Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 59,427 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
(* Author: Andreas Lochbihler, Digital Asset
   Author: Ognjen Maric, Digital Asset *)

theory ADS_Construction imports
  Merkle_Interface
  "HOL-Library.Simps_Case_Conv"
begin

(************************************************************)
section \<open> Building blocks for authenticated data structures on datatypes \<close>
(************************************************************)

(************************************************************)
subsection \<open> Building Block: Identity Functor \<close>
(************************************************************)

text \<open>If nothing is blindable in a type, then the type itself is the hash and the ADS of itself.\<close>

abbreviation (input) hash_discrete :: "('a, 'a) hash" where "hash_discrete \<equiv> id"

abbreviation (input) blinding_of_discrete :: "'a blinding_of" where
  "blinding_of_discrete \<equiv> (=)"

definition merge_discrete :: "'a merge" where
  "merge_discrete x y = (if x = y then Some y else None)"

lemma blinding_of_discrete_hash:
  "blinding_of_discrete \<le> vimage2p hash_discrete hash_discrete (=)"
  by(auto simp add: vimage2p_def)

lemma blinding_of_on_discrete [locale_witness]:
  "blinding_of_on UNIV hash_discrete blinding_of_discrete"
  by(unfold_locales)(simp_all add: OO_eq eq_onp_def blinding_of_discrete_hash)

lemma merge_on_discrete [locale_witness]:
  "merge_on UNIV hash_discrete blinding_of_discrete merge_discrete"
  by unfold_locales(auto simp add: merge_discrete_def)

lemma merkle_discrete [locale_witness]:
  "merkle_interface hash_discrete blinding_of_discrete merge_discrete"
  ..

parametric_constant merge_discrete_parametric [transfer_rule]: merge_discrete_def

(************************************************************)
subsubsection \<open>Example: instantiation for @{typ unit}\<close>
(************************************************************)

abbreviation (input) hash_unit :: "(unit, unit) hash" where "hash_unit \<equiv> hash_discrete"

abbreviation blinding_of_unit :: "unit blinding_of" where
  "blinding_of_unit \<equiv> blinding_of_discrete"

abbreviation merge_unit :: "unit merge" where "merge_unit \<equiv> merge_discrete"

lemma blinding_of_unit_hash:
  "blinding_of_unit \<le> vimage2p hash_unit hash_unit (=)"
  by(fact blinding_of_discrete_hash)

lemma blinding_of_on_unit:
  "blinding_of_on UNIV hash_unit blinding_of_unit"
  by(fact blinding_of_on_discrete)

lemma merge_on_unit:
  "merge_on UNIV hash_unit blinding_of_unit merge_unit"
  by(fact merge_on_discrete)

lemma merkle_interface_unit:
  "merkle_interface hash_unit blinding_of_unit merge_unit"
  by(intro merkle_interfaceI merge_on_unit)

(************************************************************)
subsection \<open> Building Block: Blindable Position \<close>
(************************************************************)

type_synonym 'a blindable = 'a

text \<open> The following type represents the hashes of a datatype. We model hashes as being injective,
  but not surjective; some hashes do not correspond to any values of the original datatypes. We
  model such values as "garbage" coming from a countable set (here, naturals). \<close>

type_synonym garbage = nat

datatype 'a\<^sub>h blindable\<^sub>h = Content 'a\<^sub>h | Garbage garbage

datatype ('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m = Unblinded 'a\<^sub>m | Blinded "'a\<^sub>h blindable\<^sub>h"

(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)

primrec hash_blindable' :: "(('a\<^sub>h, 'a\<^sub>h) blindable\<^sub>m, 'a\<^sub>h blindable\<^sub>h) hash" where
  "hash_blindable' (Unblinded x) = Content x"
| "hash_blindable' (Blinded x) = x"

definition hash_blindable :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m, 'a\<^sub>h blindable\<^sub>h) hash" where
  "hash_blindable h = hash_blindable' \<circ> map_blindable\<^sub>m h id"

lemma hash_blindable_simps [simp]:
  "hash_blindable h (Unblinded x) = Content (h x)"
  "hash_blindable h (Blinded y) = y"
  by(simp_all add: hash_blindable_def blindable\<^sub>h.map_id)

lemma hash_map_blindable_simp:
  "hash_blindable f (map_blindable\<^sub>m f' id x) = hash_blindable (f o f') x"
  by(cases x) (simp_all add: hash_blindable_def blindable\<^sub>h.map_comp)

parametric_constant hash_blindable'_parametric [transfer_rule]: hash_blindable'_def

parametric_constant hash_blindable_parametric [transfer_rule]: hash_blindable_def

(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)

context
  fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
    and bo :: "'a\<^sub>m blinding_of"
begin

inductive blinding_of_blindable :: "('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m blinding_of" where
  "blinding_of_blindable (Unblinded x) (Unblinded y)" if "bo x y"
| "blinding_of_blindable (Blinded x) t" if "hash_blindable h t = x"

inductive_simps blinding_of_blindable_simps [simp]:
  "blinding_of_blindable (Unblinded x) y"
  "blinding_of_blindable (Blinded x) y"
  "blinding_of_blindable z (Unblinded x)"
  "blinding_of_blindable z (Blinded x)"

inductive_simps blinding_of_blindable_simps2:
   "blinding_of_blindable (Unblinded x) (Unblinded y)"
   "blinding_of_blindable (Unblinded x) (Blinded y')"
   "blinding_of_blindable (Blinded x') (Unblinded y)"
   "blinding_of_blindable (Blinded x') (Blinded y')"

end

lemma blinding_of_blindable_mono:
  assumes "bo \<le> bo'"
  shows "blinding_of_blindable h bo \<le> blinding_of_blindable h bo'"
  apply(rule predicate2I)
  apply(erule blinding_of_blindable.cases; hypsubst)
  subgoal by(rule blinding_of_blindable.intros)(rule assms[THEN predicate2D])
  subgoal by(rule blinding_of_blindable.intros) simp
  done

lemma blinding_of_blindable_hash:
  assumes "bo \<le> vimage2p h h (=)"
  shows "blinding_of_blindable h bo \<le> vimage2p (hash_blindable h) (hash_blindable h) (=)"
  apply(rule predicate2I vimage2pI)+
  apply(erule blinding_of_blindable.cases; hypsubst)
  subgoal using assms[THEN predicate2D] by(simp add: vimage2p_def)
  subgoal by simp
  done

lemma blinding_of_on_blindable [locale_witness]:
  assumes "blinding_of_on A h bo"
  shows "blinding_of_on {x. set1_blindable\<^sub>m x \<subseteq> A} (hash_blindable h) (blinding_of_blindable h bo)"
  (is "blinding_of_on ?A ?h ?bo")
proof -
  interpret blinding_of_on A h bo by fact
  show ?thesis
  proof
    show "?bo \<le> vimage2p ?h ?h (=)"
      by(rule blinding_of_blindable_hash)(rule hash)
    show "?bo x x" if "x \<in> ?A" for x using that by(cases x)(auto simp add: refl)
    show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
      by(auto elim!: blinding_of_blindable.cases dest: trans blinding_hash_eq)
    show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
      by(auto elim!: blinding_of_blindable.cases dest: antisym)
  qed
qed

lemmas blinding_of_blindable [locale_witness] = blinding_of_on_blindable[of UNIV, simplified]

case_of_simps blinding_of_blindable_alt_def: blinding_of_blindable_simps2
parametric_constant blinding_of_blindable_parametric [transfer_rule]: blinding_of_blindable_alt_def

