Dataset Viewer
Auto-converted to Parquet
_id
stringlengths
1
4
query
stringlengths
35
155
gt_docs
sequencelengths
1
3
candidate_docs
sequencelengths
100
100
1
0-dimensional biomaterials show inductive properties.
[ "Nanotechnologies are emerging platforms that could be useful in measuring, understanding, and manipulating stem cells. Examples include magnetic nanoparticles and quantum dots for stem cell labeling and in vivo tracking; nanoparticles, carbon nanotubes, and polyplexes for the intracellular delivery of genes/oligonucleotides and protein/peptides; and engineered nanometer-scale scaffolds for stem cell differentiation and transplantation. This review examines the use of nanotechnologies for stem cell tracking, differentiation, and transplantation. We further discuss their utility and the potential concerns regarding their cytotoxicity." ]
[ "PURPOSE Mesh surgeries are counted among the most frequently applied surgical procedures. Despite global spread of mesh applying surgeries, there is no current systematic analysis of incidence and possible prevention of adverse events after mesh implantation. MATERIALS AND METHODS Based on the recommendations of IDEAL an in vitro test system for biocompatibility of surgical meshes has been generated (Innovation). Coating strategies for biocompatibility optimization have been developed (Development). The native and modified alloplastic materials have been tested in an animal model over 2 years (Exploration and Assessment and Long-term study). RESULTS In 3 meshes, implanted in sheep and explanted at 4 different time points (a, 3 months; b, 6 months; c, 12 months; and d, 24 months) over 24 months, thickness of inflammatory tissue (TVT a, 35 µm; b, 32 µm; c, 33 µm; d, 28 µm; UltraPro, a, 25 µm; b, 24 µm; c, 21 µm; d, 22 µm; PVDF a, 20 µm; b, 21 µm; c, 14 µm; d, 15µm), connective tissue (TVT a, 37 µm; b, 36 µm; c, 43 µm; d, 41 µm; UltraPro a, 33 µm; b, 32 µm; c, 40 µm; d, 38 µm; PVDF a, 25 µm; b, 22 µm; c, 22 µm; d, 24 µm), and macrophage infiltration (TVT a, 36%; b, 33%; c, 23%; d, 20%; UltraPro a, 34%; b, 28%; c, 25%; d, 22%; PVDF a, 24%; b, 18%; c, 18%; d, 16%) revealed comparable ranking characteristics at every time point after explantation. The in vivo performance of these meshes in a sheep model was predictable with a previously developed in vitro test system. Coating of meshes with autologous plasma prior to implantation seems to have a positive effect on the meshes biocompatibility. CONCLUSION We have applied IDEAL criteria on a new innovation for surgical meshes. The results permit the generation of a ranking of currently available meshes with potential to optimize future meshes.", "Unlike most synthetic materials, biological materials often stiffen as they are deformed. This nonlinear elastic response, critical for the physiological function of some tissues, has been documented since at least the 19th century, but the molecular structure and the design principles responsible for it are unknown. Current models for this response require geometrically complex ordered structures unique to each material. In this Article we show that a much simpler molecular theory accounts for strain stiffening in a wide range of molecularly distinct biopolymer gels formed from purified cytoskeletal and extracellular proteins. This theory shows that systems of semi-flexible chains such as filamentous proteins arranged in an open crosslinked meshwork invariably stiffen at low strains without the need for a specific architecture or multiple elements with different intrinsic stiffnesses.", "Cells in tissues can organize into a broad spectrum of structures according to their function. Drastic changes of organization, such as epithelial-mesenchymal transitions or the formation of spheroidal aggregates, are often associated either to tissue morphogenesis or to cancer progression. Here, we study the organization of cell colonies by means of simulations of self-propelled particles with generic cell-like interactions. The interplay between cell softness, cell-cell adhesion, and contact inhibition of locomotion (CIL) yields structures and collective dynamics observed in several existing tissue phenotypes. These include regular distributions of cells, dynamic cell clusters, gel-like networks, collectively migrating monolayers, and 3D aggregates. We give analytical predictions for transitions between noncohesive, cohesive, and 3D cell arrangements. We explicitly show how CIL yields an effective repulsion that promotes cell dispersal, thereby hindering the formation of cohesive tissues. Yet, in continuous monolayers, CIL leads to collective cell motion, ensures tensile intercellular stresses, and opposes cell extrusion. Thus, our work highlights the prominent role of CIL in determining the emergent structures and dynamics of cell colonies.", "Optical imaging of the dynamics of living specimens involves tradeoffs between spatial resolution, temporal resolution, and phototoxicity, made more difficult in three dimensions. Here, however, we report that rapid three-dimensional (3D) dynamics can be studied beyond the diffraction limit in thick or densely fluorescent living specimens over many time points by combining ultrathin planar illumination produced by scanned Bessel beams with super-resolution structured illumination microscopy. We demonstrate in vivo karyotyping of chromosomes during mitosis and identify different dynamics for the actin cytoskeleton at the dorsal and ventral surfaces of fibroblasts. Compared to spinning disk confocal microscopy, we demonstrate substantially reduced photodamage when imaging rapid morphological changes in D. discoideum cells, as well as improved contrast and resolution at depth within developing C. elegans embryos. Bessel beam structured plane illumination thus promises new insights into complex biological phenomena that require 4D subcellular spatiotemporal detail in either a single or multicellular context.", "Nanotechnologies are emerging platforms that could be useful in measuring, understanding, and manipulating stem cells. Examples include magnetic nanoparticles and quantum dots for stem cell labeling and in vivo tracking; nanoparticles, carbon nanotubes, and polyplexes for the intracellular delivery of genes/oligonucleotides and protein/peptides; and engineered nanometer-scale scaffolds for stem cell differentiation and transplantation. This review examines the use of nanotechnologies for stem cell tracking, differentiation, and transplantation. We further discuss their utility and the potential concerns regarding their cytotoxicity.", "Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.", "We report the establishment of a library of micromolded elastomeric micropost arrays to modulate substrate rigidity independently of effects on adhesive and other material surface properties. We demonstrated that micropost rigidity impacts cell morphology, focal adhesions, cytoskeletal contractility and stem cell differentiation. Furthermore, early changes in cytoskeletal contractility predicted later stem cell fate decisions in single cells.", "Ever since the discovery of the nucleosome in 1974, scientists have stumbled upon discrete particles in which DNA is wrapped around histone complexes of different stoichiometries: octasomes, hexasomes, tetrasomes, \"split\" half-nucleosomes, and, recently, bona fide hemisomes. Do all these particles exist in vivo? Under what conditions? What is their physiological significance in the complex DNA transactions in the eukaryotic nucleus? What are their dynamics? This review summarizes research spanning more than three decades and provides a new meaning to the term \"nucleosome. \" The nucleosome can no longer be viewed as a single static entity: rather, it is a family of particles differing in their structural and dynamic properties, leading to different functionalities.", "Human blastocyst-derived, pluripotent cell lines are described that have normal karyotypes, express high levels of telomerase activity, and express cell surface markers that characterize primate embryonic stem cells but do not characterize other early lineages. After undifferentiated proliferation in vitro for 4 to 5 months, these cells still maintained the developmental potential to form trophoblast and derivatives of all three embryonic germ layers, including gut epithelium (endoderm); cartilage, bone, smooth muscle, and striated muscle (mesoderm); and neural epithelium, embryonic ganglia, and stratified squamous epithelium (ectoderm). These cell lines should be useful in human developmental biology, drug discovery, and transplantation medicine.", "The morphogenesis of developing embryos and organs relies on the ability of cells to remodel their contacts with neighbouring cells. Using quantitative modelling and laser nano-dissection, we probed the mechanics of a morphogenetic process, the elongation of Drosophila melanogaster embryos, which results from polarized cell neighbour exchanges. We show that anisotropy of cortical tension at apical cell junctions is sufficient to drive tissue elongation. We estimated its value through comparisons between in silico and in vivo data using various tissue descriptors. Nano-dissection of the actomyosin network indicates that tension is anisotropically distributed and depends on myosin II accumulation. Junction relaxation after nano-dissection also suggests that cortical elastic forces are dominant in this process. Interestingly, fluctuations in vertex position (points where three or more cells meet) facilitate neighbour exchanges. We delineate the contribution of subcellular tensile activity polarizing junction remodelling, and the permissive role of vertex fluctuations during tissue elongation.", "Notch plays a critical role in the transition from proliferation to differentiation in the epidermis and corneal epithelium. Furthermore, aberrant Notch signaling is a feature of diseases like psoriasis, eczema, nonmelanoma skin cancer, and melanoma where differentiation and proliferation are impaired. Whereas much is known about the downstream events following Notch signaling, factors responsible for negatively regulating Notch receptor signaling after ligand activation are incompletely understood. Notch can undergo hydroxylation by factor-inhibiting hypoxia-inducible factor 1 (FIH-1); however, the biological significance of this phenomenon is unclear. Here we show that FIH-1 expression is up-regulated in diseased epidermis and corneal epithelium. Elevating FIH-1 levels in primary human epidermal keratinocytes (HEKs) and human corneal epithelial keratinocytes (HCEKs) impairs differentiation in submerged cultures and in a \"three-dimensional\" organotypic raft model of human epidermis, in part, via a coordinate decrease in Notch signaling. Knockdown of FIH-1 enhances keratinocyte differentiation. Loss of FIH-1 in vivo increased Notch activity in the limbal epithelium, resulting in a more differentiated phenotype. microRNA-31 (miR-31) is an endogenous negative regulator of FIH-1 expression that results in keratinocyte differentiation, mediated by Notch activation. Ectopically expressing miR-31 in an undifferentiated corneal epithelial cell line promotes differentiation and recapitulates a corneal epithelium in a three-dimensional raft culture model. Our results define a previously unknown mechanism for keratinocyte fate decisions where Notch signaling potential is, in part, controlled through a miR-31/FIH-1 nexus.", "Recently, single-molecule imaging and photocontrol have enabled superresolution optical microscopy of cellular structures beyond Abbe's diffraction limit, extending the frontier of noninvasive imaging of structures within living cells. However, live-cell superresolution imaging has been challenged by the need to image three-dimensional (3D) structures relative to their biological context, such as the cellular membrane. We have developed a technique, termed superresolution by power-dependent active intermittency and points accumulation for imaging in nanoscale topography (SPRAIPAINT) that combines imaging of intracellular enhanced YFP (eYFP) fusions (SPRAI) with stochastic localization of the cell surface (PAINT) to image two different fluorophores sequentially with only one laser. Simple light-induced blinking of eYFP and collisional flux onto the cell surface by Nile red are used to achieve single-molecule localizations, without any antibody labeling, cell membrane permeabilization, or thiol-oxygen scavenger systems required. Here we demonstrate live-cell 3D superresolution imaging of Crescentin-eYFP, a cytoskeletal fluorescent protein fusion, colocalized with the surface of the bacterium Caulobacter crescentus using a double-helix point spread function microscope. Three-dimensional colocalization of intracellular protein structures and the cell surface with superresolution optical microscopy opens the door for the analysis of protein interactions in living cells with excellent precision (20-40 nm in 3D) over a large field of view (12 12 μm).", "Currently, major concerns about the safety and efficacy of RNA interference (RNAi)-based bone anabolic strategies still exist because of the lack of direct osteoblast-specific delivery systems for osteogenic siRNAs. Here we screened the aptamer CH6 by cell-SELEX, specifically targeting both rat and human osteoblasts, and then we developed CH6 aptamer–functionalized lipid nanoparticles (LNPs) encapsulating osteogenic pleckstrin homology domain-containing family O member 1 (Plekho1) siRNA (CH6-LNPs-siRNA). Our results showed that CH6 facilitated in vitro osteoblast-selective uptake of Plekho1 siRNA, mainly via macropinocytosis, and boosted in vivo osteoblast-specific Plekho1 gene silencing, which promoted bone formation, improved bone microarchitecture, increased bone mass and enhanced mechanical properties in both osteopenic and healthy rodents. These results indicate that osteoblast-specific aptamer-functionalized LNPs could act as a new RNAi-based bone anabolic strategy, advancing the targeted delivery selectivity of osteogenic siRNAs from the tissue level to the cellular level.", "Kinetochores couple chromosomes to