Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 27,906 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
(* Title: Inductive definition of Hoare logic for total correctness
Author: Tobias Nipkow, 2001/2006
Maintainer: Tobias Nipkow
*)
theory PHoareTotal imports PHoare PTermi begin
subsection\<open>Hoare logic for total correctness\<close>
text\<open>Validity is defined as expected:\<close>
definition
tvalid :: "'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool" ("\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_)}" 50) where
"\<Turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q} \<and> (\<forall>z s. P z s \<longrightarrow> c\<down>s)"
definition
ctvalid :: "'a cntxt \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool"
("(_ /\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_))}" 50) where
"C \<Turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> (\<forall>(P',c',Q') \<in> C. \<Turnstile>\<^sub>t {P'}c'{Q'}) \<longrightarrow> \<Turnstile>\<^sub>t {P}c{Q}"
inductive
thoare :: "'a cntxt \<Rightarrow> 'a assn \<Rightarrow> com \<Rightarrow> 'a assn \<Rightarrow> bool"
("(_ \<turnstile>\<^sub>t/ ({(1_)}/ (_)/ {(1_)}))" [50,0,0,0] 50)
where
Do: "C \<turnstile>\<^sub>t {\<lambda>z s. (\<forall>t \<in> f s . P z t) \<and> f s \<noteq> {}} Do f {P}"
| Semi: "\<lbrakk> C \<turnstile>\<^sub>t {P}c1{Q}; C \<turnstile>\<^sub>t {Q}c2{R} \<rbrakk> \<Longrightarrow> C \<turnstile>\<^sub>t {P} c1;c2 {R}"
| If: "\<lbrakk> C \<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> b s}c{Q}; C \<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> ~b s}d{Q} \<rbrakk> \<Longrightarrow>
C \<turnstile>\<^sub>t {P} IF b THEN c ELSE d {Q}"
| While:
"\<lbrakk>wf r; \<forall>s'. C \<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> b s \<and> s' = s} c {\<lambda>z s. P z s \<and> (s,s') \<in> r}\<rbrakk>
\<Longrightarrow> C \<turnstile>\<^sub>t {P} WHILE b DO c {\<lambda>z s. P z s \<and> \<not>b s}"
| Call:
"\<lbrakk>wf r; \<forall>s'. {(\<lambda>z s. P z s \<and> (s,s') \<in> r, CALL, Q)}
\<turnstile>\<^sub>t {\<lambda>z s. P z s \<and> s = s'} body {Q}\<rbrakk>
\<Longrightarrow> {} \<turnstile>\<^sub>t {P} CALL {Q}"
| Asm: "{(P,CALL,Q)} \<turnstile>\<^sub>t {P} CALL {Q}"
| Conseq:
"\<lbrakk> C \<turnstile>\<^sub>t {P'}c{Q'};
(\<forall>s t. (\<forall>z. P' z s \<longrightarrow> Q' z t) \<longrightarrow> (\<forall>z. P z s \<longrightarrow> Q z t)) \<and>
(\<forall>s. (\<exists>z. P z s) \<longrightarrow> (\<exists>z. P' z s)) \<rbrakk>
\<Longrightarrow> C \<turnstile>\<^sub>t {P}c{Q}"
| Local: "\<lbrakk> \<forall>s'. C \<turnstile>\<^sub>t {\<lambda>z s. P z s' \<and> s = f s'} c {\<lambda>z t. Q z (g s' t)} \<rbrakk> \<Longrightarrow>
C \<turnstile>\<^sub>t {P} LOCAL f;c;g {Q}"
abbreviation hoare1 :: "'a cntxt \<Rightarrow> 'a assn \<times> com \<times> 'a assn \<Rightarrow> bool" ("_ \<turnstile>\<^sub>t _") where
"C \<turnstile>\<^sub>t x \<equiv> C \<turnstile>\<^sub>t {fst x}fst (snd x){snd (snd x)}"
text\<open>The side condition in our rule of consequence looks quite different
from the one by Kleymann, but the two are in fact equivalent:\<close>
lemma "((\<forall>s t. (\<forall>z. P' z s \<longrightarrow> Q' z t) \<longrightarrow> (\<forall>z. P z s \<longrightarrow> Q z t)) \<and>