(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)

context
  fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
  fixes m :: "'a\<^sub>m merge"
begin

fun merge_blindable :: "('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m merge" where
  "merge_blindable (Unblinded x) (Unblinded y) = map_option Unblinded (m x y)"
| "merge_blindable (Blinded x) (Unblinded y) = (if x = Content (h y) then Some (Unblinded y) else None)"
| "merge_blindable (Unblinded y) (Blinded x) = (if x = Content (h y) then Some (Unblinded y) else None)"
| "merge_blindable (Blinded t) (Blinded u) = (if t = u then Some (Blinded u) else None)"

lemma merge_on_blindable [locale_witness]:
  assumes "merge_on A h bo m"
  shows "merge_on {x. set1_blindable\<^sub>m x \<subseteq> A} (hash_blindable h) (blinding_of_blindable h bo) merge_blindable"
  (is "merge_on ?A ?h ?bo ?m")
proof -
  interpret merge_on A h bo m by fact
  show ?thesis
  proof
    show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" if "?h a = ?h b" "a \<in> ?A" for a b
      using that by(cases "(a, b)" rule: merge_blindable.cases)(auto simp add: refl dest!: join)
    show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b 
      using that by(cases "(a, b)" rule: merge_blindable.cases)(auto simp add: dest!: undefined)
  qed
qed

lemmas merge_blindable [locale_witness] = 
  merge_on_blindable[of UNIV, simplified]

end

lemma merge_blindable_alt_def:
  "merge_blindable h m x y = (case (x, y) of
    (Unblinded x, Unblinded y) \<Rightarrow> map_option Unblinded (m x y)
  | (Blinded x, Unblinded y) \<Rightarrow> (if Content (h y) = x then Some (Unblinded y) else None)
  | (Unblinded y, Blinded x) \<Rightarrow> (if Content (h y) = x then Some (Unblinded y) else None)
  | (Blinded t, Blinded u) \<Rightarrow> (if t = u then Some (Blinded u) else None))"
  by(simp split: blindable\<^sub>m.split blindable\<^sub>h.split)

parametric_constant merge_blindable_parametric [transfer_rule]: merge_blindable_alt_def

lemma merge_blindable_cong [fundef_cong]:
  assumes "\<And>a b. \<lbrakk> a \<in> set1_blindable\<^sub>m x; b \<in> set1_blindable\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b"
  shows "merge_blindable h m x y = merge_blindable h m' x y"
  by(auto simp add: merge_blindable_alt_def split: blindable\<^sub>m.split intro: assms intro!: arg_cong[where f="map_option _"])

(************************************************************)
subsubsection \<open> Merkle interface \<close>
(************************************************************)

lemma merkle_blindable [locale_witness]:
  assumes "merkle_interface h bo m"
  shows "merkle_interface (hash_blindable h) (blinding_of_blindable h bo) (merge_blindable h m)"
proof -
  interpret merge_on UNIV h bo m using assms by(simp add: merkle_interface_aux)
  show ?thesis unfolding merkle_interface_aux ..
qed


(************************************************************)
subsubsection \<open> Non-recursive blindable positions \<close>
(************************************************************)

text \<open> For a non-recursive data type @{typ 'a}, the type of hashes in @{type blindable\<^sub>m} is fixed
to be simply @{typ "'a blindable\<^sub>h"}. We obtain this by instantiating the type variable with the
identity building block. \<close>

type_synonym 'a nr_blindable = "('a, 'a) blindable\<^sub>m"

abbreviation hash_nr_blindable :: "('a nr_blindable, 'a blindable\<^sub>h) hash" where
  "hash_nr_blindable \<equiv> hash_blindable hash_discrete"

abbreviation blinding_of_nr_blindable :: "'a nr_blindable blinding_of" where
  "blinding_of_nr_blindable \<equiv> blinding_of_blindable hash_discrete blinding_of_discrete"

abbreviation merge_nr_blindable :: "'a nr_blindable merge" where
  "merge_nr_blindable \<equiv> merge_blindable hash_discrete merge_discrete"

lemma merge_on_nr_blindable:
  "merge_on UNIV hash_nr_blindable blinding_of_nr_blindable merge_nr_blindable"
  ..

lemma merkle_nr_blindable:
  "merkle_interface hash_nr_blindable blinding_of_nr_blindable merge_nr_blindable"
  ..

(************************************************************)
subsection \<open> Building block: Sums \<close>
(************************************************************)

text \<open> We prove that we can lift the ADS construction through sums.\<close>

type_synonym ('a\<^sub>h, 'b\<^sub>h) sum\<^sub>h = "'a\<^sub>h + 'b\<^sub>h"
type_notation sum\<^sub>h (infixr "+\<^sub>h" 10)

type_synonym ('a\<^sub>m, 'b\<^sub>m) sum\<^sub>m = "'a\<^sub>m + 'b\<^sub>m"
  \<comment> \<open>If a functor does not introduce blindable positions, then we don't need the type variable copies.\<close>
type_notation sum\<^sub>m (infixr "+\<^sub>m" 10)

(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)

abbreviation (input) hash_sum' :: "('a\<^sub>h +\<^sub>h 'b\<^sub>h, 'a\<^sub>h +\<^sub>h 'b\<^sub>h) hash" where
  "hash_sum' \<equiv> id"

abbreviation (input) hash_sum :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a\<^sub>m +\<^sub>m 'b\<^sub>m, 'a\<^sub>h +\<^sub>h 'b\<^sub>h) hash"
  where "hash_sum \<equiv> map_sum"

(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)

abbreviation (input) blinding_of_sum :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m +\<^sub>m 'b\<^sub>m) blinding_of" where
  "blinding_of_sum \<equiv> rel_sum"

lemmas blinding_of_sum_mono = sum.rel_mono

lemma blinding_of_sum_hash:
  assumes "boa \<le> vimage2p rha rha (=)" "bob \<le> vimage2p rhb rhb (=)"
  shows "blinding_of_sum boa bob \<le> vimage2p (hash_sum rha rhb) (hash_sum rha rhb) (=)"
  using assms by(auto simp add: vimage2p_def elim!: rel_sum.cases)

lemma blinding_of_on_sum [locale_witness]:
  assumes "blinding_of_on A rha boa" "blinding_of_on B rhb bob"
  shows "blinding_of_on {x. setl x \<subseteq> A \<and> setr x \<subseteq> B} (hash_sum rha rhb) (blinding_of_sum boa bob)"
  (is "blinding_of_on ?A ?h ?bo")
proof -
  interpret a: blinding_of_on A rha boa by fact
  interpret b: blinding_of_on B rhb bob by fact
  show ?thesis
  proof
    show "?bo x x" if "x \<in> ?A" for x using that by(intro sum.rel_refl_strong)(auto intro: a.refl b.refl)
    show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z
      using that by(auto elim!: rel_sum.cases dest: a.trans b.trans)
    show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y 
      using that by(auto elim!: rel_sum.cases dest: a.antisym b.antisym)
  qed(rule blinding_of_sum_hash a.hash b.hash)+
qed

lemmas blinding_of_sum [locale_witness] = blinding_of_on_sum[of UNIV _ _ UNIV, simplified]

(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)

context
  fixes ma :: "'a\<^sub>m merge"
  fixes mb :: "'b\<^sub>m merge"
begin

fun merge_sum :: "('a\<^sub>m +\<^sub>m 'b\<^sub>m) merge" where
  "merge_sum (Inl x) (Inl y) = map_option Inl (ma x y)"
| "merge_sum (Inr x) (Inr y) = map_option Inr (mb x y)"
| "merge_sum _ _ = None"

lemma merge_on_sum [locale_witness]:
  assumes "merge_on A rha boa ma" "merge_on B rhb bob mb"
  shows "merge_on {x. setl x \<subseteq> A \<and> setr x \<subseteq> B} (hash_sum rha rhb) (blinding_of_sum boa bob) merge_sum"
  (is "merge_on ?A ?h ?bo ?m")
proof -
  interpret a: merge_on A rha boa ma by fact
  interpret b: merge_on B rhb bob mb by fact
  show ?thesis
  proof
    show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
      if "?h a = ?h b" "a \<in> ?A" for a b using that
      by(cases "(a, b)" rule: merge_sum.cases)(auto dest!: a.join b.join elim!: rel_sum.cases)
    show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
      by(cases "(a, b)" rule: merge_sum.cases)(auto dest!: a.undefined b.undefined)
  qed
qed

lemmas merge_sum [locale_witness] = merge_on_sum[where A=UNIV and B=UNIV, simplified]

lemma merge_sum_alt_def:
  "merge_sum x y = (case (x, y) of
    (Inl x, Inl y) \<Rightarrow> map_option Inl (ma x y)
  | (Inr x, Inr y) \<Rightarrow> map_option Inr (mb x y)
  | _ \<Rightarrow> None)"
  by(simp add: split: sum.split)