the assembling and disassembling tips of microtubules, a dynamic behavior that is fundamental to mitosis in all eukaryotes but poorly understood. Genetic, biochemical, and structural studies implicate the Ndc80 complex as a direct point of contact between kinetochores and microtubules, but these approaches provide only a static view. Here, using techniques for manipulating and tracking individual molecules in vitro, we demonstrate that the Ndc80 complex is capable of forming the dynamic, load-bearing attachments to assembling and disassembling tips required for coupling in vivo. We also establish that Ndc80-based coupling likely occurs through a biased diffusion mechanism and that this activity is conserved from yeast to humans. Our findings demonstrate how an ensemble of Ndc80 complexes may provide the combination of plasticity and strength that allows kinetochores to maintain load-bearing tip attachments during both microtubule assembly and disassembly.", "Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.", "BACKGROUND Intraperitoneal placement of polypropylene mesh leads to extensive visceral adhesions and is contraindicated. Different coatings are used to improve polypropylene mesh properties. Collagen is a protein with unique biocompatibility and cell ingrowth enhancement potential. A novel acetic acid extracted collagen coating was developed to allow placement of polypropylene mesh in direct contact with viscera. The authors' aim was to evaluate the long-term influence of acetic acid extracted collagen coating on surgical aspects and biomechanical properties of polypropylene mesh implanted in direct contact with viscera, including complications, adhesions with viscera, strength of incorporation, and microscopic inflammatory reaction. METHODS Forty adult Wistar rats were divided into two groups: experimental (polypropylene mesh/acetic acid extracted collagen coating) and control (polypropylene mesh only). Astandardized procedure of mesh implantation was performed. Animals were killed 3 months after surgery and analyzed for complications, mesh area covered by adhesions, type of adhesions, strength of incorporation, and intensity of inflammatory response. RESULTS The mean adhesion area was lower for polypropylene mesh/acetic acid extracted collagen coating (14.5 percent versus 69.9 percent, p < 0.001). Adhesion severity was decreased in the experimental group: grades 0 and 1 were more frequent (p < 0.04 and p < 0.002, respectively) and grade 3 was less frequent (p < 0.0001). An association between adhesion area and severity was found (p < 0.0001). Complications, strength of incorporation, and intensity of inflammatory response to the mesh were similar. CONCLUSIONS Visceral adhesions to polypropylene mesh are significantly reduced because of acetic acid extracted collagen coating. The collagen coating does not increase complications or induce alterations of polypropylene mesh incorporation.", "Glomerular basement membrane (GBM) and podocalyxin are essential for podocyte morphology. We provide evidence of functional interconnections between basement membrane components (collagen IV and laminin), the expression of podocalyxin and the morphology of human glomerular epithelial cells (podocytes). We demonstrated that GBM and laminin, but not collagen IV, up-regulated the expression of podocalyxin. Scanning electron microscopy revealed that laminin induced a modified morphology of podocytes with process formation, which was more extensive in the presence of GBM. Under high magnification, podocytes appeared ruffled. Using transmission electron microscopy we observed that raised areas occurred in the basal cell surface. Furthermore, the presence of anti-podocalyxin antibody increased the extent of adhesion and spreading of podocytes to both collagen IV and laminin, thus podocalyxin apparently inhibits cell-matrix interactions. We also performed adhesion and spreading assays on podocytes grown under increased glucose concentration (25 mM). Under these conditions, the expression of podocalyxin was almost totally suppressed. The cells adhered and spread to basement membrane components but there was no increase in the extent of adhesion and spreading in the presence of anti-podocalyxin antibody, or ruffling of the cell edges. Additionally, in podocytes expressing podocalyxin, the presence of anti-podocalyxin antibody partially reversed the inhibition of adhesion to collagen IV provoked by anti-beta1 integrin antibody, thus podocalyxin should compete with beta1-related cell adhesion. We suggest that the observed podocalyxin-mediated inhibition of binding to the matrix could be in part responsible for the specialized conformation of the basal surface of podocytes.", "The earliest aspects of human embryogenesis remain mysterious. To model patterning events in the human embryo, we used colonies of human embryonic stem cells (hESCs) grown on micropatterned substrate and differentiated with BMP4. These gastruloids recapitulate the embryonic arrangement of the mammalian germ layers and provide an assay to assess the structural and signaling mechanisms patterning the human gastrula. Structurally, high-density hESCs localize their receptors to transforming growth factor β at their lateral side in the center of the colony while maintaining apical localization of receptors at the edge. This relocalization insulates cells at the center from apically applied ligands while maintaining response to basally presented ones. In addition, BMP4 directly induces the expression of its own inhibitor, NOGGIN, generating a reaction-diffusion mechanism that underlies patterning. We develop a quantitative model that integrates edge sensing and inhibitors to predict human fate positioning in gastruloids and, potentially, the human embryo.", "Cell-derived nanoparticles have been garnering increased attention due to their ability to mimic many of the natural properties displayed by their source cells. This top-down engineering approach can be applied toward the development of novel therapeutic strategies owing to the unique interactions enabled through the retention of complex antigenic information. Herein, we report on the biological functionalization of polymeric nanoparticles with a layer of membrane coating derived from cancer cells. The resulting core-shell nanostructures, which carry the full array of cancer cell membrane antigens, offer a robust platform with applicability toward multiple modes of anticancer therapy. We demonstrate that by coupling the particles with an immunological adjuvant, the resulting formulation can be used to promote a tumor-specific immune response for use in vaccine applications. Moreover, we show that by taking advantage of the inherent homotypic binding phenomenon frequently observed among tumor cells the membrane functionalization allows for a unique cancer targeting strategy that can be utilized for drug delivery applications.", "Stiffness is a biophysical property of the extracellular matrix that modulates cellular functions, including proliferation, invasion, and differentiation, and it also may affect therapeutic responses. Therapeutic durability in cancer treatments remains a problem for both chemotherapies and pathway-targeted drugs, but the reasons for this are not well understood. Tumor progression is accompanied by changes in the biophysical properties of the tissue, and we asked whether matrix rigidity modulated the sensitive versus resistant states in HER2-amplified breast cancer cell responses to the HER2-targeted kinase inhibitor lapatinib. The antiproliferative effect of lapatinib was inversely proportional to the elastic modulus of the adhesive substrata. Down-regulation of the mechanosensitive transcription coactivators YAP and TAZ, either by siRNA or with the small-molecule YAP/TEAD inhibitor verteporfin, eliminated modulus-dependent lapatinib resistance. Reduction of YAP in vivo in mice also slowed the growth of implanted HER2-amplified tumors, showing a trend of increasing sensitivity to lapatinib as YAP decreased. Thus we address the role of stiffness in resistance to and efficacy of a HER2 pathway-targeted therapeutic via the mechanotransduction arm of the Hippo pathway.", "BACKGROUND Dendritic cells (DC) are the professional antigen-presenting cells of the immune system, fully equipped to prime naive T cells and thus essential components for cancer immunotherapy. METHODS We tested the influence of several elements (cPPT, trip, WPRE, SIN) on the transduction efficiency of human DC. Human and murine DC were transduced with tNGFR-encoding lentiviruses to assess the effect of transduction on phenotype and function. Human DC were transduced with lentiviruses encoding huIi80MAGE-A3 and murine DC with huIi80tOVA to test antigen presentation. RESULTS A self-inactivating (SIN) lentiviral vector containing the trip element was most efficient in transducing human DC. The transduction of DC with trip/SIN tNGFR encoding lentiviral vectors at MOI 15 resulted in stable gene expression in up to 94.6% (murine) and 88.2% (human) of the mature DC, without perturbing viability, phenotype and function. Human huIi80MAGE-A3-transduced DC were able to stimulate MAGE-A3-specific CD4(+) and CD8(+) T cell clones and could prime both MAGE-A3-specific CD4(+) and CD8(+) T cells in vitro. Murine huIi80tOVA-transduced DC were able to present OVA peptides in the context of MHC class I and class II in vitro and induced a strong OVA-specific cytotoxic T lymphocyte response in vivo, that was protective against subsequent challenge with OVA-expressing tumor cells. CONCLUSIONS We show that, using lentiviral vectors, efficient gene transfer in human and murine DC can be obtained and that these DC can elicit antigen-specific immune responses in vitro and in vivo. The composition of the transfer vector has a major impact on the transduction efficiency.", "Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.", "Nitrite (NO(2)(-)), previously viewed as a physiologically inert metabolite and biomarker of the endogenous vasodilator NO, was recently identified as an important biological NO reservoir in vasculature and tissues, where it contributes to hypoxic signaling, vasodilation, and cytoprotection after ischemia-reperfusion injury. Reduction of nitrite to NO may occur enzymatically at low pH and oxygen tension by deoxyhemoglobin, deoxymyoglobin, xanthine oxidase, mitochondrial complexes, or NO synthase (NOS). We show that nitrite treatment, in sharp contrast with the worsening effect of NOS inhibition, significantly attenuates hypothermia, mitochondrial damage, oxidative stress and dysfunction, tissue infarction, and mortality in a mouse shock model induced by a lethal tumor necrosis factor challenge. Mechanistically, nitrite-dependent protection was not associated with inhibition of mitochondrial complex I activity, as previously demonstrated for ischemia-reperfusion, but was largely abolished in mice deficient for the soluble guanylate cyclase (sGC) alpha1 subunit, one of the principal intracellular NO receptors and signal transducers in the cardiovasculature. Nitrite could also provide protection against toxicity induced by Gram-negative lipopolysaccharide, although higher doses were required. In conclusion, we show that nitrite can protect against toxicity in shock via sGC-dependent signaling, which may include hypoxic vasodilation necessary to maintain microcirculation and organ function, and cardioprotection.", "Deregulated redox metabolism in cancer leads to oxidative damage to cellular components including deoxyribonucleoside triphosphates (dNTPs). Targeting dNTP pool sanitizing enzymes, such as MTH1, is a highly promising anticancer strategy. The MTH2 protein, known as NUDT15, is described as the second human homologue of bacterial MutT with 8-oxo-dGTPase activity. We present the first NUDT15 crystal structure and demonstrate that NUDT15 prefers other nucleotide substrates over 8-oxo-dGTP. Key structural features are identified that explain different substrate preferences for NUDT15 and MTH1. We find that depletion of NUDT15 has no effect on incorporation of 8-oxo-dGTP into DNA and does not impact cancer cell survival in cell lines tested. NUDT17 and NUDT18 were also profiled and found to have far less activity than MTH1 against oxidized nucleotides. We show that NUDT15 is not a biologically relevant 8-oxo-dGTPase, and that MTH1 is the most prominent sanitizer of the cellular dNTP pool known to date.", "Pattern formation of biological structures involves organizing different types of cells into a spatial configuration. In this study, we investigate the physical basis of biological patterning of the Drosophila retina in vivo. We demonstrate that E- and N-cadherins mediate apical adhesion between retina epithelial cells. Differential expression of N-cadherin within a sub-group of retinal cells (cone cells) causes them to form an overall shape that minimizes their surface contact with surrounding cells. The cells within this group, in both normal and experimentally manipulated conditions, pack together in the same way as soap bubbles do. The shaping of the cone cell group and packing of its components precisely imitate the physical tendency for surfaces to be minimized. Thus, simple patterned expression of N-cadherin results in a complex spatial pattern of cells owing to cellular surface mechanics.", "The development and maintenance of an epithelium requires finely balanced rates of growth and cell death. However, the mechanical and biochemical mechanisms that ensure proper feedback control of tissue growth, which when deregulated contribute to tumorigenesis, are poorly understood. Here we use the fly notum as a model system to identify a novel process of crowding-induced cell delamination that balances growth to ensure the development of well-ordered cell packing. In crowded regions of the tissue, a proportion of cells undergo a serial loss of cell–cell junctions and a progressive loss of apical area, before being squeezed out by their neighbours. This path of delamination is recapitulated by a simple computational model of epithelial mechanics, in which stochastic cell