File size: 19,195 Bytes
629a1cb
 
6e67df1
 
74419b7
 
 
 
 
d7bff41
74419b7
 
 
 
d7bff41
629a1cb
1bb0cad
33b283d
7867e46
 
d194365
33b283d
7867e46
3e95e21
7867e46
71bf691
0b59c28
6e67df1
 
 
 
 
 
 
 
920d881
 
0b59c28
 
6e67df1
0b59c28
6e67df1
 
 
 
 
 
 
 
 
 
 
 
0af0d2e
6e67df1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae77df
741423e
 
8ae77df
 
741423e
8ae77df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741423e
8ae77df
 
741423e
8ae77df
 
 
 
 
 
 
 
 
 
 
 
741423e
8ae77df
 
 
 
 
 
 
 
 
 
741423e
8ae77df
 
741423e
8ae77df
 
 
741423e
8ae77df
 
6e67df1
8ae77df
 
 
 
 
 
741423e
8ae77df
 
 
 
 
a4fd65b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae77df
 
 
a4fd65b
 
 
 
8ae77df
a4fd65b
 
8ae77df
a4fd65b
8ae77df
 
 
 
5c5d5e8
50919ce
 
fecdbb6
d447f7f
cf463ce
5c5d5e8
50919ce
cf463ce
5c5d5e8
cf463ce
 
1bc3b00
cf463ce
 
 
5c5d5e8
1bc3b00
cf463ce
 
 
 
 
d194365
5c5d5e8
cf463ce
 
 
 
 
 
 
 
5c5d5e8
 
1bc3b00
5c5d5e8
 
 
cf463ce
 
 
 
1bc3b00
fecdbb6
5c5d5e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c55a7b
5c5d5e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fecdbb6
1bc3b00
4409d90
1bc3b00
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
---
license: mit
language:
- en
task_categories:
- object-detection
- depth-estimation
- image-segmentation
tags:
- dataset
- aerial
- synthetic
- domain adaptation
- sim2real

---

<!-- <div align="center"> -->
  
# SkyScenes: A Synthetic Dataset for Aerial Scene Understanding
[Sahil Khose](https://sahilkhose.github.io/)\*, [Anisha Pal](https://anipal.github.io/)\*, [Aayushi Agarwal](https://www.linkedin.com/in/aayushiag/)\*, [Deepanshi](https://www.linkedin.com/in/deepanshi-d/)\*, [Judy Hoffman](https://faculty.cc.gatech.edu/~judy/), [Prithvijit Chattopadhyay](https://prithv1.xyz/)
<!-- </div> -->

[![HuggingFace Dataset](https://img.shields.io/badge/πŸ€—-HuggingFace%20Dataset-cyan.svg)](https://huggingface.co/datasets/hoffman-lab/SkyScenes)[![Project Page](https://img.shields.io/badge/Project-Website-orange)](https://hoffman-group.github.io/SkyScenes/)[![arXiv](https://img.shields.io/badge/arXiv-SkyScenes-b31b1b.svg)](https://arxiv.org/abs/2312.06719) 

<img src="./assets/teaser.jpeg" width="100%"/>

## Dataset Summary

Real-world aerial scene understanding is limited by a lack of datasets that contain densely annotated images curated under a diverse set of conditions. 
Due to inherent challenges in obtaining such images in controlled real-world settings,
we present SkyScenes, a synthetic dataset of densely annotated aerial images captured from Unmanned Aerial Vehicle (UAV) perspectives. 
**SkyScenes** images are carefully curated from **CARLA** to comprehensively capture diversity across layout (urban and rural maps), weather conditions, times of day, pitch angles and altitudes with corresponding semantic, instance and depth annotations. 
**SkyScenes** features **33,600** images in total, which are spread across 8 towns, 5 weather and daytime conditions and 12 height and pitch variations. 

## πŸ“£ Announcement

SkyScenes has been accepted at [ECCV 2024](https://www.ecva.net/papers/eccv_2024/papers_ECCV/html/10113_ECCV_2024_paper.php) !


