
2110 path=path,
2111 name=name,
~/huggingface/datasets/src/datasets/load.py in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, **config_kwargs)
1830 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name)
1831 # Instantiate the dataset builder
-> 1832 builder_instance: DatasetBuilder = builder_cls(
1833 cache_dir=cache_dir,
1834 dataset_name=dataset_name,
~/huggingface/datasets/src/datasets/builder.py in __init__(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, use_auth_token, repo_id, data_files, data_dir, storage_options, writer_batch_size, name, **config_kwargs)
371 if data_dir is not None:
372 config_kwargs["data_dir"] = data_dir
--> 373 self.config, self.config_id = self._create_builder_config(
374 config_name=config_name,
375 custom_features=features,
~/huggingface/datasets/src/datasets/builder.py in _create_builder_config(self, config_name, custom_features, **config_kwargs)
550 if "version" not in config_kwargs and hasattr(self, "VERSION") and self.VERSION:
551 config_kwargs["version"] = self.VERSION
--> 552 builder_config = self.BUILDER_CONFIG_CLASS(**config_kwargs)
553
554 # otherwise use the config_kwargs to overwrite the attributes
TypeError: __init__() got an unexpected keyword argument 'errors'
```
Similar to:
- #6094 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6095/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6095/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6095",
"html_url": "https://github.com/huggingface/datasets/pull/6095",
"diff_url": "https://github.com/huggingface/datasets/pull/6095.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6095.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6094 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6094/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6094/comments | https://api.github.com/repos/huggingface/datasets/issues/6094/events | https://github.com/huggingface/datasets/pull/6094 | 1,826,293,414 | PR_kwDODunzps5WpdpA | 6,094 | Fix deprecation of use_auth_token in DownloadConfig | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6094). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008996 / 0.011353 (-0.002357) | 0.004976 / 0.011008 (-0.006033) | 0.114495 / 0.038508 (0.075987) | 0.083958 / 0.023109 (0.060849) | 0.408395 / 0.275898 (0.132497) | 0.456757 / 0.323480 (0.133278) | 0.006396 / 0.007986 (-0.001589) | 0.004315 / 0.004328 (-0.000014) | 0.093558 / 0.004250 (0.089307) | 0.062067 / 0.037052 (0.025014) | 0.423452 / 0.258489 (0.164963) | 0.463947 / 0.293841 (0.170106) | 0.049934 / 0.128546 (-0.078613) | 0.013937 / 0.075646 (-0.061709) | 0.365809 / 0.419271 (-0.053463) | 0.067382 / 0.043533 (0.023849) | 0.418860 / 0.255139 (0.163721) | 0.463264 / 0.283200 (0.180065) | 0.034392 / 0.141683 (-0.107291) | 1.870685 / 1.452155 (0.418530) | 1.975313 / 1.492716 (0.482597) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261748 / 0.018006 (0.243742) | 0.645510 / 0.000490 (0.645020) | 0.000376 / 0.000200 (0.000176) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032129 / 0.037411 (-0.005282) | 0.104309 / 0.014526 (0.089783) | 0.113154 / 0.176557 (-0.063403) | 0.186795 / 0.737135 (-0.550341) | 0.115584 / 0.296338 (-0.180755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.577755 / 0.215209 (0.362546) | 5.984988 / 2.077655 (3.907333) | 2.581967 / 1.504120 (1.077848) | 2.305744 / 1.541195 (0.764549) | 2.359618 / 1.468490 (0.891128) | 0.882892 / 4.584777 (-3.701885) | 5.755578 / 3.745712 (2.009866) | 8.718373 / 5.269862 (3.448511) | 5.217586 / 4.565676 (0.651909) | 0.099785 / 0.424275 (-0.324490) | 0.009008 / 0.007607 (0.001401) | 0.730937 / 0.226044 (0.504892) | 7.265309 / 2.268929 (4.996381) | 3.487167 / 55.444624 (-51.957457) | 2.750090 / 6.876477 (-4.126386) | 3.060198 / 2.142072 (0.918125) | 1.069945 / 4.805227 (-3.735282) | 0.227143 / 6.500664 (-6.273521) | 0.083601 / 0.075469 (0.008132) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.754375 / 1.841788 (-0.087412) | 25.448731 / 8.074308 (17.374423) | 22.385943 / 10.191392 (12.194551) | 0.249921 / 0.680424 (-0.430503) | 0.034138 / 0.534201 (-0.500063) | 0.535170 / 0.579283 (-0.044113) | 0.605474 / 0.434364 (0.171110) | 0.580025 / 0.540337 (0.039688) | 0.810537 / 1.386936 (-0.576399) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009117 / 0.011353 (-0.002236) | 0.005029 / 0.011008 (-0.005979) | 0.082200 / 0.038508 (0.043691) | 0.082386 / 0.023109 (0.059277) | 0.491869 / 0.275898 (0.215971) | 0.546735 / 0.323480 (0.223255) | 0.006893 / 0.007986 (-0.001093) | 0.004571 / 0.004328 (0.000243) | 0.085361 / 0.004250 (0.081111) | 0.063342 / 0.037052 (0.026290) | 0.522522 / 0.258489 (0.264033) | 0.560784 / 0.293841 (0.266943) | 0.047685 / 0.128546 (-0.080861) | 0.017741 / 0.075646 (-0.057905) | 0.098204 / 0.419271 (-0.321067) | 0.062919 / 0.043533 (0.019386) | 0.504005 / 0.255139 (0.248866) | 0.547022 / 0.283200 (0.263823) | 0.033731 / 0.141683 (-0.107952) | 1.869765 / 1.452155 (0.417610) | 1.935867 / 1.492716 (0.443151) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304756 / 0.018006 (0.286750) | 0.623647 / 0.000490 (0.623157) | 0.000508 / 0.000200 (0.000308) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.043627 / 0.037411 (0.006216) | 0.107183 / 0.014526 (0.092657) | 0.119304 / 0.176557 (-0.057253) | 0.192651 / 0.737135 (-0.544485) | 0.125118 / 0.296338 (-0.171221) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.669980 / 0.215209 (0.454771) | 6.566068 / 2.077655 (4.488413) | 3.136271 / 1.504120 (1.632152) | 2.964643 / 1.541195 (1.423448) | 2.936772 / 1.468490 (1.468282) | 0.885205 / 4.584777 (-3.699572) | 5.539062 / 3.745712 (1.793350) | 5.006133 / 5.269862 (-0.263729) | 3.313697 / 4.565676 (-1.251979) | 0.102975 / 0.424275 (-0.321301) | 0.010759 / 0.007607 (0.003152) | 0.791176 / 0.226044 (0.565132) | 7.822195 / 2.268929 (5.553266) | 3.982315 / 55.444624 (-51.462309) | 3.357026 / 6.876477 (-3.519451) | 3.561307 / 2.142072 (1.419234) | 1.056966 / 4.805227 (-3.748261) | 0.220476 / 6.500664 (-6.280188) | 0.090535 / 0.075469 (0.015066) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.897984 / 1.841788 (0.056196) | 26.411411 / 8.074308 (18.337103) | 22.951939 / 10.191392 (12.760547) | 0.216091 / 0.680424 (-0.464333) | 0.037005 / 0.534201 (-0.497196) | 0.505585 / 0.579283 (-0.073698) | 0.617794 / 0.434364 (0.183430) | 0.604631 / 0.540337 (0.064293) | 0.826356 / 1.386936 (-0.560580) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ca6342c0177adc3a1d114740444e207b8525ed6e \"CML watermark\")\n"
] | 2023-07-28T11:52:21 | 2023-07-28T14:35:04 | null | MEMBER | null | This PR fixes an issue with the deprecation of `use_auth_token` in `DownloadConfig` introduced by:
- #5996
```python
In [1]: from datasets import DownloadConfig
In [2]: DownloadConfig(use_auth_token=False)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-3-41927b449e72> in <module>
----> 1 DownloadConfig(use_auth_token=False)
TypeError: __init__() got an unexpected keyword argument 'use_auth_token'
```
```python
In [1]: from datasets import get_dataset_config_names
In [2]: get_dataset_config_names("squad", use_auth_token=False)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-4671992ead50> in <module>
----> 1 get_dataset_config_names("squad", use_auth_token=False)
~/huggingface/datasets/src/datasets/inspect.py in get_dataset_config_names(path, revision, download_config, download_mode, dynamic_modules_path, data_files, **download_kwargs)
349 ```
350 """
--> 351 dataset_module = dataset_module_factory(
352 path,
353 revision=revision,
~/huggingface/datasets/src/datasets/load.py in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)
1374 """
1375 if download_config is None:
-> 1376 download_config = DownloadConfig(**download_kwargs)
1377 download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
1378 download_config.extract_compressed_file = True
TypeError: __init__() got an unexpected keyword argument 'use_auth_token'
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6094/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6094/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6094",
"html_url": "https://github.com/huggingface/datasets/pull/6094",