loss relieves overcrowding as the system tends towards equilibrium. We show that this process of delamination is mechanistically distinct from apoptosis-mediated cell extrusion and precedes the first signs of cell death. Overall, this analysis reveals a simple mechanism that buffers epithelia against variations in growth. Because live-cell delamination constitutes a mechanistic link between epithelial hyperplasia and cell invasion, this is likely to have important implications for our understanding of the early stages of cancer development.", "Centrosomes are microtubule-organizing centres of animal cells. They influence the morphology of the microtubule cytoskeleton, function as the base for the primary cilium and serve as a nexus for important signalling pathways. At the core of a typical centrosome are two cylindrical microtubule-based structures termed centrioles, which recruit a matrix of associated pericentriolar material. Cells begin the cell cycle with exactly one centrosome, and the duplication of centrioles is constrained such that it occurs only once per cell cycle and at a specific site in the cell. As a result of this duplication mechanism, the two centrioles differ in age and maturity, and thus have different functions; for example, the older of the two centrioles can initiate the formation of a ciliary axoneme. We discuss spatial aspects of the centrosome duplication cycle, the mechanism of centriole assembly and the possible consequences of the inherent asymmetry of centrioles and centrosomes.", "Epigenetic chromatin marks restrict the ability of differentiated cells to change gene expression programs in response to environmental cues and to transdifferentiate. Polycomb group (PcG) proteins mediate gene silencing and repress transdifferentiation in a manner dependent on histone H3 lysine 27 trimethylation (H3K27me3). However, macrophages migrated into inflamed tissues can transdifferentiate, but it is unknown whether inflammation alters PcG-dependent silencing. Here we show that the JmjC-domain protein Jmjd3 is a H3K27me demethylase expressed in macrophages in response to bacterial products and inflammatory cytokines. Jmjd3 binds PcG target genes and regulates their H3K27me3 levels and transcriptional activity. The discovery of an inducible enzyme that erases a histone mark controlling differentiation and cell identity provides a link between inflammation and reprogramming of the epigenome, which could be the basis for macrophage plasticity and might explain the differentiation abnormalities in chronic inflammation.", "Although cellular tumor-suppression mechanisms are widely studied, little is known about mechanisms that act at the level of tissues to suppress the occurrence of aberrant cells in epithelia. We find that ectopic expression of transcription factors that specify cell fates causes abnormal epithelial cysts in Drosophila imaginal discs. Cysts do not form cell autonomously but result from the juxtaposition of two cell populations with divergent fates. Juxtaposition of wild-type and aberrantly specified cells induces enrichment of actomyosin at their entire shared interface, both at adherens junctions as well as along basolateral interfaces. Experimental validation of 3D vertex model simulations demonstrates that enhanced interface contractility is sufficient to explain many morphogenetic behaviors, which depend on cell cluster size. These range from cyst formation by intermediate-sized clusters to segregation of large cell populations by formation of smooth boundaries or apical constriction in small groups of cells. In addition, we find that single cells experiencing lateral interface contractility are eliminated from tissues by apoptosis. Cysts, which disrupt epithelial continuity, form when elimination of single, aberrantly specified cells fails and cells proliferate to intermediate cell cluster sizes. Thus, increased interface contractility functions as error correction mechanism eliminating single aberrant cells from tissues, but failure leads to the formation of large, potentially disease-promoting cysts. Our results provide a novel perspective on morphogenetic mechanisms, which arise from cell-fate heterogeneities within tissues and maintain or disrupt epithelial homeostasis.", "RecQ family helicases function as safeguards of the genome. Unlike Escherichia coli, the Gram-positive Bacillus subtilis bacterium possesses two RecQ-like homologues, RecQ[Bs] and RecS, which are required for the repair of DNA double-strand breaks. RecQ[Bs] also binds to the forked DNA to ensure a smooth progression of the cell cycle. Here we present the first biochemical analysis of recombinant RecQ[Bs]. RecQ[Bs] binds weakly to single-stranded DNA (ssDNA) and blunt-ended double-stranded DNA (dsDNA) but strongly to forked dsDNA. The protein exhibits a DNA-stimulated ATPase activity and ATP- and Mg(2+)-dependent DNA helicase activity with a 3' → 5' polarity. Molecular modeling shows that RecQ[Bs] shares high sequence and structure similarity with E. coli RecQ. Surprisingly, RecQ[Bs] resembles the truncated Saccharomyces cerevisiae Sgs1 and human RecQ helicases more than RecQ[Ec] with regard to its enzymatic activities. Specifically, RecQ[Bs] unwinds forked dsDNA and DNA duplexes with a 3'-overhang but is inactive on blunt-ended dsDNA and 5'-overhung duplexes. Interestingly, RecQ[Bs] unwinds blunt-ended DNA with structural features, including nicks, gaps, 5'-flaps, Kappa joints, synthetic replication forks, and Holliday junctions. We discuss these findings in the context of RecQ[Bs]'s possible functions in preserving genomic stability.", "Gap junctions play a fundamental role in intercellular communication in cardiac tissue. Various types of heart disease including hypertrophy and ischemia are associated with alterations of the spatial arrangement of gap junctions. Previous studies applied two-dimensional optical and electron-microscopy to visualize gap junction arrangements. In normal cardiomyocytes, gap junctions were primarily found at cell ends, but can be found also in more central regions. In this study, we extended these approaches toward three-dimensional reconstruction of gap junction distributions based on high-resolution scanning confocal microscopy and image processing. We developed methods for quantitative characterization of gap junction distributions based on analysis of intensity profiles along the principal axes of myocytes. The analyses characterized gap junction polarization at cell ends and higher-order statistical image moments of intensity profiles. The methodology was tested in rat ventricular myocardium. Our analysis yielded novel quantitative data on gap junction distributions. In particular, the analysis demonstrated that the distributions exhibit significant variability with respect to polarization, skewness, and kurtosis. We suggest that this methodology provides a quantitative alternative to current approaches based on visual inspection, with applications in particular in characterization of engineered and diseased myocardium. Furthermore, we propose that these data provide improved input for computational modeling of cardiac conduction.", "Down syndrome (DS) is the most frequent cause of human congenital mental retardation. Cognitive deficits in DS result from perturbations of normal cellular processes both during development and in adult tissues, but the mechanisms underlying DS etiology remain poorly understood. To assess the ability of induced pluripotent stem cells (iPSCs) to model DS phenotypes, as a prototypical complex human disease, we generated bona fide DS and wild-type (WT) nonviral iPSCs by episomal reprogramming. DS iPSCs selectively overexpressed chromosome 21 genes, consistent with gene dosage, which was associated with deregulation of thousands of genes throughout the genome. DS and WT iPSCs were neurally converted at >95% efficiency and had remarkably similar lineage potency, differentiation kinetics, proliferation, and axon extension at early time points. However, at later time points DS cultures showed a twofold bias toward glial lineages. Moreover, DS neural cultures were up to two times more sensitive to oxidative stress-induced apoptosis, and this could be prevented by the antioxidant N-acetylcysteine. Our results reveal a striking complexity in the genetic alterations caused by trisomy 21 that are likely to underlie DS developmental phenotypes, and indicate a central role for defective early glial development in establishing developmental defects in DS brains. Furthermore, oxidative stress sensitivity is likely to contribute to the accelerated neurodegeneration seen in DS, and we provide proof of concept for screening corrective therapeutics using DS iPSCs and their derivatives. Nonviral DS iPSCs can therefore model features of complex human disease in vitro and provide a renewable and ethically unencumbered discovery platform.", "Morphogenesis and pattern formation are vital processes in any organism, whether unicellular or multicellular. But in contrast to the developmental biology of plants and animals, the principles of morphogenesis and pattern formation in single cells remain largely unknown. Although all cells develop patterns, they are most obvious in ciliates; hence, we have turned to a classical unicellular model system, the giant ciliate Stentor coeruleus. Here we show that the RNA interference (RNAi) machinery is conserved in Stentor. Using RNAi, we identify the kinase coactivator Mob1--with conserved functions in cell division and morphogenesis from plants to humans-as an asymmetrically localized patterning protein required for global patterning during development and regeneration in Stentor. Our studies reopen the door for Stentor as a model regeneration system.", "BACKGROUND We have developed techniques to implant angiogenic patches onto the epicardium over regions of infarcted cardiac tissue to stimulate revascularization of the damaged tissue. These experiments used a scaffold-based 3D human dermal fibroblast culture (3DFC) as an epicardial patch. The 3DFC contains viable cells that secrete angiogenic growth factors and has previously been shown to stimulate angiogenic activity. The hypothesis tested was that a viable 3DFC cardiac patch would stimulate an angiogenic response within an area of infarcted cardiac tissue. METHODS AND RESULTS A coronary occlusion of a branch of the left anterior descending coronary artery was performed by thermal ligation in severe combined immunodeficient mice. 3DFCs with or without viable cells were sized to the damaged area, implanted in replicate mice onto the epicardium at the site of tissue injury, and compared with animals that received infarct surgery but no implant. Fourteen and 30 days after surgery, hearts were exposed and photographed, and tissue samples were prepared for histology and cytochemistry. Fourteen and 30 days after surgery, the damaged myocardium receiving viable 3DFC exhibited a significantly greater angiogenic response (including arterioles, venules, and capillaries) than nonviable and untreated control groups. CONCLUSIONS In this animal model, viable 3DFC stimulates angiogenesis within a region of cardiac infarction and can augment a repair response in damaged tissue. Therefore, a potential use for 3DFC is the repair of myocardial tissue damaged by infarction.", "No direct evidence has been reported whether the spatial organization of ICAM-1 on the cell surface is linked to its physiological function in terms of leukocyte adhesion and transendothelial migration (TEM). Here we observed that ICAM-1 by itself directly regulates the de novo elongation of microvilli and is thereby clustered on the microvilli. However, truncation of the intracellular domain resulted in uniform cell surface distribution of ICAM-1. Mutation analysis revealed that the C-terminal 21 amino acids are dispensable, whereas a segment of 5 amino acids ((507)RKIKK(511)) in the NH-terminal third of intracellular domain, is required for the proper localization and dynamic distribution of ICAM-1 and the association of ICAM-1 with F-actin, ezrin, and moesin. Importantly, deletion of the (507)RKIKK(511) significantly delayed the LFA-1-dependent membrane projection and decreased leukocyte adhesion and subsequent TEM. Endothelial cells treated with cell-permeant penetratin-ICAM-1 peptides comprising ICAM-1 RKIKK sequences inhibited leukocyte TEM. Collectively, these findings demonstrate that (507)RKIKK(511) is an essential motif for the microvillus ICAM-1 presentation and further suggest a novel regulatory role for ICAM-1 topography in leukocyte TEM.", "The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.", "Alzheimer's disease is the most common neurodegenerative disease, and there are no mechanism-based therapies. The disease is defined by the presence of abundant neurofibrillary lesions and neuritic plaques in the cerebral cortex. Neurofibrillary lesions comprise paired helical and straight tau filaments, whereas tau filaments with different morphologies characterize other neurodegenerative diseases. No high-resolution structures of tau filaments are available. Here we present cryo-electron microscopy (cryo-EM) maps at 3.4-3.5 Å resolution and corresponding atomic models of paired helical and straight filaments from the brain of an individual with Alzheimer's disease. Filament cores are made of two identical protofilaments comprising residues 306-378 of tau protein, which adopt a combined cross-β/β-helix structure and define the seed for tau aggregation. Paired helical and straight filaments differ in their inter-protofilament packing, showing that they are ultrastructural polymorphs. These findings demonstrate that cryo-EM allows atomic characterization of amyloid filaments from patient-derived material, and pave the way for investigation of a range of neurodegenerative diseases.", "Very often, the positions of flexible domains within macromolecules as well as within macromolecular complexes cannot be determined by standard structural biology methods. To overcome this problem, we developed a method that uses probabilistic data analysis to combine single-molecule