end

lemma merge_sum_cong[fundef_cong]:
  "\<lbrakk> x = x'; y = y'; 
    \<And>xl yl. \<lbrakk> x = Inl xl; y = Inl yl \<rbrakk> \<Longrightarrow> ma xl yl = ma' xl yl;
    \<And>xr yr. \<lbrakk> x = Inr xr; y = Inr yr \<rbrakk> \<Longrightarrow> mb xr yr = mb' xr yr \<rbrakk> \<Longrightarrow>
    merge_sum ma mb x y = merge_sum ma' mb' x' y'"
  by(cases x; simp_all; cases y; auto)

parametric_constant merge_sum_parametric [transfer_rule]: merge_sum_alt_def

subsubsection \<open> Merkle interface \<close>

lemma merkle_sum [locale_witness]:
  assumes "merkle_interface rha boa ma" "merkle_interface rhb bob mb"
  shows "merkle_interface (hash_sum rha rhb) (blinding_of_sum boa bob) (merge_sum ma mb)"
proof -
  interpret a: merge_on UNIV rha boa ma unfolding merkle_interface_aux[symmetric] by fact
  interpret b: merge_on UNIV rhb bob mb unfolding merkle_interface_aux[symmetric] by fact
  show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed

(************************************************************)
subsection \<open> Building Block: Products\<close>
(************************************************************)

text \<open> We prove that we can lift the ADS construction through products.\<close>

type_synonym ('a\<^sub>h, 'b\<^sub>h) prod\<^sub>h = "'a\<^sub>h \<times> 'b\<^sub>h"
type_notation prod\<^sub>h ("(_ \<times>\<^sub>h/ _)" [21, 20] 20)

type_synonym ('a\<^sub>m, 'b\<^sub>m) prod\<^sub>m = "'a\<^sub>m \<times> 'b\<^sub>m"
  \<comment> \<open>If a functor does not introduce blindable positions, then we don't need the type variable copies.\<close>
type_notation prod\<^sub>m ("(_ \<times>\<^sub>m/ _)" [21, 20] 20)

(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)

abbreviation (input) hash_prod' :: "('a\<^sub>h \<times>\<^sub>h 'b\<^sub>h, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h) hash" where
  "hash_prod' \<equiv> id"

abbreviation (input) hash_prod :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h) hash"
  where "hash_prod \<equiv> map_prod"

(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)

abbreviation (input) blinding_of_prod :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m) blinding_of" where
  "blinding_of_prod \<equiv> rel_prod"

lemmas blinding_of_prod_mono = prod.rel_mono

lemma blinding_of_prod_hash:
  assumes "boa \<le> vimage2p rha rha (=)" "bob \<le> vimage2p rhb rhb (=)"
  shows "blinding_of_prod boa bob \<le> vimage2p (hash_prod rha rhb) (hash_prod rha rhb) (=)"
  using assms by(auto simp add: vimage2p_def)

lemma blinding_of_on_prod [locale_witness]:
  assumes "blinding_of_on A rha boa" "blinding_of_on B rhb bob"
  shows "blinding_of_on {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B} (hash_prod rha rhb) (blinding_of_prod boa bob)"
  (is "blinding_of_on ?A ?h ?bo")
proof -
  interpret a: blinding_of_on A rha boa by fact
  interpret b: blinding_of_on B rhb bob by fact
  show ?thesis
  proof
    show "?bo x x" if "x \<in> ?A" for x using that by(cases x)(auto intro: a.refl b.refl)
    show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
      by(auto elim!: rel_prod.cases dest: a.trans b.trans)
    show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
      by(auto elim!: rel_prod.cases dest: a.antisym b.antisym)
  qed(rule blinding_of_prod_hash a.hash b.hash)+
qed

lemmas blinding_of_prod [locale_witness] = blinding_of_on_prod[where A=UNIV and B=UNIV, simplified]

(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)

context
  fixes ma :: "'a\<^sub>m merge"
  fixes mb :: "'b\<^sub>m merge"
begin

fun merge_prod :: "('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m) merge" where
  "merge_prod (x, y) (x', y') = Option.bind (ma x x') (\<lambda>x''. map_option (Pair x'') (mb y y'))"

lemma merge_on_prod [locale_witness]:
  assumes "merge_on A rha boa ma" "merge_on B rhb bob mb"
  shows "merge_on {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B} (hash_prod rha rhb) (blinding_of_prod boa bob) merge_prod"
  (is "merge_on ?A ?h ?bo ?m")
proof -
  interpret a: merge_on A rha boa ma by fact
  interpret b: merge_on B rhb bob mb by fact
  show ?thesis
  proof
    show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
      if "?h a = ?h b" "a \<in> ?A" for a b using that
      by(cases "(a, b)" rule: merge_prod.cases)(auto dest!: a.join b.join)
    show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
      by(cases "(a, b)" rule: merge_prod.cases)(auto dest!: a.undefined b.undefined)
  qed
qed

lemmas merge_prod [locale_witness] = merge_on_prod[where A=UNIV and B=UNIV, simplified]

lemma merge_prod_alt_def:
  "merge_prod = (\<lambda>(x, y) (x', y'). Option.bind (ma x x') (\<lambda>x''. map_option (Pair x'') (mb y y')))"
  by(simp add: fun_eq_iff)

end

lemma merge_prod_cong[fundef_cong]:
  assumes "\<And>a b. \<lbrakk> a \<in> fsts p1; b \<in> fsts p2 \<rbrakk> \<Longrightarrow> ma a b = ma' a b"
    and "\<And>a b. \<lbrakk> a \<in> snds p1; b \<in> snds p2 \<rbrakk> \<Longrightarrow> mb a b = mb' a b" 
  shows "merge_prod ma mb p1 p2 = merge_prod ma' mb' p1 p2"
  using assms by(cases p1; cases p2) auto

parametric_constant merge_prod_parametric [transfer_rule]: merge_prod_alt_def

(************************************************************)
subsubsection \<open> Merkle Interface \<close>
(************************************************************)

lemma merkle_product [locale_witness]:
  assumes "merkle_interface rha boa ma" "merkle_interface rhb bob mb"
  shows "merkle_interface (hash_prod rha rhb) (blinding_of_prod boa bob) (merge_prod ma mb)"
proof -
  interpret a: merge_on UNIV rha boa ma unfolding merkle_interface_aux[symmetric] by fact
  interpret b: merge_on UNIV rhb bob mb unfolding merkle_interface_aux[symmetric] by fact
  show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed


(************************************************************)
subsection \<open>Building Block: Lists\<close>
(************************************************************)

text \<open>The ADS construction on lists is done the easiest through a separate isomorphic datatype
  that has only a single constructor. We hide this construction in a locale. \<close>

locale list_R1 begin

type_synonym ('a, 'b) list_F = "unit + 'a \<times> 'b"

abbreviation (input) "set_base_F\<^sub>m \<equiv> \<lambda>x. setr x \<bind> fsts"
abbreviation (input) "set_rec_F\<^sub>m \<equiv> \<lambda>A. setr A \<bind> snds"
abbreviation (input) "map_F \<equiv> \<lambda>fb fr. map_sum id (map_prod fb fr)"

datatype 'a list_R1 = list_R1 (unR: "('a, 'a list_R1) list_F")

lemma list_R1_const_into_dest: "list_R1 F = l \<longleftrightarrow> F = unR l"
  by auto

declare list_R1.split[split]

lemma list_R1_induct[case_names list_R1]:
  assumes "\<And>F. \<lbrakk> \<And>l'. l' \<in> set_rec_F\<^sub>m F  \<Longrightarrow> P l' \<rbrakk> \<Longrightarrow> P (list_R1 F)"
  shows "P l"  
  apply(rule list_R1.induct)
  apply(auto intro!: assms)
  done

lemma set_list_R1_eq: 
  "{x. set_base_F\<^sub>m x \<subseteq> A \<and> set_rec_F\<^sub>m x \<subseteq> B} =
   {x. setl x \<subseteq> UNIV \<and> setr x \<subseteq> {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B}}"
  by(auto simp add: bind_UNION)