## SkyScenes Details
<details>
  <summary>Click to view the detailed list of all variations</summary>
  
  - **Layout Variations(Total 8):**:
    - Town01
    - Town02
    - Town03
    - Town04
    - Town05
    - Town06
    - Town07 
    - Town10HD
  
  _Town07 features Rural Scenes, whereas the rest of the towns feature Urban scenes_

- **Weather & Daytime Variations(Total 5):**
  - ClearNoon
  - ClearSunset
  - ClearNight
  - CloudyNoon
  - MidRainyNoon

- **Height and Pitch Variations of UAV Flight(Total 12):**
  - Height = 15m, Pitch = 0Β°
  - Height = 15m, Pitch = 45Β°
  - Height = 15m, Pitch = 60Β°
  - Height = 15m, Pitch = 90Β°
  - Height = 35m, Pitch = 0Β°
  - Height = 35m, Pitch = 45Β°
  - Height = 35m, Pitch = 60Β°
  - Height = 35m, Pitch = 90Β°
  - Height = 60m, Pitch = 0Β°
  - Height = 60m, Pitch = 45Β°
  - Height = 60m, Pitch = 60Β°
  - Height = 60m, Pitch = 90Β°
</details>
<details>
<summary>Click to view class definitions, color palette and class IDs for Semantic Segmentation</summary>

**SkyScenes** semantic segmentation labels span 28 classes which can be further collapsed to 20 classes. 
| Class ID | Class ID (collapsed) | RGB Color Palette | Class Name       | Definition                                                                                         |
|----------|--------------------|-------------------|------------------|----------------------------------------------------------------------------------------------------|
| 0        | -1                 | <span style="color:rgb(0, 0, 0)"> (0, 0, 0) </span>         | unlabeled        | Elements/objects in the scene that have not been categorized                                           |
| 1        | 2                  | <span style="color:rgb(70, 70, 70)"> (70, 70, 70) </span>      | building         | Includes houses, skyscrapers, and the elements attached to them                                        |
| 2        | 4                  | <span style="color:rgb(190, 153, 153)"> (190, 153, 153) </span>   | fence            | Wood or wire assemblies that enclose an area of ground                                                 |
| 3        | -1                  | <span style="color:rgb(55, 90, 80)"> (55, 90, 80) </span>      | other            | Uncategorized elements                                                                              |
| 4        | 11                  | <span style="color:rgb(220, 20, 60)"> (220, 20, 60) </span>     | pedestrian       | Humans that walk                                                                                    |
| 5        | 5                  | <span style="color:rgb(153, 153, 153)"> (153, 153, 153) </span>  | pole             | Vertically oriented pole and its horizontal components if any                                           |
| 6        | 16                  | <span style="color:rgb(157, 234, 50)"> (157, 234, 50) </span>    | roadline         | Markings on road                                                                                    |
| 7        | 0                  | <span style="color:rgb(128, 64, 128)"> (128, 64, 128) </span>    | road             | Lanes, streets, paved areas on which cars drive                                                       |
| 8        | 1                  | <span style="color:rgb(244, 35, 232)"> (244, 35, 232) </span>    | sidewalk         | Parts of ground designated for pedestrians or cyclists                                                 |
| 9        | 8                  | <span style="color:rgb(107, 142, 35)"> (107, 142, 35) </span>    | vegetation       | Trees, hedges, all kinds of vertical vegetation (ground-level vegetation is not included here)       |
| 10       | 13                 | <span style="color:rgb(0, 0, 142)"> (0, 0, 142) </span>       | cars             | Cars in scene                                                                                       |
| 11       | 3                 | <span style="color:rgb(102, 102, 156)"> (102, 102, 156) </span>   | wall             | Individual standing walls, not part of buildings                                                      |
| 12       | 7                 | <span style="color:rgb(220, 220, 0)"> (220, 220, 0) </span>     | traffic sign     | Signs installed by the state/city authority, usually for traffic regulation                            |
| 13       | 10                 | <span style="color:rgb(70, 130, 180)"> (70, 130, 180) </span>    | sky              | Open sky, including clouds and sun                                                                   |
| 14       | -1                 | <span style="color:rgb(81, 0, 81)"> (81, 0, 81) </span>       | ground           | Any horizontal ground-level structures that do not match any other category                            |
| 15       | -1                 | <span style="color:rgb(150, 100, 100)"> (150, 100, 100) </span>  | bridge           | The structure of the bridge                                                                          |
| 16       | -1                 | <span style="color:rgb(230, 150, 140)"> (230, 150, 140) </span>  | railtrack        | Rail tracks that are non-drivable by cars                                                            |
| 17       | -1                 | <span style="color:rgb(180, 165, 180)"> (180, 165, 180) </span>  | guardrail        | Guard rails / crash barriers                                                                         |
| 18       | 6                 | <span style="color:rgb(250, 170, 30)"> (250, 170, 30) </span>    | traffic light    | Traffic light boxes without their poles                                                              |
| 19       | -1                 | <span style="color:rgb(110, 190, 160)"> (110, 190, 160) </span>  | static           | Elements in the scene and props that are immovable                                                    |
| 20       | -1                 | <span style="color:rgb(170, 120, 50)"> (170, 120, 50) </span>    | dynamic          | Elements whose position is susceptible to change over time                                             |
| 21       | 19                 | <span style="color:rgb(45, 60, 150)"> (45, 60, 150) </span>     | water            | Horizontal water surfaces                                                                            |
| 22       | 9                 | <span style="color:rgb(152, 251, 152)"> (152, 251, 152) </span>  | terrain          | Grass, ground-level vegetation, soil, or sand                                                         |
| 23       | 12                 | <span style="color:rgb(255, 0, 0)"> (255, 0, 0) </span>       | rider            | Humans that ride/drive any kind of vehicle or mobility system                                         |
| 24       | 18                 | <span style="color:rgb(119, 11, 32)"> (119, 11, 32) </span>     | bicycle          | Bicycles in scenes                                                                                  |
| 25       | 17                 | <span style="color:rgb(0, 0, 230)"> (0, 0, 230) </span>       | motorcycle       | Motorcycles in scene                                                                                |
| 26       | 15                 | <span style="color:rgb(0, 60, 100)"> (0, 60, 100) </span>      | bus              | Buses in scenes                                                                                     |
| 27       | 14                 | <span style="color:rgb(0, 0, 70)"> (0, 0, 70) </span>        | truck            | Trucks in scenes                                                                                    |
                                                                                |
</details>