measurements with X-ray crystallography data. The method determines not only the most likely position of a fluorescent dye molecule attached to the domain but also the complete three-dimensional probability distribution depicting the experimental uncertainty. With this approach, single-pair fluorescence resonance energy transfer measurements can now be used as a quantitative tool for investigating the position and dynamics of flexible domains within macromolecular complexes. We applied this method to find the position of the 5′ end of the nascent RNA exiting transcription elongation complexes of yeast (Saccharomyces cerevisiae) RNA polymerase II and studied the influence of transcription factor IIB on the position of the RNA.", "Tissue engineering frequently involves cells and scaffolds to replace damaged or diseased tissue. It originated, in part, as a means of effecting the delivery of biomolecules such as insulin or neurotrophic factors, given that cells are constitutive producers of such therapeutic agents. Thus cell delivery is intrinsic to tissue engineering. Controlled release of biomolecules is also an important tool for enabling cell delivery since the biomolecules can enable cell engraftment, modulate inflammatory response or otherwise benefit the behavior of the delivered cells. We describe advances in cell and biomolecule delivery for tissue regeneration, with emphasis on the central nervous system (CNS). In the first section, the focus is on encapsulated cell therapy. In the second section, the focus is on biomolecule delivery in polymeric nano/microspheres and hydrogels for the nerve regeneration and endogenous cell stimulation. In the third section, the focus is on combination strategies of neural stem/progenitor cell or mesenchymal stem cell and biomolecule delivery for tissue regeneration and repair. In each section, the challenges and potential solutions associated with delivery to the CNS are highlighted.", "There is currently great interest in molecular therapies to treat various diseases, and this has prompted extensive efforts to achieve target-specific and controlled delivery of bioactive macromolecules (for example, proteins, antibodies, DNA and small interfering RNA) through the design of smart drug carriers. By contrast, the influence of the microenvironment in which the target cell resides and the effect it might have on the success of biomacromolecular therapies has been under-appreciated. The extracellular matrix (ECM) component of the cellular niche may be particularly important, as many diseases and injury disrupt the normal ECM architecture, the cell adhesion to ECM, and the subsequent cellular activities. This Review will discuss the importance of the ECM and the ECM–cell interactions on the cell response to bioactive macromolecules, and suggest how this information could lead to new criteria for the design of novel drug delivery systems.", "The popularization of genome-wide analyses and RNA sequencing led to the discovery that a large part of the human genome, while effectively transcribed, does not encode proteins. Long non-coding RNAs have emerged as critical regulators of gene expression in both normal and disease states. Studies of long non-coding RNAs expressed in the heart, in combination with gene association studies, revealed that these molecules are regulated during cardiovascular development and disease. Some long non-coding RNAs have been functionally implicated in cardiac pathophysiology and constitute potential therapeutic targets. Here, we review the current knowledge of the function of long non-coding RNAs in the cardiovascular system, with an emphasis on cardiovascular development and biology, focusing on hypertension, coronary artery disease, myocardial infarction, ischemia, and heart failure. We discuss potential therapeutic implications and the challenges of long non-coding RNA research, with directions for future research and translational focus.", "With the recent availability of complete genomic sequences of many organisms, high-throughput and cost-efficient systems for gene cloning and functional analysis are in great demand. Although site-specific recombination-based cloning systems, such as Gateway cloning technology, are extremely useful for efficient transfer of DNA fragments into multiple destination vectors, the two-step cloning process is time consuming and expensive. Here, we report a zero background TA cloning system that provides simple and high-efficiency direct cloning of PCR-amplified DNA fragments with almost no self-ligation. The improved T-vector system takes advantage of the restriction enzyme XcmI to generate a T-overhang after digestion and the negative selection marker gene ccdB to eliminate the self-ligation background after transformation. We demonstrate the feasibility and flexibility of the technology by developing a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, protein subcellular localization detection, and promoter fragment activity analysis in plants. Because the system can be easily adapted for developing specialized expression vectors for other organisms, zero background TA provides a general, cost-efficient, and high-throughput platform that complements the Gateway cloning system for gene cloning and functional genomics.", "The pharmacological inhibition of general transcriptional regulators has the potential to block growth through targeting multiple tumorigenic signalling pathways simultaneously. Here, using an innovative cell-based screen, we identify a structurally unique small molecule (named JIB-04) that specifically inhibits the activity of the Jumonji family of histone demethylases in vitro, in cancer cells, and in tumours in vivo. Unlike known inhibitors, JIB-04 is not a competitive inhibitor of α-ketoglutarate. In cancer, but not in patient-matched normal cells, JIB-04 alters a subset of transcriptional pathways and blocks viability. In mice, JIB-04 reduces tumour burden and prolongs survival. Importantly, we find that patients with breast tumours that overexpress Jumonji demethylases have significantly lower survival. Thus, JIB-04, a novel inhibitor of Jumonji demethylases in vitro and in vivo, constitutes a unique potential therapeutic and research tool against cancer, and validates the use of unbiased cellular screens to discover chemical modulators with disease relevance.", "A solid tumor is an organ composed of cancer and host cells embedded in an extracellular matrix and nourished by blood vessels. A prerequisite to understanding tumor pathophysiology is the ability to distinguish and monitor each component in dynamic studies. Standard fluorophores hamper simultaneous intravital imaging of these components. Here, we used multiphoton microscopy techniques and transgenic mice that expressed green fluorescent protein, and combined them with the use of quantum dot preparations. We show that these fluorescent semiconductor nanocrystals can be customized to concurrently image and differentiate tumor vessels from both the perivascular cells and the matrix. Moreover, we used them to measure the ability of particles of different sizes to access the tumor. Finally, we successfully monitored the recruitment of quantum dot–labeled bone marrow–derived precursor cells to the tumor vasculature. These examples show the versatility of quantum dots for studying tumor pathophysiology and creating avenues for treatment.", "A set of 57 synthetic peptides encompassing the entire triplehelical domain of human collagen III was used to locate binding sites for the collagen-binding integrin alpha(2)beta(1). The capacity of the peptides to support Mg(2+)-dependent binding of several integrin preparations was examined. Wild-type integrins (recombinant alpha(2) I-domain, alpha(2)beta(1) purified from platelet membranes, and recombinant soluble alpha(2)beta(1) expressed as an alpha(2)-Fos/beta(1)-Jun heterodimer) bound well to only three peptides, two containing GXX'GER motifs (GROGER and GMOGER, where O is hydroxyproline) and one containing two adjacent GXX'GEN motifs (GLKGEN and GLOGEN). Two mutant alpha(2) I-domains were tested: the inactive T221A mutant, which recognized no peptides, and the constitutively active E318W mutant, which bound a larger subset of peptides. Adhesion of activated human platelets to GER-containing peptides was greater than that of resting platelets, and HT1080 cells bound well to more of the peptides compared with platelets. Binding of cells and recombinant proteins was abolished by anti-alpha(2) monoclonal antibody 6F1 and by chelation of Mg(2+). We describe two novel high affinity integrin-binding motifs in human collagen III (GROGER and GLOGEN) and a third motif (GLKGEN) that displays intermediate activity. Each motif was verified using shorter synthetic peptides.", "Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.", "Communication between organelles is crucial for eukaryotic cells to function as one coherent unit. An important means of communication is through membrane contact sites, where two organelles come into close proximity allowing the transport of lipids and small solutes between them. Contact sites are dynamic in size and can change in response to environmental or cellular stimuli; however, how this is regulated has been unclear. Here, we show that Saccharomyces cerevisiae Lam6 resides in several central contact sites: ERMES (ER/mitochondria encounter structure), vCLAMP (vacuole and mitochondria patch), and NVJ (nuclear vacuolar junction). We show that Lam6 is sufficient for expansion of contact sites under physiological conditions and necessary for coordination of contact site size. Given that Lam6 is part of a large protein family and is conserved in vertebrates, our work opens avenues for investigating the underlying principles of organelle communication.", "We developed the Yeast Gene Order Browser (YGOB; http://wolfe.gen.tcd.ie/ygob) to facilitate visual comparisons and computational analysis of synteny relationships in yeasts. The data presented in YGOB, currently covering seven species, are based on sets of homologous genes that have been intensively manually curated based on both sequence similarity and genomic context (synteny). We reconciled different laboratories' lists of paralogous Saccharomyces cerevisiae gene pairs formed by genome duplication (ohnologs), and present near-exhaustive lists of the ohnolog pairs retained in S. cerevisiae (551, including 22 previously unidentified), Saccharomyces castellii (599), and Candida glabrata (404).", "In the yeast S. cerevisiae, ribosome assembly is linked to environmental conditions by the coordinate transcriptional regulation of genes required for ribosome biogenesis. In this study we show that two nonessential stress-responsive genes, YAR1 and LTV1, function in 40S subunit production. We provide genetic and biochemical evidence that Yar1, a small ankyrin-repeat protein, physically interacts with RpS3, a component of the 40S subunit, and with Ltv1, a protein recently identified as a substoichiometric component of a 43S preribosomal particle. We demonstrate that cells lacking YAR1 or LTV1 are hypersensitive to particular protein synthesis inhibitors and exhibit aberrant polysome profiles, with a reduced absolute number of 40S subunits and an excess of free 60S subunits. Surprisingly, both mutants are also hypersensitive to a variety of environmental stress conditions. Overexpression of RPS3 suppresses both the stress sensitivity and the ribosome biogenesis defect of Deltayar1 mutants, but does not suppress either defect in Deltaltv1 mutants. We propose that YAR1 and LTV1 play distinct, nonessential roles in 40S subunit production. The stress-sensitive phenotypes of strains lacking these genes reveal a hitherto unknown link between ribosome biogenesis factors and environmental stress sensitivity.", "Topical preexposure prophylaxis interrupts HIV transmission at the site of mucosal exposure. Intermittently dosed vaginal gels containing the HIV-1 reverse transcriptase inhibitor tenofovir protected pigtailed macaques depending on the timing of viral challenge relative to gel application. However, modest or no protection was observed in clinical trials. Intravaginal rings (IVRs) may improve efficacy by providing long-term sustained drug delivery leading to constant mucosal antiretroviral concentrations and enhancing adherence. Although a few IVRs have entered the clinical pipeline, 100% efficacy in a repeated macaque vaginal challenge model has not been achieved. Here we describe a reservoir IVR technology that delivers the tenofovir prodrug tenofovir disoproxil fumarate (TDF) continuously over 28 d. With four monthly ring changes in this repeated challenge model, TDF IVRs generated reproducible and protective drug levels. All TDF IVR-treated macaques (n = 6) remained seronegative and simian-HIV RNA negative after 16 weekly vaginal exposures to 50 tissue culture infectious dose SHIV162p3. In contrast, 11/12 control macaques became infected, with a median of four exposures assuming an eclipse of 7 d from infection to virus RNA detection. Protection was associated with tenofovir levels in vaginal fluid [mean 1.8 × 10(5) ng/mL (range 1.1 × 10(4) to 6.6 × 10(5) ng/mL)] and ex vivo antiviral activity of cervicovaginal lavage samples. These observations support further advancement of TDF IVRs as well as the concept that extended duration drug delivery devices delivering topical antiretrovirals could be effective tools in preventing the sexual transmission of HIV in humans.", "A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.", "The field of macro-imaging has grown considerably with the appearance of innovative clearing methods and confocal microscopes with lasers capable of penetrating increasing tissue depths. The ability to visualize and model the growth of whole organs as they develop from birth, or with manipulation, disease or injury, provides new ways of thinking about development, tissue-wide signaling, and cell-to-cell interactions. The zebrafish (Danio rerio) has ascended from a predominantly developmental model to a leading adult model of tissue regeneration. The unmatched neurogenic