"diff_url": "https://github.com/huggingface/datasets/pull/6094.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6094.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6093 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6093/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6093/comments | https://api.github.com/repos/huggingface/datasets/issues/6093/events | https://github.com/huggingface/datasets/pull/6093 | 1,826,210,490 | PR_kwDODunzps5WpLfh | 6,093 | Deprecate `download_custom` | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007498 / 0.011353 (-0.003855) | 0.004158 / 0.011008 (-0.006850) | 0.087568 / 0.038508 (0.049060) | 0.083265 / 0.023109 (0.060156) | 0.378505 / 0.275898 (0.102607) | 0.399025 / 0.323480 (0.075545) | 0.006173 / 0.007986 (-0.001813) | 0.003743 / 0.004328 (-0.000586) | 0.071958 / 0.004250 (0.067707) | 0.059323 / 0.037052 (0.022271) | 0.377084 / 0.258489 (0.118595) | 0.408358 / 0.293841 (0.114517) | 0.035191 / 0.128546 (-0.093356) | 0.009408 / 0.075646 (-0.066238) | 0.312587 / 0.419271 (-0.106685) | 0.058073 / 0.043533 (0.014540) | 0.381977 / 0.255139 (0.126838) | 0.395611 / 0.283200 (0.112411) | 0.024191 / 0.141683 (-0.117491) | 1.572735 / 1.452155 (0.120581) | 1.687186 / 1.492716 (0.194470) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208886 / 0.018006 (0.190879) | 0.474625 / 0.000490 (0.474135) | 0.006261 / 0.000200 (0.006061) | 0.000093 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031401 / 0.037411 (-0.006011) | 0.086433 / 0.014526 (0.071907) | 0.108405 / 0.176557 (-0.068152) | 0.174564 / 0.737135 (-0.562571) | 0.099932 / 0.296338 (-0.196407) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.407059 / 0.215209 (0.191850) | 4.102056 / 2.077655 (2.024401) | 1.975397 / 1.504120 (0.471277) | 1.807117 / 1.541195 (0.265922) | 1.908667 / 1.468490 (0.440177) | 0.525880 / 4.584777 (-4.058897) | 3.899639 / 3.745712 (0.153927) | 4.358664 / 5.269862 (-0.911198) | 2.586185 / 4.565676 (-1.979492) | 0.061967 / 0.424275 (-0.362308) | 0.007656 / 0.007607 (0.000049) | 0.504851 / 0.226044 (0.278807) | 5.004429 / 2.268929 (2.735500) | 2.515540 / 55.444624 (-52.929084) | 2.183142 / 6.876477 (-4.693334) | 2.369835 / 2.142072 (0.227763) | 0.623527 / 4.805227 (-4.181700) | 0.145105 / 6.500664 (-6.355559) | 0.063924 / 0.075469 (-0.011546) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.472661 / 1.841788 (-0.369126) | 21.781655 / 8.074308 (13.707347) | 15.628820 / 10.191392 (5.437428) | 0.182342 / 0.680424 (-0.498082) | 0.021139 / 0.534201 (-0.513062) | 0.438610 / 0.579283 (-0.140673) | 0.451343 / 0.434364 (0.016979) | 0.563320 / 0.540337 (0.022983) | 0.740976 / 1.386936 (-0.645960) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007492 / 0.011353 (-0.003861) | 0.004429 / 0.011008 (-0.006579) | 0.068517 / 0.038508 (0.030008) | 0.078533 / 0.023109 (0.055424) | 0.383530 / 0.275898 (0.107632) | 0.435061 / 0.323480 (0.111581) | 0.005955 / 0.007986 (-0.002030) | 0.003645 / 0.004328 (-0.000683) | 0.068792 / 0.004250 (0.064541) | 0.062452 / 0.037052 (0.025399) | 0.408768 / 0.258489 (0.150279) | 0.438538 / 0.293841 (0.144697) | 0.032038 / 0.128546 (-0.096508) | 0.009196 / 0.075646 (-0.066450) | 0.074495 / 0.419271 (-0.344776) | 0.051322 / 0.043533 (0.007789) | 0.394458 / 0.255139 (0.139319) | 0.424763 / 0.283200 (0.141564) | 0.024890 / 0.141683 (-0.116793) | 1.568322 / 1.452155 (0.116167) | 1.703903 / 1.492716 (0.211187) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249630 / 0.018006 (0.231624) | 0.471412 / 0.000490 (0.470923) | 0.000435 / 0.000200 (0.000235) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033054 / 0.037411 (-0.004358) | 0.100150 / 0.014526 (0.085624) | 0.101704 / 0.176557 (-0.074853) | 0.164031 / 0.737135 (-0.573104) | 0.112497 / 0.296338 (-0.183841) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.487150 / 0.215209 (0.271941) | 4.662335 / 2.077655 (2.584681) | 2.477285 / 1.504120 (0.973165) | 2.294033 / 1.541195 (0.752838) | 2.380143 / 1.468490 (0.911653) | 0.519182 / 4.584777 (-4.065595) | 3.983589 / 3.745712 (0.237877) | 3.669895 / 5.269862 (-1.599967) | 2.267147 / 4.565676 (-2.298529) | 0.063300 / 0.424275 (-0.360975) | 0.008839 / 0.007607 (0.001232) | 0.566766 / 0.226044 (0.340721) | 5.533475 / 2.268929 (3.264546) | 3.033412 / 55.444624 (-52.411212) | 2.701793 / 6.876477 (-4.174684) | 2.899444 / 2.142072 (0.757372) | 0.614236 / 4.805227 (-4.190991) | 0.139533 / 6.500664 (-6.361131) | 0.067537 / 0.075469 (-0.007932) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.505572 / 1.841788 (-0.336216) | 22.859062 / 8.074308 (14.784754) | 15.044777 / 10.191392 (4.853385) | 0.169153 / 0.680424 (-0.511271) | 0.021027 / 0.534201 (-0.513174) | 0.447979 / 0.579283 (-0.131304) | 0.460676 / 0.434364 (0.026312) | 0.506327 / 0.540337 (-0.034010) | 0.737880 / 1.386936 (-0.649057) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#db7180eb7e3ebf52b9d1f2c6629db6d92d8a29ba \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006118 / 0.011353 (-0.005235) | 0.003692 / 0.011008 (-0.007316) | 0.080606 / 0.038508 (0.042098) | 0.062014 / 0.023109 (0.038905) | 0.391886 / 0.275898 (0.115988) | 0.423978 / 0.323480 (0.100498) | 0.004968 / 0.007986 (-0.003017) | 0.002911 / 0.004328 (-0.001417) | 0.062867 / 0.004250 (0.058617) | 0.049493 / 0.037052 (0.012441) | 0.395656 / 0.258489 (0.137167) | 0.432406 / 0.293841 (0.138565) | 0.027242 / 0.128546 (-0.101304) | 0.007938 / 0.075646 (-0.067709) | 0.261703 / 0.419271 (-0.157569) | 0.045922 / 0.043533 (0.002389) | 0.391544 / 0.255139 (0.136405) | 0.417902 / 0.283200 (0.134703) | 0.021339 / 0.141683 (-0.120344) | 1.508391 / 1.452155 (0.056236) | 1.518970 / 1.492716 (0.026254) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.181159 / 0.018006 (0.163153) | 0.431402 / 0.000490 (0.430912) | 0.003849 / 0.000200 (0.003649) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024498 / 0.037411 (-0.012914) | 0.072758 / 0.014526 (0.058233) | 0.084910 / 0.176557 (-0.091646) | 0.148314 / 0.737135 (-0.588821) | 0.085212 / 0.296338 (-0.211126) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.386693 / 0.215209 (0.171484) | 3.852652 / 2.077655 (1.774997) | 1.891758 / 1.504120 (0.387638) | 1.718793 / 1.541195 (0.177598) | 1.747595 / 1.468490 (0.279104) | 0.498593 / 4.584777 (-4.086184) | 3.057907 / 3.745712 (-0.687805) | 4.728449 / 5.269862 (-0.541413) | 2.966368 / 4.565676 (-1.599308) | 0.057538 / 0.424275 (-0.366737) | 0.006415 / 0.007607 (-0.001192) | 0.461652 / 0.226044 (0.235608) | 4.625944 / 2.268929 (2.357015) | 2.306938 / 55.444624 (-53.137686) | 1.974670 / 6.876477 (-4.901806) | 2.146327 / 2.142072 (0.004254) | 0.585033 / 4.805227 (-4.220195) | 0.125936 / 6.500664 (-6.374728) | 0.062365 / 0.075469 (-0.013104) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.263415 / 1.841788 (-0.578373) | 18.380651 / 8.074308 (10.306343) | 13.853410 / 10.191392 (3.662018) | 0.144674 / 0.680424 (-0.535749) | 0.016833 / 0.534201 (-0.517368) | 0.330812 / 0.579283 (-0.248471) | 0.357553 / 0.434364 (-0.076810) | 0.383529 / 0.540337 (-0.156809) | 0.558923 / 1.386936 (-0.828013) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006074 / 0.011353 (-0.005278) | 0.003655 / 0.011008 (-0.007353) | 0.062981 / 0.038508 (0.024473) | 0.061457 / 0.023109 (0.038348) | 0.366471 / 0.275898 (0.090573) | 0.408463 / 0.323480 (0.084983) | 0.004854 / 0.007986 (-0.003132) | 0.002916 / 0.004328 (-0.001412) | 0.062745 / 0.004250 (0.058494) | 0.051136 / 0.037052 (0.014084) | 0.380313 / 0.258489 (0.121824) | 0.416945 / 0.293841 (0.123104) | 0.027228 / 0.128546 (-0.101318) | 0.008031 / 0.075646 (-0.067615) | 0.067941 / 0.419271 (-0.351331) | 0.042886 / 0.043533 (-0.000647) | 0.370112 / 0.255139 (0.114973) | 0.397111 / 0.283200 (0.113911) | 0.023063 / 0.141683 (-0.118620) | 1.476955 / 1.452155 (0.024800) | 1.534783 / 1.492716 (0.042066) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231462 / 0.018006 (0.213456) | 0.439559 / 0.000490 (0.439069) | 0.000364 / 0.000200 (0.000164) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026925 / 0.037411 (-0.010486) | 0.079623 / 0.014526 (0.065097) | 0.088694 / 0.176557 (-0.087862) | 0.143163 / 0.737135 (-0.593972) | 0.089900 / 0.296338 (-0.206438) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.451429 / 0.215209 (0.236220) | 4.510723 / 2.077655 (2.433069) | 2.491853 / 1.504120 (0.987733) | 2.334670 / 1.541195 (0.793475) | 2.395519 / 1.468490 (0.927029) | 0.501369 / 4.584777 (-4.083408) | 3.014019 / 3.745712 (-0.731693) | 2.809199 / 5.269862 (-2.460662) | 1.842195 / 4.565676 (-2.723481) | 0.057675 / 0.424275 (-0.366600) | 0.006742 / 0.007607 (-0.000865) | 0.524402 / 0.226044 (0.298358) | 5.245296 / 2.268929 (2.976367) | 2.957990 / 55.444624 (-52.486634) | 2.649807 / 6.876477 (-4.226670) | 2.755909 / 2.142072 (0.613836) | 0.589610 / 4.805227 (-4.215617) | 0.125708 / 6.500664 (-6.374956) | 0.062237 / 0.075469 (-0.013232) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.362758 / 1.841788 (-0.479030) | 18.343694 / 8.074308 (10.269386) | 13.621521 / 10.191392 (3.430129) | 0.128866 / 0.680424 (-0.551558) | 0.016608 / 0.534201 (-0.517593) | 0.333071 / 0.579283 (-0.246212) | 0.341917 / 0.434364 (-0.092447) | 0.381075 / 0.540337 (-0.159263) | 0.512485 / 1.386936 (-0.874451) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ab3f0165d4a2a8ab1aee1ebc4628893e17e27387 \"CML watermark\")\n",
