Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 12,810 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
(* Author: Andreas Lochbihler, Digital Asset
Author: Ognjen Maric, Digital Asset *)
theory Merkle_Interface
imports
Main
"HOL-Library.Conditional_Parametricity"
"HOL-Library.Monad_Syntax"
begin
alias vimage2p = BNF_Def.vimage2p
alias Grp = BNF_Def.Grp
alias setl = Basic_BNFs.setl
alias setr = Basic_BNFs.setr
alias fsts = Basic_BNFs.fsts
alias snds = Basic_BNFs.snds
attribute_setup locale_witness = \<open>Scan.succeed Locale.witness_add\<close>
lemma vimage2p_mono': "R \<le> S \<Longrightarrow> vimage2p f g R \<le> vimage2p f g S"
by(auto simp add: vimage2p_def le_fun_def)
lemma vimage2p_map_rel_prod:
"vimage2p (map_prod f g) (map_prod f' g') (rel_prod A B) = rel_prod (vimage2p f f' A) (vimage2p g g' B)"
by(simp add: vimage2p_def prod.rel_map)
lemma vimage2p_map_list_all2:
"vimage2p (map f) (map g) (list_all2 A) = list_all2 (vimage2p f g A)"
by(simp add: vimage2p_def list.rel_map)
lemma equivclp_least:
assumes le: "r \<le> s" and s: "equivp s"
shows "equivclp r \<le> s"
apply(rule predicate2I)
subgoal by(induction rule: equivclp_induct)(auto 4 3 intro: equivp_reflp[OF s] equivp_transp[OF s] equivp_symp[OF s] le[THEN predicate2D])
done
lemma reflp_eq_onp: "reflp R \<longleftrightarrow> eq_onp (\<lambda>x. True) \<le> R"
by(auto simp add: reflp_def eq_onp_def)
lemma eq_onpE:
assumes "eq_onp P x y"
obtains "x = y" "P y"
using assms by(auto simp add: eq_onp_def)
lemma case_unit_parametric [transfer_rule]: "rel_fun A (rel_fun (=) A) case_unit case_unit"
by(simp add: rel_fun_def split: unit.split)
(************************************************************)
section \<open>Authenticated Data Structures\<close>
(************************************************************)
(************************************************************)
subsection \<open>Interface\<close>
(************************************************************)
(************************************************************)
subsubsection \<open> Types \<close>
(************************************************************)
type_synonym ('a\<^sub>m, 'a\<^sub>h) hash = "'a\<^sub>m \<Rightarrow> 'a\<^sub>h" \<comment> \<open>Type of hash operation\<close>
type_synonym 'a\<^sub>m blinding_of = "'a\<^sub>m \<Rightarrow> 'a\<^sub>m \<Rightarrow> bool"
type_synonym 'a\<^sub>m merge = "'a\<^sub>m \<Rightarrow> 'a\<^sub>m \<Rightarrow> 'a\<^sub>m option" \<comment> \<open> merging that can fail for values with different hashes\<close>
(************************************************************)
subsubsection \<open> Properties \<close>
(************************************************************)
locale merkle_interface =
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
and bo :: "'a\<^sub>m blinding_of"
and m :: "'a\<^sub>m merge"
assumes merge_respects_hashes: "h a = h b \<longleftrightarrow> (\<exists>ab. m a b = Some ab)"
and idem: "m a a = Some a"
and commute: "m a b = m b a"
and assoc: "m a b \<bind> m c = m b c \<bind> m a"
and bo_def: "bo a b \<longleftrightarrow> m a b = Some b"
begin
lemma reflp: "reflp bo"
unfolding bo_def by(rule reflpI)(simp add: idem)
lemma antisymp: "antisymp bo"
unfolding bo_def by(rule antisympI)(simp add: commute)
lemma transp: "transp bo"
apply(rule transpI)
subgoal for x y z using assoc[of x y z] by(simp add: commute bo_def)
done
lemma hash: "bo \<le> vimage2p h h (=)"
unfolding bo_def by(auto simp add: vimage2p_def merge_respects_hashes)
lemma join: "m a b = Some ab \<longleftrightarrow> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)"
unfolding bo_def
by (smt Option.bind_cong bind.bind_lunit commute idem merkle_interface.assoc merkle_interface_axioms)
text \<open>The equivalence closure of the blinding relation are the equivalence classes of the hash function (the kernel).\<close>
lemma equivclp_blinding_of: "equivclp bo = vimage2p h h (=)" (is "?lhs = ?rhs")
proof(rule antisym)
show "?lhs \<le> ?rhs" by(rule equivclp_least[OF hash])(rule equivp_vimage2p[OF identity_equivp])
show "?rhs \<le> ?lhs" unfolding vimage2p_def
proof(rule predicate2I)
fix x y
assume "h x = h y"
then obtain xy where "m x y = Some xy" unfolding merge_respects_hashes ..
hence "bo x xy" "bo y xy" unfolding join by blast+
hence "equivclp bo x xy" "equivclp bo xy y" by(blast)+
thus "equivclp bo x y" by(rule equivclp_trans)
qed
qed
end
(************************************************************)
subsection \<open> Auxiliary definitions \<close>
(************************************************************)
text \<open> Directly proving that an interface satisfies the specification of a Merkle interface as given
above is difficult. Instead, we provide several layers of auxiliary definitions that can easily be
proved layer-by-layer.