and regenerative capacity of the mature central nervous system, in particular, has received much attention, however tools to interrogate the adult brain are sparse. At present there exists no straightforward methods of visualizing changes in the whole adult brain in 3-dimensions (3-D) to examine systemic patterns of cell proliferation or cell populations of interest under physiological, injury, or diseased conditions. The method presented here is the first of its kind to offer an efficient step-by-step pipeline from intraperitoneal injections of the proliferative marker, 5-ethynyl-2'-deoxyuridine (EdU), to whole brain labeling, to a final embedded and cleared brain sample suitable for 3-D imaging using optical projection tomography (OPT). Moreover, this method allows potential for imaging GFP-reporter lines and cell-specific antibodies in the presence or absence of EdU. The small size of the adult zebrafish brain, the highly consistent degree of EdU labeling, and the use of basic clearing agents, benzyl benzoate, and benzyl alcohol, makes this method highly tractable for most laboratories interested in understanding the vertebrate central nervous system in health and disease. Post-processing of OPT-imaged adult zebrafish brains injected with EdU illustrate that proliferative patterns in EdU can readily be observed and analyzed using IMARIS and/or FIJI/IMAGEJ software. This protocol will be a valuable tool to unlock new ways of understanding systemic patterns in cell proliferation in the healthy and injured brain, brain-wide cellular interactions, stem cell niche development, and changes in brain morphology.", "The common marmoset (Callithrix jacchus), a small New World primate, has been attracting much attention in the research field of biomedical science and neuroscience, based on its (i) cross-reactivity with human cytokines or hormones, (ii) comparative ease in handling due to its small size, (iii) high reproductive efficiency, (iv) establishment of basic research tools, and (v) advantages of its unique behavioral and cognitive characters. Various neurological disease models have been developed in the common marmoset, including Parkinson's disease, Huntington's disease, Alzheimer's disease, stroke, multiple sclerosis and spinal cord injury. We recently developed transgenic common marmoset with germline transmission, which is expected to provide a new animal model for the study of human diseases. In this review, we summarize the recent progress of biomedical research and neuroscience using common marmoset as an excellent model system.", "OBJECTIVE Dystrophins, utrophins, and their associated proteins are involved in structural and signaling roles in nonmuscle tissues; however, description of these proteins in neutrophils remained unexplored. Therefore we characterize the pattern expression, and the cellular distribution of dystrophin and utrophin gene products and dystrophin-associated proteins (i.e., beta-dystroglycan, alpha-syntrophin, and alpha-dystrobrevins) in relation to actin filaments in resting and activated with formyl-methionyl-leucyl-phenylalanine human neutrophils. MATERIALS AND METHODS Resting and fMLP-activated human neutrophils were analyzed by immunoblot and by confocal microscopy analysis. Immunoprecipitation assays were performed to corroborate the presence of protein complexes. RESULTS Immunoprecipitation assays and confocal analysis demonstrated the presence of two dystrophin-associated protein complexes in resting and activated neutrophils: the former formed by Dp71d/Dp71Delta(110)(m) and dystrophin-associated proteins (beta-dystroglycan, alpha-syntrophin, alpha-dystrobrevin-1, and -2), while the latter contains Up400, instead of Dp71d/Dp71Delta(110)(m), as a central component of the dystrophin-associated protein complexes (DAPC). Confocal analysis also showed the subcellular redistribution of Dp71d/Dp71Delta(110)(m) approximately DAPC and Up400 approximately DAPC in F-actin-based structures displayed during activation process with fMLP. CONCLUSIONS Our study showed the existence of two protein complexes formed by Dp71d/Dp71Delta(110)(m) or Up400 associated with DAPs in resting and fMLP-treated human polymorphonuclears. The interaction of these complexes with the actin cytoskeleton is indicative of their dynamic participation in the chemotaxis process.", "Tissues rely upon stem cells for homeostasis and repair. Recent studies show that the fate and multilineage potential of epithelial stem cells can change depending on whether a stem cell exists within its resident niche and responds to normal tissue homeostasis, whether it is mobilized to repair a wound, or whether it is taken from its niche and challenged to de novo tissue morphogenesis after transplantation. In this Review, we discuss how different populations of naturally lineage-restricted stem cells and committed progenitors can display remarkable plasticity and reversibility and reacquire long-term self-renewing capacities and multilineage differentiation potential during physiological and regenerative conditions. We also discuss the implications of cellular plasticity for regenerative medicine and for cancer.", "Signals released by the Spemann organizer of the amphibian gastrula can directly induce neural tissue from ectoderm and can dorsalize ventral mesoderm to form muscle. The secreted polypeptide noggin mimics these activities and is expressed at the appropriate time and place to participate in the organizer signal. Neural induction and mesoderm dorsalization are antagonized by bone morphogenetic proteins (BMPs), which induce epidermis and ventral mesoderm instead. Here we report that noggin protein binds BMP4 with high affinity and can abolish BMP4 activity by blocking binding to cognate cell-surface receptors. These data suggest that noggin secreted by the organizer patterns the embryo by interrupting BMP signaling.", "Developmental signaling networks are composed of dozens of components whose interactions are very difficult to quantify in an embryo. Geometric reasoning enumerates a discrete hierarchy of phenotypic models with a few composite variables whose parameters may be defined by in vivo data. Vulval development in the nematode Caenorhabditis elegans is a classic model for the integration of two signaling pathways; induction by EGF and lateral signaling through Notch. Existing data for the relative probabilities of the three possible terminal cell types in diverse genetic backgrounds as well as timed ablation of the inductive signal favor one geometric model and suffice to fit most of its parameters. The model is fully dynamic and encompasses both signaling and commitment. It then predicts the correlated cell fate probabilities for a cross between any two backgrounds/conditions. The two signaling pathways are combined additively, without interactions, and epistasis only arises from the nonlinear dynamical flow in the landscape defined by the geometric model. In this way, the model quantitatively fits genetic experiments purporting to show mutual pathway repression. The model quantifies the contributions of extrinsic vs. intrinsic sources of noise in the penetrance of mutant phenotypes in signaling hypomorphs and explains available experiments with no additional parameters. Data for anchor cell ablation fix the parameters needed to define Notch autocrine signaling.", "The maintenance of adequate bone mass is dependent upon the controlled and timely removal of old, damaged bone. This complex process is performed by the highly specialized, multinucleated osteoclast. Over the past 15 years, a detailed picture has emerged describing the origins, differentiation pathways and activation stages that contribute to normal osteoclast function. This information has primarily been obtained by the development and skeletal analysis of genetically modified mouse models. Mice harboring mutations in specific genetic loci exhibit bone defects as a direct result of aberrations in normal osteoclast recruitment, formation or function. These findings include the identification of the RANK–RANKL–OPG system as a primary mediator of osteoclastogenesis, the characterization of ion transport and cellular attachment mechanisms and the recognition that matrix-degrading enzymes are essential components of resorptive activity. This Review focuses on the principal observations in osteoclast biology derived from genetic mouse models, and highlights emerging concepts that describe how the osteoclast is thought to contribute to the maintenance of adequate bone mass and integrity throughout life.", "The common marmoset (Callithrix jacchus) is increasingly attractive for use as a non-human primate animal model in biomedical research. It has a relatively high reproduction rate for a primate, making it potentially suitable for transgenic modification. Although several attempts have been made to produce non-human transgenic primates, transgene expression in the somatic tissues of live infants has not been demonstrated by objective analyses such as polymerase chain reaction with reverse transcription or western blots. Here we show that the injection of a self-inactivating lentiviral vector in sucrose solution into marmoset embryos results in transgenic common marmosets that expressed the transgene in several organs. Notably, we achieved germline transmission of the transgene, and the transgenic offspring developed normally. The successful creation of transgenic marmosets provides a new animal model for human disease that has the great advantage of a close genetic relationship with humans. This model will be valuable to many fields of biomedical research.", "Extensive evidence implicates activation of the lipid phosphatidylinositide 3-kinase (PI3K) pathway in the genesis and progression of various human cancers. PI3K inhibitors thus have considerable potential as molecular cancer therapeutics. Here, we detail the pharmacologic properties of a prototype of a new series of inhibitors of class I PI3K. PI103 is a potent inhibitor with low IC50 values against recombinant PI3K isoforms p110alpha (2 nmol/L), p110beta (3 nmol/L), p110delta (3 nmol/L), and p110gamma (15 nmol/L). PI103 also inhibited TORC1 by 83.9% at 0.5 micromol/L and exhibited an IC50 of 14 nmol/L against DNA-PK. A high degree of selectivity for the PI3K family was shown by the lack of activity of PI103 in a panel of 70 protein kinases. PI103 potently inhibited proliferation and invasion of a wide variety of human cancer cells in vitro and showed biomarker modulation consistent with inhibition of PI3K signaling. PI103 was extensively metabolized, but distributed rapidly to tissues and tumors. This resulted in tumor growth delay in eight different human cancer xenograft models with various PI3K pathway abnormalities. Decreased phosphorylation of AKT was observed in U87MG gliomas, consistent with drug levels achieved. We also showed inhibition of invasion in orthotopic breast and ovarian cancer xenograft models and obtained evidence that PI103 has antiangiogenic potential. Despite its rapid in vivo metabolism, PI103 is a valuable tool compound for exploring the biological function of class I PI3K and importantly represents a lead for further optimization of this novel class of targeted molecular cancer therapeutic.", "The organization of cells, emerging from cell-cell interactions, can give rise to collective properties. These properties are adaptive when together cells can face environmental challenges that they separately cannot. One particular challenge that is important for microorganisms is migration. In this study, we show how flagellum-independent migration is driven by the division of labor of two cell types that appear during Bacillus subtilis sliding motility. Cell collectives organize themselves into bundles (called \"van Gogh bundles\") of tightly aligned cell chains that form filamentous loops at the colony edge. We show, by time-course microscopy, that these loops migrate by pushing themselves away from the colony. The formation of van Gogh bundles depends critically on the synergistic interaction of surfactin-producing and matrix-producing cells. We propose that surfactin-producing cells reduce the friction between cells and their substrate, thereby facilitating matrix-producing cells to form bundles. The folding properties of these bundles determine the rate of colony expansion. Our study illustrates how the simple organization of cells within a community can yield a strong ecological advantage. This is a key factor underlying the diverse origins of multicellularity.", "DNA polymerases mu (pol mu), lambda (pol lambda), and terminal deoxynucleotidyltransferase (TdT) are enzymes of the pol X family that share homology in sequence and functional domain organization. We showed previously that pol mu participates in light chain but surprisingly not heavy chain gene rearrangement. We show here that immunoglobulin heavy chain junctions from pol lambda-deficient animals have shorter length with normal N-additions, thus indicating that pol lambda is recruited during heavy chain rearrangement at a step that precedes the action of TdT. In contrast to previous in vitro studies, analysis of animals with combined inactivation of these enzymes revealed no overlapping or compensatory activities for V(D)J recombination between pol mu, pol lambda, and TdT. This complex usage of polymerases with distinct catalytic specificities may correspond to the specific function that the third hypervariable region assumes for each immunoglobulin chain, with pol lambda maintaining a large heavy chain junctional heterogeneity and pol mu ensuring a restricted light chain junctional variability.", "Embryonic stem cells have the ability to remain undifferentiated and proliferate indefinitely in vitro while maintaining the potential to differentiate into derivatives of all three embryonic germ layers. These cells have, therefore, potential for in vitro differentiation studies, gene function, and so on. The aim of this study was to produce a human embryonic stem cell line. An inner cell mass of a human blastocyst was separated and cultured on mouse embryonic fibroblasts