"I forgot to mention this in the initial comment, but only one public dataset (excluding gated) uses this method - `pg19`, which I just fixed.\r\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007838 / 0.011353 (-0.003515) | 0.004791 / 0.011008 (-0.006217) | 0.102596 / 0.038508 (0.064088) | 0.087678 / 0.023109 (0.064569) | 0.373858 / 0.275898 (0.097960) | 0.416643 / 0.323480 (0.093163) | 0.006147 / 0.007986 (-0.001839) | 0.003837 / 0.004328 (-0.000491) | 0.076706 / 0.004250 (0.072456) | 0.063449 / 0.037052 (0.026396) | 0.378392 / 0.258489 (0.119903) | 0.431768 / 0.293841 (0.137927) | 0.036648 / 0.128546 (-0.091898) | 0.010042 / 0.075646 (-0.065604) | 0.350277 / 0.419271 (-0.068995) | 0.062892 / 0.043533 (0.019359) | 0.376151 / 0.255139 (0.121012) | 0.420929 / 0.283200 (0.137729) | 0.027816 / 0.141683 (-0.113867) | 1.791607 / 1.452155 (0.339452) | 1.903045 / 1.492716 (0.410328) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.224688 / 0.018006 (0.206682) | 0.491941 / 0.000490 (0.491451) | 0.004482 / 0.000200 (0.004282) | 0.000102 / 0.000054 (0.000048) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033495 / 0.037411 (-0.003917) | 0.099855 / 0.014526 (0.085329) | 0.114593 / 0.176557 (-0.061964) | 0.190947 / 0.737135 (-0.546189) | 0.116202 / 0.296338 (-0.180136) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488581 / 0.215209 (0.273372) | 4.869531 / 2.077655 (2.791876) | 2.527920 / 1.504120 (1.023800) | 2.340021 / 1.541195 (0.798826) | 2.432661 / 1.468490 (0.964171) | 0.569646 / 4.584777 (-4.015131) | 4.392036 / 3.745712 (0.646324) | 4.987253 / 5.269862 (-0.282608) | 2.866604 / 4.565676 (-1.699073) | 0.067393 / 0.424275 (-0.356882) | 0.008759 / 0.007607 (0.001152) | 0.584327 / 0.226044 (0.358283) | 5.853000 / 2.268929 (3.584072) | 3.206721 / 55.444624 (-52.237904) | 2.730867 / 6.876477 (-4.145610) | 2.944814 / 2.142072 (0.802742) | 0.703336 / 4.805227 (-4.101891) | 0.173985 / 6.500664 (-6.326679) | 0.075333 / 0.075469 (-0.000137) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.519755 / 1.841788 (-0.322033) | 22.918038 / 8.074308 (14.843730) | 17.211160 / 10.191392 (7.019768) | 0.196941 / 0.680424 (-0.483483) | 0.021833 / 0.534201 (-0.512368) | 0.476835 / 0.579283 (-0.102448) | 0.464513 / 0.434364 (0.030149) | 0.559180 / 0.540337 (0.018843) | 0.748232 / 1.386936 (-0.638704) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008461 / 0.011353 (-0.002892) | 0.004799 / 0.011008 (-0.006209) | 0.077466 / 0.038508 (0.038958) | 0.103562 / 0.023109 (0.080453) | 0.453661 / 0.275898 (0.177763) | 0.531126 / 0.323480 (0.207647) | 0.006618 / 0.007986 (-0.001367) | 0.004048 / 0.004328 (-0.000280) | 0.075446 / 0.004250 (0.071196) | 0.072815 / 0.037052 (0.035762) | 0.497145 / 0.258489 (0.238656) | 0.533828 / 0.293841 (0.239987) | 0.037657 / 0.128546 (-0.090890) | 0.010139 / 0.075646 (-0.065507) | 0.083759 / 0.419271 (-0.335512) | 0.061401 / 0.043533 (0.017868) | 0.441785 / 0.255139 (0.186646) | 0.491678 / 0.283200 (0.208479) | 0.033100 / 0.141683 (-0.108583) | 1.753612 / 1.452155 (0.301458) | 1.838956 / 1.492716 (0.346240) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.395023 / 0.018006 (0.377017) | 0.509362 / 0.000490 (0.508872) | 0.060742 / 0.000200 (0.060542) | 0.000545 / 0.000054 (0.000491) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.039327 / 0.037411 (0.001916) | 0.117345 / 0.014526 (0.102819) | 0.124540 / 0.176557 (-0.052017) | 0.200743 / 0.737135 (-0.536392) | 0.126750 / 0.296338 (-0.169589) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.488597 / 0.215209 (0.273388) | 4.875534 / 2.077655 (2.797880) | 2.714364 / 1.504120 (1.210244) | 2.603707 / 1.541195 (1.062513) | 2.733547 / 1.468490 (1.265057) | 0.575183 / 4.584777 (-4.009594) | 4.126096 / 3.745712 (0.380384) | 3.853803 / 5.269862 (-1.416058) | 2.395160 / 4.565676 (-2.170516) | 0.067391 / 0.424275 (-0.356884) | 0.009108 / 0.007607 (0.001501) | 0.585865 / 0.226044 (0.359820) | 5.864878 / 2.268929 (3.595949) | 3.153369 / 55.444624 (-52.291256) | 2.759064 / 6.876477 (-4.117413) | 3.032489 / 2.142072 (0.890416) | 0.702615 / 4.805227 (-4.102613) | 0.160034 / 6.500664 (-6.340630) | 0.077294 / 0.075469 (0.001825) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.595069 / 1.841788 (-0.246719) | 23.231191 / 8.074308 (15.156883) | 16.365137 / 10.191392 (6.173745) | 0.188360 / 0.680424 (-0.492063) | 0.021704 / 0.534201 (-0.512497) | 0.469996 / 0.579283 (-0.109287) | 0.463255 / 0.434364 (0.028891) | 0.560506 / 0.540337 (0.020169) | 0.751006 / 1.386936 (-0.635930) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#50d9a70c666ff46ff9974c47cedc77d9f88d6471 \"CML watermark\")\n"
] | 2023-07-28T10:49:06 | 2023-07-28T11:40:37 | 2023-07-28T11:30:02 | CONTRIBUTOR | null | Deprecate `DownloadManager.download_custom`. Users should use `fsspec` URLs (cacheable) or make direct requests with `fsspec`/`requests` (not cacheable) instead.
We should deprecate this method as it's not compatible with streaming, and implementing the streaming version of it is hard/impossible. There have been requests to implement the streaming version of this method on the forum, but the reason for this seems to be a tip in the docs that "promotes" this method (this PR removes it).
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6093/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6093/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6093",
"html_url": "https://github.com/huggingface/datasets/pull/6093",
"diff_url": "https://github.com/huggingface/datasets/pull/6093.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6093.patch",
"merged_at": "2023-07-28T11:30:02"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6092 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6092/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6092/comments | https://api.github.com/repos/huggingface/datasets/issues/6092/events | https://github.com/huggingface/datasets/pull/6092 | 1,826,111,806 | PR_kwDODunzps5Wo1mh | 6,092 | Minor fix in `iter_files` for hidden files | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007873 / 0.011353 (-0.003480) | 0.004585 / 0.011008 (-0.006423) | 0.101622 / 0.038508 (0.063114) | 0.092459 / 0.023109 (0.069350) | 0.365157 / 0.275898 (0.089259) | 0.405943 / 0.323480 (0.082463) | 0.006229 / 0.007986 (-0.001756) | 0.003811 / 0.004328 (-0.000518) | 0.073831 / 0.004250 (0.069580) | 0.065097 / 0.037052 (0.028045) | 0.378912 / 0.258489 (0.120423) | 0.422174 / 0.293841 (0.128333) | 0.036244 / 0.128546 (-0.092302) | 0.009677 / 0.075646 (-0.065970) | 0.345164 / 0.419271 (-0.074107) | 0.061632 / 0.043533 (0.018099) | 0.370350 / 0.255139 (0.115211) | 0.418245 / 0.283200 (0.135046) | 0.027272 / 0.141683 (-0.114411) | 1.774047 / 1.452155 (0.321892) | 1.880278 / 1.492716 (0.387562) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217238 / 0.018006 (0.199231) | 0.489560 / 0.000490 (0.489071) | 0.004013 / 0.000200 (0.003813) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034139 / 0.037411 (-0.003272) | 0.103831 / 0.014526 (0.089305) | 0.114353 / 0.176557 (-0.062204) | 0.182034 / 0.737135 (-0.555102) | 0.116171 / 0.296338 (-0.180168) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448658 / 0.215209 (0.233449) | 4.520849 / 2.077655 (2.443195) | 2.216121 / 1.504120 (0.712001) | 2.034596 / 1.541195 (0.493402) | 2.193216 / 1.468490 (0.724725) | 0.568166 / 4.584777 (-4.016611) | 4.133587 / 3.745712 (0.387875) | 4.641117 / 5.269862 (-0.628744) | 2.772913 / 4.565676 (-1.792764) | 0.067664 / 0.424275 (-0.356611) | 0.008719 / 0.007607 (0.001112) | 0.547723 / 0.226044 (0.321678) | 5.438325 / 2.268929 (3.169397) | 2.877667 / 55.444624 (-52.566958) | 2.477503 / 6.876477 (-4.398974) | 2.688209 / 2.142072 (0.546136) | 0.692593 / 4.805227 (-4.112634) | 0.154549 / 6.500664 (-6.346115) | 0.073286 / 0.075469 (-0.002183) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.610927 / 1.841788 (-0.230861) | 23.413345 / 8.074308 (15.339037) | 16.851819 / 10.191392 (6.660427) | 0.170076 / 0.680424 (-0.510348) | 0.021428 / 0.534201 (-0.512773) | 0.468184 / 0.579283 (-0.111099) | 0.491820 / 0.434364 (0.057456) | 0.553453 / 0.540337 (0.013115) | 0.762303 / 1.386936 (-0.624633) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008033 / 0.011353 (-0.003320) | 0.004638 / 0.011008 (-0.006370) | 0.077044 / 0.038508 (0.038536) | 0.096529 / 0.023109 (0.073420) | 0.428735 / 0.275898 (0.152837) | 0.477303 / 0.323480 (0.153823) | 0.006040 / 0.007986 (-0.001946) | 0.003808 / 0.004328 (-0.000521) | 0.076042 / 0.004250 (0.071791) | 0.066123 / 0.037052 (0.029071) | 0.445482 / 0.258489 (0.186993) | 0.481350 / 0.293841 (0.187509) | 0.036951 / 0.128546 (-0.091595) | 0.009944 / 0.075646 (-0.065703) | 0.082731 / 0.419271 (-0.336541) | 0.057490 / 0.043533 (0.013958) | 0.432668 / 0.255139 (0.177529) | 0.461146 / 0.283200 (0.177947) | 0.027330 / 0.141683 (-0.114353) | 1.784195 / 1.452155 (0.332040) | 1.834776 / 1.492716 (0.342059) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.254104 / 0.018006 (0.236097) | 0.475810 / 0.000490 (0.475321) | 0.000459 / 0.000200 (0.000259) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037058 / 0.037411 (-0.000353) | 0.114962 / 0.014526 (0.100436) | 0.123725 / 0.176557 (-0.052832) | 0.188885 / 0.737135 (-0.548251) | 0.125668 / 0.296338 (-0.170670) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.492627 / 0.215209 (0.277418) | 4.900625 / 2.077655 (2.822970) | 2.546349 / 1.504120 (1.042229) | 2.360350 / 1.541195 (0.819155) | 2.477975 / 1.468490 (1.009485) | 0.574042 / 4.584777 (-4.010735) | 4.408414 / 3.745712 (0.662702) | 3.836640 / 5.269862 (-1.433222) | 2.438450 / 4.565676 (-2.127227) | 0.067706 / 0.424275 (-0.356569) | 0.009165 / 