(************************************************************)
subsubsection \<open> The Isomorphism \<close>
(************************************************************)

primrec (transfer) list_R1_to_list :: "'a list_R1 \<Rightarrow> 'a list" where
  "list_R1_to_list (list_R1 l) = (case map_sum id (map_prod id list_R1_to_list) l of Inl () \<Rightarrow> [] | Inr (x, xs) \<Rightarrow> x # xs)"

lemma list_R1_to_list_simps [simp]:
  "list_R1_to_list (list_R1 (Inl ())) = []"
  "list_R1_to_list (list_R1 (Inr (x, xs))) = x # list_R1_to_list xs"
  by(simp_all split: unit.split)

declare list_R1_to_list.simps [simp del]

primrec (transfer) list_to_list_R1 :: "'a list \<Rightarrow> 'a list_R1" where
  "list_to_list_R1 [] = list_R1 (Inl ())"
| "list_to_list_R1 (x#xs) = list_R1 (Inr (x, list_to_list_R1 xs))"

lemma R1_of_list: "list_R1_to_list (list_to_list_R1 x) = x"
  by(induct x) (auto)

lemma list_of_R1: "list_to_list_R1 (list_R1_to_list x) = x"
  apply(induct x)
  subgoal for x
    by(cases x) (auto)
  done

lemma list_R1_def: "type_definition list_to_list_R1 list_R1_to_list UNIV"
  by(unfold_locales)(auto intro: R1_of_list list_of_R1)

setup_lifting list_R1_def

lemma map_list_R1_list_to_list_R1: "map_list_R1 f (list_to_list_R1 xs) = list_to_list_R1 (map f xs)"
  by(induction xs) auto

lemma list_R1_map_trans [transfer_rule]: includes lifting_syntax shows
  "(((=) ===> (=)) ===> pcr_list (=) ===> pcr_list (=)) map_list_R1 map"
  by(auto 4 3 simp add: list.pcr_cr_eq rel_fun_eq cr_list_def map_list_R1_list_to_list_R1)

lemma set_list_R1_list_to_list_R1: "set_list_R1 (list_to_list_R1 xs) = set xs"
  by(induction xs) auto

lemma list_R1_set_trans [transfer_rule]: includes lifting_syntax shows
  "(pcr_list (=) ===> (=)) set_list_R1 set"
  by(auto simp add: list.pcr_cr_eq cr_list_def set_list_R1_list_to_list_R1)

lemma rel_list_R1_list_to_list_R1:
   "rel_list_R1 R (list_to_list_R1 xs) (list_to_list_R1 ys) \<longleftrightarrow> list_all2 R xs ys"
  (is "?lhs \<longleftrightarrow> ?rhs")
proof
  define xs' and ys' where "xs' = list_to_list_R1 xs" and "ys' = list_to_list_R1 ys"
  assume "rel_list_R1 R xs' ys'"
  then have "list_all2 R (list_R1_to_list xs') (list_R1_to_list ys')"
    by induction(auto elim!: rel_sum.cases)
  thus ?rhs by(simp add: xs'_def ys'_def R1_of_list)
next
  show ?lhs if ?rhs using that by induction auto
qed

lemma list_R1_rel_trans[transfer_rule]: includes lifting_syntax shows
  "(((=) ===> (=) ===> (=)) ===> pcr_list (=) ===> pcr_list (=) ===> (=)) rel_list_R1 list_all2"
  by(auto 4 4 simp add: list.pcr_cr_eq rel_fun_eq cr_list_def rel_list_R1_list_to_list_R1)

(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)

type_synonym ('a\<^sub>h, 'b\<^sub>h) list_F\<^sub>h = "unit +\<^sub>h 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h"

type_synonym ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m = "unit +\<^sub>m 'a\<^sub>m \<times>\<^sub>m 'b\<^sub>m"

type_synonym 'a\<^sub>h list_R1\<^sub>h = "'a\<^sub>h list_R1" 
  \<comment> \<open>In theory, we should define a separate datatype here of the functor @{typ "('a\<^sub>h, _) list_F\<^sub>h"}.
    We take a shortcut because they're isomorphic.\<close>

type_synonym 'a\<^sub>m list_R1\<^sub>m = "'a\<^sub>m list_R1"
  \<comment> \<open>In theory, we should define a separate datatype here of the functor @{typ "('a\<^sub>m, _) list_F\<^sub>m"}.
    We take a shortcut because they're isomorphic.\<close>

definition hash_F :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) list_F\<^sub>h) hash" where 
  "hash_F h rhL = hash_sum hash_unit (hash_prod h rhL)"

abbreviation (input) hash_R1 :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('a\<^sub>m list_R1\<^sub>m, 'a\<^sub>h list_R1\<^sub>h) hash" where
  "hash_R1 \<equiv> map_list_R1"

parametric_constant hash_F_parametric[transfer_rule]: hash_F_def

(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)

definition blinding_of_F :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m blinding_of" where
  "blinding_of_F bo bL = blinding_of_sum blinding_of_unit (blinding_of_prod bo bL)"
 
abbreviation (input) blinding_of_R1 :: "'a blinding_of \<Rightarrow> 'a list_R1 blinding_of" where
  "blinding_of_R1 \<equiv> rel_list_R1"

lemma blinding_of_hash_R1:
  assumes "bo \<le> vimage2p h h (=)"
  shows "blinding_of_R1 bo \<le> vimage2p (hash_R1 h) (hash_R1 h) (=)"
  apply(rule predicate2I vimage2pI)+
  apply(auto simp add: predicate2D_vimage2p[OF assms] elim!: list_R1.rel_induct rel_sum.cases rel_prod.cases)
  done

lemma blinding_of_on_R1 [locale_witness]:
  assumes "blinding_of_on A h bo"
  shows "blinding_of_on {x. set_list_R1 x \<subseteq> A} (hash_R1 h) (blinding_of_R1 bo)"
  (is "blinding_of_on ?A ?h ?bo")
proof -
  interpret a: blinding_of_on A h bo by fact
  show ?thesis
  proof
    show hash: "?bo \<le> vimage2p ?h ?h (=)" using a.hash by(rule blinding_of_hash_R1)

    have "?bo x x \<and> (?bo x y \<longrightarrow> ?bo y z \<longrightarrow> ?bo x z) \<and> (?bo x y \<longrightarrow> ?bo y x \<longrightarrow> x = y)" if "x \<in> ?A" for x y z using that
    proof(induction x arbitrary: y z)
      case (list_R1 x y' z')
      from list_R1.prems have s1: "set_base_F\<^sub>m x \<subseteq> A" by(fastforce)
      from list_R1.prems have s3: "set_rec_F\<^sub>m x \<bind> set_list_R1 \<subseteq> A" by(fastforce intro: rev_bexI)
     
      interpret F: blinding_of_on "{y. set_base_F\<^sub>m y \<subseteq> A \<and> set_rec_F\<^sub>m y \<subseteq> set_rec_F\<^sub>m x}"
        "hash_F h (hash_R1 h)" "blinding_of_F bo (blinding_of_R1 bo)"
        unfolding hash_F_def blinding_of_F_def set_list_R1_eq
      proof
        let ?A' = "setr x \<bind> snds" and ?bo' = "rel_list_R1 bo"
        show "?bo' x x" if "x \<in> ?A'" for x using that list_R1 by(force simp add: eq_onp_def)
        show "?bo' x z" if "?bo' x y" "?bo' y z" "x \<in> ?A'" for x y z 
          using that list_R1.IH[of _ x y z] list_R1.prems
          by(force simp add: bind_UNION prod_set_defs)
        show "x = y" if "?bo' x y" "?bo' y x" "x \<in> ?A'" for x y
          using that list_R1.IH[of _ x y] list_R1.prems
          by(force simp add: prod_set_defs)
      qed(rule hash)
      show ?case using list_R1.prems
        apply(intro conjI)
        subgoal using F.refl[of x] s1 unfolding blinding_of_F_def by(auto intro: list_R1.rel_intros)
        subgoal using s1 by(auto elim!: list_R1.rel_cases F.trans[unfolded blinding_of_F_def] intro: list_R1.rel_intros)
        subgoal using s1 by(auto elim!: list_R1.rel_cases dest: F.antisym[unfolded blinding_of_F_def])
        done
    qed
    then show "x \<in> ?A \<Longrightarrow> ?bo x x" 
      and "\<lbrakk> ?bo x y; ?bo y z; x \<in> ?A \<rbrakk> \<Longrightarrow> ?bo x z"
      and "\<lbrakk> ?bo x y; ?bo y x; x \<in> ?A \<rbrakk> \<Longrightarrow> x = y"
      for x y z by blast+
  qed
qed