(\<forall>s. (\<exists>z. P z s) \<longrightarrow> (\<exists>z. P' z s)))
= (\<forall>z s. P z s \<longrightarrow> (\<forall>t.\<exists>z'. P' z' s \<and> (Q' z' t \<longrightarrow> Q z t)))"
by blast
text\<open>The key difference to the work by Kleymann (and America and de
Boer) is that soundness and completeness are shown for arbitrary,
i.e.\ unbounded nondeterminism. This is a significant extension and
appears to have been an open problem. The details are found below and
are explained in a separate paper~\cite{Nipkow-CSL02}.\<close>
lemma strengthen_pre:
"\<lbrakk> \<forall>z s. P' z s \<longrightarrow> P z s; C \<turnstile>\<^sub>t {P}c{Q} \<rbrakk> \<Longrightarrow> C \<turnstile>\<^sub>t {P'}c{Q}"
by(rule thoare.Conseq, assumption, blast)
lemma weaken_post:
"\<lbrakk> C \<turnstile>\<^sub>t {P}c{Q}; \<forall>z s. Q z s \<longrightarrow> Q' z s \<rbrakk> \<Longrightarrow> C \<turnstile>\<^sub>t {P}c{Q'}"
by(erule thoare.Conseq, blast)
lemmas tvalid_defs = tvalid_def ctvalid_def valid_defs
lemma [iff]:
"(\<Turnstile>\<^sub>t {\<lambda>z s. \<exists>n. P n z s}c{Q}) = (\<forall>n. \<Turnstile>\<^sub>t {P n}c{Q})"
apply(unfold tvalid_defs)
apply fast
done
lemma [iff]:
"(\<Turnstile>\<^sub>t {\<lambda>z s. P z s \<and> P'}c{Q}) = (P' \<longrightarrow> \<Turnstile>\<^sub>t {P}c{Q})"
apply(unfold tvalid_defs)
apply fast
done
lemma [iff]: "(\<Turnstile>\<^sub>t {P}CALL{Q}) = (\<Turnstile>\<^sub>t {P}body{Q})"
apply(unfold tvalid_defs)
apply fast
done
theorem "C \<turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> C \<Turnstile>\<^sub>t {P}c{Q}"
apply(erule thoare.induct)
apply(simp only:tvalid_defs)
apply fast
apply(simp only:tvalid_defs)
apply fast
apply(simp only:tvalid_defs)
apply clarsimp
prefer 3
apply(simp add:tvalid_defs)
prefer 3
apply(simp only:tvalid_defs)
apply blast
apply(simp only:tvalid_defs)
apply(rule impI, rule conjI)
apply(rule allI)
apply(erule wf_induct)
apply clarify
apply(drule unfold_while[THEN iffD1])
apply (simp split: if_split_asm)
apply fast
apply(rule allI, rule allI)
apply(erule wf_induct)
apply clarify
apply(case_tac "b x")
prefer 2
apply (erule termi.WhileFalse)
apply(rule termi.WhileTrue, assumption)
apply fast
apply (subgoal_tac "(t,x):r")
apply fast
apply blast
apply(simp (no_asm_use) add:ctvalid_def)
apply(subgoal_tac "\<forall>n. \<Turnstile>\<^sub>t {\<lambda>z s. P z s \<and> s=n} body {Q}")
apply(simp (no_asm_use) add:tvalid_defs)
apply blast
apply(rule allI)
apply(erule wf_induct)
apply(unfold tvalid_defs)
apply fast
apply fast
done
definition MGT\<^sub>t :: "com \<Rightarrow> state assn \<times> com \<times> state assn" where
[simp]: "MGT\<^sub>t c = (\<lambda>z s. z = s \<and> c\<down>s, c, \<lambda>z t. z -c\<rightarrow> t)"
lemma MGT_implies_complete:
"{} \<turnstile>\<^sub>t MGT\<^sub>t c \<Longrightarrow> {} \<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {P}c{Q::state assn}"
apply(simp add: MGT\<^sub>t_def)
apply (erule thoare.Conseq)
apply(simp add: tvalid_defs)
apply blast
done
lemma while_termiE: "\<lbrakk> WHILE b DO c \<down> s; b s \<rbrakk> \<Longrightarrow> c \<down> s"
by(erule termi.cases, auto)
lemma while_termiE2:
"\<lbrakk> WHILE b DO c \<down> s; b s; s -c\<rightarrow> t \<rbrakk> \<Longrightarrow> WHILE b DO c \<down> t"
by(erule termi.cases, auto)
lemma MGT_lemma: "C \<turnstile>\<^sub>t MGT\<^sub>t CALL \<Longrightarrow> C \<turnstile>\<^sub>t MGT\<^sub>t c"
apply (simp)
apply(induct_tac c)
apply (rule strengthen_pre[OF _ thoare.Do])
apply blast
apply(rename_tac com1 com2)
apply(rule_tac Q = "\<lambda>z s. z -com1\<rightarrow>s & com2\<down>s" in thoare.Semi)
apply(erule thoare.Conseq)
apply fast
apply(erule thoare.Conseq)
apply fast
apply(rule thoare.If)
apply(erule thoare.Conseq)
apply simp
apply(erule thoare.Conseq)
apply simp
defer
apply simp
apply(fast intro:thoare.Local elim!: thoare.Conseq)
apply(rename_tac b c)
apply(rule_tac P' = "\<lambda>z s. (z,s) \<in> ({(s,t). b s \<and> s -c\<rightarrow> t})^* \<and>
WHILE b DO c \<down> s" in thoare.Conseq)
apply(rule_tac thoare.While[OF wf_termi])
apply(rule allI)
apply(erule thoare.Conseq)
apply(fastforce intro:rtrancl_into_rtrancl dest:while_termiE while_termiE2)
apply(rule conjI)
apply clarsimp
apply(erule_tac x = s in allE)
apply clarsimp
apply(erule converse_rtrancl_induct)
apply simp
apply(fast elim:exec.WhileTrue)
apply(fast intro: rtrancl_refl)
done
inductive_set
exec1 :: "((com list \<times> state) \<times> (com list \<times> state))set"
and exec1' :: "(com list \<times> state) \<Rightarrow> (com list \<times> state) \<Rightarrow> bool" ("_ \<rightarrow> _" [81,81] 100)
where
"cs0 \<rightarrow> cs1 \<equiv> (cs0,cs1) : exec1"
| Do[iff]: "t \<in> f s \<Longrightarrow> ((Do f)#cs,s) \<rightarrow> (cs,t)"
| Semi[iff]: "((c1;c2)#cs,s) \<rightarrow> (c1#c2#cs,s)"
| IfTrue: "b s \<Longrightarrow> ((IF b THEN c1 ELSE c2)#cs,s) \<rightarrow> (c1#cs,s)"
| IfFalse: "\<not>b s \<Longrightarrow> ((IF b THEN c1 ELSE c2)#cs,s) \<rightarrow> (c2#cs,s)"
| WhileFalse: "\<not>b s \<Longrightarrow> ((WHILE b DO c)#cs,s) \<rightarrow> (cs,s)"
| WhileTrue: "b s \<Longrightarrow> ((WHILE b DO c)#cs,s) \<rightarrow> (c#(WHILE b DO c)#cs,s)"
| Call[iff]: "(CALL#cs,s) \<rightarrow> (body#cs,s)"
| Local[iff]: "((LOCAL f;c;g)#cs,s) \<rightarrow> (c # Do(\<lambda>t. {g s t})#cs, f s)"
abbreviation
exectr :: "(com list \<times> state) \<Rightarrow> (com list \<times> state) \<Rightarrow> bool" ("_ \<rightarrow>\<^sup>* _" [81,81] 100)
where "cs0 \<rightarrow>\<^sup>* cs1 \<equiv> (cs0,cs1) : exec1^*"
inductive_cases exec1E[elim!]:
"([],s) \<rightarrow> (cs',s')"
"(Do f#cs,s) \<rightarrow> (cs',s')"
"((c1;c2)#cs,s) \<rightarrow> (cs',s')"
"((IF b THEN c1 ELSE c2)#cs,s) \<rightarrow> (cs',s')"
"((WHILE b DO c)#cs,s) \<rightarrow> (cs',s')"
"(CALL#cs,s) \<rightarrow> (cs',s')"
"((LOCAL f;c;g)#cs,s) \<rightarrow> (cs',s')"
lemma [iff]: "\<not> ([],s) \<rightarrow> u"
by (induct u) blast
lemma app_exec: "(cs,s) \<rightarrow> (cs',s') \<Longrightarrow> (cs@cs2,s) \<rightarrow> (cs'@cs2,s')"
apply(erule exec1.induct)
apply(simp_all del:fun_upd_apply)
apply(blast intro:exec1.intros)+
done
lemma app_execs: "(cs,s) \<rightarrow>\<^sup>* (cs',s') \<Longrightarrow> (cs@cs2,s) \<rightarrow>\<^sup>* (cs'@cs2,s')"
apply(erule rtrancl_induct2)
apply blast
apply(blast intro:app_exec rtrancl_trans)
done
lemma exec_impl_execs[rule_format]:
"s -c\<rightarrow> s' \<Longrightarrow> \<forall>cs. (c#cs,s) \<rightarrow>\<^sup>* (cs,s')"
