Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,615 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
theory SASP_Semantics
imports Main
begin

section \<open>Semantics of Fast-Downward's Multi-Valued Planning Tasks Language\<close>

subsection \<open>Syntax\<close>
  type_synonym name = string
  type_synonym ast_variable = "name \<times> nat option \<times> name list" (* var name, axiom layer, atom names *)
  type_synonym ast_variable_section = "ast_variable list"
  type_synonym ast_initial_state = "nat list"
  type_synonym ast_goal = "(nat \<times> nat) list"
  type_synonym ast_precond = "(nat \<times> nat)"
  type_synonym ast_effect = "ast_precond list \<times> nat \<times> nat option \<times> nat"
  type_synonym ast_operator = "name \<times> ast_precond list \<times> ast_effect list \<times> nat"
  type_synonym ast_operator_section = "ast_operator list"
  
  type_synonym ast_problem = 
    "ast_variable_section \<times> ast_initial_state \<times> ast_goal \<times> ast_operator_section"

  type_synonym plan = "name list"
    
  subsubsection \<open>Well-Formedness\<close>
    
  locale ast_problem =
    fixes problem :: ast_problem
  begin    
    definition astDom :: ast_variable_section (* TODO: Dom \<rightarrow> Vars, D \<rightarrow> X*)
      where "astDom \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> D"
    definition astI :: ast_initial_state
      where "astI \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> I"
    definition astG :: ast_goal
      where "astG \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> G"
    definition ast\<delta> :: ast_operator_section
      where "ast\<delta> \<equiv> case problem of (D,I,G,\<delta>) \<Rightarrow> \<delta>"
    
    definition "numVars \<equiv> length astDom"
    definition "numVals x \<equiv> length (snd (snd (astDom!x)))"

    definition "wf_partial_state ps \<equiv> 
        distinct (map fst ps) 
      \<and> (\<forall>(x,v) \<in> set ps. x < numVars \<and> v < numVals x)"
      
    definition wf_operator :: "ast_operator \<Rightarrow> bool" 
      where "wf_operator \<equiv> \<lambda>(name, pres, effs, cost). 
        wf_partial_state pres 
      \<and> distinct (map (\<lambda>(_, v, _, _). v) effs) \<comment> \<open>This may be too restrictive\<close>
      \<and> (\<forall>(epres,x,vp,v)\<in>set effs. 
          wf_partial_state epres 
        \<and> x < numVars \<and> v < numVals x  
        \<and> (case vp of None \<Rightarrow> True | Some v \<Rightarrow> v<numVals x)
        )
    "
      
    definition "well_formed \<equiv> 
      \<comment> \<open>Initial state\<close>
      length astI = numVars
    \<and> (\<forall>x<numVars. astI!x < numVals x)

      \<comment> \<open>Goal\<close>
    \<and> wf_partial_state astG

    \<comment> \<open>Operators\<close>
    \<and> (distinct (map fst ast\<delta>))
    \<and> (\<forall>\<pi>\<in>set ast\<delta>. wf_operator \<pi>)
    "
      
  end  
  
  locale wf_ast_problem = ast_problem +
    assumes wf: well_formed
  begin
    lemma wf_initial: 
      "length astI = numVars" 
      "\<forall>x<numVars. astI!x < numVals x"
      using wf unfolding well_formed_def by auto

    lemma wf_goal: "wf_partial_state astG"    
      using wf unfolding well_formed_def by auto

    lemma wf_operators: 
      "distinct (map fst ast\<delta>)"
      "\<forall>\<pi>\<in>set ast\<delta>. wf_operator \<pi>"
      using wf unfolding well_formed_def by auto
  end      
    
    
  subsection \<open>Semantics as Transition System\<close>  
    
  type_synonym state = "nat \<rightharpoonup> nat"
  type_synonym pstate = "nat \<rightharpoonup> nat"
    
    
  context ast_problem
  begin    
    
    definition Dom :: "nat set" where "Dom = {0..<numVars}"

    definition range_of_var where "range_of_var x \<equiv> {0..<numVals x}"

    definition valid_states :: "state set" where "valid_states \<equiv> {
      s. dom s = Dom \<and> (\<forall>x\<in>Dom. the (s x) \<in> range_of_var x)
    }"

    definition I :: state 
      where "I v \<equiv> if v<length astI then Some (astI!v) else None"

    definition subsuming_states :: "pstate \<Rightarrow> state set"
      where "subsuming_states partial \<equiv> { s\<in>valid_states. partial \<subseteq>\<^sub>m s }"

    definition G :: "state set" 
      where "G \<equiv> subsuming_states (map_of astG)"
end

