Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 59,427 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 |
(* Author: Andreas Lochbihler, Digital Asset
Author: Ognjen Maric, Digital Asset *)
theory ADS_Construction imports
Merkle_Interface
"HOL-Library.Simps_Case_Conv"
begin
(************************************************************)
section \<open> Building blocks for authenticated data structures on datatypes \<close>
(************************************************************)
(************************************************************)
subsection \<open> Building Block: Identity Functor \<close>
(************************************************************)
text \<open>If nothing is blindable in a type, then the type itself is the hash and the ADS of itself.\<close>
abbreviation (input) hash_discrete :: "('a, 'a) hash" where "hash_discrete \<equiv> id"
abbreviation (input) blinding_of_discrete :: "'a blinding_of" where
"blinding_of_discrete \<equiv> (=)"
definition merge_discrete :: "'a merge" where
"merge_discrete x y = (if x = y then Some y else None)"
lemma blinding_of_discrete_hash:
"blinding_of_discrete \<le> vimage2p hash_discrete hash_discrete (=)"
by(auto simp add: vimage2p_def)
lemma blinding_of_on_discrete [locale_witness]:
"blinding_of_on UNIV hash_discrete blinding_of_discrete"
by(unfold_locales)(simp_all add: OO_eq eq_onp_def blinding_of_discrete_hash)
lemma merge_on_discrete [locale_witness]:
"merge_on UNIV hash_discrete blinding_of_discrete merge_discrete"
by unfold_locales(auto simp add: merge_discrete_def)
lemma merkle_discrete [locale_witness]:
"merkle_interface hash_discrete blinding_of_discrete merge_discrete"
..
parametric_constant merge_discrete_parametric [transfer_rule]: merge_discrete_def
(************************************************************)
subsubsection \<open>Example: instantiation for @{typ unit}\<close>
(************************************************************)
abbreviation (input) hash_unit :: "(unit, unit) hash" where "hash_unit \<equiv> hash_discrete"
abbreviation blinding_of_unit :: "unit blinding_of" where
"blinding_of_unit \<equiv> blinding_of_discrete"
abbreviation merge_unit :: "unit merge" where "merge_unit \<equiv> merge_discrete"
lemma blinding_of_unit_hash:
"blinding_of_unit \<le> vimage2p hash_unit hash_unit (=)"
by(fact blinding_of_discrete_hash)
lemma blinding_of_on_unit:
"blinding_of_on UNIV hash_unit blinding_of_unit"
by(fact blinding_of_on_discrete)
lemma merge_on_unit:
"merge_on UNIV hash_unit blinding_of_unit merge_unit"
by(fact merge_on_discrete)
lemma merkle_interface_unit:
"merkle_interface hash_unit blinding_of_unit merge_unit"
by(intro merkle_interfaceI merge_on_unit)
(************************************************************)
subsection \<open> Building Block: Blindable Position \<close>
(************************************************************)
type_synonym 'a blindable = 'a
text \<open> The following type represents the hashes of a datatype. We model hashes as being injective,
but not surjective; some hashes do not correspond to any values of the original datatypes. We
model such values as "garbage" coming from a countable set (here, naturals). \<close>
type_synonym garbage = nat
datatype 'a\<^sub>h blindable\<^sub>h = Content 'a\<^sub>h | Garbage garbage
datatype ('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m = Unblinded 'a\<^sub>m | Blinded "'a\<^sub>h blindable\<^sub>h"
(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)
primrec hash_blindable' :: "(('a\<^sub>h, 'a\<^sub>h) blindable\<^sub>m, 'a\<^sub>h blindable\<^sub>h) hash" where
"hash_blindable' (Unblinded x) = Content x"
| "hash_blindable' (Blinded x) = x"
definition hash_blindable :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m, 'a\<^sub>h blindable\<^sub>h) hash" where
"hash_blindable h = hash_blindable' \<circ> map_blindable\<^sub>m h id"
lemma hash_blindable_simps [simp]:
"hash_blindable h (Unblinded x) = Content (h x)"
"hash_blindable h (Blinded y) = y"
by(simp_all add: hash_blindable_def blindable\<^sub>h.map_id)
lemma hash_map_blindable_simp:
"hash_blindable f (map_blindable\<^sub>m f' id x) = hash_blindable (f o f') x"
by(cases x) (simp_all add: hash_blindable_def blindable\<^sub>h.map_comp)
parametric_constant hash_blindable'_parametric [transfer_rule]: hash_blindable'_def
parametric_constant hash_blindable_parametric [transfer_rule]: hash_blindable_def
(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)
context
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
and bo :: "'a\<^sub>m blinding_of"
begin
inductive blinding_of_blindable :: "('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m blinding_of" where
"blinding_of_blindable (Unblinded x) (Unblinded y)" if "bo x y"
| "blinding_of_blindable (Blinded x) t" if "hash_blindable h t = x"
inductive_simps blinding_of_blindable_simps [simp]:
"blinding_of_blindable (Unblinded x) y"
"blinding_of_blindable (Blinded x) y"
"blinding_of_blindable z (Unblinded x)"
"blinding_of_blindable z (Blinded x)"
inductive_simps blinding_of_blindable_simps2:
"blinding_of_blindable (Unblinded x) (Unblinded y)"
"blinding_of_blindable (Unblinded x) (Blinded y')"
"blinding_of_blindable (Blinded x') (Unblinded y)"
"blinding_of_blindable (Blinded x') (Blinded y')"
end
lemma blinding_of_blindable_mono:
assumes "bo \<le> bo'"
shows "blinding_of_blindable h bo \<le> blinding_of_blindable h bo'"
apply(rule predicate2I)
apply(erule blinding_of_blindable.cases; hypsubst)
subgoal by(rule blinding_of_blindable.intros)(rule assms[THEN predicate2D])
subgoal by(rule blinding_of_blindable.intros) simp
done
lemma blinding_of_blindable_hash:
assumes "bo \<le> vimage2p h h (=)"
shows "blinding_of_blindable h bo \<le> vimage2p (hash_blindable h) (hash_blindable h) (=)"
apply(rule predicate2I vimage2pI)+
apply(erule blinding_of_blindable.cases; hypsubst)
subgoal using assms[THEN predicate2D] by(simp add: vimage2p_def)
subgoal by simp
done
lemma blinding_of_on_blindable [locale_witness]:
assumes "blinding_of_on A h bo"
shows "blinding_of_on {x. set1_blindable\<^sub>m x \<subseteq> A} (hash_blindable h) (blinding_of_blindable h bo)"
(is "blinding_of_on ?A ?h ?bo")
proof -
interpret blinding_of_on A h bo by fact
show ?thesis
proof
show "?bo \<le> vimage2p ?h ?h (=)"
by(rule blinding_of_blindable_hash)(rule hash)
show "?bo x x" if "x \<in> ?A" for x using that by(cases x)(auto simp add: refl)
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
by(auto elim!: blinding_of_blindable.cases dest: trans blinding_hash_eq)
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
by(auto elim!: blinding_of_blindable.cases dest: antisym)
qed
qed
lemmas blinding_of_blindable [locale_witness] = blinding_of_on_blindable[of UNIV, simplified]
case_of_simps blinding_of_blindable_alt_def: blinding_of_blindable_simps2
parametric_constant blinding_of_blindable_parametric [transfer_rule]: blinding_of_blindable_alt_def
(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)
context
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
fixes m :: "'a\<^sub>m merge"
begin
fun merge_blindable :: "('a\<^sub>m, 'a\<^sub>h) blindable\<^sub>m merge" where
"merge_blindable (Unblinded x) (Unblinded y) = map_option Unblinded (m x y)"
| "merge_blindable (Blinded x) (Unblinded y) = (if x = Content (h y) then Some (Unblinded y) else None)"
| "merge_blindable (Unblinded y) (Blinded x) = (if x = Content (h y) then Some (Unblinded y) else None)"
| "merge_blindable (Blinded t) (Blinded u) = (if t = u then Some (Blinded u) else None)"
lemma merge_on_blindable [locale_witness]:
assumes "merge_on A h bo m"
shows "merge_on {x. set1_blindable\<^sub>m x \<subseteq> A} (hash_blindable h) (blinding_of_blindable h bo) merge_blindable"
(is "merge_on ?A ?h ?bo ?m")
proof -
interpret merge_on A h bo m by fact
show ?thesis
proof
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)" if "?h a = ?h b" "a \<in> ?A" for a b
using that by(cases "(a, b)" rule: merge_blindable.cases)(auto simp add: refl dest!: join)
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b
using that by(cases "(a, b)" rule: merge_blindable.cases)(auto simp add: dest!: undefined)
qed
qed
lemmas merge_blindable [locale_witness] =
merge_on_blindable[of UNIV, simplified]
end
lemma merge_blindable_alt_def:
"merge_blindable h m x y = (case (x, y) of
(Unblinded x, Unblinded y) \<Rightarrow> map_option Unblinded (m x y)
| (Blinded x, Unblinded y) \<Rightarrow> (if Content (h y) = x then Some (Unblinded y) else None)
| (Unblinded y, Blinded x) \<Rightarrow> (if Content (h y) = x then Some (Unblinded y) else None)
| (Blinded t, Blinded u) \<Rightarrow> (if t = u then Some (Blinded u) else None))"
by(simp split: blindable\<^sub>m.split blindable\<^sub>h.split)
parametric_constant merge_blindable_parametric [transfer_rule]: merge_blindable_alt_def
lemma merge_blindable_cong [fundef_cong]:
assumes "\<And>a b. \<lbrakk> a \<in> set1_blindable\<^sub>m x; b \<in> set1_blindable\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b"
shows "merge_blindable h m x y = merge_blindable h m' x y"
by(auto simp add: merge_blindable_alt_def split: blindable\<^sub>m.split intro: assms intro!: arg_cong[where f="map_option _"])
(************************************************************)
subsubsection \<open> Merkle interface \<close>
(************************************************************)
lemma merkle_blindable [locale_witness]:
assumes "merkle_interface h bo m"
shows "merkle_interface (hash_blindable h) (blinding_of_blindable h bo) (merge_blindable h m)"
proof -
interpret merge_on UNIV h bo m using assms by(simp add: merkle_interface_aux)
show ?thesis unfolding merkle_interface_aux ..