In particular, proving that an interface on recursive datatypes is a Merkle interface requires
induction. As the induction hypothesis only applies to a subset of values of a type, we add
auxiliary definitions equipped with an explicit set @{term A} of values to which the definition
applies. Once the induction proof is complete, we can typically instantiate @{term A} with @{term
UNIV}. In particular, in the induction proof for a layer, we can assume that properties for the
earlier layers hold for \<^emph>\<open>all\<close> values, not just those in the induction hypothesis.
\<close>
(************************************************************)
subsubsection \<open> Blinding \<close>
(************************************************************)
locale blinding_respects_hashes =
fixes h :: "('a\<^sub>m, 'a\<^sub>h) hash"
and bo :: "'a\<^sub>m blinding_of"
assumes hash: "bo \<le> vimage2p h h (=)"
begin
lemma blinding_hash_eq: "bo x y \<Longrightarrow> h x = h y"
by(drule hash[THEN predicate2D])(simp add: vimage2p_def)
end
locale blinding_of_on =
blinding_respects_hashes h bo
for A :: "'a\<^sub>m set"
and h :: "('a\<^sub>m, 'a\<^sub>h) hash"
and bo :: "'a\<^sub>m blinding_of"
+ assumes refl: "x \<in> A \<Longrightarrow> bo x x"
and trans: "\<lbrakk> bo x y; bo y z; x \<in> A \<rbrakk> \<Longrightarrow> bo x z"
and antisym: "\<lbrakk> bo x y; bo y x; x \<in> A \<rbrakk> \<Longrightarrow> x = y"
begin
lemma refl_pointfree: "eq_onp (\<lambda>x. x \<in> A) \<le> bo"
by(auto elim!: eq_onpE intro: refl)
lemma blinding_respects_hashes: "blinding_respects_hashes h bo" ..
lemmas hash = hash
lemma trans_pointfree: "eq_onp (\<lambda>x. x \<in> A) OO bo OO bo \<le> bo"
by(auto elim!: eq_onpE intro: trans)
lemma antisym_pointfree: "inf (eq_onp (\<lambda>x. x \<in> A) OO bo) bo\<inverse>\<inverse> \<le> (=)"
by(auto elim!: eq_onpE dest: antisym)
end
(************************************************************)
subsubsection \<open> Merging \<close>
(************************************************************)
text \<open> In general, we prove the properties of blinding before the properties of merging. Thus,
in the following definitions we assume that the blinding properties already hold on @{term UNIV}.
The @{term Ball} restricts the argument of the merge operation on which induction will be done. \<close>
locale merge_on =
blinding_of_on UNIV h bo
for A :: "'a\<^sub>m set"
and h :: "('a\<^sub>m, 'a\<^sub>h) hash"
and bo :: "'a\<^sub>m blinding_of"
and m :: "'a\<^sub>m merge" +
assumes join: "\<lbrakk> h a = h b; a \<in> A \<rbrakk>
\<Longrightarrow> \<exists>ab. m a b = Some ab \<and> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)"
and undefined: "\<lbrakk> h a \<noteq> h b; a \<in> A \<rbrakk> \<Longrightarrow> m a b = None"
begin
lemma same: "a \<in> A \<Longrightarrow> m a a = Some a"
using join[of a a] refl[of a] by(auto 4 3 intro: antisym)
lemma blinding_of_antisym_on: "blinding_of_on UNIV h bo" ..