0.007607 (0.001558) | 0.580313 / 0.226044 (0.354269) | 5.798211 / 2.268929 (3.529283) | 3.098480 / 55.444624 (-52.346145) | 2.740180 / 6.876477 (-4.136296) | 2.984548 / 2.142072 (0.842476) | 0.702550 / 4.805227 (-4.102677) | 0.158248 / 6.500664 (-6.342416) | 0.073999 / 0.075469 (-0.001470) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.636034 / 1.841788 (-0.205754) | 24.068000 / 8.074308 (15.993692) | 17.123987 / 10.191392 (6.932595) | 0.210101 / 0.680424 (-0.470323) | 0.022555 / 0.534201 (-0.511646) | 0.509354 / 0.579283 (-0.069929) | 0.540739 / 0.434364 (0.106375) | 0.546048 / 0.540337 (0.005711) | 0.719155 / 1.386936 (-0.667781) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#40530382ba98f54445de8820943b1236d4a4704f \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007342 / 0.011353 (-0.004010) | 0.004579 / 0.011008 (-0.006429) | 0.087050 / 0.038508 (0.048542) | 0.089001 / 0.023109 (0.065892) | 0.307319 / 0.275898 (0.031421) | 0.377573 / 0.323480 (0.054093) | 0.006472 / 0.007986 (-0.001514) | 0.004287 / 0.004328 (-0.000041) | 0.067226 / 0.004250 (0.062976) | 0.063147 / 0.037052 (0.026094) | 0.314541 / 0.258489 (0.056052) | 0.369919 / 0.293841 (0.076078) | 0.031283 / 0.128546 (-0.097263) | 0.009175 / 0.075646 (-0.066471) | 0.289211 / 0.419271 (-0.130061) | 0.053444 / 0.043533 (0.009911) | 0.307308 / 0.255139 (0.052169) | 0.346221 / 0.283200 (0.063021) | 0.027948 / 0.141683 (-0.113735) | 1.475177 / 1.452155 (0.023022) | 1.575971 / 1.492716 (0.083255) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.291092 / 0.018006 (0.273086) | 0.696951 / 0.000490 (0.696461) | 0.005211 / 0.000200 (0.005011) | 0.000094 / 0.000054 (0.000040) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031787 / 0.037411 (-0.005625) | 0.084382 / 0.014526 (0.069857) | 0.106474 / 0.176557 (-0.070083) | 0.161472 / 0.737135 (-0.575663) | 0.108650 / 0.296338 (-0.187688) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.379656 / 0.215209 (0.164447) | 3.784072 / 2.077655 (1.706417) | 1.826580 / 1.504120 (0.322460) | 1.654916 / 1.541195 (0.113721) | 1.730698 / 1.468490 (0.262208) | 0.478003 / 4.584777 (-4.106774) | 3.564920 / 3.745712 (-0.180792) | 5.824873 / 5.269862 (0.555012) | 3.454563 / 4.565676 (-1.111113) | 0.056646 / 0.424275 (-0.367629) | 0.007410 / 0.007607 (-0.000197) | 0.461781 / 0.226044 (0.235737) | 4.600928 / 2.268929 (2.331999) | 2.351887 / 55.444624 (-53.092738) | 1.986470 / 6.876477 (-4.890007) | 2.311623 / 2.142072 (0.169551) | 0.571247 / 4.805227 (-4.233980) | 0.132191 / 6.500664 (-6.368473) | 0.059943 / 0.075469 (-0.015526) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253142 / 1.841788 (-0.588646) | 21.294983 / 8.074308 (13.220675) | 14.522429 / 10.191392 (4.331037) | 0.166663 / 0.680424 (-0.513761) | 0.019694 / 0.534201 (-0.514507) | 0.395908 / 0.579283 (-0.183375) | 0.413283 / 0.434364 (-0.021081) | 0.457739 / 0.540337 (-0.082599) | 0.664361 / 1.386936 (-0.722575) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007228 / 0.011353 (-0.004124) | 0.004941 / 0.011008 (-0.006067) | 0.065381 / 0.038508 (0.026873) | 0.090790 / 0.023109 (0.067681) | 0.391315 / 0.275898 (0.115417) | 0.416518 / 0.323480 (0.093038) | 0.007015 / 0.007986 (-0.000970) | 0.004417 / 0.004328 (0.000089) | 0.067235 / 0.004250 (0.062985) | 0.068092 / 0.037052 (0.031039) | 0.403031 / 0.258489 (0.144542) | 0.434013 / 0.293841 (0.140172) | 0.032004 / 0.128546 (-0.096542) | 0.009242 / 0.075646 (-0.066404) | 0.071222 / 0.419271 (-0.348050) | 0.054207 / 0.043533 (0.010674) | 0.386198 / 0.255139 (0.131059) | 0.404350 / 0.283200 (0.121150) | 0.036284 / 0.141683 (-0.105399) | 1.488814 / 1.452155 (0.036660) | 1.587785 / 1.492716 (0.095069) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.313760 / 0.018006 (0.295754) | 0.747778 / 0.000490 (0.747289) | 0.003307 / 0.000200 (0.003107) | 0.000113 / 0.000054 (0.000058) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034321 / 0.037411 (-0.003090) | 0.088266 / 0.014526 (0.073740) | 0.112874 / 0.176557 (-0.063682) | 0.171554 / 0.737135 (-0.565581) | 0.111356 / 0.296338 (-0.184982) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422624 / 0.215209 (0.207415) | 4.212079 / 2.077655 (2.134425) | 2.242742 / 1.504120 (0.738622) | 2.072555 / 1.541195 (0.531360) | 2.192648 / 1.468490 (0.724158) | 0.488214 / 4.584777 (-4.096563) | 3.597013 / 3.745712 (-0.148699) | 3.477556 / 5.269862 (-1.792305) | 2.184340 / 4.565676 (-2.381337) | 0.057170 / 0.424275 (-0.367105) | 0.007772 / 0.007607 (0.000165) | 0.499455 / 0.226044 (0.273411) | 4.988953 / 2.268929 (2.720024) | 2.797894 / 55.444624 (-52.646731) | 2.402215 / 6.876477 (-4.474262) | 2.725069 / 2.142072 (0.582997) | 0.596213 / 4.805227 (-4.209014) | 0.136564 / 6.500664 (-6.364100) | 0.061799 / 0.075469 (-0.013670) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.360739 / 1.841788 (-0.481049) | 21.846457 / 8.074308 (13.772149) | 14.568842 / 10.191392 (4.377450) | 0.168980 / 0.680424 (-0.511444) | 0.018795 / 0.534201 (-0.515406) | 0.396173 / 0.579283 (-0.183110) | 0.418651 / 0.434364 (-0.015713) | 0.480042 / 0.540337 (-0.060295) | 0.650803 / 1.386936 (-0.736133) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#b7d460304487d4daab0a64ca0ca707e896367ca1 \"CML watermark\")\n"
] | 2023-07-28T09:50:12 | 2023-07-28T10:59:28 | 2023-07-28T10:50:10 | CONTRIBUTOR | null | Fix #6090 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6092/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6092/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6092",
"html_url": "https://github.com/huggingface/datasets/pull/6092",
"diff_url": "https://github.com/huggingface/datasets/pull/6092.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6092.patch",
"merged_at": "2023-07-28T10:50:09"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6091 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6091/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6091/comments | https://api.github.com/repos/huggingface/datasets/issues/6091/events | https://github.com/huggingface/datasets/pull/6091 | 1,826,086,487 | PR_kwDODunzps5Wov9Q | 6,091 | Bump fsspec from 2021.11.1 to 2022.3.0 | {
"login": "mariosasko",
"id": 47462742,
"node_id": "MDQ6VXNlcjQ3NDYyNzQy",
"avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/mariosasko",
"html_url": "https://github.com/mariosasko",
"followers_url": "https://api.github.com/users/mariosasko/followers",
"following_url": "https://api.github.com/users/mariosasko/following{/other_user}",
"gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}",
"starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions",
"organizations_url": "https://api.github.com/users/mariosasko/orgs",
"repos_url": "https://api.github.com/users/mariosasko/repos",
"events_url": "https://api.github.com/users/mariosasko/events{/privacy}",
"received_events_url": "https://api.github.com/users/mariosasko/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"_The documentation is not available anymore as the PR was closed or merged._",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006640 / 0.011353 (-0.004713) | 0.004077 / 0.011008 (-0.006931) | 0.084905 / 0.038508 (0.046397) | 0.074004 / 0.023109 (0.050895) | 0.315968 / 0.275898 (0.040070) | 0.351594 / 0.323480 (0.028114) | 0.005623 / 0.007986 (-0.002362) | 0.003476 / 0.004328 (-0.000852) | 0.065089 / 0.004250 (0.060839) | 0.054683 / 0.037052 (0.017631) | 0.314983 / 0.258489 (0.056494) | 0.371776 / 0.293841 (0.077935) | 0.031727 / 0.128546 (-0.096819) | 0.008786 / 0.075646 (-0.066860) | 0.289905 / 0.419271 (-0.129367) | 0.053340 / 0.043533 (0.009807) | 0.311802 / 0.255139 (0.056663) | 0.351927 / 0.283200 (0.068727) | 0.024453 / 0.141683 (-0.117229) | 1.491727 / 1.452155 (0.039572) | 1.585027 / 1.492716 (0.092310) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238757 / 0.018006 (0.220750) | 0.557691 / 0.000490 (0.557202) | 0.005158 / 0.000200 (0.004958) | 0.000204 / 0.000054 (0.000149) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028435 / 0.037411 (-0.008977) | 0.082219 / 0.014526 (0.067693) | 0.096932 / 0.176557 (-0.079625) | 0.153802 / 0.737135 (-0.583333) | 0.098338 / 0.296338 (-0.198001) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.383448 / 0.215209 (0.168238) | 3.816074 / 2.077655 (1.738420) | 1.835111 / 1.504120 (0.330991) | 1.662326 / 1.541195 (0.121131) | 1.720202 / 1.468490 (0.251712) | 0.483107 / 4.584777 (-4.101669) | 3.648528 / 3.745712 (-0.097184) | 4.020929 / 5.269862 (-1.248932) | 2.433141 / 4.565676 (-2.132536) | 0.057081 / 0.424275 (-0.367194) | 0.007303 / 0.007607 (-0.000304) | 0.461366 / 0.226044 (0.235322) | 4.609090 / 2.268929 (2.340162) | 2.355940 / 55.444624 (-53.088684) | 1.989833 / 6.876477 (-4.886644) | 2.201451 / 2.142072 (0.059378) | 0.586156 / 4.805227 (-4.219071) | 0.133486 / 6.500664 (-6.367178) | 0.060062 / 0.075469 (-0.015407) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.247845 / 1.841788 (-0.593942) | 19.624252 / 8.074308 (11.549944) | 14.305975 / 10.191392 (4.114583) | 0.168687 / 0.680424 (-0.511737) | 0.018075 / 0.534201 (-0.516126) | 0.393859 / 0.579283 (-0.185424) | 0.407272 / 0.434364 (-0.027092) | 0.463760 / 0.540337 (-0.076578) | 0.629930 / 1.386936 (-0.757006) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006760 / 0.011353 (-0.004593) | 0.004345 / 0.011008 (-0.006663) | 0.064379 / 0.038508 (0.025871) | 0.078295 / 0.023109 (0.055186) | 0.364532 / 0.275898 (0.088633) | 0.395852 / 0.323480 (0.072372) | 0.005659 / 0.007986 (-0.002327) | 0.003515 / 0.004328 (-0.000813) | 0.065030 / 0.004250 (0.060780) | 0.059950 / 0.037052 (0.022898) | 0.375420 / 0.258489 (0.116931) | 0.411579 / 0.293841 (0.117738) | 0.031575 / 0.128546 (-0.096972) | 0.008737 / 0.075646 (-0.066910) | 0.070350 / 0.419271 (-0.348922) | 0.050607 / 0.043533 (0.007075) | 0.359785 / 0.255139 (0.104646) | 0.382638 / 0.283200 (0.099438) | 0.025533 / 0.141683 (-0.116150) | 1.564379 / 1.452155 (0.112225) | 1.620642 / 1.492716 (0.127925) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212779 / 0.018006 (0.194773) | 0.563827 / 0.000490 (0.563337) | 0.003767 / 0.000200 (0.003567) | 0.000103 / 0.000054 (0.000049) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030275 / 0.037411 (-0.007136) | 0.088108 / 0.014526 (0.073582) | 0.102454 / 0.176557 (-0.074103) | 0.156107 / 0.737135 (-0.581028) | 0.103961 / 0.296338 (-0.192378) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.421395 / 0.215209 (0.206186) | 4.204935 / 2.077655 (2.127280) | 2.144929 / 1.504120 (0.640809) | 1.999341 / 1.541195 (0.458147) | 2.066966 / 1.468490 (0.598476) | 0.486135 / 4.584777 (-4.098642) | 3.628139 / 3.745712 (-0.117573) | 5.652683 / 5.269862 (0.382821) | 3.216721 / 4.565676 (-1.348956) | 0.057513 / 0.424275 (-0.366762) | 0.007553 / 0.007607 (-0.000055) | 0.494470 / 0.226044 (0.268426) | 4.949343 / 2.268929 (2.680414) | 2.654222 / 55.444624 (-52.790402) | 2.322257 / 6.876477 (-4.554220) | 2.555633 / 2.142072 (0.413561) | 0.588355 / 4.805227 (-4.216872) | 0.134481 / 6.500664 (-6.366183) | 0.062415 / 0.075469 (-0.013054) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.377578 / 1.841788 (-0.464209) | 19.805201 / 8.074308 (11.730893) | 14.128536 / 10.191392 (3.937144) | 0.164343 / 0.680424 (-0.516081) | 0.018553 / 0.534201 (-0.515648) | 0.398191 / 0.579283 (-0.181093) | 0.414268 / 0.434364 (-0.020096) | 0.462270 / 0.540337 (-0.078068) | 0.608497 / 1.386936 (-0.778439) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3af05ba487f361fae90a4c80af72de5c4ed70162 \"CML watermark\")\n",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006966 / 0.011353 (-0.004387) | 0.004339 / 0.011008 (-0.006669) | 0.086682 / 0.038508 (0.048174) | 0.086143 / 0.023109 (0.063034) | 0.316106 / 0.275898 (0.040208) | 0.351422 / 0.323480 (0.027942) | 0.005916 / 0.007986 (-0.002069) | 0.003630 / 0.004328 (-0.000698) | 0.066980 / 0.004250 (0.062730) | 0.060031 / 0.037052 (0.022979) | 0.317487 / 0.258489 (0.058998) | 0.356280 / 0.293841 (0.062439) | 0.031816 / 0.128546 (-0.096730) | 0.008797 / 0.075646 (-0.066849) | 0.289848 / 0.419271 (-0.129424) | 0.055431 / 0.043533 (0.011898) | 0.318881 / 0.255139 (0.063742) | 0.332315 / 0.283200 (0.049116) | 0.025946 / 0.141683 (-0.115737) | 1.472904 / 1.452155 (0.020749) | 1.577973 / 1.492716 (0.085257) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.239056 / 0.018006 (0.221050) | 0.565406 / 0.000490 (0.564917) | 0.003606 / 0.000200 (0.003406) | 0.000080 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029771 / 0.037411 (-0.007640) | 0.085534 / 0.014526 (0.071008) | 0.107008 / 0.176557 (-0.069548) | 0.631583 / 0.737135 (-0.105552) | 0.104210 / 0.296338 (-0.192128) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.390675 / 0.215209 (0.175466) | 3.898746 / 2.077655 (1.821091) | 1.933048 / 1.504120 (0.428928) | 1.792162 / 1.541195 (0.250967) | 1.958045 / 1.468490 (0.489555) | 0.488632 / 4.584777 (-4.096144) | 3.696306 / 3.745712 (-0.049406) | 3.454600 / 5.269862 (-1.815262) | 2.176292 / 4.565676 (-2.389385) | 0.057617 / 0.424275 (-0.366658) | 0.007603 / 0.007607 (-0.000004) | 0.467843 / 0.226044 (0.241798) | 4.672928 / 2.268929 (2.404000) | 2.441096 / 55.444624 (-53.003529) | 2.133506 / 6.876477 (-4.742970) | 2.431167 / 2.142072 (0.289095) | 0.588567 / 4.805227 (-4.216661) | 0.136070 / 6.500664 (-6.364594) | 0.063395 / 0.075469 (-0.012074) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255003 / 1.841788 (-0.586784) | 20.587656 / 8.074308 (12.513348) | 15.147817 / 10.191392 (4.956425) | 0.152039 / 0.680424 (-0.528384) | 0.018815 / 0.534201 (-0.515386) | 0.397458 / 0.579283 (-0.181825) | 0.431433 / 0.434364 (-0.002931) | 0.487890 / 0.540337 (-0.052448) | 0.675367 / 1.386936 (-0.711569) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007209 / 0.011353 (-0.004144) | 0.004372 / 0.011008 (-0.006636) | 0.066288 / 0.038508 (0.027780) | 0.091776 / 0.023109 (0.068667) | 0.390724 / 0.275898 (0.114826) | 0.434711 / 0.323480 (0.111231) | 0.005790 / 0.007986 (-0.002196) | 0.003562 / 0.004328 (-0.000767) | 0.066155 / 0.004250 (0.061904) | 0.062459 / 0.037052 (0.025406) | 0.406622 / 0.258489 (0.148133) | 0.433976 / 0.293841 (0.140135) | 0.032590 / 0.128546 (-0.095957) | 0.008856 / 0.075646 (-0.066790) | 0.072327 / 0.419271 (-0.346945) | 0.049958 / 0.043533 (0.006426) | 0.400164 / 0.255139 (0.145025) | 0.413339 / 0.283200 (0.130139) | 0.025283 / 0.141683 (-0.116399) | 1.487668 / 1.452155 (0.035514) | 1.537679 / 1.492716 (0.044962) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.257814 / 0.018006 (0.239808) | 0.571741 / 0.000490 (0.571251) | 0.000412 / 0.000200 (0.000212) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033893 / 0.037411 (-0.003518) | 0.094533 / 0.014526 (0.080008) | 0.105876 / 0.176557 (-0.070680) | 0.158675 / 0.737135 (-0.578460) | 0.107790 / 0.296338 (-0.188548) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425796 / 0.215209 (0.210587) | 4.229159 / 2.077655 (2.151505) | 2.239613 / 1.504120 (0.735493) | 2.073830 / 1.541195 (0.532635) | 2.185508 / 1.468490 (0.717018) | 0.483984 / 4.584777 (-4.100793) | 3.645575 / 3.745712 (-0.100137) | 3.454767 / 5.269862 (-1.815095) | 2.141387 / 4.565676 (-2.424290) | 0.057570 / 0.424275 (-0.366705) | 0.007901 / 0.007607 (0.000294) | 0.501160 / 0.226044 (0.275116) | 5.012283 / 2.268929 (2.743355) | 2.701267 / 55.444624 (-52.743357) | 2.465409 / 6.876477 (-4.411068) | 2.696812 / 2.142072 (0.554739) | 0.587160 / 4.805227 (-4.218067) | 0.134175 / 6.500664 (-6.366489) | 0.062028 / 0.075469 (-0.013441) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.345632 / 1.841788 (-0.496155) | 21.077279 / 8.074308 (13.002971) | 14.700826 / 10.191392 (4.509434) | 0.156191 / 0.680424 (-0.524233) | 0.018991 / 0.534201 (-0.515210) | 0.400413 / 0.579283 (-0.178870) | 0.420597 / 0.434364 (-0.013767) | 0.486534 / 0.540337 (-0.053804) | 0.646606 / 1.386936 (-0.740330) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5bb8fabb135ca8adf47151ad3de050e3a258ccab \"CML watermark\")\n"
] | 2023-07-28T09:37:15 | 2023-07-28T10:16:11 | 2023-07-28T10:07:02 | CONTRIBUTOR | null | Fix https://github.com/huggingface/datasets/issues/6087
(Colab installs 2023.6.0, so we should be good) | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6091/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6091/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6091",
"html_url": "https://github.com/huggingface/datasets/pull/6091",
"diff_url": "https://github.com/huggingface/datasets/pull/6091.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6091.patch",
"merged_at": "2023-07-28T10:07:02"
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6100 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6100/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6100/comments | https://api.github.com/repos/huggingface/datasets/issues/6100/events | https://github.com/huggingface/datasets/issues/6100 | 1,828,118,930 | I_kwDODunzps5s9uGS | 6,100 | TypeError when loading from GCP bucket | {
"login": "bilelomrani1",
"id": 16692099,
"node_id": "MDQ6VXNlcjE2NjkyMDk5",
"avatar_url": "https://avatars.githubusercontent.com/u/16692099?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bilelomrani1",
"html_url": "https://github.com/bilelomrani1",
"followers_url": "https://api.github.com/users/bilelomrani1/followers",
"following_url": "https://api.github.com/users/bilelomrani1/following{/other_user}",
"gists_url": "https://api.github.com/users/bilelomrani1/gists{/gist_id}",
"starred_url": "https://api.github.com/users/bilelomrani1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/bilelomrani1/subscriptions",
"organizations_url": "https://api.github.com/users/bilelomrani1/orgs",
"repos_url": "https://api.github.com/users/bilelomrani1/repos",
"events_url": "https://api.github.com/users/bilelomrani1/events{/privacy}",
"received_events_url": "https://api.github.com/users/bilelomrani1/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-07-30T23:03:00 | 2023-07-30T23:03:00 | null | NONE | null | ### Describe the bug
Loading a dataset from a GCP bucket raises a type error. This bug was introduced recently (either in 2.14 or 2.14.1), and appeared during a migration from 2.13.1.