qed
(************************************************************)
subsubsection \<open> Non-recursive blindable positions \<close>
(************************************************************)
text \<open> For a non-recursive data type @{typ 'a}, the type of hashes in @{type blindable\<^sub>m} is fixed
to be simply @{typ "'a blindable\<^sub>h"}. We obtain this by instantiating the type variable with the
identity building block. \<close>
type_synonym 'a nr_blindable = "('a, 'a) blindable\<^sub>m"
abbreviation hash_nr_blindable :: "('a nr_blindable, 'a blindable\<^sub>h) hash" where
"hash_nr_blindable \<equiv> hash_blindable hash_discrete"
abbreviation blinding_of_nr_blindable :: "'a nr_blindable blinding_of" where
"blinding_of_nr_blindable \<equiv> blinding_of_blindable hash_discrete blinding_of_discrete"
abbreviation merge_nr_blindable :: "'a nr_blindable merge" where
"merge_nr_blindable \<equiv> merge_blindable hash_discrete merge_discrete"
lemma merge_on_nr_blindable:
"merge_on UNIV hash_nr_blindable blinding_of_nr_blindable merge_nr_blindable"
..
lemma merkle_nr_blindable:
"merkle_interface hash_nr_blindable blinding_of_nr_blindable merge_nr_blindable"
..
(************************************************************)
subsection \<open> Building block: Sums \<close>
(************************************************************)
text \<open> We prove that we can lift the ADS construction through sums.\<close>
type_synonym ('a\<^sub>h, 'b\<^sub>h) sum\<^sub>h = "'a\<^sub>h + 'b\<^sub>h"
type_notation sum\<^sub>h (infixr "+\<^sub>h" 10)
type_synonym ('a\<^sub>m, 'b\<^sub>m) sum\<^sub>m = "'a\<^sub>m + 'b\<^sub>m"
\<comment> \<open>If a functor does not introduce blindable positions, then we don't need the type variable copies.\<close>
type_notation sum\<^sub>m (infixr "+\<^sub>m" 10)
(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)
abbreviation (input) hash_sum' :: "('a\<^sub>h +\<^sub>h 'b\<^sub>h, 'a\<^sub>h +\<^sub>h 'b\<^sub>h) hash" where
"hash_sum' \<equiv> id"
abbreviation (input) hash_sum :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a\<^sub>m +\<^sub>m 'b\<^sub>m, 'a\<^sub>h +\<^sub>h 'b\<^sub>h) hash"
where "hash_sum \<equiv> map_sum"
(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)
abbreviation (input) blinding_of_sum :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m +\<^sub>m 'b\<^sub>m) blinding_of" where
"blinding_of_sum \<equiv> rel_sum"
lemmas blinding_of_sum_mono = sum.rel_mono
lemma blinding_of_sum_hash:
assumes "boa \<le> vimage2p rha rha (=)" "bob \<le> vimage2p rhb rhb (=)"
shows "blinding_of_sum boa bob \<le> vimage2p (hash_sum rha rhb) (hash_sum rha rhb) (=)"
using assms by(auto simp add: vimage2p_def elim!: rel_sum.cases)
lemma blinding_of_on_sum [locale_witness]:
assumes "blinding_of_on A rha boa" "blinding_of_on B rhb bob"
shows "blinding_of_on {x. setl x \<subseteq> A \<and> setr x \<subseteq> B} (hash_sum rha rhb) (blinding_of_sum boa bob)"
(is "blinding_of_on ?A ?h ?bo")
proof -
interpret a: blinding_of_on A rha boa by fact
interpret b: blinding_of_on B rhb bob by fact
show ?thesis
proof
show "?bo x x" if "x \<in> ?A" for x using that by(intro sum.rel_refl_strong)(auto intro: a.refl b.refl)
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z
using that by(auto elim!: rel_sum.cases dest: a.trans b.trans)
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y
using that by(auto elim!: rel_sum.cases dest: a.antisym b.antisym)
qed(rule blinding_of_sum_hash a.hash b.hash)+
qed
lemmas blinding_of_sum [locale_witness] = blinding_of_on_sum[of UNIV _ _ UNIV, simplified]
(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)
context
fixes ma :: "'a\<^sub>m merge"
fixes mb :: "'b\<^sub>m merge"
begin
fun merge_sum :: "('a\<^sub>m +\<^sub>m 'b\<^sub>m) merge" where
"merge_sum (Inl x) (Inl y) = map_option Inl (ma x y)"
| "merge_sum (Inr x) (Inr y) = map_option Inr (mb x y)"
| "merge_sum _ _ = None"
lemma merge_on_sum [locale_witness]:
assumes "merge_on A rha boa ma" "merge_on B rhb bob mb"
shows "merge_on {x. setl x \<subseteq> A \<and> setr x \<subseteq> B} (hash_sum rha rhb) (blinding_of_sum boa bob) merge_sum"
(is "merge_on ?A ?h ?bo ?m")
proof -
interpret a: merge_on A rha boa ma by fact
interpret b: merge_on B rhb bob mb by fact
show ?thesis
proof
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
if "?h a = ?h b" "a \<in> ?A" for a b using that
by(cases "(a, b)" rule: merge_sum.cases)(auto dest!: a.join b.join elim!: rel_sum.cases)
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
by(cases "(a, b)" rule: merge_sum.cases)(auto dest!: a.undefined b.undefined)
qed
qed
lemmas merge_sum [locale_witness] = merge_on_sum[where A=UNIV and B=UNIV, simplified]
lemma merge_sum_alt_def:
"merge_sum x y = (case (x, y) of
(Inl x, Inl y) \<Rightarrow> map_option Inl (ma x y)
| (Inr x, Inr y) \<Rightarrow> map_option Inr (mb x y)
| _ \<Rightarrow> None)"
by(simp add: split: sum.split)
end
lemma merge_sum_cong[fundef_cong]:
"\<lbrakk> x = x'; y = y';
\<And>xl yl. \<lbrakk> x = Inl xl; y = Inl yl \<rbrakk> \<Longrightarrow> ma xl yl = ma' xl yl;
\<And>xr yr. \<lbrakk> x = Inr xr; y = Inr yr \<rbrakk> \<Longrightarrow> mb xr yr = mb' xr yr \<rbrakk> \<Longrightarrow>
merge_sum ma mb x y = merge_sum ma' mb' x' y'"
by(cases x; simp_all; cases y; auto)
parametric_constant merge_sum_parametric [transfer_rule]: merge_sum_alt_def
subsubsection \<open> Merkle interface \<close>
lemma merkle_sum [locale_witness]:
assumes "merkle_interface rha boa ma" "merkle_interface rhb bob mb"
shows "merkle_interface (hash_sum rha rhb) (blinding_of_sum boa bob) (merge_sum ma mb)"
proof -
interpret a: merge_on UNIV rha boa ma unfolding merkle_interface_aux[symmetric] by fact
interpret b: merge_on UNIV rhb bob mb unfolding merkle_interface_aux[symmetric] by fact
show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed
(************************************************************)
subsection \<open> Building Block: Products\<close>
(************************************************************)
text \<open> We prove that we can lift the ADS construction through products.\<close>
type_synonym ('a\<^sub>h, 'b\<^sub>h) prod\<^sub>h = "'a\<^sub>h \<times> 'b\<^sub>h"
type_notation prod\<^sub>h ("(_ \<times>\<^sub>h/ _)" [21, 20] 20)
type_synonym ('a\<^sub>m, 'b\<^sub>m) prod\<^sub>m = "'a\<^sub>m \<times> 'b\<^sub>m"
\<comment> \<open>If a functor does not introduce blindable positions, then we don't need the type variable copies.\<close>
type_notation prod\<^sub>m ("(_ \<times>\<^sub>m/ _)" [21, 20] 20)
(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)
abbreviation (input) hash_prod' :: "('a\<^sub>h \<times>\<^sub>h 'b\<^sub>h, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h) hash" where
"hash_prod' \<equiv> id"
abbreviation (input) hash_prod :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h) hash"
where "hash_prod \<equiv> map_prod"
(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)
abbreviation (input) blinding_of_prod :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m) blinding_of" where
"blinding_of_prod \<equiv> rel_prod"
lemmas blinding_of_prod_mono = prod.rel_mono
lemma blinding_of_prod_hash:
assumes "boa \<le> vimage2p rha rha (=)" "bob \<le> vimage2p rhb rhb (=)"
shows "blinding_of_prod boa bob \<le> vimage2p (hash_prod rha rhb) (hash_prod rha rhb) (=)"
using assms by(auto simp add: vimage2p_def)
lemma blinding_of_on_prod [locale_witness]:
assumes "blinding_of_on A rha boa" "blinding_of_on B rhb bob"
shows "blinding_of_on {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B} (hash_prod rha rhb) (blinding_of_prod boa bob)"
(is "blinding_of_on ?A ?h ?bo")
proof -
interpret a: blinding_of_on A rha boa by fact
interpret b: blinding_of_on B rhb bob by fact
show ?thesis
proof
show "?bo x x" if "x \<in> ?A" for x using that by(cases x)(auto intro: a.refl b.refl)
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
by(auto elim!: rel_prod.cases dest: a.trans b.trans)
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
by(auto elim!: rel_prod.cases dest: a.antisym b.antisym)
qed(rule blinding_of_prod_hash a.hash b.hash)+
qed
lemmas blinding_of_prod [locale_witness] = blinding_of_on_prod[where A=UNIV and B=UNIV, simplified]
(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)
context
fixes ma :: "'a\<^sub>m merge"
fixes mb :: "'b\<^sub>m merge"
begin
fun merge_prod :: "('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m) merge" where
"merge_prod (x, y) (x', y') = Option.bind (ma x x') (\<lambda>x''. map_option (Pair x'') (mb y y'))"
lemma merge_on_prod [locale_witness]:
assumes "merge_on A rha boa ma" "merge_on B rhb bob mb"
shows "merge_on {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B} (hash_prod rha rhb) (blinding_of_prod boa bob) merge_prod"
(is "merge_on ?A ?h ?bo ?m")
proof -
interpret a: merge_on A rha boa ma by fact
interpret b: merge_on B rhb bob mb by fact
show ?thesis
proof
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
if "?h a = ?h b" "a \<in> ?A" for a b using that
by(cases "(a, b)" rule: merge_prod.cases)(auto dest!: a.join b.join)
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
by(cases "(a, b)" rule: merge_prod.cases)(auto dest!: a.undefined b.undefined)
qed
qed
lemmas merge_prod [locale_witness] = merge_on_prod[where A=UNIV and B=UNIV, simplified]
lemma merge_prod_alt_def:
"merge_prod = (\<lambda>(x, y) (x', y'). Option.bind (ma x x') (\<lambda>x''. map_option (Pair x'') (mb y y')))"
by(simp add: fun_eq_iff)
end
lemma merge_prod_cong[fundef_cong]:
assumes "\<And>a b. \<lbrakk> a \<in> fsts p1; b \<in> fsts p2 \<rbrakk> \<Longrightarrow> ma a b = ma' a b"
and "\<And>a b. \<lbrakk> a \<in> snds p1; b \<in> snds p2 \<rbrakk> \<Longrightarrow> mb a b = mb' a b"
shows "merge_prod ma mb p1 p2 = merge_prod ma' mb' p1 p2"
using assms by(cases p1; cases p2) auto
parametric_constant merge_prod_parametric [transfer_rule]: merge_prod_alt_def
(************************************************************)
subsubsection \<open> Merkle Interface \<close>
(************************************************************)
lemma merkle_product [locale_witness]:
assumes "merkle_interface rha boa ma" "merkle_interface rhb bob mb"
shows "merkle_interface (hash_prod rha rhb) (blinding_of_prod boa bob) (merge_prod ma mb)"
proof -
interpret a: merge_on UNIV rha boa ma unfolding merkle_interface_aux[symmetric] by fact
interpret b: merge_on UNIV rhb bob mb unfolding merkle_interface_aux[symmetric] by fact
show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed
(************************************************************)
subsection \<open>Building Block: Lists\<close>
(************************************************************)
text \<open>The ADS construction on lists is done the easiest through a separate isomorphic datatype
that has only a single constructor. We hide this construction in a locale. \<close>
locale list_R1 begin
type_synonym ('a, 'b) list_F = "unit + 'a \<times> 'b"
abbreviation (input) "set_base_F\<^sub>m \<equiv> \<lambda>x. setr x \<bind> fsts"
abbreviation (input) "set_rec_F\<^sub>m \<equiv> \<lambda>A. setr A \<bind> snds"
abbreviation (input) "map_F \<equiv> \<lambda>fb fr. map_sum id (map_prod fb fr)"
datatype 'a list_R1 = list_R1 (unR: "('a, 'a list_R1) list_F")
lemma list_R1_const_into_dest: "list_R1 F = l \<longleftrightarrow> F = unR l"
by auto
declare list_R1.split[split]
lemma list_R1_induct[case_names list_R1]:
assumes "\<And>F. \<lbrakk> \<And>l'. l' \<in> set_rec_F\<^sub>m F \<Longrightarrow> P l' \<rbrakk> \<Longrightarrow> P (list_R1 F)"
shows "P l"
apply(rule list_R1.induct)
apply(auto intro!: assms)
done
lemma set_list_R1_eq:
"{x. set_base_F\<^sub>m x \<subseteq> A \<and> set_rec_F\<^sub>m x \<subseteq> B} =
{x. setl x \<subseteq> UNIV \<and> setr x \<subseteq> {x. fsts x \<subseteq> A \<and> snds x \<subseteq> B}}"
by(auto simp add: bind_UNION)
(************************************************************)
subsubsection \<open> The Isomorphism \<close>
(************************************************************)
primrec (transfer) list_R1_to_list :: "'a list_R1 \<Rightarrow> 'a list" where
"list_R1_to_list (list_R1 l) = (case map_sum id (map_prod id list_R1_to_list) l of Inl () \<Rightarrow> [] | Inr (x, xs) \<Rightarrow> x # xs)"
lemma list_R1_to_list_simps [simp]:
"list_R1_to_list (list_R1 (Inl ())) = []"
"list_R1_to_list (list_R1 (Inr (x, xs))) = x # list_R1_to_list xs"
by(simp_all split: unit.split)
declare list_R1_to_list.simps [simp del]
primrec (transfer) list_to_list_R1 :: "'a list \<Rightarrow> 'a list_R1" where
"list_to_list_R1 [] = list_R1 (Inl ())"
| "list_to_list_R1 (x#xs) = list_R1 (Inr (x, list_to_list_R1 xs))"
lemma R1_of_list: "list_R1_to_list (list_to_list_R1 x) = x"
by(induct x) (auto)
lemma list_of_R1: "list_to_list_R1 (list_R1_to_list x) = x"
apply(induct x)
subgoal for x
by(cases x) (auto)
done
lemma list_R1_def: "type_definition list_to_list_R1 list_R1_to_list UNIV"
by(unfold_locales)(auto intro: R1_of_list list_of_R1)
setup_lifting list_R1_def
lemma map_list_R1_list_to_list_R1: "map_list_R1 f (list_to_list_R1 xs) = list_to_list_R1 (map f xs)"
by(induction xs) auto
lemma list_R1_map_trans [transfer_rule]: includes lifting_syntax shows
"(((=) ===> (=)) ===> pcr_list (=) ===> pcr_list (=)) map_list_R1 map"
by(auto 4 3 simp add: list.pcr_cr_eq rel_fun_eq cr_list_def map_list_R1_list_to_list_R1)
lemma set_list_R1_list_to_list_R1: "set_list_R1 (list_to_list_R1 xs) = set xs"
by(induction xs) auto
lemma list_R1_set_trans [transfer_rule]: includes lifting_syntax shows
"(pcr_list (=) ===> (=)) set_list_R1 set"
by(auto simp add: list.pcr_cr_eq cr_list_def set_list_R1_list_to_list_R1)
lemma rel_list_R1_list_to_list_R1:
"rel_list_R1 R (list_to_list_R1 xs) (list_to_list_R1 ys) \<longleftrightarrow> list_all2 R xs ys"
(is "?lhs \<longleftrightarrow> ?rhs")
proof
define xs' and ys' where "xs' = list_to_list_R1 xs" and "ys' = list_to_list_R1 ys"
assume "rel_list_R1 R xs' ys'"
then have "list_all2 R (list_R1_to_list xs') (list_R1_to_list ys')"
by induction(auto elim!: rel_sum.cases)
thus ?rhs by(simp add: xs'_def ys'_def R1_of_list)
next
show ?lhs if ?rhs using that by induction auto
qed
lemma list_R1_rel_trans[transfer_rule]: includes lifting_syntax shows
"(((=) ===> (=) ===> (=)) ===> pcr_list (=) ===> pcr_list (=) ===> (=)) rel_list_R1 list_all2"
by(auto 4 4 simp add: list.pcr_cr_eq rel_fun_eq cr_list_def rel_list_R1_list_to_list_R1)
(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)
type_synonym ('a\<^sub>h, 'b\<^sub>h) list_F\<^sub>h = "unit +\<^sub>h 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h"
type_synonym ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m = "unit +\<^sub>m 'a\<^sub>m \<times>\<^sub>m 'b\<^sub>m"
type_synonym 'a\<^sub>h list_R1\<^sub>h = "'a\<^sub>h list_R1"
\<comment> \<open>In theory, we should define a separate datatype here of the functor @{typ "('a\<^sub>h, _) list_F\<^sub>h"}.
We take a shortcut because they're isomorphic.\<close>
type_synonym 'a\<^sub>m list_R1\<^sub>m = "'a\<^sub>m list_R1"
\<comment> \<open>In theory, we should define a separate datatype here of the functor @{typ "('a\<^sub>m, _) list_F\<^sub>m"}.
We take a shortcut because they're isomorphic.\<close>
definition hash_F :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) list_F\<^sub>h) hash" where
"hash_F h rhL = hash_sum hash_unit (hash_prod h rhL)"
abbreviation (input) hash_R1 :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('a\<^sub>m list_R1\<^sub>m, 'a\<^sub>h list_R1\<^sub>h) hash" where
"hash_R1 \<equiv> map_list_R1"
parametric_constant hash_F_parametric[transfer_rule]: hash_F_def
(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)
definition blinding_of_F :: "'a\<^sub>m blinding_of \<Rightarrow> 'b\<^sub>m blinding_of \<Rightarrow> ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m blinding_of" where
"blinding_of_F bo bL = blinding_of_sum blinding_of_unit (blinding_of_prod bo bL)"
abbreviation (input) blinding_of_R1 :: "'a blinding_of \<Rightarrow> 'a list_R1 blinding_of" where
"blinding_of_R1 \<equiv> rel_list_R1"
lemma blinding_of_hash_R1:
assumes "bo \<le> vimage2p h h (=)"
shows "blinding_of_R1 bo \<le> vimage2p (hash_R1 h) (hash_R1 h) (=)"
apply(rule predicate2I vimage2pI)+
apply(auto simp add: predicate2D_vimage2p[OF assms] elim!: list_R1.rel_induct rel_sum.cases rel_prod.cases)
done
lemma blinding_of_on_R1 [locale_witness]:
assumes "blinding_of_on A h bo"
shows "blinding_of_on {x. set_list_R1 x \<subseteq> A} (hash_R1 h) (blinding_of_R1 bo)"
(is "blinding_of_on ?A ?h ?bo")
proof -
interpret a: blinding_of_on A h bo by fact
show ?thesis
proof
show hash: "?bo \<le> vimage2p ?h ?h (=)" using a.hash by(rule blinding_of_hash_R1)
have "?bo x x \<and> (?bo x y \<longrightarrow> ?bo y z \<longrightarrow> ?bo x z) \<and> (?bo x y \<longrightarrow> ?bo y x \<longrightarrow> x = y)" if "x \<in> ?A" for x y z using that
proof(induction x arbitrary: y z)
case (list_R1 x y' z')
from list_R1.prems have s1: "set_base_F\<^sub>m x \<subseteq> A" by(fastforce)
from list_R1.prems have s3: "set_rec_F\<^sub>m x \<bind> set_list_R1 \<subseteq> A" by(fastforce intro: rev_bexI)
interpret F: blinding_of_on "{y. set_base_F\<^sub>m y \<subseteq> A \<and> set_rec_F\<^sub>m y \<subseteq> set_rec_F\<^sub>m x}"
"hash_F h (hash_R1 h)" "blinding_of_F bo (blinding_of_R1 bo)"
unfolding hash_F_def blinding_of_F_def set_list_R1_eq
proof
let ?A' = "setr x \<bind> snds" and ?bo' = "rel_list_R1 bo"
show "?bo' x x" if "x \<in> ?A'" for x using that list_R1 by(force simp add: eq_onp_def)