in embryonic stem cell medium with related additives. The established line was evaluated by morphology; passaging; freezing and thawing; alkaline phosphatase; Oct-4 expression; anti-surface markers including Tra-1-60 and Tra-1-81; and karyotype and spontaneous differentiation. Differentiated cardiomyocytes and neurons were evaluated by transmission electron microscopy and immunocytochemistry. Here, we report the derivation of a new embryonic stem cell line (Royan H1) from a human blastocyst that remains undifferentiated in morphology during continuous passaging for more than 30 passages, maintains a normal XX karyotype, is viable after freezing and thawing, and expresses alkaline phosphatase, Oct-4, Tra-1-60, and Tra-1-81. These cells remain undifferentiated when grown on mouse embryonic fibroblast feeder layers in the presence or absence of recombinant human leukemia inhibitory factor. Royan H1 cells can differentiate in vitro in the absence of feeder cells and can produce embryoid bodies that can further differentiate into beating cardiomyocytes as well as neurons. These results define Royan H1 cells as a new human embryonic stem cell line.", "During development, mechanical forces cause changes in size, shape, number, position, and gene expression of cells. They are therefore integral to any morphogenetic processes. Force generation by actin-myosin networks and force transmission through adhesive complexes are two self-organizing phenomena driving tissue morphogenesis. Coordination and integration of forces by long-range force transmission and mechanosensing of cells within tissues produce large-scale tissue shape changes. Extrinsic mechanical forces also control tissue patterning by modulating cell fate specification and differentiation. Thus, the interplay between tissue mechanics and biochemical signaling orchestrates tissue morphogenesis and patterning in development.", "Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail-tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric α-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric α-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials.", "Late Embryogenesis Abundant Proteins (LEAPs) are ubiquitous proteins expected to play major roles in desiccation tolerance. Little is known about their structure - function relationships because of the scarcity of 3-D structures for LEAPs. The previous building of LEAPdb, a database dedicated to LEAPs from plants and other organisms, led to the classification of 710 LEAPs into 12 non-overlapping classes with distinct properties. Using this resource, numerous physico-chemical properties of LEAPs and amino acid usage by LEAPs have been computed and statistically analyzed, revealing distinctive features for each class. This unprecedented analysis allowed a rigorous characterization of the 12 LEAP classes, which differed also in multiple structural and physico-chemical features. Although most LEAPs can be predicted as intrinsically disordered proteins, the analysis indicates that LEAP class 7 (PF03168) and probably LEAP class 11 (PF04927) are natively folded proteins. This study thus provides a detailed description of the structural properties of this protein family opening the path toward further LEAP structure - function analysis. Finally, since each LEAP class can be clearly characterized by a unique set of physico-chemical properties, this will allow development of software to predict proteins as LEAPs.", "Standardization of immunophenotyping procedures has become a high priority. We have developed a suite of whole-blood, syringe-based assay systems that can be used to reproducibly assess induced innate or adaptive immune responses. By eliminating preanalytical errors associated with immune monitoring, we have defined the protein signatures induced by (1) medically relevant bacteria, fungi, and viruses; (2) agonists specific for defined host sensors; (3) clinically employed cytokines; and (4) activators of T cell immunity. Our results provide an initial assessment of healthy donor reference values for induced cytokines and chemokines and we report the failure to release interleukin-1α as a common immunological phenotype. The observed naturally occurring variation of the immune response may help to explain differential susceptibility to disease or response to therapeutic intervention. The implementation of a general solution for assessment of functional immune responses will help support harmonization of clinical studies and data sharing.", "Cancers develop in complex tissue environments, which they depend on for sustained growth, invasion and metastasis. Unlike tumor cells, stromal cell types within the tumor microenvironment (TME) are genetically stable and thus represent an attractive therapeutic target with reduced risk of resistance and tumor recurrence. However, specifically disrupting the pro-tumorigenic TME is a challenging undertaking, as the TME has diverse capacities to induce both beneficial and adverse consequences for tumorigenesis. Furthermore, many studies have shown that the microenvironment is capable of normalizing tumor cells, suggesting that re-education of stromal cells, rather than targeted ablation per se, may be an effective strategy for treating cancer. Here we discuss the paradoxical roles of the TME during specific stages of cancer progression and metastasis, as well as recent therapeutic attempts to re-educate stromal cells within the TME to have anti-tumorigenic effects.", "Peroxisomes have long been established to play a central role in regulating various metabolic activities in mammalian cells. These organelles act in concert with mitochondria to control the metabolism of lipids and reactive oxygen species. However, while mitochondria have emerged as an important site of antiviral signal transduction, a role for peroxisomes in immune defense is unknown. Here, we report that the RIG-I-like receptor (RLR) adaptor protein MAVS is located on peroxisomes and mitochondria. We find that peroxisomal and mitochondrial MAVS act sequentially to create an antiviral cellular state. Upon viral infection, peroxisomal MAVS induces the rapid interferon-independent expression of defense factors that provide short-term protection, whereas mitochondrial MAVS activates an interferon-dependent signaling pathway with delayed kinetics, which amplifies and stabilizes the antiviral response. The interferon regulatory factor IRF1 plays a crucial role in regulating MAVS-dependent signaling from peroxisomes. These results establish that peroxisomes are an important site of antiviral signal transduction.", "We have used NMR spectroscopy to determine the solution structure of protein AAH26994.1 from Mus musculus and propose that it represents the first three-dimensional structure of a ubiquitin-related modifier 1 (Urm1) protein. Amino acid sequence comparisons indicate that AAH26994.1 belongs to the Urm1 family of ubiquitin-like modifier proteins. The best characterized member of this family has been shown to be involved in nutrient sensing, invasive growth, and budding in yeast. Proteins in this family have only a weak sequence similarity to ubiquitin, and the structure of AAH26994.1 showed a much closer resemblance to MoaD subunits of molybdopterin synthases (known structures are of three bacterial MoaD proteins with 14%-26% sequence identity to AAH26994.1). The structures of AAH26994.1 and the MoaD proteins each contain the signature ubiquitin secondary structure fold, but all differ from ubiquitin largely in regions outside of this fold. This structural similarity bolsters the hypothesis that ubiquitin and ubiquitin-related proteins evolved from a protein-based sulfide donor system of the molybdopterin synthase type.", "Retinoic acid inducible-gene I (RIG-I) is a cytosolic multidomain protein that detects viral RNA and elicits an antiviral immune response. Two N-terminal caspase activation and recruitment domains (CARDs) transmit the signal, and the regulatory domain prevents signaling in the absence of viral RNA. 5'-triphosphate and double-stranded RNA (dsRNA) are two molecular patterns that enable RIG-I to discriminate pathogenic from self-RNA. However, the function of the DExH box helicase domain that is also required for activity is less clear. Using single-molecule protein-induced fluorescence enhancement, we discovered a robust adenosine 5'-triphosphate-powered dsRNA translocation activity of RIG-I. The CARDs dramatically suppress translocation in the absence of 5'-triphosphate, and the activation by 5'-triphosphate triggers RIG-I to translocate preferentially on dsRNA in cis. This functional integration of two RNA molecular patterns may provide a means to specifically sense and counteract replicating viruses.", "Various conditions for differentiating embryonic stem (ES) cells or induced pluripotent stem (iPS) cells into specific kinds of cell lines are under intensive investigation. However, the production of a functional organ with a three-dimensional structure from ES or iPS cells is difficult to achieve in vitro. In the present paper, we describe the establishment of a green fluorescent protein-expressing rat ES cell line and production of mouse↔rat ES chimera by injecting rat ES cells into mouse blastocysts. The rat ES cells contributed to various organs in the chimera, including germ cells. When we injected ES cells into blastocysts of nu/nu mice lacking a thymus, the resultant chimeras produced thymus derived from rat ES cells in their bodies. The chimeric animals may provide a method for the derivation of various organs from ES or iPS cells.", "Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo.", "Multicellular animals rapidly clear dying cells from their bodies. Many of the pathways that mediate this cell removal are conserved through evolution. Here, we identify srgp-1 as a negative regulator of cell clearance in both Caenorhabditis elegans and mammalian cells. Loss of srgp-1 function results in improved engulfment of apoptotic cells, whereas srgp-1 overexpression inhibits apoptotic cell corpse removal. We show that SRGP-1 functions in engulfing cells and functions as a GTPase activating protein (GAP) for CED-10 (Rac1). Interestingly, loss of srgp-1 function promotes not only the clearance of already dead cells, but also the removal of cells that have been brought to the verge of death through sublethal apoptotic, necrotic or cytotoxic insults. In contrast, impaired engulfment allows damaged cells to escape clearance, which results in increased long-term survival. We propose that C. elegans uses the engulfment machinery as part of a primitive, but evolutionarily conserved, survey mechanism that identifies and removes unfit cells within a tissue.", "Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses.", "Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.", "Embryonic stem (ES) cell lines derived from human blastocysts have the developmental potential to form derivatives of all three embryonic germ layers even after prolonged culture. Here we describe the clonal derivation of two human ES cell lines, H9.1 and H9.2. At the time of the clonal derivation of the H9.1 and H9.2 ES cell lines, the parental ES cell line, H9, had already been continuously cultured for 6 months. After an additional 8 months of culture, H9.1 and H9.2 ES cell lines continued to: (1) actively proliferate, (2) express high levels of telomerase, and (3) retain normal karyotypes. Telomere lengths, while somewhat variable, were maintained between 8 and 12 kb in high-passage H9.1 and H9.2 cells. High-passage H9.1 and H9.2 cells both formed teratomas in SCID-beige mice that included differentiated derivatives of all three embryonic germ layers. These results demonstrate the pluripotency of single human ES cells, the maintenance of pluripotency during an extended period of culture, and the long-term self-renewing properties of cultured human ES cells. The remarkable developmental potential, proliferative capacity, and karyotypic stability of human ES cells distinguish them from adult cells.", "BACKGROUND Microfluidic platforms for quantitative evaluation of cell biologic processes allow low cost and time efficient research studies of biological and pathological events, such as monitoring cell migration by real-time imaging. In healthy and disease states, cell migration is crucial in development and wound healing, as well as to maintain the body's homeostasis. NEW METHOD The microfluidic chambers allow precise measurements to investigate whether fibroblasts carrying a mutation in the TOR1A gene, underlying the hereditary neurologic disease--DYT1 dystonia, have decreased migration properties when compared to control cells. RESULTS We observed that fibroblasts from DYT1 patients showed abnormalities in basic features of cell migration, such as reduced velocity and persistence of movement. COMPARISON WITH EXISTING METHOD The microfluidic method enabled us to demonstrate reduced polarization of the nucleus and abnormal orientation of nuclei and Golgi inside the moving DYT1 patient cells compared to control cells, as well as vectorial movement of single cells. CONCLUSION We report here different assays useful in determining various parameters of cell migration in DYT1 patient cells as a consequence of the TOR1A gene mutation, including a microfluidic platform, which provides a means to evaluate real-time vectorial movement with single cell resolution in a three-dimensional environment.", "Members of the cationic host defense (antimicrobial) peptide family are widely distributed in nature, existing in organisms from insects to plants to mammals and non-mammalian vertebrates. Although many demonstrate direct antimicrobial activity against bacteria, fungi, eukaryotic parasites and/or viruses, it has been established that cationic peptides have a key modulatory role in the innate immune response. More recent evidence suggests that host defense peptides are effective adjuvants, are synergistic with other immune effectors, polarize the adaptive response, and support wound healing. In addition, the mechanisms of action are being unraveled, which support more effective