    definition implicit_pres :: "ast_effect list \<Rightarrow> ast_precond list" where 
      "implicit_pres effs \<equiv> 
      map (\<lambda>(_,v,vpre,_). (v,the vpre))
          (filter (\<lambda>(_,_,vpre,_). vpre\<noteq>None) effs)"

context ast_problem
begin

    definition lookup_operator :: "name \<Rightarrow> ast_operator option" where
      "lookup_operator name \<equiv> find (\<lambda>(n,_,_,_). n=name) ast\<delta>"

    definition enabled :: "name \<Rightarrow> state \<Rightarrow> bool"
      where "enabled name s \<equiv>
        case lookup_operator name of
          Some (_,pres,effs,_) \<Rightarrow> 
              s\<in>subsuming_states (map_of pres)
            \<and> s\<in>subsuming_states (map_of (implicit_pres effs))
        | None \<Rightarrow> False"
      
    definition eff_enabled :: "state \<Rightarrow> ast_effect \<Rightarrow> bool" where
      "eff_enabled s \<equiv> \<lambda>(pres,_,_,_). s\<in>subsuming_states (map_of pres)"

    definition execute :: "name \<Rightarrow> state \<Rightarrow> state" where
      "execute name s \<equiv> 
        case lookup_operator name of
          Some (_,_,effs,_) \<Rightarrow>
            s ++ map_of (map (\<lambda>(_,x,_,v). (x,v)) (filter (eff_enabled s) effs))
        | None \<Rightarrow> undefined                                    
        "

    fun path_to where
      "path_to s [] s' \<longleftrightarrow> s'=s"
    | "path_to s (\<pi>#\<pi>s) s' \<longleftrightarrow> enabled \<pi> s \<and> path_to (execute \<pi> s) \<pi>s s'"

    definition valid_plan :: "plan \<Rightarrow> bool" 
      where "valid_plan \<pi>s \<equiv> \<exists>s'\<in>G. path_to I \<pi>s s'"


  end

  (*
    Next steps:
      * well-formed stuff
      * Executable SAS+ validator (well_formed and execute function)

  *)  
    
  subsubsection \<open>Preservation of well-formedness\<close>  
  context wf_ast_problem 
  begin      
    lemma I_valid: "I \<in> valid_states"
      using wf_initial 
      unfolding valid_states_def Dom_def I_def range_of_var_def
      by (auto split:if_splits)
      
    lemma lookup_operator_wf:
      assumes "lookup_operator name = Some \<pi>"
      shows "wf_operator \<pi>" "fst \<pi> = name"  
    proof -
      obtain name' pres effs cost where [simp]: "\<pi>=(name',pres,effs,cost)" by (cases \<pi>)
      hence [simp]: "name'=name" and IN_AST: "(name,pres,effs,cost) \<in> set ast\<delta>"
        using assms
        unfolding lookup_operator_def
        apply -
        apply (metis (mono_tags, lifting) case_prodD find_Some_iff)  
        by (metis (mono_tags, lifting) case_prodD find_Some_iff nth_mem)  
      
      from IN_AST show WF: "wf_operator \<pi>" "fst \<pi> = name"   
        unfolding enabled_def using wf_operators by auto
    qed
        
        
    lemma execute_preserves_valid:
      assumes "s\<in>valid_states"  
      assumes "enabled name s"  
      shows "execute name s \<in> valid_states"  
    proof -
      from \<open>enabled name s\<close> obtain name' pres effs cost where
        [simp]: "lookup_operator name = Some (name',pres,effs,cost)"
        unfolding enabled_def by (auto split: option.splits)
      from lookup_operator_wf[OF this] have WF: "wf_operator (name,pres,effs,cost)" by simp   
      
      have X1: "s ++ m \<in> valid_states" if "\<forall>x v. m x = Some v \<longrightarrow> x<numVars \<and> v<numVals x" for m
        using that \<open>s\<in>valid_states\<close>
        by (auto 
            simp: valid_states_def Dom_def range_of_var_def map_add_def dom_def 
            split: option.splits)  
      
      have X2: "x<numVars" "v<numVals x" 
        if "map_of (map (\<lambda>(_, x, _, y). (x, y)) (filter (eff_enabled s) effs)) x = Some v"    
        for x v
      proof -
        from that obtain epres vp where "(epres,x,vp,v) \<in> set effs"
          by (auto dest!: map_of_SomeD)
        with WF show "x<numVars" "v<numVals x"
          unfolding wf_operator_def by auto
      qed
          
      show ?thesis
        using assms  
        unfolding enabled_def execute_def 
        by (auto intro!: X1 X2)
    qed      
    
    lemma path_to_pres_valid:
      assumes "s\<in>valid_states"
      assumes "path_to s \<pi>s s'"
      shows "s'\<in>valid_states"
      using assms
      by (induction s \<pi>s s' rule: path_to.induct) (auto simp: execute_preserves_valid)  
      
  end

end