text
stringlengths 36
36
|
---|
gathered_data/scene0000_00/00000.pkl |
gathered_data/scene0000_00/00001.pkl |
gathered_data/scene0000_00/00002.pkl |
gathered_data/scene0000_00/00003.pkl |
gathered_data/scene0000_00/00006.pkl |
gathered_data/scene0000_00/00007.pkl |
gathered_data/scene0000_00/00008.pkl |
gathered_data/scene0000_00/00009.pkl |
gathered_data/scene0000_00/00010.pkl |
gathered_data/scene0000_00/00011.pkl |
gathered_data/scene0000_00/00013.pkl |
gathered_data/scene0000_00/00014.pkl |
gathered_data/scene0000_00/00015.pkl |
gathered_data/scene0000_00/00016.pkl |
gathered_data/scene0000_00/00017.pkl |
gathered_data/scene0000_00/00019.pkl |
gathered_data/scene0000_00/00021.pkl |
gathered_data/scene0000_00/00022.pkl |
gathered_data/scene0000_00/00023.pkl |
gathered_data/scene0000_00/00024.pkl |
gathered_data/scene0000_00/00025.pkl |
gathered_data/scene0000_00/00026.pkl |
gathered_data/scene0000_00/00027.pkl |
gathered_data/scene0000_00/00028.pkl |
gathered_data/scene0000_00/00029.pkl |
gathered_data/scene0000_00/00030.pkl |
gathered_data/scene0000_00/00031.pkl |
gathered_data/scene0000_00/00032.pkl |
gathered_data/scene0000_00/00034.pkl |
gathered_data/scene0000_00/00036.pkl |
gathered_data/scene0000_00/00037.pkl |
gathered_data/scene0000_00/00038.pkl |
gathered_data/scene0000_00/00039.pkl |
gathered_data/scene0000_00/00040.pkl |
gathered_data/scene0000_00/00042.pkl |
gathered_data/scene0000_00/00043.pkl |
gathered_data/scene0000_00/00045.pkl |
gathered_data/scene0000_00/00046.pkl |
gathered_data/scene0000_00/00047.pkl |
gathered_data/scene0000_00/00049.pkl |
gathered_data/scene0000_00/00051.pkl |
gathered_data/scene0000_00/00052.pkl |
gathered_data/scene0000_00/00054.pkl |
gathered_data/scene0000_00/00055.pkl |
gathered_data/scene0000_00/00057.pkl |
gathered_data/scene0000_00/00058.pkl |
gathered_data/scene0000_00/00062.pkl |
gathered_data/scene0000_00/00064.pkl |
gathered_data/scene0000_00/00065.pkl |
gathered_data/scene0000_00/00066.pkl |
gathered_data/scene0000_00/00067.pkl |
gathered_data/scene0000_00/00068.pkl |
gathered_data/scene0000_00/00069.pkl |
gathered_data/scene0000_00/00071.pkl |
gathered_data/scene0000_00/00075.pkl |
gathered_data/scene0000_00/00077.pkl |
gathered_data/scene0000_00/00078.pkl |
gathered_data/scene0000_00/00081.pkl |
gathered_data/scene0000_00/00083.pkl |
gathered_data/scene0000_00/00085.pkl |
gathered_data/scene0000_00/00086.pkl |
gathered_data/scene0000_00/00088.pkl |
gathered_data/scene0000_00/00089.pkl |
gathered_data/scene0000_00/00090.pkl |
gathered_data/scene0000_00/00091.pkl |
gathered_data/scene0000_00/00092.pkl |
gathered_data/scene0000_00/00093.pkl |
gathered_data/scene0000_00/00096.pkl |
gathered_data/scene0000_00/00098.pkl |
gathered_data/scene0000_00/00099.pkl |
gathered_data/scene0002_00/00000.pkl |
gathered_data/scene0002_00/00001.pkl |
gathered_data/scene0002_00/00002.pkl |
gathered_data/scene0002_00/00003.pkl |
gathered_data/scene0002_00/00006.pkl |
gathered_data/scene0002_00/00007.pkl |
gathered_data/scene0002_00/00008.pkl |
gathered_data/scene0002_00/00009.pkl |
gathered_data/scene0002_00/00010.pkl |
gathered_data/scene0002_00/00011.pkl |
gathered_data/scene0002_00/00013.pkl |
gathered_data/scene0002_00/00014.pkl |
gathered_data/scene0002_00/00015.pkl |
gathered_data/scene0002_00/00016.pkl |