### Steps to reproduce the bug
Load any file from a GCP bucket:
```python
import datasets
datasets.load_dataset("json", data_files=["gs://..."])
```
The following exception is raised:
```python
Traceback (most recent call last):
...
packages/datasets/data_files.py", line 335, in resolve_pattern
protocol_prefix = fs.protocol + "://" if fs.protocol != "file" else ""
TypeError: can only concatenate tuple (not "str") to tuple
```
With a `GoogleFileSystem`, the attribute `fs.protocol` is a tuple `('gs', 'gcs')` and hence cannot be concatenated with a string.
### Expected behavior
The file should be loaded without exception.
### Environment info
- `datasets` version: 2.14.1
- Platform: macOS-13.2.1-x86_64-i386-64bit
- Python version: 3.10.12
- Huggingface_hub version: 0.16.4
- PyArrow version: 12.0.1
- Pandas version: 2.0.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6100/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6100/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6099 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6099/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6099/comments | https://api.github.com/repos/huggingface/datasets/issues/6099/events | https://github.com/huggingface/datasets/issues/6099 | 1,827,893,576 | I_kwDODunzps5s83FI | 6,099 | How do i get "amazon_us_reviews | {
"login": "IqraBaluch",
"id": 57810189,
"node_id": "MDQ6VXNlcjU3ODEwMTg5",
"avatar_url": "https://avatars.githubusercontent.com/u/57810189?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/IqraBaluch",
"html_url": "https://github.com/IqraBaluch",
"followers_url": "https://api.github.com/users/IqraBaluch/followers",
"following_url": "https://api.github.com/users/IqraBaluch/following{/other_user}",
"gists_url": "https://api.github.com/users/IqraBaluch/gists{/gist_id}",
"starred_url": "https://api.github.com/users/IqraBaluch/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/IqraBaluch/subscriptions",
"organizations_url": "https://api.github.com/users/IqraBaluch/orgs",
"repos_url": "https://api.github.com/users/IqraBaluch/repos",
"events_url": "https://api.github.com/users/IqraBaluch/events{/privacy}",
"received_events_url": "https://api.github.com/users/IqraBaluch/received_events",
"type": "User",
"site_admin": false
} | [
{
"id": 1935892871,
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement",
"name": "enhancement",
"color": "a2eeef",
"default": true,
"description": "New feature or request"
}
] | open | false | null | [] | null | [] | 2023-07-30T11:02:17 | 2023-07-30T11:02:17 | null | NONE | null | ### Feature request
I have been trying to load 'amazon_us_dataset" but unable to do so.
`amazon_us_reviews = load_dataset('amazon_us_reviews')`
`print(amazon_us_reviews)`
> [ValueError: Config name is missing.
Please pick one among the available configs: ['Wireless_v1_00', 'Watches_v1_00', 'Video_Games_v1_00', 'Video_DVD_v1_00', 'Video_v1_00', 'Toys_v1_00', 'Tools_v1_00', 'Sports_v1_00', 'Software_v1_00', 'Shoes_v1_00', 'Pet_Products_v1_00', 'Personal_Care_Appliances_v1_00', 'PC_v1_00', 'Outdoors_v1_00', 'Office_Products_v1_00', 'Musical_Instruments_v1_00', 'Music_v1_00', 'Mobile_Electronics_v1_00', 'Mobile_Apps_v1_00', 'Major_Appliances_v1_00', 'Luggage_v1_00', 'Lawn_and_Garden_v1_00', 'Kitchen_v1_00', 'Jewelry_v1_00', 'Home_Improvement_v1_00', 'Home_Entertainment_v1_00', 'Home_v1_00', 'Health_Personal_Care_v1_00', 'Grocery_v1_00', 'Gift_Card_v1_00', 'Furniture_v1_00', 'Electronics_v1_00', 'Digital_Video_Games_v1_00', 'Digital_Video_Download_v1_00', 'Digital_Software_v1_00', 'Digital_Music_Purchase_v1_00', 'Digital_Ebook_Purchase_v1_00', 'Camera_v1_00', 'Books_v1_00', 'Beauty_v1_00', 'Baby_v1_00', 'Automotive_v1_00', 'Apparel_v1_00', 'Digital_Ebook_Purchase_v1_01', 'Books_v1_01', 'Books_v1_02']
Example of usage:
`load_dataset('amazon_us_reviews', 'Wireless_v1_00')`]
__________________________________________________________________________
`amazon_us_reviews = load_dataset('amazon_us_reviews', 'Watches_v1_00')
print(amazon_us_reviews)`
**ERROR**
`Generating` train split: 0%
0/960872 [00:00<?, ? examples/s]
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/datasets/builder.py in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)
1692 )
-> 1693 example = self.info.features.encode_example(record) if self.info.features is not None else record
1694 writer.write(example, key)
11 frames
KeyError: 'marketplace'
The above exception was the direct cause of the following exception:
DatasetGenerationError Traceback (most recent call last)
/usr/local/lib/python3.10/dist-packages/datasets/builder.py in _prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id)
1710 if isinstance(e, SchemaInferenceError) and e.__context__ is not None:
1711 e = e.__context__
-> 1712 raise DatasetGenerationError("An error occurred while generating the dataset") from e
1713
1714 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths)
DatasetGenerationError: An error occurred while generating the dataset
### Motivation
The dataset I'm using
https://huggingface.co/datasets/amazon_us_reviews
### Your contribution
What is the best way to load this data | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6099/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6099/timeline | null | null | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6098 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6098/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6098/comments | https://api.github.com/repos/huggingface/datasets/issues/6098/events | https://github.com/huggingface/datasets/pull/6098 | 1,827,655,071 | PR_kwDODunzps5WuCn1 | 6,098 | Expanduser in save_to_disk() | {
"login": "Unknown3141592",
"id": 51715864,
"node_id": "MDQ6VXNlcjUxNzE1ODY0",
"avatar_url": "https://avatars.githubusercontent.com/u/51715864?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/Unknown3141592",
"html_url": "https://github.com/Unknown3141592",
"followers_url": "https://api.github.com/users/Unknown3141592/followers",
"following_url": "https://api.github.com/users/Unknown3141592/following{/other_user}",
"gists_url": "https://api.github.com/users/Unknown3141592/gists{/gist_id}",
"starred_url": "https://api.github.com/users/Unknown3141592/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Unknown3141592/subscriptions",
"organizations_url": "https://api.github.com/users/Unknown3141592/orgs",
"repos_url": "https://api.github.com/users/Unknown3141592/repos",
"events_url": "https://api.github.com/users/Unknown3141592/events{/privacy}",
"received_events_url": "https://api.github.com/users/Unknown3141592/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [] | 2023-07-29T20:50:45 | 2023-07-29T20:58:57 | null | NONE | null | Fixes #5651. The same problem occurs when loading from disk so I fixed it there too.
I am not sure why the case distinction between local and remote filesystems is even necessary for `DatasetDict` when saving to disk. Imo this could be removed (leaving only `fs.makedirs(dataset_dict_path, exist_ok=True)`). | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6098/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6098/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6098",
"html_url": "https://github.com/huggingface/datasets/pull/6098",
"diff_url": "https://github.com/huggingface/datasets/pull/6098.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6098.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6097 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6097/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6097/comments | https://api.github.com/repos/huggingface/datasets/issues/6097/events | https://github.com/huggingface/datasets/issues/6097 | 1,827,054,143 | I_kwDODunzps5s5qI_ | 6,097 | Dataset.get_nearest_examples does not return all feature values for the k most similar datapoints - side effect of Dataset.set_format | {
"login": "aschoenauer-sebag",
"id": 2538048,
"node_id": "MDQ6VXNlcjI1MzgwNDg=",
"avatar_url": "https://avatars.githubusercontent.com/u/2538048?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/aschoenauer-sebag",
"html_url": "https://github.com/aschoenauer-sebag",
"followers_url": "https://api.github.com/users/aschoenauer-sebag/followers",
"following_url": "https://api.github.com/users/aschoenauer-sebag/following{/other_user}",
"gists_url": "https://api.github.com/users/aschoenauer-sebag/gists{/gist_id}",
"starred_url": "https://api.github.com/users/aschoenauer-sebag/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/aschoenauer-sebag/subscriptions",
"organizations_url": "https://api.github.com/users/aschoenauer-sebag/orgs",
"repos_url": "https://api.github.com/users/aschoenauer-sebag/repos",
"events_url": "https://api.github.com/users/aschoenauer-sebag/events{/privacy}",
"received_events_url": "https://api.github.com/users/aschoenauer-sebag/received_events",
"type": "User",
"site_admin": false
} | [] | closed | false | null | [] | null | [
"Actually, my bad -- specifying\r\n```python\r\nfoo.set_format('numpy', ['vectors'], output_all_columns=True)\r\n```\r\nfixes it."