show "?bo' x z" if "?bo' x y" "?bo' y z" "x \<in> ?A'" for x y z
using that list_R1.IH[of _ x y z] list_R1.prems
by(force simp add: bind_UNION prod_set_defs)
show "x = y" if "?bo' x y" "?bo' y x" "x \<in> ?A'" for x y
using that list_R1.IH[of _ x y] list_R1.prems
by(force simp add: prod_set_defs)
qed(rule hash)
show ?case using list_R1.prems
apply(intro conjI)
subgoal using F.refl[of x] s1 unfolding blinding_of_F_def by(auto intro: list_R1.rel_intros)
subgoal using s1 by(auto elim!: list_R1.rel_cases F.trans[unfolded blinding_of_F_def] intro: list_R1.rel_intros)
subgoal using s1 by(auto elim!: list_R1.rel_cases dest: F.antisym[unfolded blinding_of_F_def])
done
qed
then show "x \<in> ?A \<Longrightarrow> ?bo x x"
and "\<lbrakk> ?bo x y; ?bo y z; x \<in> ?A \<rbrakk> \<Longrightarrow> ?bo x z"
and "\<lbrakk> ?bo x y; ?bo y x; x \<in> ?A \<rbrakk> \<Longrightarrow> x = y"
for x y z by blast+
qed
qed
lemmas blinding_of_R1 [locale_witness] = blinding_of_on_R1[where A=UNIV, simplified]
parametric_constant blinding_of_F_parametric[transfer_rule]: blinding_of_F_def
(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)
definition merge_F :: "'a\<^sub>m merge \<Rightarrow> 'b\<^sub>m merge \<Rightarrow> ('a\<^sub>m, 'b\<^sub>m) list_F\<^sub>m merge" where
"merge_F m mL = merge_sum merge_unit (merge_prod m mL)"
lemma merge_F_cong[fundef_cong]:
assumes "\<And>a b. \<lbrakk> a \<in> set_base_F\<^sub>m x; b \<in> set_base_F\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b"
and "\<And>a b. \<lbrakk> a \<in> set_rec_F\<^sub>m x; b \<in> set_rec_F\<^sub>m y \<rbrakk> \<Longrightarrow> mL a b = mL' a b"
shows "merge_F m mL x y = merge_F m' mL' x y"
using assms
apply(cases x; cases y)
apply(simp_all add: merge_F_def)
apply(rule arg_cong[where f="map_option _"])
apply(blast intro: merge_prod_cong)
done
context
fixes m :: "'a\<^sub>m merge"
notes setr.simps[simp]
begin
fun merge_R1 :: "'a\<^sub>m list_R1\<^sub>m merge" where
"merge_R1 (list_R1 l1) (list_R1 l2) = map_option list_R1 (merge_F m merge_R1 l1 l2)"
end
case_of_simps merge_cases [simp]: merge_R1.simps
lemma merge_on_R1:
assumes "merge_on A h bo m"
shows "merge_on {x. set_list_R1 x \<subseteq> A } (hash_R1 h) (blinding_of_R1 bo) (merge_R1 m)"
(is "merge_on ?A ?h ?bo ?m")
proof -
interpret a: merge_on A h bo m by fact
show ?thesis
proof
have "(?h a = ?h b \<longrightarrow> (\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u))) \<and>
(?h a \<noteq> ?h b \<longrightarrow> ?m a b = None)"
if "a \<in> ?A" for a b using that unfolding mem_Collect_eq
proof(induction a arbitrary: b rule: list_R1_induct)
case wfInd: (list_R1 l)
interpret merge_on "{y. set_base_F\<^sub>m y \<subseteq> A \<and> set_rec_F\<^sub>m y \<subseteq> set_rec_F\<^sub>m l}"
"hash_F h ?h" "blinding_of_F bo ?bo" "merge_F m ?m"
unfolding set_list_R1_eq hash_F_def merge_F_def blinding_of_F_def
proof
fix a
assume a: "a \<in> set_rec_F\<^sub>m l"
with wfInd.prems have a': "set_list_R1 a \<subseteq> A"
by fastforce
show "hash_R1 h a = hash_R1 h b
\<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and>
(\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
and "?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None" for b
using wfInd.IH[OF a a', rule_format, of b]
by(auto dest: sym)
qed
show ?case using wfInd.prems
apply(intro conjI strip)
subgoal
by(auto 4 4 dest!: join[unfolded hash_F_def]
simp add: blinding_of_F_def UN_subset_iff list_R1.rel_sel)
subgoal by(auto 4 3 intro!: undefined[simplified hash_F_def])
done
qed
then show
"?h a = ?h b \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
"?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None"
if "a \<in> ?A" for a b using that by blast+
qed
qed
lemmas merge_R1 [locale_witness] = merge_on_R1[where A=UNIV, simplified]
lemma merkle_list_R1 [locale_witness]:
assumes "merkle_interface h bo m"
shows "merkle_interface (hash_R1 h) (blinding_of_R1 bo) (merge_R1 m)"
proof -
interpret merge_on UNIV h bo m using assms by(unfold merkle_interface_aux)
show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed
lemma merge_R1_cong [fundef_cong]:
assumes "\<And>a b. \<lbrakk> a \<in> set_list_R1 x; b \<in> set_list_R1 y \<rbrakk> \<Longrightarrow> m a b = m' a b"
shows "merge_R1 m x y = merge_R1 m' x y"
using assms
apply(induction x y rule: merge_R1.induct)
apply(simp del: merge_cases)
apply(rule arg_cong[where f="map_option _"])
apply(blast intro: merge_F_cong[unfolded bind_UNION])
done
parametric_constant merge_F_parametric[transfer_rule]: merge_F_def
lemma merge_R1_parametric [transfer_rule]:
includes lifting_syntax
notes [simp del] = merge_cases
assumes [transfer_rule]: "bi_unique A"
shows "((A ===> A ===> rel_option A) ===> rel_list_R1 A ===> rel_list_R1 A ===> rel_option (rel_list_R1 A))
merge_R1 merge_R1"
apply(intro rel_funI)
subgoal premises prems [transfer_rule] for m1 m2 xs1 xs2 ys1 ys2 using prems(2, 3)
apply(induction xs1 ys1 arbitrary: xs2 ys2 rule: merge_R1.induct)
apply(elim list_R1.rel_cases rel_sum.cases; clarsimp simp add: option.rel_map merge_F_def merge_discrete_def)
apply(elim meta_allE; (erule meta_impE, simp)+)
subgoal premises [transfer_rule] by transfer_prover
done
done
end
subsubsection \<open> Transferring the Constructions to Lists \<close>
type_synonym 'a\<^sub>h list\<^sub>h = "'a\<^sub>h list"
type_synonym 'a\<^sub>m list\<^sub>m = "'a\<^sub>m list"
context begin
interpretation list_R1 .
abbreviation (input) hash_list :: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('a\<^sub>m list\<^sub>m, 'a\<^sub>h list\<^sub>h) hash"
where "hash_list \<equiv> map"
abbreviation (input) blinding_of_list :: "'a\<^sub>m blinding_of \<Rightarrow> 'a\<^sub>m list\<^sub>m blinding_of"
where "blinding_of_list \<equiv> list_all2"
lift_definition merge_list :: "'a\<^sub>m merge \<Rightarrow> 'a\<^sub>m list\<^sub>m merge" is merge_R1 .