lemmas blinding_of_R1 [locale_witness] = blinding_of_on_R1[where A=UNIV, simplified]

parametric_constant blinding_of_F_parametric[transfer_rule]: blinding_of_F_def

(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)

definition merge_F :: "'a\<^sub>m merge \<Rightarrow> 'b\<^sub>m merge \<Rightarrow> ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m merge" where 
  "merge_F m mL = merge_sum merge_unit (merge_prod m mL)"

lemma merge_F_cong[fundef_cong]:
  assumes "\<And>a b. \<lbrakk> a \<in> set_base_F\<^sub>m x; b \<in> set_base_F\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b"
    and "\<And>a b. \<lbrakk> a \<in> set_rec_F\<^sub>m x; b \<in> set_rec_F\<^sub>m y \<rbrakk> \<Longrightarrow> mL a b = mL' a b"
  shows "merge_F m mL x y = merge_F m' mL' x y"
  using assms
  apply(cases x; cases y)
     apply(simp_all add: merge_F_def)
  apply(rule arg_cong[where f="map_option _"])
  apply(blast intro: merge_prod_cong)
  done

context
  fixes m :: "'a\<^sub>m merge" 
  notes setr.simps[simp]
begin
fun merge_R1 :: "'a\<^sub>m list_R1\<^sub>m merge" where
  "merge_R1 (list_R1 l1) (list_R1 l2) = map_option list_R1 (merge_F m merge_R1 l1 l2)"
end

case_of_simps merge_cases [simp]: merge_R1.simps

lemma merge_on_R1:
  assumes "merge_on A h bo m"
  shows "merge_on {x. set_list_R1 x \<subseteq> A } (hash_R1 h) (blinding_of_R1 bo) (merge_R1 m)"
  (is "merge_on ?A ?h ?bo ?m")
proof -
  interpret a: merge_on A h bo m by fact
  show ?thesis
  proof
    have "(?h a = ?h b \<longrightarrow> (\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u))) \<and>
      (?h a \<noteq> ?h b \<longrightarrow> ?m a b = None)"
      if "a \<in> ?A" for a b using that unfolding mem_Collect_eq
    proof(induction a arbitrary: b rule: list_R1_induct)
      case wfInd: (list_R1 l)
      interpret merge_on "{y. set_base_F\<^sub>m y \<subseteq> A \<and> set_rec_F\<^sub>m y \<subseteq> set_rec_F\<^sub>m l}"
        "hash_F h ?h" "blinding_of_F bo ?bo" "merge_F m ?m"
        unfolding set_list_R1_eq hash_F_def merge_F_def blinding_of_F_def
      proof
        fix a
        assume a: "a \<in> set_rec_F\<^sub>m l"
        with wfInd.prems have a': "set_list_R1 a \<subseteq> A"
          by fastforce

        show "hash_R1 h a = hash_R1 h b
           \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and>
                    (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
          and "?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None" for b      
          using wfInd.IH[OF a a', rule_format, of b]
          by(auto dest: sym)
      qed
      show ?case using wfInd.prems
        apply(intro conjI strip)
        subgoal
          by(auto 4 4 dest!: join[unfolded hash_F_def]
              simp add: blinding_of_F_def UN_subset_iff list_R1.rel_sel)
        subgoal by(auto 4 3 intro!: undefined[simplified hash_F_def])
        done
    qed
    then show
      "?h a = ?h b \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
      "?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None"
      if "a \<in> ?A" for a b using that by blast+
  qed
qed

lemmas merge_R1 [locale_witness] = merge_on_R1[where A=UNIV, simplified]

lemma merkle_list_R1 [locale_witness]:
  assumes "merkle_interface h bo m"
  shows "merkle_interface (hash_R1 h) (blinding_of_R1 bo) (merge_R1 m)"
proof -
  interpret merge_on UNIV h bo m using assms by(unfold merkle_interface_aux)
  show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed

lemma merge_R1_cong [fundef_cong]:
  assumes "\<And>a b. \<lbrakk> a \<in> set_list_R1 x; b \<in> set_list_R1 y \<rbrakk> \<Longrightarrow> m a b = m' a b"
  shows "merge_R1 m x y = merge_R1 m' x y"
  using assms
  apply(induction x y rule: merge_R1.induct)
  apply(simp del: merge_cases)
  apply(rule arg_cong[where f="map_option _"])
  apply(blast intro: merge_F_cong[unfolded bind_UNION])
  done

parametric_constant merge_F_parametric[transfer_rule]: merge_F_def

lemma merge_R1_parametric [transfer_rule]:
  includes lifting_syntax 
  notes [simp del] = merge_cases
  assumes [transfer_rule]: "bi_unique A"
  shows "((A ===> A ===> rel_option A) ===> rel_list_R1 A ===> rel_list_R1 A ===> rel_option (rel_list_R1 A))
   merge_R1 merge_R1"
  apply(intro rel_funI)
  subgoal premises prems [transfer_rule] for m1 m2 xs1 xs2 ys1 ys2 using prems(2, 3)
    apply(induction xs1 ys1 arbitrary: xs2 ys2 rule: merge_R1.induct)
    apply(elim list_R1.rel_cases rel_sum.cases; clarsimp simp add: option.rel_map merge_F_def merge_discrete_def)
    apply(elim meta_allE; (erule meta_impE, simp)+)
    subgoal premises [transfer_rule] by transfer_prover
    done
  done

end

subsubsection \<open> Transferring the Constructions to Lists \<close>
type_synonym 'a\<^sub>h list\<^sub>h = "'a\<^sub>h list"
type_synonym 'a\<^sub>m list\<^sub>m = "'a\<^sub>m list"

context begin
interpretation list_R1 .

abbreviation (input) hash_list :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('a\<^sub>m list\<^sub>m, 'a\<^sub>h list\<^sub>h) hash"
  where "hash_list \<equiv> map"
abbreviation (input) blinding_of_list :: "'a\<^sub>m blinding_of \<Rightarrow> 'a\<^sub>m list\<^sub>m blinding_of"
  where "blinding_of_list \<equiv> list_all2"
lift_definition merge_list :: "'a\<^sub>m merge \<Rightarrow> 'a\<^sub>m list\<^sub>m merge" is merge_R1 .

lemma blinding_of_list_mono:
  "\<lbrakk> \<And>x y. bo x y \<longrightarrow> bo' x y \<rbrakk> \<Longrightarrow> 
  blinding_of_list bo x y \<longrightarrow> blinding_of_list bo' x y"
  by (transfer) (blast intro: list_R1.rel_mono_strong)

lemmas blinding_of_list_hash = blinding_of_hash_R1[Transfer.transferred]
  and blinding_of_on_list [locale_witness] = blinding_of_on_R1[Transfer.transferred]
  and blinding_of_list [locale_witness] = blinding_of_R1[Transfer.transferred]
  and merge_on_list [locale_witness] = merge_on_R1[Transfer.transferred]
  and merge_list [locale_witness] = merge_R1[Transfer.transferred]
  and merge_list_cong = merge_R1_cong[Transfer.transferred]

lemma blinding_of_list_mono_pred:
  "R \<le> R' \<Longrightarrow> blinding_of_list R \<le> blinding_of_list R'"
  by(transfer) (rule list_R1.rel_mono)

lemma blinding_of_list_simp: "blinding_of_list = list_all2"
  by(transfer) (rule refl)

lemma merkle_list [locale_witness]:
  assumes [locale_witness]: "merkle_interface h bo m"
  shows "merkle_interface (hash_list h) (blinding_of_list bo) (merge_list m)"
  by(transfer fixing: h bo m) unfold_locales

parametric_constant merge_list_parametric [transfer_rule]: merge_list_def

lifting_update list.lifting
lifting_forget list.lifting

end


(************************************************************)
subsection \<open>Building block: function space\<close>
(************************************************************)

text \<open> We prove that we can lift the ADS construction through functions.\<close>

type_synonym ('a, 'b\<^sub>h) fun\<^sub>h = "'a \<Rightarrow> 'b\<^sub>h"
type_notation fun\<^sub>h (infixr "\<Rightarrow>\<^sub>h" 0)

type_synonym ('a, 'b\<^sub>m) fun\<^sub>m = "'a \<Rightarrow> 'b\<^sub>m"
type_notation fun\<^sub>m (infixr "\<Rightarrow>\<^sub>m" 0)