lemma transp: "transp bo"
by(auto intro: transpI trans)
lemmas hash = hash
and refl = refl
and antisym = antisym[OF _ _ UNIV_I]
lemma respects_hashes:
"a \<in> A \<Longrightarrow> h a = h b \<longleftrightarrow> (\<exists>ab. m a b = Some ab)"
using join undefined
by fastforce
lemma join':
"a \<in> A \<Longrightarrow> \<forall>ab. m a b = Some ab \<longleftrightarrow> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)"
using join undefined
by (metis (full_types) hash local.antisym option.distinct(1) option.sel predicate2D vimage2p_def)
lemma merge_on_subset:
"B \<subseteq> A \<Longrightarrow> merge_on B h bo m"
by unfold_locales (auto dest: same join undefined)
end
subsection \<open> Interface equality \<close>
text \<open> Here, we prove that the auxiliary definitions specify the same interface as the original ones.\<close>
lemma merkle_interface_aux: "merkle_interface h bo m = merge_on UNIV h bo m"
(is "?lhs = ?rhs")
proof
show ?rhs if ?lhs
proof
interpret merkle_interface h bo m by(fact that)
show "bo \<le> vimage2p h h (=)" by(fact hash)
show "bo x x" for x using reflp by(simp add: reflp_def)
show "bo x z" if "bo x y" "bo y z" for x y z using transp that by(rule transpD)
show "x = y" if "bo x y" "bo y x" for x y using antisymp that by(rule antisympD)
show "\<exists>ab. m a b = Some ab \<and> bo a ab \<and> bo b ab \<and> (\<forall>u. bo a u \<longrightarrow> bo b u \<longrightarrow> bo ab u)" if "h a = h b" for a b
using that by(simp add: merge_respects_hashes join)
show "m a b = None" if "h a \<noteq> h b" for a b using that by(simp add: merge_respects_hashes)
qed
show ?lhs if ?rhs
proof
interpret merge_on UNIV h bo m by(fact that)
show eq: "h a = h b \<longleftrightarrow> (\<exists>ab. m a b = Some ab)" for a b by(simp add: respects_hashes)
show idem: "m a a = Some a" for a by(simp add: same)
show commute: "m a b = m b a" for a b
using join[of a b] join[of b a] undefined antisym by(cases "m a b") force+
have undefined_partitioned: "m a c = None" if "m a b = None" "m b c = Some bc" for a b c bc
using that eq by (metis option.distinct(1) option.exhaust)
have merge_twice: "m a b = Some c \<Longrightarrow> m a c = Some c" for a b c by (simp add: join')
show "m a b \<bind> m c = m b c \<bind> m a" for a b c
proof(simp split: Option.bind_split; safe)
show "None = m a d" if "m a b = None" "m b c = Some d" for d using that
by(metis undefined_partitioned merge_twice)
show "m c d = None" if "m a b = Some d" "m b c = None" for d using that
by(metis commute merge_twice undefined_partitioned)
next
fix ab bc
assume assms: "m a b = Some ab" "m b c = Some bc"
then obtain cab and abc where cab: "m c ab = Some cab" and abc: "m a bc = Some abc"
using eq[THEN iffD2, OF exI] eq[THEN iffD1] by (metis merge_twice)
thus "m c ab = m a bc" using assms
by(clarsimp simp add: join')(metis UNIV_I abc cab local.antisym local.trans)
qed
show "bo a b \<longleftrightarrow> m a b = Some b" for a b using idem join' by auto
qed
qed
lemma merkle_interfaceI [locale_witness]:
assumes "merge_on UNIV h bo m"
shows "merkle_interface h bo m"
using assms unfolding merkle_interface_aux by auto
lemma (in merkle_interface) merkle_interfaceD: "merge_on UNIV h bo m"
using merkle_interface_aux[of h bo m, symmetric]
by simp unfold_locales
subsection \<open> Parametricity rules \<close>
context includes lifting_syntax begin
parametric_constant le_fun_parametric[transfer_rule]: le_fun_def
parametric_constant vimage2p_parametric[transfer_rule]: vimage2p_def
parametric_constant blinding_respects_hashes_parametric_aux: blinding_respects_hashes_def
lemma blinding_respects_hashes_parametric [transfer_rule]:
"((A1 ===> A2) ===> (A1 ===> A1 ===> (\<longleftrightarrow>)) ===> (\<longleftrightarrow>))
blinding_respects_hashes blinding_respects_hashes"
if [transfer_rule]: "bi_unique A2" "bi_total A1"
by(rule blinding_respects_hashes_parametric_aux that le_fun_parametric | simp add: rel_fun_eq)+
parametric_constant blinding_of_on_axioms_parametric [transfer_rule]:
blinding_of_on_axioms_def[folded Ball_def, unfolded le_fun_def le_bool_def eq_onp_def relcompp.simps, simplified]
parametric_constant blinding_of_on_parametric [transfer_rule]: blinding_of_on_def
parametric_constant antisymp_parametric[transfer_rule]: antisymp_def
parametric_constant transp_parametric[transfer_rule]: transp_def
parametric_constant merge_on_axioms_parametric [transfer_rule]: merge_on_axioms_def
parametric_constant merge_on_parametric[transfer_rule]: merge_on_def
parametric_constant merkle_interface_parametric[transfer_rule]: merkle_interface_def
end
end |