lemma blinding_of_list_mono:
"\<lbrakk> \<And>x y. bo x y \<longrightarrow> bo' x y \<rbrakk> \<Longrightarrow>
blinding_of_list bo x y \<longrightarrow> blinding_of_list bo' x y"
by (transfer) (blast intro: list_R1.rel_mono_strong)
lemmas blinding_of_list_hash = blinding_of_hash_R1[Transfer.transferred]
and blinding_of_on_list [locale_witness] = blinding_of_on_R1[Transfer.transferred]
and blinding_of_list [locale_witness] = blinding_of_R1[Transfer.transferred]
and merge_on_list [locale_witness] = merge_on_R1[Transfer.transferred]
and merge_list [locale_witness] = merge_R1[Transfer.transferred]
and merge_list_cong = merge_R1_cong[Transfer.transferred]
lemma blinding_of_list_mono_pred:
"R \<le> R' \<Longrightarrow> blinding_of_list R \<le> blinding_of_list R'"
by(transfer) (rule list_R1.rel_mono)
lemma blinding_of_list_simp: "blinding_of_list = list_all2"
by(transfer) (rule refl)
lemma merkle_list [locale_witness]:
assumes [locale_witness]: "merkle_interface h bo m"
shows "merkle_interface (hash_list h) (blinding_of_list bo) (merge_list m)"
by(transfer fixing: h bo m) unfold_locales
parametric_constant merge_list_parametric [transfer_rule]: merge_list_def
lifting_update list.lifting
lifting_forget list.lifting
end
(************************************************************)
subsection \<open>Building block: function space\<close>
(************************************************************)
text \<open> We prove that we can lift the ADS construction through functions.\<close>
type_synonym ('a, 'b\<^sub>h) fun\<^sub>h = "'a \<Rightarrow> 'b\<^sub>h"
type_notation fun\<^sub>h (infixr "\<Rightarrow>\<^sub>h" 0)
type_synonym ('a, 'b\<^sub>m) fun\<^sub>m = "'a \<Rightarrow> 'b\<^sub>m"
type_notation fun\<^sub>m (infixr "\<Rightarrow>\<^sub>m" 0)
(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)
text \<open> Only the range is live, the domain is dead like for BNFs. \<close>
abbreviation (input) hash_fun' :: "('a \<Rightarrow>\<^sub>m 'b\<^sub>h, 'a \<Rightarrow>\<^sub>h 'b\<^sub>h) hash" where
"hash_fun' \<equiv> id"
abbreviation (input) hash_fun :: "('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> ('a \<Rightarrow>\<^sub>m 'b\<^sub>m, 'a \<Rightarrow>\<^sub>h 'b\<^sub>h) hash"
where "hash_fun \<equiv> comp"
(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)
abbreviation (input) blinding_of_fun :: "'b\<^sub>m blinding_of \<Rightarrow> ('a \<Rightarrow>\<^sub>m 'b\<^sub>m) blinding_of" where
"blinding_of_fun \<equiv> rel_fun (=)"
lemmas blinding_of_fun_mono = fun.rel_mono
lemma blinding_of_fun_hash:
assumes "bo \<le> vimage2p rh rh (=)"
shows "blinding_of_fun bo \<le> vimage2p (hash_fun rh) (hash_fun rh) (=)"
using assms by(auto simp add: vimage2p_def rel_fun_def le_fun_def)
lemma blinding_of_on_fun [locale_witness]:
assumes "blinding_of_on A rh bo"
shows "blinding_of_on {x. range x \<subseteq> A} (hash_fun rh) (blinding_of_fun bo)"
(is "blinding_of_on ?A ?h ?bo")
proof -
interpret a: blinding_of_on A rh bo by fact
show ?thesis
proof
show "?bo x x" if "x \<in> ?A" for x using that by(auto simp add: rel_fun_def intro: a.refl)
show "?bo x z" if "?bo x y" "?bo y z" "x \<in> ?A" for x y z using that
by(auto 4 3 simp add: rel_fun_def intro: a.trans)
show "x = y" if "?bo x y" "?bo y x" "x \<in> ?A" for x y using that
by(fastforce simp add: fun_eq_iff rel_fun_def intro: a.antisym)
qed(rule blinding_of_fun_hash a.hash)+
qed
lemmas blinding_of_fun [locale_witness] = blinding_of_on_fun[where A=UNIV, simplified]
(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)
context
fixes m :: "'b\<^sub>m merge"
begin
definition merge_fun :: "('a \<Rightarrow>\<^sub>m 'b\<^sub>m) merge" where
"merge_fun f g = (if \<forall>x. m (f x) (g x) \<noteq> None then Some (\<lambda>x. the (m (f x) (g x))) else None)"
lemma merge_on_fun [locale_witness]:
assumes "merge_on A rh bo m"
shows "merge_on {x. range x \<subseteq> A} (hash_fun rh) (blinding_of_fun bo) merge_fun"
(is "merge_on ?A ?h ?bo ?m")
proof -
interpret a: merge_on A rh bo m by fact
show ?thesis
proof
show "\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
if "?h a = ?h b" "a \<in> ?A" for a b
using that(1)[THEN fun_cong, unfolded o_apply, THEN a.join, OF that(2)[unfolded mem_Collect_eq, THEN subsetD, OF rangeI]]
by atomize(subst (asm) choice_iff; auto simp add: merge_fun_def rel_fun_def)
show "?m a b = None" if "?h a \<noteq> ?h b" "a \<in> ?A" for a b using that
by(auto simp add: merge_fun_def fun_eq_iff dest: a.undefined)
qed
qed
lemmas merge_fun [locale_witness] = merge_on_fun[where A=UNIV, simplified]
end
lemma merge_fun_cong[fundef_cong]:
assumes "\<And>a b. \<lbrakk> a \<in> range f; b \<in> range g \<rbrakk> \<Longrightarrow> m a b = m' a b"
shows "merge_fun m f g = merge_fun m' f g"
using assms[OF rangeI rangeI] by(clarsimp simp add: merge_fun_def)
lemma is_none_alt_def: "Option.is_none x \<longleftrightarrow> (case x of None \<Rightarrow> True | Some _ \<Rightarrow> False)"
by(auto simp add: Option.is_none_def split: option.splits)
parametric_constant is_none_parametric [transfer_rule]: is_none_alt_def
lemma merge_fun_parametric [transfer_rule]: includes lifting_syntax shows
"((A ===> B ===> rel_option C) ===> ((=) ===> A) ===> ((=) ===> B) ===> rel_option ((=) ===> C))
merge_fun merge_fun"
proof(intro rel_funI)
fix m :: "'a merge" and m' :: "'b merge" and f :: "'c \<Rightarrow> 'a" and f' :: "'c \<Rightarrow> 'b" and g :: "'c \<Rightarrow> 'a" and g' :: "'c \<Rightarrow> 'b"
assume m: "(A ===> B ===> rel_option C) m m'"
and f: "((=) ===> A) f f'" and g: "((=) ===> B) g g'"
note [transfer_rule] = this
have cond [unfolded Option.is_none_def]: "(\<forall>x. \<not> Option.is_none (m (f x) (g x))) \<longleftrightarrow> (\<forall>x. \<not> Option.is_none (m' (f' x) (g' x)))"
by transfer_prover
moreover
have "((=) ===> C) (\<lambda>x. the (m (f x) (g x))) (\<lambda>x. the (m' (f' x) (g' x)))" if *: "\<forall>x. \<not> m (f x) (g x) = None"
proof -
obtain fg fg' where m: "m (f x) (g x) = Some (fg x)" and m': "m' (f' x) (g' x) = Some (fg' x)" for x
using * *[simplified cond]
by(simp)(subst (asm) (1 2) choice_iff; clarsimp)
have "rel_option C (Some (fg x)) (Some (fg' x))" for x unfolding m[symmetric] m'[symmetric] by transfer_prover
then show ?thesis by(simp add: rel_fun_def m m')
qed
ultimately show "rel_option ((=) ===> C) (merge_fun m f g) (merge_fun m' f' g')"
unfolding merge_fun_def by(simp)
qed
(************************************************************)
subsubsection \<open> Merkle Interface \<close>
(************************************************************)
lemma merkle_fun [locale_witness]:
assumes "merkle_interface rh bo m"
shows "merkle_interface (hash_fun rh) (blinding_of_fun bo) (merge_fun m)"
proof -
interpret a: merge_on UNIV rh bo m unfolding merkle_interface_aux[symmetric] by fact
show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed
(************************************************************)
subsection \<open>Rose trees\<close>
(************************************************************)
text \<open>
We now define an ADS over rose trees, which is like a arbitrarily branching Merkle tree where each
node in the tree can be blinded, including the root. The number of children and the position of a
child among its siblings cannot be hidden. The construction allows to plug in further blindable
positions in the labels of the nodes.