] | 2023-07-28T20:31:59 | 2023-07-28T20:49:58 | 2023-07-28T20:49:58 | NONE | null | ### Describe the bug
Hi team!
I observe that there seems to be a side effect of `Dataset.set_format`: after setting a format and creating a FAISS index, the method `get_nearest_examples` from the `Dataset` class, fails to retrieve anything else but the embeddings themselves - not super useful. This is not the case if not using the `set_format` method: you can also retrieve any other feature value, such as an index/id/etc.
Are you able to reproduce what I observe?
### Steps to reproduce the bug
```python
from datasets import Dataset
import numpy as np
foo = {'vectors': np.random.random((100,1024)), 'ids': [str(u) for u in range(100)]}
foo = Dataset.from_dict(foo)
foo.set_format('numpy', ['vectors'])
foo.add_faiss_index('vectors')
new_vector = np.random.random(1024)
scores, res = foo.get_nearest_examples('vectors', new_vector, k=3)
```
This will return, for the resulting most similar vectors to `new_vector` - in particular it will not return the `ids` feature:
```
{'vectors': array([[random values ...]])}
```
### Expected behavior
The expected behavior happens when the `set_format` method is not called:
```python
from datasets import Dataset
import numpy as np
foo = {'vectors': np.random.random((100,1024)), 'ids': [str(u) for u in range(100)]}
foo = Dataset.from_dict(foo)
# foo.set_format('numpy', ['vectors'])
foo.add_faiss_index('vectors')
new_vector = np.random.random(1024)
scores, res = foo.get_nearest_examples('vectors', new_vector, k=3)
```
This *will* return the `ids` of the similar vectors - with unfortunately a list of lists in lieu of the array I think for caching reasons - read it elsewhere
```
{'vectors': [[random values on multiple lines...]], 'ids': ['x', 'y', 'z']}
```
### Environment info
- `datasets` version: 2.12.0
- Platform: Linux-5.4.0-155-generic-x86_64-with-glibc2.31
- Python version: 3.10.6
- Huggingface_hub version: 0.15.1
- PyArrow version: 11.0.0
- Pandas version: 1.5.3
| {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6097/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6097/timeline | null | completed | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/6096 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6096/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6096/comments | https://api.github.com/repos/huggingface/datasets/issues/6096/events | https://github.com/huggingface/datasets/pull/6096 | 1,826,731,091 | PR_kwDODunzps5Wq9Hb | 6,096 | Add `fsspec` support for `to_json`, `to_csv`, and `to_parquet` | {
"login": "alvarobartt",
"id": 36760800,
"node_id": "MDQ6VXNlcjM2NzYwODAw",
"avatar_url": "https://avatars.githubusercontent.com/u/36760800?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/alvarobartt",
"html_url": "https://github.com/alvarobartt",
"followers_url": "https://api.github.com/users/alvarobartt/followers",
"following_url": "https://api.github.com/users/alvarobartt/following{/other_user}",
"gists_url": "https://api.github.com/users/alvarobartt/gists{/gist_id}",
"starred_url": "https://api.github.com/users/alvarobartt/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/alvarobartt/subscriptions",
"organizations_url": "https://api.github.com/users/alvarobartt/orgs",
"repos_url": "https://api.github.com/users/alvarobartt/repos",
"events_url": "https://api.github.com/users/alvarobartt/events{/privacy}",
"received_events_url": "https://api.github.com/users/alvarobartt/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6096). All of your documentation changes will be reflected on that endpoint."
] | 2023-07-28T16:36:59 | 2023-07-29T21:25:24 | null | CONTRIBUTOR | null | Hi to whoever is reading this! 🤗 (Most likely @mariosasko)
## What's in this PR?
This PR replaces the `open` from Python with `fsspec.open` and adds the argument `storage_options` for the methods `to_json`, `to_csv`, and `to_parquet`, to allow users to export any 🤗`Dataset` into a file in a file-system as requested at #6086.
## What's missing in this PR?
As per `to_json`, `to_csv`, and `to_parquet` docstrings for the recently included `storage_options` arg, I've scoped it to 2.15.0, so we should check that before merging in case we want to scope that for 2.14.2 instead.
Additionally, should we also add `fsspec` support for the `from_csv`, `from_json`, and `from_parquet` methods? If you want me to do so @mariosasko just let me know and I'll create another PR to support that too! | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6096/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6096/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6096",
"html_url": "https://github.com/huggingface/datasets/pull/6096",
"diff_url": "https://github.com/huggingface/datasets/pull/6096.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6096.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6095 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6095/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6095/comments | https://api.github.com/repos/huggingface/datasets/issues/6095/events | https://github.com/huggingface/datasets/pull/6095 | 1,826,496,967 | PR_kwDODunzps5WqJtr | 6,095 | Fix deprecation of errors in TextConfig | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6095). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012497 / 0.011353 (0.001144) | 0.005355 / 0.011008 (-0.005654) | 0.106018 / 0.038508 (0.067510) | 0.093069 / 0.023109 (0.069960) | 0.394699 / 0.275898 (0.118801) | 0.449723 / 0.323480 (0.126243) | 0.006434 / 0.007986 (-0.001552) | 0.004187 / 0.004328 (-0.000141) | 0.079620 / 0.004250 (0.075370) | 0.062513 / 0.037052 (0.025460) | 0.410305 / 0.258489 (0.151816) | 0.467231 / 0.293841 (0.173390) | 0.048130 / 0.128546 (-0.080416) | 0.013747 / 0.075646 (-0.061899) | 0.357979 / 0.419271 (-0.061293) | 0.064764 / 0.043533 (0.021231) | 0.411029 / 0.255139 (0.155890) | 0.454734 / 0.283200 (0.171534) | 0.037215 / 0.141683 (-0.104468) | 1.801331 / 1.452155 (0.349176) | 1.951628 / 1.492716 (0.458912) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.231073 / 0.018006 (0.213067) | 0.564179 / 0.000490 (0.563689) | 0.000947 / 0.000200 (0.000747) | 0.000091 / 0.000054 (0.000036) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030629 / 0.037411 (-0.006783) | 0.092522 / 0.014526 (0.077996) | 0.109781 / 0.176557 (-0.066775) | 0.183185 / 0.737135 (-0.553950) | 0.109679 / 0.296338 (-0.186660) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.600095 / 0.215209 (0.384886) | 6.072868 / 2.077655 (3.995213) | 2.684109 / 1.504120 (1.179989) | 2.436204 / 1.541195 (0.895010) | 2.514667 / 1.468490 (1.046177) | 0.865455 / 4.584777 (-3.719322) | 5.245561 / 3.745712 (1.499849) | 5.628688 / 5.269862 (0.358826) | 3.457343 / 4.565676 (-1.108333) | 0.107563 / 0.424275 (-0.316712) | 0.008803 / 0.007607 (0.001196) | 0.754014 / 0.226044 (0.527970) | 7.341226 / 2.268929 (5.072297) | 3.482090 / 55.444624 (-51.962534) | 2.726071 / 6.876477 (-4.150406) | 3.168494 / 2.142072 (1.026422) | 1.023517 / 4.805227 (-3.781710) | 0.207440 / 6.500664 (-6.293224) | 0.073642 / 0.075469 (-0.001827) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.588636 / 1.841788 (-0.253152) | 23.305257 / 8.074308 (15.230949) | 22.071476 / 10.191392 (11.880084) | 0.242044 / 0.680424 (-0.438379) | 0.028830 / 0.534201 (-0.505371) | 0.461414 / 0.579283 (-0.117869) | 0.591024 / 0.434364 (0.156660) | 0.548984 / 0.540337 (0.008646) | 0.783318 / 1.386936 (-0.603618) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008724 / 0.011353 (-0.002629) | 0.004638 / 0.011008 (-0.006371) | 0.081024 / 0.038508 (0.042516) | 0.077533 / 0.023109 (0.054423) | 0.444827 / 0.275898 (0.168929) | 0.507812 / 0.323480 (0.184332) | 0.006017 / 0.007986 (-0.001968) | 0.004204 / 0.004328 (-0.000124) | 0.082154 / 0.004250 (0.077904) | 0.063818 / 0.037052 (0.026765) | 0.463468 / 0.258489 (0.204979) | 0.536784 / 0.293841 (0.242943) | 0.046393 / 0.128546 (-0.082153) | 0.014349 / 0.075646 (-0.061298) | 0.089213 / 0.419271 (-0.330059) | 0.058313 / 0.043533 (0.014780) | 0.463674 / 0.255139 (0.208535) | 0.495865 / 0.283200 (0.212665) | 0.036586 / 0.141683 (-0.105096) | 1.801601 / 1.452155 (0.349447) | 1.871219 / 1.492716 (0.378502) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.273411 / 0.018006 (0.255405) | 0.531745 / 0.000490 (0.531255) | 0.000424 / 0.000200 (0.000224) | 0.000130 / 0.000054 (0.000076) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037689 / 0.037411 (0.000278) | 0.109544 / 0.014526 (0.095019) | 0.124053 / 0.176557 (-0.052504) | 0.179960 / 0.737135 (-0.557175) | 0.118218 / 0.296338 (-0.178120) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.639859 / 0.215209 (0.424650) | 6.347385 / 2.077655 (4.269730) | 2.910188 / 1.504120 (1.406068) | 2.698821 / 1.541195 (1.157626) | 2.802652 / 1.468490 (1.334161) | 0.816109 / 4.584777 (-3.768668) | 5.190313 / 3.745712 (1.444601) | 4.642684 / 5.269862 (-0.627178) | 2.948092 / 4.565676 (-1.617584) | 0.095877 / 0.424275 (-0.328398) | 0.009631 / 0.007607 (0.002024) | 0.779136 / 0.226044 (0.553091) | 7.611586 / 2.268929 (5.342658) | 3.760804 / 55.444624 (-51.683820) | 3.139355 / 6.876477 (-3.737122) | 3.419660 / 2.142072 (1.277587) | 1.036397 / 4.805227 (-3.768831) | 0.224015 / 6.500664 (-6.276649) | 0.084037 / 0.075469 (0.008568) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.710608 / 1.841788 (-0.131179) | 24.447646 / 8.074308 (16.373338) | 21.345322 / 10.191392 (11.153930) | 0.232383 / 0.680424 (-0.448040) | 0.026381 / 0.534201 (-0.507820) | 0.475995 / 0.579283 (-0.103289) | 0.611939 / 0.434364 (0.177575) | 0.541441 / 0.540337 (0.001104) | 0.742796 / 1.386936 (-0.644140) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7929929525e734f7232cfc68d1d22fb8d53c54a3 \"CML watermark\")\n"