(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)

text \<open> Only the range is live, the domain is dead like for BNFs. \<close>

abbreviation (input) hash_fun' :: "('a \<Rightarrow>\<^sub>m 'b\<^sub>h, 'a \<Rightarrow>\<^sub>h 'b\<^sub>h) hash" where
  "hash_fun' \<equiv> id"

abbreviation (input) hash_fun :: "('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a \<Rightarrow>\<^sub>m 'b\<^sub>m, 'a \<Rightarrow>\<^sub>h 'b\<^sub>h) hash"
  where "hash_fun \<equiv> comp"

(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)

abbreviation (input) blinding_of_fun :: "'b\<^sub>m blinding_of \<Rightarrow> ('a \<Rightarrow>\<^sub>m 'b\<^sub>m) blinding_of" where
  "blinding_of_fun \<equiv> rel_fun (=)"

lemmas blinding_of_fun_mono = fun.rel_mono

lemma blinding_of_fun_hash:
  assumes "bo \<le> vimage2p rh rh (=)"
  shows "blinding_of_fun bo \<le> vimage2p (hash_fun rh) (hash_fun rh) (=)"
  using assms by(auto simp add: vimage2p_def rel_fun_def le_fun_def)

lemma blinding_of_on_fun [locale_witness]:
  assumes "blinding_of_on A rh bo"
  shows "blinding_of_on {x. range x \<subseteq> A} (hash_fun rh) (blinding_of_fun bo)"
  (is "blinding_of_on ?A ?h ?bo")
proof -
  interpret a: blinding_of_on A rh bo by fact
  show ?thesis
  proof
    show "?bo x x" if "x \<in> ?A" for x using that by(auto simp add: rel_fun_def intro: a.refl)
    show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
      by(auto 4 3 simp add: rel_fun_def intro: a.trans)
    show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
      by(fastforce simp add: fun_eq_iff rel_fun_def intro: a.antisym)
  qed(rule blinding_of_fun_hash a.hash)+
qed

lemmas blinding_of_fun [locale_witness] = blinding_of_on_fun[where A=UNIV, simplified]

(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)

context
  fixes m :: "'b\<^sub>m merge"
begin

definition merge_fun :: "('a \<Rightarrow>\<^sub>m 'b\<^sub>m) merge" where
  "merge_fun f g = (if \<forall>x. m (f x) (g x) \<noteq> None then Some (\<lambda>x. the (m (f x) (g x))) else None)"

lemma merge_on_fun [locale_witness]:
  assumes "merge_on A rh bo m"
  shows "merge_on {x. range x \<subseteq> A} (hash_fun rh) (blinding_of_fun bo) merge_fun"
  (is "merge_on ?A ?h ?bo ?m")
proof -
  interpret a: merge_on A rh bo m by fact
  show ?thesis
  proof
    show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
      if "?h a = ?h b" "a \<in> ?A" for a b 
      using that(1)[THEN fun_cong, unfolded o_apply, THEN a.join, OF that(2)[unfolded mem_Collect_eq, THEN subsetD, OF rangeI]]
      by atomize(subst (asm) choice_iff; auto simp add: merge_fun_def rel_fun_def)
    show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
      by(auto simp add: merge_fun_def fun_eq_iff dest: a.undefined)
  qed
qed

lemmas merge_fun [locale_witness] = merge_on_fun[where A=UNIV, simplified]

end

lemma merge_fun_cong[fundef_cong]:
  assumes "\<And>a b. \<lbrakk> a \<in> range f; b \<in> range g \<rbrakk> \<Longrightarrow> m a b = m' a b"
  shows "merge_fun m f g = merge_fun m' f g"
  using assms[OF rangeI rangeI] by(clarsimp simp add: merge_fun_def)

lemma is_none_alt_def: "Option.is_none x \<longleftrightarrow> (case x of None \<Rightarrow> True | Some _ \<Rightarrow> False)"
  by(auto simp add: Option.is_none_def split: option.splits)

parametric_constant is_none_parametric [transfer_rule]: is_none_alt_def

lemma merge_fun_parametric [transfer_rule]: includes lifting_syntax shows
  "((A ===> B ===> rel_option C) ===> ((=) ===> A) ===> ((=) ===> B) ===> rel_option ((=) ===> C))
   merge_fun merge_fun"
proof(intro rel_funI)
  fix m :: "'a merge" and m' :: "'b merge" and f :: "'c \<Rightarrow> 'a" and f' :: "'c \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'a" and g' :: "'c \<Rightarrow> 'b"
  assume m: "(A ===> B ===> rel_option C) m m'"
    and f: "((=) ===> A) f f'" and g: "((=) ===> B) g g'"
  note [transfer_rule] = this
  have cond [unfolded Option.is_none_def]: "(\<forall>x. \<not> Option.is_none (m (f x) (g x))) \<longleftrightarrow> (\<forall>x. \<not> Option.is_none (m' (f' x) (g' x)))" 
    by transfer_prover
  moreover 
  have "((=) ===> C) (\<lambda>x. the (m (f x) (g x))) (\<lambda>x. the (m' (f' x) (g' x)))" if *: "\<forall>x. \<not> m (f x) (g x) = None"
  proof -
    obtain fg fg' where m: "m (f x) (g x) = Some (fg x)" and m': "m' (f' x) (g' x) = Some (fg' x)" for x
      using * *[simplified cond]
      by(simp)(subst (asm) (1 2) choice_iff; clarsimp)
    have "rel_option C (Some (fg x)) (Some (fg' x))" for x unfolding m[symmetric] m'[symmetric] by transfer_prover
    then show ?thesis by(simp add: rel_fun_def m m')
  qed
  ultimately show "rel_option ((=) ===> C) (merge_fun m f g) (merge_fun m' f' g')"
    unfolding merge_fun_def by(simp)
qed

(************************************************************)
subsubsection \<open> Merkle Interface \<close>
(************************************************************)

lemma merkle_fun [locale_witness]:
  assumes "merkle_interface rh bo m"
  shows "merkle_interface (hash_fun rh) (blinding_of_fun bo) (merge_fun m)"
proof -
  interpret a: merge_on UNIV rh bo m unfolding merkle_interface_aux[symmetric] by fact
  show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed

(************************************************************)
subsection \<open>Rose trees\<close>
(************************************************************)

text \<open> 
We now define an ADS over rose trees, which is like a arbitrarily branching Merkle tree where each
node in the tree can be blinded, including the root. The number of children and the position of a
child among its siblings cannot be hidden. The construction allows to plug in further blindable
positions in the labels of the nodes.
\<close>

type_synonym ('a, 'b) rose_tree_F = "'a \<times> 'b list"

abbreviation (input) map_rose_tree_F where
  "map_rose_tree_F f1 f2 \<equiv> map_prod f1 (map f2)"
definition map_rose_tree_F_const where
  "map_rose_tree_F_const f1 f2 \<equiv> map_rose_tree_F f1 f2"

datatype 'a rose_tree = Tree "('a, 'a rose_tree) rose_tree_F"

type_synonym ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h = "('a\<^sub>h \<times>\<^sub>h 'b\<^sub>h list\<^sub>h) blindable\<^sub>h"

datatype 'a\<^sub>h rose_tree\<^sub>h = Tree\<^sub>h "('a\<^sub>h, 'a\<^sub>h rose_tree\<^sub>h) rose_tree_F\<^sub>h"

type_synonym ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m = "('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m list\<^sub>m, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h list\<^sub>h) blindable\<^sub>m"

datatype ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m = Tree\<^sub>m "('a\<^sub>m, 'a\<^sub>h, ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) rose_tree_F\<^sub>m"

abbreviation (input) map_rose_tree_F\<^sub>m
  :: "('ma \<Rightarrow> 'a) \<Rightarrow> ('mr \<Rightarrow> 'r) \<Rightarrow> ('ma, 'ha, 'mr, 'hr) rose_tree_F\<^sub>m \<Rightarrow> ('a, 'ha, 'r, 'hr) rose_tree_F\<^sub>m"
  where
  "map_rose_tree_F\<^sub>m f g \<equiv> map_blindable\<^sub>m (map_prod f (map g)) id"