implementation of derivatives of these endogenous peptides as therapeutic agents.", "Dehydrins (DHNs; late embryogenesis abundant D-11) are a family of plant proteins induced in response to abiotic stresses such as drought, low temperature, and salinity or during the late stages of embryogenesis. Spectral and thermal properties of these proteins in purified form suggest that they are \"intrinsically unstructured. \" However, DHNs contain at least one copy of a consensus 15-amino acid sequence, the \"K segment,\" which resembles a class A2 amphipathic alpha-helical, lipid-binding domain found in other proteins such as apolipoproteins and alpha-synuclein. The presence of the K segment raises the question of whether DHNs bind lipids, bilayers, or phospholipid vesicles. Here, we show that maize (Zea mays) DHN DHN1 can bind to lipid vesicles that contain acidic phospholipids. We also observe that DHN1 binds more favorably to vesicles of smaller diameter than to larger vesicles, and that the association of DHN1 with vesicles results in an apparent increase of alpha-helicity of the protein. Therefore, DHNs, and presumably somewhat similar plant stress proteins in the late embryogenesis abundant and cold-regulated classes may undergo function-related conformational changes at the water/membrane interface, perhaps related to the stabilization of vesicles or other endomembrane structures under stress conditions.", "Although adjuvants are critical vaccine components, their modes of action are poorly understood. In this study, we investigated the mechanisms by which the heat-killed mycobacteria in CFA promote Th17 CD4(+) T cell responses. We found that IL-17 secretion by CD4(+) T cells following CFA immunization requires MyD88 and IL-1β/IL-1R signaling. Through measurement of Ag-specific responses after adoptive transfer of OTII cells, we confirmed that MyD88-dependent signaling controls Th17 differentiation rather than simply production of IL-17. Additional experiments showed that CFA-induced Th17 differentiation involves IL-1β processing by the inflammasome, as mice lacking caspase-1, ASC, or NLRP3 exhibit partially defective responses after immunization. Biochemical fractionation studies further revealed that peptidoglycan is the major component of heat-killed mycobacteria responsible for inflammasome activation. By assaying Il1b transcripts in the injection site skin of CFA-immunized mice, we found that signaling through the adaptor molecule caspase activation and recruitment domain 9 (CARD9) plays a major role in triggering pro-IL-1β expression. Moreover, we demonstrated that recognition of the mycobacterial glycolipid trehalose dimycolate (cord factor) by the C-type lectin receptor mincle partially explains this CARD9 requirement. Importantly, purified peptidoglycan and cord factor administered in mineral oil synergized to recapitulate the Th17-promoting activity of CFA, and, as expected, this response was diminished in caspase-1- and CARD9-deficient mice. Taken together, these findings suggest a general strategy for the rational design of Th17-skewing adjuvants by combining agonists of the CARD9 pathway with inflammasome activators.", "The phagocyte NADPH oxidase (NOX2) is critical for the bactericidal activity of phagocytic cells and plays a major role in innate immunity. We showed recently that NOX2 activity in mouse dendritic cells (DCs) prevents acidification of phagosomes, promoting antigen cross-presentation. In order to investigate the role of NOX2 in the regulation of the phagosomal pH in human DCs, we analyzed the production of reactive oxygen species (ROS) and the phagosomal/endosomal pH in monocyte-derived DCs and macrophages (M(diameter)s) from healthy donors or patients with chronic granulomatous disease (CGD). As expected, we found that human M(diameter)s acidify their phagosomes more efficiently than human DCs. Accordingly, the expression of the vacuolar proton ATPase (V-H(+)-ATPase) was higher in M(diameter)s than in DCs. Phagosomal ROS production, however, was also higher in M(diameter)s than in DCs, due to higher levels of gp91phox expression and recruitment to phagosomes. In contrast, in the absence of active NOX2, the phagosomal and endosomal pH decreased. Both in the presence of a NOX2 inhibitor and in DCs derived from patients with CGD, the cross-presentation of 2 model tumor antigens was impaired. We conclude that NOX2 activity participates in the regulation of the phagosomal and endosomal pH in human DCs, and is required for efficient antigen cross-presentation.", "The proteasome is a major cytosolic proteolytic assembly, essential for the physiology of eukaryotic cells. Both the architecture and enzymatic properties of the 20S proteasome are relatively well understood. However, despite longstanding interest, the integration of structural and functional properties of the proteasome into a coherent model explaining the mechanism of its enzymatic actions has been difficult. Recently, we used tapping mode atomic force microscopy (AFM) in liquid to demonstrate that the alpha-rings of the proteasome imaged in a top-view position repeatedly switched between their open and closed conformations, apparently to control access to the central channel. Here, we show with AFM that the molecules in a side-view position acquired two stable conformations. The overall shapes of the 20S particles were classified as either barrel-like or cylinder-like. The relative abundance of the two conformers depended on the nature of their interactions with ligands. Similarly to the closed molecules in top view, the barrels predominated in control or inhibited molecules. The cylinders and open molecules prevailed when the proteasome was observed in the presence of peptide substrates. Based on these data, we developed the two-state model of allosteric transitions to explain the dynamics of proteasomal structure. This model helps to better understand the observed properties of the 20S molecule, and sets foundations for further studies of the structural dynamics of the proteasome.", "The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.", "The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the \"tumor microenvironment. \" Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.", "Mechanical forces play important roles during tissue organization in developing animals. Many tissues are organized into adjacent, nonmixing groups of cells termed compartments. Boundaries between compartments display a straight morphology and are associated with signaling centers that are important for tissue growth and patterning. Local increases in mechanical tension at cell junctions along compartment boundaries have recently been shown to prevent cell mixing and to maintain straight boundaries. The cellular mechanisms by which local increases in mechanical tension prevent cell mixing at compartment boundaries, however, remain poorly understood. Here, we have used live imaging and quantitative image analysis to determine cellular dynamics at and near the anteroposterior compartment boundaries of the Drosophila pupal abdominal epidermis. We show that cell mixing within compartments involves multiple cell intercalations. Frequency and orientation of cell intercalations are unchanged along the compartment boundaries; rather, an asymmetry in the shrinkage of junctions during intercalation is biased, resulting in cell rearrangements that suppress cell mixing. Simulations of tissue growth show that local increases in mechanical tension can account for this bias in junctional shrinkage. We conclude that local increases in mechanical tension maintain cell populations separate by influencing junctional rearrangements during cell intercalation.", "We demonstrate single-molecule fluorescence imaging beyond the optical diffraction limit in 3 dimensions with a wide-field microscope that exhibits a double-helix point spread function (DH-PSF). The DH-PSF design features high and uniform Fisher information and has 2 dominant lobes in the image plane whose angular orientation rotates with the axial (z) position of the emitter. Single fluorescent molecules in a thick polymer sample are localized in single 500-ms acquisitions with 10- to 20-nm precision over a large depth of field (2 microm) by finding the center of the 2 DH-PSF lobes. By using a photoactivatable fluorophore, repeated imaging of sparse subsets with a DH-PSF microscope provides superresolution imaging of high concentrations of molecules in all 3 dimensions. The combination of optical PSF design and digital postprocessing with photoactivatable fluorophores opens up avenues for improving 3D imaging resolution beyond the Rayleigh diffraction limit.", "The immunological synapse (IS) is a junction between the T cell and antigen-presenting cell and is composed of supramolecular activation clusters (SMACs). No studies have been published on naive T cell IS dynamics. Here, we find that IS formation during antigen recognition comprises cycles of stable IS formation and autonomous naive T cell migration. The migration phase is driven by PKCtheta, which is localized to the F-actin-dependent peripheral (p)SMAC. PKCtheta(-/-) T cells formed hyperstable IS in vitro and in vivo and, like WT cells, displayed fast oscillations in the distal SMAC, but they showed reduced slow oscillations in pSMAC integrity. IS reformation is driven by the Wiscott Aldrich Syndrome protein (WASp). WASp(-/-) T cells displayed normal IS formation but were unable to reform IS after migration unless PKCtheta was inhibited. Thus, opposing effects of PKCtheta and WASp control IS stability through pSMAC symmetry breaking and reformation.", "The morphogenesis of the C. elegans embryo is largely controlled by the development of the epidermis, also known as the hypodermis, a single epithelial layer that surrounds the animal. Morphogenesis of the epidermis involves cell-cell interactions with internal tissues, such as the developing nervous system and musculature. Genetic analysis of mutants with aberrant epidermal morphology has defined multiple steps in epidermal morphogenesis. In the wild type, epidermal cells are generated on the dorsal side of the embryo among the progeny of four early embryonic blastomeres. Specification of epidermal fate is regulated by a hierarchy of transcription factors. After specification, dorsal epidermal cells rearrange, a process known as dorsal intercalation. Most epidermal cells fuse to generate multinucleate syncytia. The dorsally located epidermal sheet undergoes epiboly to enclose the rest of the embryo in a process known as ventral enclosure; this movement requires both an intact epidermal layer and substrate neuroblasts. At least three distinct types of cellular behavior underlie the enclosure of different regions of the epidermis. Following enclosure, the epidermis elongates, a process driven by coordinated cell shape changes. Epidermal actin microfilaments, microtubules, and intermediate filaments all play roles in elongation, as do body wall muscles. The final shape of the epidermis is maintained by the collagenous exoskeleton, secreted by the apical surface of the epidermis.", "Advanced glycation end-products (AGEs) resulting from non-enzymatic glycation are one of the major factors implicated in secondary complications of diabetes. Scientists are focusing on discovering new compounds that may be used as potential AGEs inhibitors without affecting the normal structure and function of biomolecules. A number of natural and synthetic compounds have been proposed as AGE inhibitors. In this study, we investigated the inhibitory effects of AgNPs (silver nanoparticles) in AGEs formation. AgNPs (~30.5 nm) synthesized from Aloe Vera leaf extract were characterized using UV-Vis spectroscopy, energy-dispersive X-ray spectroscopy (EDX), high resolution-transmission electron microscopy, X-ray diffraction and dynamic light scattering (DLS) techniques. The inhibitory effects of AgNPs on AGEs formation were evaluated by investigating the degree of reactivity of free amino groups (lysine and arginine residues), protein-bound carbonyl and carboxymethyl lysine (CML) content, and the effects on protein structure using various physicochemical techniques. The results showed that AgNPs significantly inhibit AGEs formation in a concentration dependent manner and that AgNPs have a positive effect on protein structure. These findings strongly suggest that AgNPs may play a therapeutic role in diabetes-related complications.", "Nonspecific protein-DNA interactions are inherently dynamic and involve both diffusion of the protein along the DNA and hopping of the protein from one DNA molecule or segment to another. Understanding how gene regulatory proteins interact nonspecifically with DNA in terms of both structure and dynamics is challenging because the experimental observables are an ensemble average of many rapidly exchanging states. By using a variety of NMR spectroscopic techniques, including relaxation analysis, paramagnetic relaxation enhancement, and residual dipolar couplings, we have characterized structural and kinetic aspects of the interaction of the HoxD9 homeodomain with a nonspecific, 24-bp DNA duplex in a system in which the protein is not constrained to any particular site. The data reveal that HoxD9 binds to nonspecific DNA with the same binding mode and orientation as that observed in the specific complex. The mobility, however, of Arg side-chains contacting the DNA is increased in the nonspecific complex relative to the specific one. The kinetics of intermolecular translocation between two different nonspecific DNA molecules have also been analyzed and reveal that at high DNA concentrations (such as those present in vivo) direct transfer from one nonspecific complex to another nonspecific DNA molecule occurs without going through the intermediary of free protein. This finding provides a simple mechanism for accelerating the target search in vivo for the specific site in a sea of nonspecific sites by permitting more effective sampling of available DNA sites as the protein jumps from one segment to another.", "ATP-dependent chromatin remodeling complexes are a