\<close>
type_synonym ('a, 'b) rose_tree_F = "'a \<times> 'b list"
abbreviation (input) map_rose_tree_F where
"map_rose_tree_F f1 f2 \<equiv> map_prod f1 (map f2)"
definition map_rose_tree_F_const where
"map_rose_tree_F_const f1 f2 \<equiv> map_rose_tree_F f1 f2"
datatype 'a rose_tree = Tree "('a, 'a rose_tree) rose_tree_F"
type_synonym ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h = "('a\<^sub>h \<times>\<^sub>h 'b\<^sub>h list\<^sub>h) blindable\<^sub>h"
datatype 'a\<^sub>h rose_tree\<^sub>h = Tree\<^sub>h "('a\<^sub>h, 'a\<^sub>h rose_tree\<^sub>h) rose_tree_F\<^sub>h"
type_synonym ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m = "('a\<^sub>m \<times>\<^sub>m 'b\<^sub>m list\<^sub>m, 'a\<^sub>h \<times>\<^sub>h 'b\<^sub>h list\<^sub>h) blindable\<^sub>m"
datatype ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m = Tree\<^sub>m "('a\<^sub>m, 'a\<^sub>h, ('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) rose_tree_F\<^sub>m"
abbreviation (input) map_rose_tree_F\<^sub>m
:: "('ma \<Rightarrow> 'a) \<Rightarrow> ('mr \<Rightarrow> 'r) \<Rightarrow> ('ma, 'ha, 'mr, 'hr) rose_tree_F\<^sub>m \<Rightarrow> ('a, 'ha, 'r, 'hr) rose_tree_F\<^sub>m"
where
"map_rose_tree_F\<^sub>m f g \<equiv> map_blindable\<^sub>m (map_prod f (map g)) id"
(************************************************************)
subsubsection \<open> Hashes \<close>
(************************************************************)
abbreviation (input) hash_rt_F'
:: "(('a\<^sub>h, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h) hash"
where
"hash_rt_F' \<equiv> hash_blindable id"
definition hash_rt_F\<^sub>m
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow>
(('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m, ('a\<^sub>h, 'b\<^sub>h) rose_tree_F\<^sub>h) hash" where
"hash_rt_F\<^sub>m h rhm \<equiv> hash_rt_F' o map_rose_tree_F\<^sub>m h rhm"
lemma hash_rt_F\<^sub>m_alt_def: "hash_rt_F\<^sub>m h rhm = hash_blindable (map_prod h (map rhm))"
by(simp add: hash_rt_F\<^sub>m_def fun_eq_iff hash_map_blindable_simp)
primrec (transfer) hash_rt_tree'
:: "(('a\<^sub>h, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) hash" where
"hash_rt_tree' (Tree\<^sub>m x) = Tree\<^sub>h (hash_rt_F' (map_rose_tree_F\<^sub>m id hash_rt_tree' x))"
definition hash_tree
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> (('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m, 'a\<^sub>h rose_tree\<^sub>h) hash" where
"hash_tree h = hash_rt_tree' o map_rose_tree\<^sub>m h id"
lemma blindable\<^sub>m_map_compositionality:
"map_blindable\<^sub>m f g o map_blindable\<^sub>m f' g' = map_blindable\<^sub>m (f o f') (g o g')"
by(rule ext) (simp add: blindable\<^sub>m.map_comp)
lemma hash_tree_simps [simp]:
"hash_tree h (Tree\<^sub>m x) = Tree\<^sub>h (hash_rt_F\<^sub>m h (hash_tree h) x)"
by(simp add: hash_tree_def hash_rt_F\<^sub>m_def
map_prod.comp map_sum.comp rose_tree\<^sub>h.map_comp blindable\<^sub>m.map_comp
prod.map_id0 rose_tree\<^sub>h.map_id0)
parametric_constant hash_rt_F\<^sub>m_parametric [transfer_rule]: hash_rt_F\<^sub>m_alt_def
parametric_constant hash_tree_parametric [transfer_rule]: hash_tree_def
(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)
abbreviation (input) blinding_of_rt_F\<^sub>m
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m blinding_of \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m blinding_of
\<Rightarrow> ('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m blinding_of" where
"blinding_of_rt_F\<^sub>m ha boa hb bob \<equiv> blinding_of_blindable (hash_prod ha (map hb))
(blinding_of_prod boa (blinding_of_list bob))"
lemma blinding_of_rt_F\<^sub>m_mono:
"\<lbrakk> boa \<le> boa'; bob \<le> bob' \<rbrakk> \<Longrightarrow> blinding_of_rt_F\<^sub>m ha boa hb bob \<le> blinding_of_rt_F\<^sub>m ha boa' hb bob'"
by(intro blinding_of_blindable_mono prod.rel_mono list.rel_mono)
lemma blinding_of_rt_F\<^sub>m_mono_inductive:
assumes "\<And>x y. boa x y \<longrightarrow> boa' x y" "\<And>x y. bob x y \<longrightarrow> bob' x y"
shows "blinding_of_rt_F\<^sub>m ha boa hb bob x y \<longrightarrow> blinding_of_rt_F\<^sub>m ha boa' hb bob' x y"
apply(rule impI)
apply(erule blinding_of_rt_F\<^sub>m_mono[THEN predicate2D, rotated -1])
using assms by blast+
context
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
and bo :: "'a\<^sub>m blinding_of"
begin
inductive blinding_of_tree :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m blinding_of" where
"blinding_of_tree (Tree\<^sub>m t1) (Tree\<^sub>m t2)"
if "blinding_of_rt_F\<^sub>m h bo (hash_tree h) blinding_of_tree t1 t2"
monos blinding_of_rt_F\<^sub>m_mono_inductive
end
inductive_simps blinding_of_tree_simps [simp]:
"blinding_of_tree h bo (Tree\<^sub>m t1) (Tree\<^sub>m t2)"
lemma blinding_of_rt_F\<^sub>m_hash:
assumes "boa \<le> vimage2p ha ha (=)" "bob \<le> vimage2p hb hb (=)"
shows "blinding_of_rt_F\<^sub>m ha boa hb bob \<le> vimage2p (hash_rt_F\<^sub>m ha hb) (hash_rt_F\<^sub>m ha hb) (=)"
apply(rule order_trans)
apply(rule blinding_of_blindable_hash)
apply(fold relator_eq)
apply(unfold vimage2p_map_rel_prod vimage2p_map_list_all2)
apply(rule prod.rel_mono assms list.rel_mono)+
apply(simp only: hash_rt_F\<^sub>m_def vimage2p_comp o_apply hash_blindable_def blindable\<^sub>m.map_id0 id_def[symmetric] vimage2p_id id_apply)
done
lemma blinding_of_tree_hash:
assumes "bo \<le> vimage2p h h (=)"
shows "blinding_of_tree h bo \<le> vimage2p (hash_tree h) (hash_tree h) (=)"
apply(rule predicate2I vimage2pI)+
apply(erule blinding_of_tree.induct)
apply(simp)
apply(erule blinding_of_rt_F\<^sub>m_hash[OF assms, THEN predicate2D_vimage2p, rotated 1])
apply(blast intro: vimage2pI)
done
abbreviation (input) set1_rt_F\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>h, 'b\<^sub>m) rose_tree_F\<^sub>m \<Rightarrow> 'a\<^sub>m set" where
"set1_rt_F\<^sub>m x \<equiv> set1_blindable\<^sub>m x \<bind> fsts"
abbreviation (input) set3_rt_F\<^sub>m :: "('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m \<Rightarrow> 'b\<^sub>m set" where
"set3_rt_F\<^sub>m x \<equiv> (set1_blindable\<^sub>m x \<bind> snds) \<bind> set"
lemma set_rt_F\<^sub>m_eq:
"{x. set1_rt_F\<^sub>m x \<subseteq> A \<and> set3_rt_F\<^sub>m x \<subseteq> B} =
{x. set1_blindable\<^sub>m x \<subseteq> {x. fsts x \<subseteq> A \<and> snds x \<subseteq> {x. set x \<subseteq> B}}}"
by force
lemma hash_blindable_map: "hash_blindable f \<circ> map_blindable\<^sub>m g id = hash_blindable (f \<circ> g)"
by(rule ext) (simp add: hash_blindable_def blindable\<^sub>m.map_comp)
lemma blinding_of_on_tree [locale_witness]:
assumes "blinding_of_on A h bo"
shows "blinding_of_on {x. set1_rose_tree\<^sub>m x \<subseteq> A} (hash_tree h) (blinding_of_tree h bo)"
(is "blinding_of_on ?A ?h ?bo")
proof -
interpret a: blinding_of_on A h bo by fact
show ?thesis
proof
show "?bo \<le> vimage2p ?h ?h (=)" using a.hash by(rule blinding_of_tree_hash)
have "?bo x x \<and> (?bo x y \<longrightarrow> ?bo y z \<longrightarrow> ?bo x z) \<and> (?bo x y \<longrightarrow> ?bo y x \<longrightarrow> x = y)" if "x \<in> ?A" for x y z using that
proof(induction x arbitrary: y z)
case (Tree\<^sub>m x)
have [locale_witness]: "blinding_of_on (set3_rt_F\<^sub>m x) (hash_tree h) (blinding_of_tree h bo)"
apply unfold_locales
subgoal by(rule blinding_of_tree_hash)(rule a.hash)
subgoal using Tree\<^sub>m.IH Tree\<^sub>m.prems by(fastforce simp add: eq_onp_def)
subgoal for x y z using Tree\<^sub>m.IH[of _ _ x y z] Tree\<^sub>m.prems by fastforce
subgoal for x y using Tree\<^sub>m.IH[of _ _ x y] Tree\<^sub>m.prems by fastforce
done
interpret blinding_of_on
"{a. set1_rt_F\<^sub>m a \<subseteq> A \<and> set3_rt_F\<^sub>m a \<subseteq> set3_rt_F\<^sub>m x}"
"hash_rt_F\<^sub>m h ?h" "blinding_of_rt_F\<^sub>m h bo ?h ?bo"
unfolding set_rt_F\<^sub>m_eq hash_rt_F\<^sub>m_alt_def ..