(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)

abbreviation (input) hash_rt_F' 
  :: "(('a\<^sub>h, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h) hash"
  where
  "hash_rt_F' \<equiv> hash_blindable id"

definition hash_rt_F\<^sub>m
  :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 
    (('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h) hash" where
  "hash_rt_F\<^sub>m h rhm \<equiv> hash_rt_F' o map_rose_tree_F\<^sub>m h rhm"

lemma hash_rt_F\<^sub>m_alt_def: "hash_rt_F\<^sub>m h rhm = hash_blindable (map_prod h (map rhm))"
  by(simp add: hash_rt_F\<^sub>m_def fun_eq_iff hash_map_blindable_simp)

primrec (transfer) hash_rt_tree'
  :: "(('a\<^sub>h, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) hash" where
  "hash_rt_tree' (Tree\<^sub>m x) = Tree\<^sub>h (hash_rt_F' (map_rose_tree_F\<^sub>m id hash_rt_tree' x))"

definition hash_tree
  :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) hash" where
  "hash_tree h = hash_rt_tree' o map_rose_tree\<^sub>m h id"

lemma blindable\<^sub>m_map_compositionality:
  "map_blindable\<^sub>m f g o map_blindable\<^sub>m f' g' = map_blindable\<^sub>m (f o f') (g o g')"
  by(rule ext) (simp add: blindable\<^sub>m.map_comp)

lemma hash_tree_simps [simp]:
  "hash_tree h (Tree\<^sub>m x) = Tree\<^sub>h (hash_rt_F\<^sub>m h (hash_tree h) x)"
  by(simp add: hash_tree_def hash_rt_F\<^sub>m_def 
      map_prod.comp map_sum.comp rose_tree\<^sub>h.map_comp blindable\<^sub>m.map_comp
      prod.map_id0 rose_tree\<^sub>h.map_id0)

parametric_constant hash_rt_F\<^sub>m_parametric [transfer_rule]: hash_rt_F\<^sub>m_alt_def

parametric_constant hash_tree_parametric [transfer_rule]: hash_tree_def

(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)

abbreviation (input) blinding_of_rt_F\<^sub>m
  :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m blinding_of \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m blinding_of
      \<Rightarrow> ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m blinding_of" where
  "blinding_of_rt_F\<^sub>m ha boa hb bob \<equiv> blinding_of_blindable (hash_prod ha (map hb))
    (blinding_of_prod boa (blinding_of_list bob))"

lemma blinding_of_rt_F\<^sub>m_mono:
  "\<lbrakk> boa \<le> boa'; bob \<le> bob' \<rbrakk> \<Longrightarrow> blinding_of_rt_F\<^sub>m ha boa hb bob \<le> blinding_of_rt_F\<^sub>m ha boa' hb bob'"
  by(intro blinding_of_blindable_mono prod.rel_mono list.rel_mono)

lemma blinding_of_rt_F\<^sub>m_mono_inductive:
  assumes "\<And>x y. boa x y \<longrightarrow> boa' x y" "\<And>x y. bob x y \<longrightarrow> bob' x y"
  shows "blinding_of_rt_F\<^sub>m ha boa hb bob x y \<longrightarrow> blinding_of_rt_F\<^sub>m ha boa' hb bob' x y"
  apply(rule impI)
  apply(erule blinding_of_rt_F\<^sub>m_mono[THEN predicate2D, rotated -1])
  using assms by blast+

context
  fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash" 
    and bo :: "'a\<^sub>m blinding_of"
begin

inductive blinding_of_tree :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m blinding_of" where
  "blinding_of_tree (Tree\<^sub>m t1) (Tree\<^sub>m t2)" 
  if "blinding_of_rt_F\<^sub>m h bo (hash_tree h) blinding_of_tree t1 t2"
monos blinding_of_rt_F\<^sub>m_mono_inductive

end

inductive_simps blinding_of_tree_simps [simp]:
  "blinding_of_tree h bo (Tree\<^sub>m t1) (Tree\<^sub>m t2)"

lemma blinding_of_rt_F\<^sub>m_hash:
  assumes "boa \<le> vimage2p ha ha (=)" "bob \<le> vimage2p hb hb (=)"
  shows "blinding_of_rt_F\<^sub>m ha boa hb bob \<le> vimage2p (hash_rt_F\<^sub>m ha hb) (hash_rt_F\<^sub>m ha hb) (=)"
  apply(rule order_trans)
   apply(rule blinding_of_blindable_hash)
   apply(fold relator_eq)
   apply(unfold vimage2p_map_rel_prod vimage2p_map_list_all2)
   apply(rule prod.rel_mono assms list.rel_mono)+
  apply(simp only: hash_rt_F\<^sub>m_def vimage2p_comp o_apply hash_blindable_def blindable\<^sub>m.map_id0 id_def[symmetric] vimage2p_id id_apply)
  done

lemma blinding_of_tree_hash:
  assumes "bo \<le> vimage2p h h (=)"
  shows "blinding_of_tree h bo \<le> vimage2p (hash_tree h) (hash_tree h) (=)"
  apply(rule predicate2I vimage2pI)+
  apply(erule blinding_of_tree.induct)
  apply(simp)
  apply(erule blinding_of_rt_F\<^sub>m_hash[OF assms, THEN predicate2D_vimage2p, rotated 1])
  apply(blast intro: vimage2pI)
  done

abbreviation (input) set1_rt_F\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>m) rose_tree_F\<^sub>m \<Rightarrow> 'a\<^sub>m set" where
  "set1_rt_F\<^sub>m x \<equiv> set1_blindable\<^sub>m x \<bind> fsts"

abbreviation (input) set3_rt_F\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m \<Rightarrow> 'b\<^sub>m set" where 
  "set3_rt_F\<^sub>m x \<equiv> (set1_blindable\<^sub>m x \<bind> snds) \<bind> set"

lemma set_rt_F\<^sub>m_eq: 
  "{x. set1_rt_F\<^sub>m x \<subseteq> A \<and> set3_rt_F\<^sub>m x \<subseteq> B} = 
   {x. set1_blindable\<^sub>m x \<subseteq> {x. fsts x \<subseteq> A \<and> snds x \<subseteq> {x. set x \<subseteq> B}}}"
  by force

lemma hash_blindable_map: "hash_blindable f \<circ> map_blindable\<^sub>m g id = hash_blindable (f \<circ> g)" 
  by(rule ext) (simp add: hash_blindable_def blindable\<^sub>m.map_comp)