## Dataset Structure

The dataset is organized in the following structure:
<!--<details>
  <summary><strong>Images (RGB Images)</strong></summary>

  - ***H_15_P_0***
    - *ClearNoon*
      - Town01.tar.gz
      - Town02.tar.gz
      - ...
      - Town10HD.tar.gz
    - *ClearSunset*
      - Town01.tar.gz
      - Town02.tar.gz
      - ...
      - Town10HD.tar.gz
    - *ClearNight*
      - Town01.tar.gz
      - Town02.tar.gz
      - ...
      - Town10HD.tar.gz
    - *CloudyNoon*
      - Town01.tar.gz
      - Town02.tar.gz
      - ...
      - Town10HD.tar.gz
    - *MidRainyNoon*
      - Town01.tar.gz
      - Town02.tar.gz
      - ...
      - Town10HD.tar.gz
  - ***H_15_P_45***
    - ...
  - ...
  - ***H_60_P_90***
    - ...
</details>

<details>
  <summary><strong>Instance (Instance Segmentation Annotations)</strong></summary>

  - ***H_35_P_45***
    - *ClearNoon*
      - Town01.tar.gz
      - Town02.tar.gz
      - ...
      - Town10HD.tar.gz
</details>

<details>
  <summary><strong>Segment (Semantic Segmentation Annotations)</strong></summary>

  - ***H_15_P_0***
    - *ClearNoon*
      - Town01.tar.gz
      - Town02.tar.gz
      - ...
      - Town10HD.tar.gz
  - ***H_15_P_45***
    - ...
  - ...
  - ***H_60_P_90***
</details>