notable group of epigenetic modifiers that use the energy of ATP hydrolysis to change the structure of chromatin, thereby altering its accessibility to nuclear factors. BAF250a (ARID1a) is a unique and defining subunit of the BAF chromatin remodeling complex with the potential to facilitate chromosome alterations critical during development. Our studies show that ablation of BAF250a in early mouse embryos results in developmental arrest (about embryonic day 6.5) and absence of the mesodermal layer, indicating its critical role in early germ-layer formation. Moreover, BAF250a deficiency compromises ES cell pluripotency, severely inhibits self-renewal, and promotes differentiation into primitive endoderm-like cells under normal feeder-free culture conditions. Interestingly, this phenotype can be partially rescued by the presence of embryonic fibroblast cells. DNA microarray, immunostaining, and RNA analyses revealed that BAF250a-mediated chromatin remodeling contributes to the proper expression of numerous genes involved in ES cell self-renewal, including Sox2, Utf1, and Oct4. Furthermore, the pluripotency defects in BAF250a mutant ES cells appear to be cell lineage-specific. For example, embryoid body-based analyses demonstrated that BAF250a-ablated stem cells are defective in differentiating into fully functional mesoderm-derived cardiomyocytes and adipocytes but are capable of differentiating into ectoderm-derived neurons. Our results suggest that BAF250a is a key component of the gene regulatory machinery in ES cells controlling self-renewal, differentiation, and cell lineage decisions.", "Mononuclear phagocytes, including monocytes, macrophages, and dendritic cells, contribute to tissue integrity as well as to innate and adaptive immune defense. Emerging evidence for labor division indicates that manipulation of these cells could bear therapeutic potential. However, specific ontogenies of individual populations and the overall functional organization of this cellular network are not well defined. Here we report a fate-mapping study of the murine monocyte and macrophage compartment taking advantage of constitutive and conditional CX(3)CR1 promoter-driven Cre recombinase expression. We have demonstrated that major tissue-resident macrophage populations, including liver Kupffer cells and lung alveolar, splenic, and peritoneal macrophages, are established prior to birth and maintain themselves subsequently during adulthood independent of replenishment by blood monocytes. Furthermore, we have established that short-lived Ly6C(+) monocytes constitute obligatory steady-state precursors of blood-resident Ly6C(-) cells and that the abundance of Ly6C(+) blood monocytes dynamically controls the circulation lifespan of their progeny.", "The similarity in the three-dimensional structures of homologous proteins imposes strong constraints on their sequence variability. It has long been suggested that the resulting correlations among amino acid compositions at different sequence positions can be exploited to infer spatial contacts within the tertiary protein structure. Crucial to this inference is the ability to disentangle direct and indirect correlations, as accomplished by the recently introduced Direct Coupling Analysis (DCA) (Weigt et al. (2009) Proc Natl Acad Sci 106:67). Here we develop a computationally efficient implementation of DCA, which allows us to evaluate the accuracy of contact prediction by DCA for a large number of protein domains, based purely on sequence information. DCA is shown to yield a large number of correctly predicted contacts, recapitulating the global structure of the contact map for the majority of the protein domains examined. Furthermore, our analysis captures clear signals beyond intra- domain residue contacts, arising, e.g., from alternative protein conformations, ligand- mediated residue couplings, and inter-domain interactions in protein oligomers. Our findings suggest that contacts predicted by DCA can be used as a reliable guide to facilitate computational predictions of alternative protein conformations, protein complex formation, and even the de novo prediction of protein domain structures, provided the existence of a large number of homologous sequences which are being rapidly made available due to advances in genome sequencing.", "A model for the unidirectional movement of dynein is presented based on structural observations and biochemical experimental results available. In this model, the binding affinity of dynein for microtubule is independent of its nucleotide state and the change between strong and weak microtubule-binding is determined naturally by the variation of relative orientation between the stalk and microtubule as the stalk rotates following nucleotide-state transition. Thus the enigmatic communication from the ATP binding site in the globular domain to the far MT-binding site in the tip of the stalk, which is prerequisite in conventional models, is not required. Using the present model, the previous experimental results such as the effect of ATP and ADP bindings on dissociation of dynein from microtubule, the processive movement of single-headed axonemal dyneins at saturating ATP concentration, the load dependence of step size for the processive movement of two-headed cytoplasmic dyneins and the dependence of stall force on ATP concentration can be well explained.", "In the present study, the relationship between short interfering RNA (siRNA) sequence and RNA interference (RNAi) effect was extensively analyzed using 62 targets of four exogenous and two endogenous genes and three mammalian and Drosophila cells. We present the rules that may govern siRNA sequence preference and in accordance with which highly effective siRNAs essential for systematic mammalian functional genomics can be readily designed. These rules indicate that siRNAs which simultaneously satisfy all four of the following sequence conditions are capable of inducing highly effective gene silencing in mammalian cells: (i) A/U at the 5' end of the antisense strand; (ii) G/C at the 5' end of the sense strand; (iii) at least five A/U residues in the 5' terminal one-third of the antisense strand; and (iv) the absence of any GC stretch of more than 9 nt in length. siRNAs opposite in features with respect to the first three conditions give rise to little or no gene silencing in mammalian cells. Essentially the same rules for siRNA sequence preference were found applicable to DNA-based RNAi in mammalian cells and in ovo RNAi using chick embryos. In contrast to mammalian and chick cells, little siRNA sequence preference could be detected in Drosophila in vivo RNAi.", "Inflammasomes are multiprotein complexes that include members of the NLR (nucleotide-binding domain leucine-rich repeat containing) family and caspase-1. Once bacterial molecules are sensed within the macrophage, the inflammasome is assembled, mediating the activation of caspase-1. Caspase-11 mediates caspase-1 activation in response to lipopolysaccharide and bacterial toxins, and yet its role during bacterial infection is unknown. Here, we demonstrated that caspase-11 was dispensable for caspase-1 activation in response to Legionella, Salmonella, Francisella, and Listeria. We also determined that active mouse caspase-11 was required for restriction of L. pneumophila infection. Similarly, human caspase-4 and caspase-5, homologs of mouse caspase-11, cooperated to restrict L. pneumophila infection in human macrophages. Caspase-11 promoted the fusion of the L. pneumophila vacuole with lysosomes by modulating actin polymerization through cofilin. However, caspase-11 was dispensable for the fusion of lysosomes with phagosomes containing nonpathogenic bacteria, uncovering a fundamental difference in the trafficking of phagosomes according to their cargo.", "Although a developmental role for Hippo signaling in organ size control is well appreciated, how this pathway functions in tissue regeneration is largely unknown. Here we address this issue using a dextran sodium sulfate (DSS)-induced colonic regeneration model. We find that regenerating crypts express elevated Yes-associated protein (YAP) levels. Inactivation of YAP causes no obvious intestinal defects under normal homeostasis, but severely impairs DSS-induced intestinal regeneration. Conversely, hyperactivation of YAP results in widespread early-onset polyp formation following DSS treatment. Thus, the YAP oncoprotein must be exquisitely controlled in tissue regeneration to allow compensatory proliferation and prevent the intrinsic oncogenic potential of a tissue regeneration program.", "Nanog is a divergent homeodomain protein found in mammalian pluripotent cells and developing germ cells. Deletion of Nanog causes early embryonic lethality, whereas constitutive expression enables autonomous self-renewal of embryonic stem cells. Nanog is accordingly considered a core element of the pluripotent transcriptional network. However, here we report that Nanog fluctuates in mouse embryonic stem cells. Transient downregulation of Nanog appears to predispose cells towards differentiation but does not mark commitment. By genetic deletion we show that, although they are prone to differentiate, embryonic stem cells can self-renew indefinitely in the permanent absence of Nanog. Expanded Nanog null cells colonize embryonic germ layers and exhibit multilineage differentiation both in fetal and adult chimaeras. Although they are also recruited to the germ line, primordial germ cells lacking Nanog fail to mature on reaching the genital ridge. This defect is rescued by repair of the mutant allele. Thus Nanog is dispensible for expression of somatic pluripotency but is specifically required for formation of germ cells. Nanog therefore acts primarily in construction of inner cell mass and germ cell states rather than in the housekeeping machinery of pluripotency. We surmise that Nanog stabilizes embryonic stem cells in culture by resisting or reversing alternative gene expression states.", "The hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) enzymes represent novel targets for the treatment of anemia, ulcerative colitis, and ischemic and metabolic disease inter alia. We have identified a novel small-molecule inhibitor of PHD, 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), through structure-based drug design methods. The pharmacology of JNJ-42041935 was investigated in enzyme, cellular, and whole-animal systems and was compared with other compounds described in the literature as PHD inhibitors. JNJ-42041935, was a potent (pK(I) = 7.3-7.9), 2-oxoglutarate competitive, reversible, and selective inhibitor of PHD enzymes. In addition, JNJ-42041935 was used to compare the effect of selective inhibition of PHD to intermittent, high doses (50 μg/kg i.p.) of an exogenous erythropoietin receptor agonist in an inflammation-induced anemia model in rats. JNJ-42041935 (100 μmol/kg, once a day for 14 days) was effective in reversing inflammation-induced anemia, whereas erythropoietin had no effect. The results demonstrate that JNJ-42041935 is a new pharmacological tool, which can be used to investigate PHD inhibition and demonstrate that PHD inhibitors offer great promise for the treatment of inflammation-induced anemia." ]
100
All hematopoietic stem cells segregate their chromosomes randomly.
["Stem cells are proposed to segregate chromosomes asymmetrically during self-renewing divisions so (...TRUNCATED)
["Stem cells are proposed to segregate chromosomes asymmetrically during self-renewing divisions so (...TRUNCATED)
1012
Radioiodine treatment of non-toxic multinodular goitre reduces thyroid volume.
["OBJECTIVE To investigate the long term effect of radioactive iodine on thyroid function and size i(...TRUNCATED)
["OBJECTIVE To investigate the long term effect of radioactive iodine on thyroid function and size i(...TRUNCATED)
1014
Rapamycin decreases the concentration of triacylglycerols in fruit flies.
["The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically d(...TRUNCATED)
["The target of rapamycin (TOR) pathway is a major nutrient-sensing pathway that, when genetically d(...TRUNCATED)
1019
Rapid phosphotransfer rates govern fidelity in two component systems
["Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their r(...TRUNCATED)
["Two-component signal transduction pathways comprising histidine protein kinases (HPKs) and their r(...TRUNCATED)
1020
"Rapid up-regulation and higher basal expression of interferon-induced genes increase survival of gr(...TRUNCATED)
["Although susceptibility of neurons in the brain to microbial infection is a major determinant of c(...TRUNCATED)
["Although susceptibility of neurons in the brain to microbial infection is a major determinant of c(...TRUNCATED)
1021
"Rapid up-regulation and higher basal expression of interferon-induced genes reduce survival of gran(...TRUNCATED)
["Although susceptibility of neurons in the brain to microbial infection is a major determinant of c(...TRUNCATED)
["Although susceptibility of neurons in the brain to microbial infection is a major determinant of c(...TRUNCATED)
1024
Recurrent mutations occur frequently within CTCF anchor sites adjacent to oncogenes.
["In this study, we describe the 3D chromosome regulatory landscape of human naive and primed embryo(...TRUNCATED)
["Disease-causing repeat instability is an important and unique form of mutation that is linked to m(...TRUNCATED)
1029
"Reduced responsiveness to interleukin-2 in regulatory T cells is associated with greater resistance(...TRUNCATED)
["Autoimmune diseases are thought to result from imbalances in normal immune physiology and regulati(...TRUNCATED)
["Numerous reports have demonstrated that CD4(+)CD25(+) regulatory T cells (Tregs) from individuals (...TRUNCATED)
1041
"Replacement of histone H2A with H2A.Z slows gene activation in yeasts by stabilizing +1 nucleosomes(...TRUNCATED)
["Nucleosomes containing the histone variant H3.3 tend to be clustered in vivo in the neighborhood o(...TRUNCATED)
["Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This i(...TRUNCATED)
README.md exists but content is empty.
Downloads last month
27