lemma blinding_of_on_tree [locale_witness]:
  assumes "blinding_of_on A h bo"
  shows "blinding_of_on {x. set1_rose_tree\<^sub>m x \<subseteq> A} (hash_tree h) (blinding_of_tree h bo)"
  (is "blinding_of_on ?A ?h ?bo")
proof -
  interpret a: blinding_of_on A h bo by fact
  show ?thesis
  proof
    show "?bo \<le> vimage2p ?h ?h (=)" using a.hash by(rule blinding_of_tree_hash)
    have "?bo x x \<and> (?bo x y \<longrightarrow> ?bo y z \<longrightarrow> ?bo x z) \<and> (?bo x y \<longrightarrow> ?bo y x \<longrightarrow> x = y)" if "x \<in> ?A" for x y z using that
    proof(induction x arbitrary: y z)
      case (Tree\<^sub>m x)
      have [locale_witness]: "blinding_of_on (set3_rt_F\<^sub>m x) (hash_tree h) (blinding_of_tree h bo)"
        apply unfold_locales
        subgoal by(rule blinding_of_tree_hash)(rule a.hash)
        subgoal using Tree\<^sub>m.IH Tree\<^sub>m.prems by(fastforce simp add: eq_onp_def)
        subgoal for x y z using Tree\<^sub>m.IH[of _ _ x y z] Tree\<^sub>m.prems by fastforce
        subgoal for x y using Tree\<^sub>m.IH[of _ _ x y] Tree\<^sub>m.prems by fastforce
        done
      interpret blinding_of_on
        "{a. set1_rt_F\<^sub>m a \<subseteq> A \<and> set3_rt_F\<^sub>m a \<subseteq> set3_rt_F\<^sub>m x}"
        "hash_rt_F\<^sub>m h ?h" "blinding_of_rt_F\<^sub>m h bo ?h ?bo" 
        unfolding set_rt_F\<^sub>m_eq hash_rt_F\<^sub>m_alt_def ..
      from Tree\<^sub>m.prems show ?case
        apply(intro conjI)
        subgoal by(fastforce intro!: blinding_of_tree.intros refl[unfolded hash_rt_F\<^sub>m_alt_def])
        subgoal by(fastforce elim!: blinding_of_tree.cases trans[unfolded hash_rt_F\<^sub>m_alt_def] 
                    intro!: blinding_of_tree.intros)
        subgoal by(fastforce elim!: blinding_of_tree.cases antisym[unfolded hash_rt_F\<^sub>m_alt_def])
        done
    qed
    then show "x \<in> ?A \<Longrightarrow> ?bo x x"
      and "\<lbrakk> ?bo x y; ?bo y z; x \<in> ?A \<rbrakk> \<Longrightarrow> ?bo x z"
      and "\<lbrakk> ?bo x y; ?bo y x; x \<in> ?A \<rbrakk> \<Longrightarrow> x = y"
      for x y z by blast+
  qed
qed

lemmas blinding_of_tree [locale_witness] = blinding_of_on_tree[where A=UNIV, simplified]

lemma blinding_of_tree_mono:
  "bo \<le> bo' \<Longrightarrow> blinding_of_tree h bo \<le> blinding_of_tree h bo'"
  apply(rule predicate2I)
  apply(erule blinding_of_tree.induct)
  apply(rule blinding_of_tree.intros)
  apply(erule blinding_of_rt_F\<^sub>m_mono[THEN predicate2D, rotated -1])
  apply(blast)+
  done

(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)

definition merge_rt_F\<^sub>m 
  :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m merge \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m merge \<Rightarrow>
      ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m merge"
  where
  "merge_rt_F\<^sub>m ha ma hr mr \<equiv> merge_blindable (hash_prod ha (hash_list hr)) (merge_prod ma (merge_list mr))"

lemma merge_rt_F\<^sub>m_cong [fundef_cong]:
  assumes "\<And>a b. \<lbrakk> a \<in> set1_rt_F\<^sub>m x; b \<in> set1_rt_F\<^sub>m y \<rbrakk> \<Longrightarrow> ma a b = ma' a b"
    and "\<And>a b. \<lbrakk> a \<in> set3_rt_F\<^sub>m x; b \<in> set3_rt_F\<^sub>m y \<rbrakk> \<Longrightarrow> mm a b = mm' a b"
  shows "merge_rt_F\<^sub>m ha ma hm mm x y = merge_rt_F\<^sub>m ha ma' hm mm' x y"
  using assms
  apply(cases x; cases y; simp add: merge_rt_F\<^sub>m_def bind_UNION)
  apply(rule arg_cong[where f="map_option _"])
  apply(blast intro: merge_prod_cong merge_list_cong)
  done

lemma in_set1_blindable\<^sub>m_iff: "x \<in> set1_blindable\<^sub>m y \<longleftrightarrow> y = Unblinded x"
  by(cases y) auto

context 
  fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
    and ma :: "'a\<^sub>m merge"
  notes in_set1_blindable\<^sub>m_iff[simp]
begin
fun merge_tree :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m merge" where
  "merge_tree (Tree\<^sub>m x) (Tree\<^sub>m y) = map_option Tree\<^sub>m (
    merge_rt_F\<^sub>m h ma (hash_tree h) merge_tree x y)"
end

lemma merge_on_tree [locale_witness]:
  assumes "merge_on A h bo m"
  shows "merge_on {x. set1_rose_tree\<^sub>m x \<subseteq> A} (hash_tree h) (blinding_of_tree h bo) (merge_tree h m)"
  (is "merge_on ?A ?h ?bo ?m")
proof -
  interpret a: merge_on A h bo m by fact
  show ?thesis 
  proof
    have "(?h a = ?h b \<longrightarrow> (\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u))) \<and>
      (?h a \<noteq> ?h b \<longrightarrow> ?m a b = None)"
      if "a \<in> ?A" for a b using that unfolding mem_Collect_eq
    proof(induction a arbitrary: b rule: rose_tree\<^sub>m.induct)
      case (Tree\<^sub>m x y)
      interpret merge_on 
        "{y. set1_rt_F\<^sub>m y \<subseteq> A \<and> set3_rt_F\<^sub>m y \<subseteq> set3_rt_F\<^sub>m x}"
        "hash_rt_F\<^sub>m h ?h"
        "blinding_of_rt_F\<^sub>m h bo ?h ?bo"
        "merge_rt_F\<^sub>m h m ?h ?m"
        unfolding set_rt_F\<^sub>m_eq hash_rt_F\<^sub>m_alt_def merge_rt_F\<^sub>m_def
      proof
        fix a
        assume a: "a \<in> set3_rt_F\<^sub>m x"
        with Tree\<^sub>m.prems have a': "set1_rose_tree\<^sub>m a \<subseteq> A"
          by(force simp add: bind_UNION)

        from a obtain l and ab where a'': "ab \<in> set1_blindable\<^sub>m x" "l \<in> snds ab" "a \<in> set l" 
          by(clarsimp simp add: bind_UNION)

        fix b
        from Tree\<^sub>m.IH[OF a'' a', rule_format, of b]
        show "hash_tree h a = hash_tree h b
           \<Longrightarrow> \<exists>ab. merge_tree h m a b = Some ab \<and> blinding_of_tree h bo a ab \<and> blinding_of_tree h bo b ab \<and>
                    (\<forall>u. blinding_of_tree h bo a u \<longrightarrow> blinding_of_tree h bo b u \<longrightarrow> blinding_of_tree h bo ab u)"
          and "hash_tree h a \<noteq> hash_tree h b \<Longrightarrow> merge_tree h m a b = None"
          by(auto dest: sym)
      qed
      show ?case using Tree\<^sub>m.prems
        apply(intro conjI strip)
        subgoal by(cases y)(fastforce dest!: join simp add: blinding_of_tree.simps)
        subgoal by (cases y) (fastforce dest!: undefined)
        done
    qed
    then show
      "?h a = ?h b \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
      "?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None"
      if "a \<in> ?A" for a b using that by blast+
  qed
qed

lemmas merge_tree [locale_witness] = merge_on_tree[where A=UNIV, simplified]

lemma option_bind_comm:
 "((x :: 'a option) \<bind> (\<lambda>y. c \<bind> (\<lambda>z. f y z))) = (c \<bind> (\<lambda>y. x \<bind> (\<lambda>z. f z y)))"
  by(cases x; cases c; auto)

parametric_constant merge_rt_F\<^sub>m_parametric [transfer_rule]: merge_rt_F\<^sub>m_def

(************************************************************) 
subsubsection \<open>Merkle interface\<close>
(************************************************************)

lemma merkle_tree [locale_witness]:
  assumes "merkle_interface h bo m"
  shows "merkle_interface (hash_tree h) (blinding_of_tree h bo) (merge_tree h m)"
proof -
  interpret merge_on UNIV h bo m using assms unfolding merkle_interface_aux .
  show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed

lemma merge_tree_cong [fundef_cong]:
  assumes "\<And>a b. \<lbrakk> a \<in> set1_rose_tree\<^sub>m x; b \<in> set1_rose_tree\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b"
  shows "merge_tree h m x y = merge_tree h m' x y"
  using assms
  apply(induction x y rule: merge_tree.induct)
  apply(simp add: bind_UNION)
  apply(rule arg_cong[where f="map_option _"])
  apply(rule merge_rt_F\<^sub>m_cong; simp add: bind_UNION; blast)
  done

end