from Tree\<^sub>m.prems show ?case
apply(intro conjI)
subgoal by(fastforce intro!: blinding_of_tree.intros refl[unfolded hash_rt_F\<^sub>m_alt_def])
subgoal by(fastforce elim!: blinding_of_tree.cases trans[unfolded hash_rt_F\<^sub>m_alt_def]
intro!: blinding_of_tree.intros)
subgoal by(fastforce elim!: blinding_of_tree.cases antisym[unfolded hash_rt_F\<^sub>m_alt_def])
done
qed
then show "x \<in> ?A \<Longrightarrow> ?bo x x"
and "\<lbrakk> ?bo x y; ?bo y z; x \<in> ?A \<rbrakk> \<Longrightarrow> ?bo x z"
and "\<lbrakk> ?bo x y; ?bo y x; x \<in> ?A \<rbrakk> \<Longrightarrow> x = y"
for x y z by blast+
qed
qed
lemmas blinding_of_tree [locale_witness] = blinding_of_on_tree[where A=UNIV, simplified]
lemma blinding_of_tree_mono:
"bo \<le> bo' \<Longrightarrow> blinding_of_tree h bo \<le> blinding_of_tree h bo'"
apply(rule predicate2I)
apply(erule blinding_of_tree.induct)
apply(rule blinding_of_tree.intros)
apply(erule blinding_of_rt_F\<^sub>m_mono[THEN predicate2D, rotated -1])
apply(blast)+
done
(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)
definition merge_rt_F\<^sub>m
:: "('a\<^sub>m, 'a\<^sub>h) hash \<Rightarrow> 'a\<^sub>m merge \<Rightarrow> ('b\<^sub>m, 'b\<^sub>h) hash \<Rightarrow> 'b\<^sub>m merge \<Rightarrow>
('a\<^sub>m, 'a\<^sub>h, 'b\<^sub>m, 'b\<^sub>h) rose_tree_F\<^sub>m merge"
where
"merge_rt_F\<^sub>m ha ma hr mr \<equiv> merge_blindable (hash_prod ha (hash_list hr)) (merge_prod ma (merge_list mr))"
lemma merge_rt_F\<^sub>m_cong [fundef_cong]:
assumes "\<And>a b. \<lbrakk> a \<in> set1_rt_F\<^sub>m x; b \<in> set1_rt_F\<^sub>m y \<rbrakk> \<Longrightarrow> ma a b = ma' a b"
and "\<And>a b. \<lbrakk> a \<in> set3_rt_F\<^sub>m x; b \<in> set3_rt_F\<^sub>m y \<rbrakk> \<Longrightarrow> mm a b = mm' a b"
shows "merge_rt_F\<^sub>m ha ma hm mm x y = merge_rt_F\<^sub>m ha ma' hm mm' x y"
using assms
apply(cases x; cases y; simp add: merge_rt_F\<^sub>m_def bind_UNION)
apply(rule arg_cong[where f="map_option _"])
apply(blast intro: merge_prod_cong merge_list_cong)
done
lemma in_set1_blindable\<^sub>m_iff: "x \<in> set1_blindable\<^sub>m y \<longleftrightarrow> y = Unblinded x"
by(cases y) auto
context
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
and ma :: "'a\<^sub>m merge"
notes in_set1_blindable\<^sub>m_iff[simp]
begin
fun merge_tree :: "('a\<^sub>m, 'a\<^sub>h) rose_tree\<^sub>m merge" where
"merge_tree (Tree\<^sub>m x) (Tree\<^sub>m y) = map_option Tree\<^sub>m (
merge_rt_F\<^sub>m h ma (hash_tree h) merge_tree x y)"
end
lemma merge_on_tree [locale_witness]:
assumes "merge_on A h bo m"
shows "merge_on {x. set1_rose_tree\<^sub>m x \<subseteq> A} (hash_tree h) (blinding_of_tree h bo) (merge_tree h m)"
(is "merge_on ?A ?h ?bo ?m")
proof -
interpret a: merge_on A h bo m by fact
show ?thesis
proof
have "(?h a = ?h b \<longrightarrow> (\<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u))) \<and>
(?h a \<noteq> ?h b \<longrightarrow> ?m a b = None)"
if "a \<in> ?A" for a b using that unfolding mem_Collect_eq
proof(induction a arbitrary: b rule: rose_tree\<^sub>m.induct)
case (Tree\<^sub>m x y)
interpret merge_on
"{y. set1_rt_F\<^sub>m y \<subseteq> A \<and> set3_rt_F\<^sub>m y \<subseteq> set3_rt_F\<^sub>m x}"
"hash_rt_F\<^sub>m h ?h"
"blinding_of_rt_F\<^sub>m h bo ?h ?bo"
"merge_rt_F\<^sub>m h m ?h ?m"
unfolding set_rt_F\<^sub>m_eq hash_rt_F\<^sub>m_alt_def merge_rt_F\<^sub>m_def
proof
fix a
assume a: "a \<in> set3_rt_F\<^sub>m x"
with Tree\<^sub>m.prems have a': "set1_rose_tree\<^sub>m a \<subseteq> A"
by(force simp add: bind_UNION)
from a obtain l and ab where a'': "ab \<in> set1_blindable\<^sub>m x" "l \<in> snds ab" "a \<in> set l"
by(clarsimp simp add: bind_UNION)
fix b
from Tree\<^sub>m.IH[OF a'' a', rule_format, of b]
show "hash_tree h a = hash_tree h b
\<Longrightarrow> \<exists>ab. merge_tree h m a b = Some ab \<and> blinding_of_tree h bo a ab \<and> blinding_of_tree h bo b ab \<and>
(\<forall>u. blinding_of_tree h bo a u \<longrightarrow> blinding_of_tree h bo b u \<longrightarrow> blinding_of_tree h bo ab u)"
and "hash_tree h a \<noteq> hash_tree h b \<Longrightarrow> merge_tree h m a b = None"
by(auto dest: sym)
qed
show ?case using Tree\<^sub>m.prems
apply(intro conjI strip)
subgoal by(cases y)(fastforce dest!: join simp add: blinding_of_tree.simps)
subgoal by (cases y) (fastforce dest!: undefined)
done
qed
then show
"?h a = ?h b \<Longrightarrow> \<exists>ab. ?m a b = Some ab \<and> ?bo a ab \<and> ?bo b ab \<and> (\<forall>u. ?bo a u \<longrightarrow> ?bo b u \<longrightarrow> ?bo ab u)"
"?h a \<noteq> ?h b \<Longrightarrow> ?m a b = None"
if "a \<in> ?A" for a b using that by blast+
qed
qed
lemmas merge_tree [locale_witness] = merge_on_tree[where A=UNIV, simplified]
lemma option_bind_comm:
"((x :: 'a option) \<bind> (\<lambda>y. c \<bind> (\<lambda>z. f y z))) = (c \<bind> (\<lambda>y. x \<bind> (\<lambda>z. f z y)))"
by(cases x; cases c; auto)
parametric_constant merge_rt_F\<^sub>m_parametric [transfer_rule]: merge_rt_F\<^sub>m_def
(************************************************************)
subsubsection \<open>Merkle interface\<close>
(************************************************************)
lemma merkle_tree [locale_witness]:
assumes "merkle_interface h bo m"
shows "merkle_interface (hash_tree h) (blinding_of_tree h bo) (merge_tree h m)"
proof -
interpret merge_on UNIV h bo m using assms unfolding merkle_interface_aux .
show ?thesis unfolding merkle_interface_aux[symmetric] ..
qed
lemma merge_tree_cong [fundef_cong]:
assumes "\<And>a b. \<lbrakk> a \<in> set1_rose_tree\<^sub>m x; b \<in> set1_rose_tree\<^sub>m y \<rbrakk> \<Longrightarrow> m a b = m' a b"
shows "merge_tree h m x y = merge_tree h m' x y"
using assms
apply(induction x y rule: merge_tree.induct)
apply(simp add: bind_UNION)
apply(rule arg_cong[where f="map_option _"])
apply(rule merge_rt_F\<^sub>m_cong; simp add: bind_UNION; blast)
done
end
|