Datasets:
File size: 3,298 Bytes
0213f44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
import csv
import datasets
from datasets.tasks import Summarization
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{hasan-etal-2021-xl,
title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages",
author = "Hasan, Tahmid and
Bhattacharjee, Abhik and
Islam, Md. Saiful and
Mubasshir, Kazi and
Li, Yuan-Fang and
Kang, Yong-Bin and
Rahman, M. Sohel and
Shahriyar, Rifat",
booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-acl.413",
pages = "4693--4703",
}
"""
_DESCRIPTION = """Persian portion of the XLSum Dataset"""
_DOWNLOAD_URLS = {
"train": "https://huggingface.co/datasets/hezarai/xlsum-fa/resolve/main/xlsum-fa_train.csv",
"test": "https://huggingface.co/datasets/hezarai/xlsum-fa/resolve/main/xlsum-fa_test.csv",
}
class XLSumFaConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(XLSumFaConfig, self).__init__(**kwargs)
class XLSumFa(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
XLSumFaConfig(
name="xlsum-fa",
version=datasets.Version("1.0.0"),
description=_DESCRIPTION,
),
]
def _info(self):
text_column = "text"
summary_column = "summary"
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{text_column: datasets.Value("string"),
summary_column: datasets.features.Value("string")}
),
homepage="https://huggingface.co/datasets/hezarai/xlsum-fa",
citation=_CITATION,
task_templates=[Summarization(text_column=text_column, summary_column=summary_column)],
)
def _split_generators(self, dl_manager):
"""
Returns SplitGenerators.
"""
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
),
]
def _generate_examples(self, filepath):
"""
Per each file_path read the csv file and iterate it.
For each row yield a tuple of (id, {"text": ..., "summary": ..., ...})
Each call to this method yields an output like below:
```
(123, {"text": "...", "summary": "..."})
```
"""
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as csv_file:
csv_reader = csv.reader(
csv_file, quotechar='"', skipinitialspace=True
)
next(csv_reader, None)
for id_, row in enumerate(csv_reader):
text, label = row
yield id_, {"text": text, "summary": label}
|