<details>
  <summary><strong>Depth (Depth Annotations)</strong></summary>

  - ***H_35_P_45***
    - *ClearNoon*
      - Town01.tar.gz
      - Town02.tar.gz
      - ...
      - Town10HD.tar.gz
</details>
-->


```
β”œβ”€β”€ Images (RGB Images)
β”‚   β”œβ”€β”€ H_15_P_0
β”‚   β”‚   β”œβ”€β”€ ClearNoon
β”‚   β”‚   β”‚   β”œβ”€β”€ Town01
β”‚   β”‚   β”‚   β”‚   └── Town01.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ Town02
β”‚   β”‚   β”‚   β”‚   └── Town02.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   └── Town10HD
β”‚   β”‚   β”‚       └── Town10HD.tar.gz
β”‚   β”‚   β”œβ”€β”€ ClearSunset
β”‚   β”‚   β”‚   β”œβ”€β”€ Town01
β”‚   β”‚   β”‚   β”‚   └── Town01.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ Town02
β”‚   β”‚   β”‚   β”‚   └── Town02.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   └── Town10HD
β”‚   β”‚   β”‚       └── Town10HD.tar.gz
β”‚   β”‚   β”œβ”€β”€ ClearNight
β”‚   β”‚   β”‚   β”œβ”€β”€ Town01
β”‚   β”‚   β”‚   β”‚   └── Town01.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ Town02
β”‚   β”‚   β”‚   β”‚   └── Town02.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   └── Town10HD
β”‚   β”‚   β”‚       └── Town10HD.tar.gz
β”‚   β”‚   β”œβ”€β”€ CloudyNoon
β”‚   β”‚   β”‚   β”œβ”€β”€ Town01
β”‚   β”‚   β”‚   β”‚   └── Town01.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ Town02
β”‚   β”‚   β”‚   β”‚   └── Town02.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   └── Town10HD
β”‚   β”‚   β”‚       └── Town10HD.tar.gz
β”‚   β”‚   └── MidRainyNoon
β”‚   β”‚       β”œβ”€β”€ Town01
β”‚   β”‚       β”‚   └── Town01.tar.gz
β”‚   β”‚       β”œβ”€β”€ Town02
β”‚   β”‚       β”‚   └── Town02.tar.gz
β”‚   β”‚       β”œβ”€β”€ ...
β”‚   β”‚       └── Town10HD
β”‚   β”‚           └── Town10HD.tar.gz
β”‚   β”œβ”€β”€ H_15_P_45
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ ...
β”‚   └── H_60_P_90
β”‚       └── ...
β”œβ”€β”€ Instance (Instance Segmentation Annotations)
β”‚   β”œβ”€β”€ H_35_P_45
β”‚   β”‚   └── ClearNoon
β”‚   β”‚       β”œβ”€β”€ Town01
β”‚   β”‚       β”‚   └── Town01.tar.gz
β”‚   β”‚       β”œβ”€β”€ Town02
β”‚   β”‚       β”‚   └── Town02.tar.gz
β”‚   β”‚       β”œβ”€β”€ ...
β”‚   β”‚       └── Town10HD
β”‚   β”‚           └── Town10HD.tar.gz
β”‚   └── ...
β”œβ”€β”€ Segment (Semantic Segmentation Annotations)
β”‚   β”œβ”€β”€ H_15_P_0
β”‚   β”‚   β”œβ”€β”€ ClearNoon
β”‚   β”‚   β”‚   β”œβ”€β”€ Town01
β”‚   β”‚   β”‚   β”‚   └── Town01.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ Town02
β”‚   β”‚   β”‚   β”‚   └── Town02.tar.gz
β”‚   β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   β”‚   └── Town10HD
β”‚   β”‚   β”‚       └── Town10HD.tar.gz
β”‚   β”‚   β”œβ”€β”€ H_15_P_45
β”‚   β”‚   β”‚   └── ...
β”‚   β”‚   β”œβ”€β”€ ...
β”‚   β”‚   └── H_60_P_90
β”‚   β”‚       └── ...
β”‚   └── ...
└── Depth (Depth Annotations)
    β”œβ”€β”€ H_35_P_45
    β”‚   └── ClearNoon 
    β”‚       β”œβ”€β”€ Town01
    β”‚       β”‚   └── Town01.tar.gz
    β”‚       β”œβ”€β”€ Town02
    β”‚       β”‚   └── Town02.tar.gz
    β”‚       β”œβ”€β”€ ...
    β”‚       └── Town10HD
    β”‚           └── Town10HD.tar.gz
    └── ...

```
    
**Note**: Since the same viewpoint is reproduced across each weather variation, hence ClearNoon annotations can be used for all images pertaining to the different weather variations.

## Dataset Download 


The dataset can be downloaded using wget. 
Since SkyScenes offers variations across different axes we enable different subsets for download that can aid in model sensitivity analysis across these axes. 