gathered_data/scene0002_00/00017.pkl |
gathered_data/scene0002_00/00019.pkl |
gathered_data/scene0002_00/00021.pkl |
gathered_data/scene0002_00/00022.pkl |
gathered_data/scene0002_00/00023.pkl |
gathered_data/scene0002_00/00024.pkl |
gathered_data/scene0002_00/00025.pkl |
gathered_data/scene0002_00/00026.pkl |
gathered_data/scene0002_00/00027.pkl |
gathered_data/scene0002_00/00028.pkl |
gathered_data/scene0002_00/00029.pkl |
gathered_data/scene0002_00/00030.pkl |
gathered_data/scene0002_00/00031.pkl |
gathered_data/scene0002_00/00032.pkl |
gathered_data/scene0002_00/00034.pkl |
gathered_data/scene0002_00/00036.pkl |
Preparing ISO
Datasets
We provide the OccScanNet dataset files here, but you should agree the term of use of ScanNet, CompleteScanNet dataset.
For a simplified way to prepare the dataset, you just download the preprocessed_data
to ISO/data/occscannet
as gathered_data
and download the posed_images
to ISO/data/scannet
.
However, the complete dataset generating process is provided as followed:
OccScanNet
- Clone the official MMDetection3D repository.
git clone https://github.com/open-mmlab/mmdetection3d.git ISO_mm
- Swith to
v1.3.0
version.
cd ISO_mm
git checkout v1.3.0
- Download the ScanNet dataset following instructions and place
scans
directory asISO_mm/data/scannet/scans
.
:bulb: Note
Recommend you create a
posed_images
directory at data disk and link thescans
directory andposed_images
directory todata/scannet
, then run the following command.
- In this directory, extract RGB image with poses by running
python extract_posed_images.py --max-images-per-scene 100
:bulb: Note
Add
--max-images-per-scene -1
to disable limiting number of images per scene. ScanNet scenes contain up to 5000+ frames per each. After extraction, all the .jpg images require 2 Tb disk space. The recommended 300 images per scene require less then 100 Gb. For example multi-view 3d detector ImVoxelNet samples 50 and 100 images per training and test scene.
Then obtained the following directory structure.
scannet
βββ meta_data
βββ posed_images
β βββ scenexxxx_xx
β β βββ xxxxxx.txt
β β βββ xxxxxx.jpg
β β βββ intrinsic.txt
βββ scans
βββ batch_load_scannet_data.py
βββ extract_posed_images.py
βββ load_scannet_data.py
βββ README.md
βββ scannet_utils.py
- Download original CompleteScanNet
The ground truth labels we used are from SCFusion. Ground truth is available at here.
The ground truth label should be placed as ISO_mm/data/completescannet/gt
.
- Reformulate CompleteScanNet
python preprocess_gt.py
The resulted directory is ISO_mm/data/completescannet/preprocessed
.
Now, we obtained the following directory structure.
completescannet
βββ gt
β βββ scenexxxx_xx.ply
βββ preprocessed
β βββ scenexxxx_xx.npy
βββ preprocess_gt.py
βββ visualization.py
- Create the OccScanNet
First, you should create a directories with name preprocessed_voxels
and gathered_data
in data disk and link them to the ISO_mm/data/occscannet
.
python generate_gt.py
Now, we obtained the following directory structure.
occscannet
βββ preprocessed_voxels
βββ gathered_data
βββ generate_gt.py
βββ not_aligns.txt
βββ wrong_scenes.txt
βββ bad_scenes.txt
βββ used_scannames.txt
OccScanNet-mini
The scenes we used in OccScanNet-mini is reflected in the config file.
- Downloads last month
- 70