Introduction
This respository introduces how to reproduce the Dense
, Sparse
, and Dense+Sparse
evaluation results of the paper BGE-M3 on the MIRACL dev split.
Requirements
# Install Java (Linux)
apt update
apt install openjdk-11-jdk
# Install Pyserini
pip install pyserini
# Install Faiss
## CPU version
conda install -c conda-forge faiss-cpu
## GPU version
conda install -c conda-forge faiss-gpu
It should be noted that the Pyserini code needs to be modified to support the multiple alpha settings in pyserini/fusion
. I have already submitted a pull request to the official repository to support this feature. You can refer to this PR to modify the code.
2CR
Download and Unzip
# Download
## MIRACL topics and qrels
git clone https://huggingface.co/datasets/miracl/miracl
mv miracl/*/*/* topics-and-qrels
git lfs install
git clone https://huggingface.co/datasets/hanhainebula/bge-m3_miracl_2cr
# Unzip
languages=(ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo)
## Dense
for lang in ${languages[@]}; do
tar -zxvf bge-m3_miracl_2cr/dense/${lang}.tar.gz -C bge-m3_miracl_2cr/dense/
done
## Sparse
for lang in ${languages[@]}; do
tar -zxvf bge-m3_miracl_2cr/sparse/${lang}.tar.gz -C bge-m3_miracl_2cr/sparse/
done
Reproduction
Dense
# Avaliable Language: ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo
lang=zh
# Generate run
python -m pyserini.search.faiss \
--threads 16 --batch-size 512 \
--encoder-class auto \
--encoder BAAI/bge-m3 \
--pooling cls --l2-norm \
--topics topics-and-qrels/miracl-v1.0-${lang}-dev.tsv \
--index bge-m3_miracl_2cr/dense/${lang} \
--output bge-m3_miracl_2cr/dense/runs/${lang}.txt \
--hits 1000
# Evaluate
## nDCG@10
python -m pyserini.eval.trec_eval \
-c -M 100 -m ndcg_cut.10 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/dense/runs/${lang}.txt
## Recall@100
python -m pyserini.eval.trec_eval \
-c -m recall.100 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/dense/runs/${lang}.txt
Sparse
# Avaliable Language: ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo
lang=zh
# Generate run
python -m pyserini.search.lucene \
--threads 16 --batch-size 128 \
--topics bge-m3_miracl_2cr/sparse/${lang}/query_embd.tsv \
--index bge-m3_miracl_2cr/sparse/${lang}/index \
--output bge-m3_miracl_2cr/sparse/runs/${lang}.txt \
--output-format trec \
--impact --hits 1000
# Evaluate
## nDCG@10
python -m pyserini.eval.trec_eval \
-c -M 100 -m ndcg_cut.10 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/sparse/runs/${lang}.txt
## Recall@100
python -m pyserini.eval.trec_eval \
-c -m recall.100 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/sparse/runs/${lang}.txt
Dense+Sparse
Note: You should first merge this PR to support the multiple alpha settings in pyserini/fusion
.
# Avaliable Language: ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo
lang=zh
# Generate dense run and sparse run
python -m pyserini.search.faiss \
--threads 16 --batch-size 512 \
--encoder-class auto \
--encoder BAAI/bge-m3 \
--pooling cls --l2-norm \
--topics topics-and-qrels/miracl-v1.0-${lang}-dev.tsv \
--index bge-m3_miracl_2cr/dense/${lang} \
--output bge-m3_miracl_2cr/dense/runs/${lang}.txt \
--hits 1000
python -m pyserini.search.lucene \
--threads 16 --batch-size 128 \
--topics bge-m3_miracl_2cr/sparse/${lang}/query_embd.tsv \
--index bge-m3_miracl_2cr/sparse/${lang}/index \
--output bge-m3_miracl_2cr/sparse/runs/${lang}.txt \
--output-format trec \
--impact --hits 1000
# Generate dense+sparse run
mkdir -p bge-m3_miracl_2cr/fusion/runs
python -m pyserini.fusion \
--method interpolation \
--runs bge-m3_miracl_2cr/dense/runs/${lang}.txt bge-m3_miracl_2cr/sparse/runs/${lang}.txt \
--alpha 1 3e-5 \
--output bge-m3_miracl_2cr/fusion/runs/${lang}.txt \
--depth 1000 --k 1000
# Evaluation
## nDCG@10
python -m pyserini.eval.trec_eval \
-c -M 100 -m ndcg_cut.10 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/fusion/runs/${lang}.txt
## Recall@100
python -m pyserini.eval.trec_eval \
-c -m recall.100 \
topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \
bge-m3_miracl_2cr/fusion/runs/${lang}.txt
Note:
- The hybrid method we used for MIRACL in BGE-M3 paper is:
s_dense + 0.3 * s_sparse
. But when the sparse score is calculated, it has already been multiplied by 100^2, so the alpha for sparse run here is 3e-5, instead of 0.3.