] | 2023-07-28T14:08:37 | 2023-07-28T14:17:56 | null | MEMBER | null | This PR fixes an issue with the deprecation of `errors` in `TextConfig` introduced by:
- #5974
```python
In [1]: ds = load_dataset("text", data_files="test.txt", errors="strict")
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-13-701c27131a5d> in <module>
----> 1 ds = load_dataset("text", data_files="test.txt", errors="strict")
~/huggingface/datasets/src/datasets/load.py in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
2107
2108 # Create a dataset builder
-> 2109 builder_instance = load_dataset_builder(
2110 path=path,
2111 name=name,
~/huggingface/datasets/src/datasets/load.py in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, **config_kwargs)
1830 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name)
1831 # Instantiate the dataset builder
-> 1832 builder_instance: DatasetBuilder = builder_cls(
1833 cache_dir=cache_dir,
1834 dataset_name=dataset_name,
~/huggingface/datasets/src/datasets/builder.py in __init__(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, use_auth_token, repo_id, data_files, data_dir, storage_options, writer_batch_size, name, **config_kwargs)
371 if data_dir is not None:
372 config_kwargs["data_dir"] = data_dir
--> 373 self.config, self.config_id = self._create_builder_config(
374 config_name=config_name,
375 custom_features=features,
~/huggingface/datasets/src/datasets/builder.py in _create_builder_config(self, config_name, custom_features, **config_kwargs)
550 if "version" not in config_kwargs and hasattr(self, "VERSION") and self.VERSION:
551 config_kwargs["version"] = self.VERSION
--> 552 builder_config = self.BUILDER_CONFIG_CLASS(**config_kwargs)
553
554 # otherwise use the config_kwargs to overwrite the attributes
TypeError: __init__() got an unexpected keyword argument 'errors'
```
Similar to:
- #6094 | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6095/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6095/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6095",
"html_url": "https://github.com/huggingface/datasets/pull/6095",
"diff_url": "https://github.com/huggingface/datasets/pull/6095.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6095.patch",
"merged_at": null
} | true |
https://api.github.com/repos/huggingface/datasets/issues/6094 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/6094/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/6094/comments | https://api.github.com/repos/huggingface/datasets/issues/6094/events | https://github.com/huggingface/datasets/pull/6094 | 1,826,293,414 | PR_kwDODunzps5WpdpA | 6,094 | Fix deprecation of use_auth_token in DownloadConfig | {
"login": "albertvillanova",
"id": 8515462,
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/albertvillanova",
"html_url": "https://github.com/albertvillanova",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"type": "User",
"site_admin": false
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6094). All of your documentation changes will be reflected on that endpoint.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008996 / 0.011353 (-0.002357) | 0.004976 / 0.011008 (-0.006033) | 0.114495 / 0.038508 (0.075987) | 0.083958 / 0.023109 (0.060849) | 0.408395 / 0.275898 (0.132497) | 0.456757 / 0.323480 (0.133278) | 0.006396 / 0.007986 (-0.001589) | 0.004315 / 0.004328 (-0.000014) | 0.093558 / 0.004250 (0.089307) | 0.062067 / 0.037052 (0.025014) | 0.423452 / 0.258489 (0.164963) | 0.463947 / 0.293841 (0.170106) | 0.049934 / 0.128546 (-0.078613) | 0.013937 / 0.075646 (-0.061709) | 0.365809 / 0.419271 (-0.053463) | 0.067382 / 0.043533 (0.023849) | 0.418860 / 0.255139 (0.163721) | 0.463264 / 0.283200 (0.180065) | 0.034392 / 0.141683 (-0.107291) | 1.870685 / 1.452155 (0.418530) | 1.975313 / 1.492716 (0.482597) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261748 / 0.018006 (0.243742) | 0.645510 / 0.000490 (0.645020) | 0.000376 / 0.000200 (0.000176) | 0.000077 / 0.000054 (0.000023) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032129 / 0.037411 (-0.005282) | 0.104309 / 0.014526 (0.089783) | 0.113154 / 0.176557 (-0.063403) | 0.186795 / 0.737135 (-0.550341) | 0.115584 / 0.296338 (-0.180755) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.577755 / 0.215209 (0.362546) | 5.984988 / 2.077655 (3.907333) | 2.581967 / 1.504120 (1.077848) | 2.305744 / 1.541195 (0.764549) | 2.359618 / 1.468490 (0.891128) | 0.882892 / 4.584777 (-3.701885) | 5.755578 / 3.745712 (2.009866) | 8.718373 / 5.269862 (3.448511) | 5.217586 / 4.565676 (0.651909) | 0.099785 / 0.424275 (-0.324490) | 0.009008 / 0.007607 (0.001401) | 0.730937 / 0.226044 (0.504892) | 7.265309 / 2.268929 (4.996381) | 3.487167 / 55.444624 (-51.957457) | 2.750090 / 6.876477 (-4.126386) | 3.060198 / 2.142072 (0.918125) | 1.069945 / 4.805227 (-3.735282) | 0.227143 / 6.500664 (-6.273521) | 0.083601 / 0.075469 (0.008132) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.754375 / 1.841788 (-0.087412) | 25.448731 / 8.074308 (17.374423) | 22.385943 / 10.191392 (12.194551) | 0.249921 / 0.680424 (-0.430503) | 0.034138 / 0.534201 (-0.500063) | 0.535170 / 0.579283 (-0.044113) | 0.605474 / 0.434364 (0.171110) | 0.580025 / 0.540337 (0.039688) | 0.810537 / 1.386936 (-0.576399) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009117 / 0.011353 (-0.002236) | 0.005029 / 0.011008 (-0.005979) | 0.082200 / 0.038508 (0.043691) | 0.082386 / 0.023109 (0.059277) | 0.491869 / 0.275898 (0.215971) | 0.546735 / 0.323480 (0.223255) | 0.006893 / 0.007986 (-0.001093) | 0.004571 / 0.004328 (0.000243) | 0.085361 / 0.004250 (0.081111) | 0.063342 / 0.037052 (0.026290) | 0.522522 / 0.258489 (0.264033) | 0.560784 / 0.293841 (0.266943) | 0.047685 / 0.128546 (-0.080861) | 0.017741 / 0.075646 (-0.057905) | 0.098204 / 0.419271 (-0.321067) | 0.062919 / 0.043533 (0.019386) | 0.504005 / 0.255139 (0.248866) | 0.547022 / 0.283200 (0.263823) | 0.033731 / 0.141683 (-0.107952) | 1.869765 / 1.452155 (0.417610) | 1.935867 / 1.492716 (0.443151) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.304756 / 0.018006 (0.286750) | 0.623647 / 0.000490 (0.623157) | 0.000508 / 0.000200 (0.000308) | 0.000090 / 0.000054 (0.000035) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.043627 / 0.037411 (0.006216) | 0.107183 / 0.014526 (0.092657) | 0.119304 / 0.176557 (-0.057253) | 0.192651 / 0.737135 (-0.544485) | 0.125118 / 0.296338 (-0.171221) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.669980 / 0.215209 (0.454771) | 6.566068 / 2.077655 (4.488413) | 3.136271 / 1.504120 (1.632152) | 2.964643 / 1.541195 (1.423448) | 2.936772 / 1.468490 (1.468282) | 0.885205 / 4.584777 (-3.699572) | 5.539062 / 3.745712 (1.793350) | 5.006133 / 5.269862 (-0.263729) | 3.313697 / 4.565676 (-1.251979) | 0.102975 / 0.424275 (-0.321301) | 0.010759 / 0.007607 (0.003152) | 0.791176 / 0.226044 (0.565132) | 7.822195 / 2.268929 (5.553266) | 3.982315 / 55.444624 (-51.462309) | 3.357026 / 6.876477 (-3.519451) | 3.561307 / 2.142072 (1.419234) | 1.056966 / 4.805227 (-3.748261) | 0.220476 / 6.500664 (-6.280188) | 0.090535 / 0.075469 (0.015066) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.897984 / 1.841788 (0.056196) | 26.411411 / 8.074308 (18.337103) | 22.951939 / 10.191392 (12.760547) | 0.216091 / 0.680424 (-0.464333) | 0.037005 / 0.534201 (-0.497196) | 0.505585 / 0.579283 (-0.073698) | 0.617794 / 0.434364 (0.183430) | 0.604631 / 0.540337 (0.064293) | 0.826356 / 1.386936 (-0.560580) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ca6342c0177adc3a1d114740444e207b8525ed6e \"CML watermark\")\n"
] | 2023-07-28T11:52:21 | 2023-07-28T14:35:04 | null | MEMBER | null | This PR fixes an issue with the deprecation of `use_auth_token` in `DownloadConfig` introduced by:
- #5996
```python
In [1]: from datasets import DownloadConfig
In [2]: DownloadConfig(use_auth_token=False)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-3-41927b449e72> in <module>
----> 1 DownloadConfig(use_auth_token=False)
TypeError: __init__() got an unexpected keyword argument 'use_auth_token'
```
```python
In [1]: from datasets import get_dataset_config_names
In [2]: get_dataset_config_names("squad", use_auth_token=False)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-22-4671992ead50> in <module>
----> 1 get_dataset_config_names("squad", use_auth_token=False)
~/huggingface/datasets/src/datasets/inspect.py in get_dataset_config_names(path, revision, download_config, download_mode, dynamic_modules_path, data_files, **download_kwargs)
349 ```
350 """
--> 351 dataset_module = dataset_module_factory(
352 path,
353 revision=revision,
~/huggingface/datasets/src/datasets/load.py in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)
1374 """
1375 if download_config is None:
-> 1376 download_config = DownloadConfig(**download_kwargs)
1377 download_mode = DownloadMode(download_mode or DownloadMode.REUSE_DATASET_IF_EXISTS)
1378 download_config.extract_compressed_file = True
TypeError: __init__() got an unexpected keyword argument 'use_auth_token'
``` | {
"url": "https://api.github.com/repos/huggingface/datasets/issues/6094/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
} | https://api.github.com/repos/huggingface/datasets/issues/6094/timeline | null | null | false | {
"url": "https://api.github.com/repos/huggingface/datasets/pulls/6094",
"html_url": "https://github.com/huggingface/datasets/pull/6094",
"diff_url": "https://github.com/huggingface/datasets/pull/6094.diff",
"patch_url": "https://github.com/huggingface/datasets/pull/6094.patch",
"merged_at": null
} | true |
End of preview. Expand
in Dataset Viewer.
- Downloads last month
- 29