### Download instructions: wget

**Example script for downloading different subsets of data using wget**
```bash
#!/bin/bash
#Change here to download a specific Height and Pitch Variation, for example - H_15_P_0
# HP=('H_15_P_45' 'H_15_P_60' 'H_15_P_90')
HP=('H_15_P_0' 'H_15_P_45' 'H_15_P_60' 'H_15_P_90' 'H_35_P_0' 'H_35_P_45' 'H_35_P_60' 'H_35_P_90' 'H_60_P_0' 'H_60_P_45' 'H_60_P_60' 'H_60_P_90')

#Change here to download a specific weather subset, for example - ClearNoon
#Note - For Segment, Instance and Depth annotations this field should only have ClearNoon variation
# weather=('ClearNoon' 'ClearNight')
weather=('ClearNoon' 'ClearNight' 'ClearSunset' 'CloudyNoon' 'MidRainyNoon')

#Change here to download a specific Town subset, for example - Town07
layout=('Town01' 'Town02' 'Town03' 'Town04' 'Town05' 'Town06' 'Town07' 'Town10HD')

#Change here for any specific annotation, for example - https://huggingface.co/datasets/hoffman-lab/SkyScenes/resolve/main/Segment
base_url=('https://huggingface.co/datasets/hoffman-lab/SkyScenes/resolve/main/Images')

#Change here for base download folder
base_download_folder='SkyScenes'


for hp in "${HP[@]}"; do
  for w in "${weather[@]}"; do
      for t in "${layout[@]}"; do
        folder=$(echo "$base_url" | awk -F '/' '{print $(NF)}')
        download_url="${base_url}/${hp}/${w}/${t}/${t}.tar.gz"
        download_folder="${base_download_folder}/${folder}/${hp}/${w}/${t}"
        mkdir -p "$download_folder"
        echo "Downloading: $download_url"
        wget -P "$download_folder" "$download_url"
      done
  done
done
```

<!-- ### Download instructions: [datasets](https://huggingface.co/docs/datasets/index)

<details>
<summary>Click to view all the available keys for downloading subsets of the data</summary> 

* **Layout Variations** 
  - Rural
  - Urban

* **Weather Variations** 
  - ClearNoon
  - ClearNight (only images)
  - ClearSunset (only images)
  - CloudyNoon (only images)
  - MidRainyNoon (only images)

* **Height Variations**
  - H_15
  - H_35
  - H_60

* **Pitch Variations**
  - P_0
  - P_45
  - P_60
  - P_90

* **Height and Pitch Variations**
  - H_15_P_0
  - H_15_P_45
  - H_15_P_60
  - H_15_P_90
  - H_35_P_0
  - H_35_P_45
  - H_35_P_60
  - H_35_P_90
  - H_60_P_0
  - H_60_P_45
  - H_60_P_60
  - H_60_P_90

  Full dataset key: full

  **πŸ’‘Notes**: 
  - To download **images** append subset key with **images**, example - ```H_35_P_45 images```
  - To download **semantic segmentation** maps append subset key with **semseg**, example - ```H_35_P_45 semseg```
  - To download **instance segmentation** maps append subset key with **instance**, example - ```H_35_P_45 instance```
  - To download **depth** maps append subset key with **depth**, example - ```H_35_P_45 depth```
</details>


**Example script for loading H_35_P_45 images**
```python
from datasets import load_dataset
dataset = load_dataset('hoffman-lab/SkyScenes',name="H_35_P_45 images")
```
**Example script for loading H_35_P_45 semantic segmentation maps**
```python
from datasets import load_dataset
dataset = load_dataset('hoffman-lab/SkyScenes',name="H_35_P_45 semseg")
```
**Example script for loading H_35_P_45 instance segmentation maps**
```python
from datasets import load_dataset
dataset = load_dataset('hoffman-lab/SkyScenes',name="H_35_P_45 instance")
```
**Example script for loading H_35_P_45 depth maps**
```python
from datasets import load_dataset
dataset = load_dataset('hoffman-lab/SkyScenes',name="H_35_P_45 depth")
```

### πŸ’‘ Notes
- To prevent issues when loading datasets using [datasets](https://huggingface.co/docs/datasets/index) library, it is recommended to avoid downloading subsets that contain overlapping directories. If there are any overlapping directories between the existing downloads and new ones, it's essential to clear the .cache directory of any such overlaps before proceeding with the new downloads. This step will ensure a clean and conflict-free environment for handling datasets. -->


## BibTex

If you find this work useful please like ❀️ our dataset repo and cite πŸ“„ our paper. Thanks for your support!

```
  @misc{khose2023skyscenes,
      title={SkyScenes: A Synthetic Dataset for Aerial Scene Understanding}, 
      author={Sahil Khose and Anisha Pal and Aayushi Agarwal and Deepanshi and Judy Hoffman and Prithvijit Chattopadhyay},
      year={2023},
      eprint={2312.06719},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
  ```