apply(erule exec.induct)
apply blast
apply(blast intro:rtrancl_trans)
apply(blast intro:exec1.IfTrue rtrancl_trans)
apply(blast intro:exec1.IfFalse rtrancl_trans)
apply(blast intro:exec1.WhileFalse rtrancl_trans)
apply(blast intro:exec1.WhileTrue rtrancl_trans)
apply(blast intro: rtrancl_trans)
apply(blast intro: rtrancl_trans)
done
inductive
execs :: "state \<Rightarrow> com list \<Rightarrow> state \<Rightarrow> bool" ("_/ =_\<Rightarrow>/ _" [50,0,50] 50)
where
"s =[]\<Rightarrow> s"
| "s -c\<rightarrow> t \<Longrightarrow> t =cs\<Rightarrow> u \<Longrightarrow> s =c#cs\<Rightarrow> u"
inductive_cases [elim!]:
"s =[]\<Rightarrow> t"
"s =c#cs\<Rightarrow> t"
theorem exec1s_impl_execs: "(cs,s) \<rightarrow>\<^sup>* ([],t) \<Longrightarrow> s =cs\<Rightarrow> t"
apply(erule converse_rtrancl_induct2)
apply(rule execs.intros)
apply(erule exec1.cases)
apply(blast intro:execs.intros)
apply(blast intro:execs.intros)
apply(fastforce intro:execs.intros)
apply(fastforce intro:execs.intros)
apply(blast intro:execs.intros exec.intros)
apply(blast intro:execs.intros exec.intros)
apply(blast intro:execs.intros exec.intros)
apply(blast intro:execs.intros exec.intros)
done
theorem exec1s_impl_exec: "([c],s) \<rightarrow>\<^sup>* ([],t) \<Longrightarrow> s -c\<rightarrow> t"
by(blast dest: exec1s_impl_execs)
primrec termis :: "com list \<Rightarrow> state \<Rightarrow> bool" (infixl "\<Down>" 60) where
"[]\<Down>s = True"
| "c#cs \<Down> s = (c\<down>s \<and> (\<forall>t. s -c\<rightarrow> t \<longrightarrow> cs\<Down>t))"
lemma exec1_pres_termis: "(cs,s) \<rightarrow> (cs',s') \<Longrightarrow> cs\<Down>s \<longrightarrow> cs'\<Down>s'"
apply(erule exec1.induct)
apply(simp_all)
apply blast
apply(blast intro:while_termiE while_termiE2 exec.WhileTrue)
apply blast
done
lemma execs_pres_termis: "(cs,s) \<rightarrow>\<^sup>* (cs',s') \<Longrightarrow> cs\<Down>s \<longrightarrow> cs'\<Down>s'"
apply(erule rtrancl_induct2)
apply blast
apply(blast dest:exec1_pres_termis)
done
lemma execs_pres_termi: "\<lbrakk> ([c],s) \<rightarrow>\<^sup>* (c'#cs',s'); c\<down>s \<rbrakk> \<Longrightarrow> c'\<down>s'"
apply(insert execs_pres_termis[of "[c]" _ "c'#cs'",simplified])
apply blast
done
definition
termi_call_steps :: "(state \<times> state)set" where
"termi_call_steps = {(t,s). body\<down>s \<and> (\<exists>cs. ([body], s) \<rightarrow>\<^sup>* (CALL # cs, t))}"
lemma lem:
"\<forall>y. (a,y)\<in>r\<^sup>+ \<longrightarrow> P a \<longrightarrow> P y \<Longrightarrow> ((b,a) \<in> {(y,x). P x \<and> (x,y):r}\<^sup>+) = ((b,a) \<in> {(y,x). P x \<and> (x,y)\<in>r\<^sup>+})"
apply(rule iffI)
apply clarify
apply(erule trancl_induct)
apply blast
apply(blast intro:trancl_trans)
apply clarify
apply(erule trancl_induct)
apply blast
apply(blast intro:trancl_trans)
done
lemma renumber_aux:
"\<lbrakk>\<forall>i. (a,f i) : r^* \<and> (f i,f(Suc i)) : r; (a,b) : r^* \<rbrakk> \<Longrightarrow> b = f 0 \<longrightarrow> (\<exists>f. f 0 = a & (\<forall>i. (f i, f(Suc i)) : r))"
apply(erule converse_rtrancl_induct)
apply blast
apply(clarsimp)
apply(rule_tac x="\<lambda>i. case i of 0 \<Rightarrow> y | Suc i \<Rightarrow> fa i" in exI)
apply simp
apply clarify
apply(case_tac i)
apply simp_all
done
lemma renumber:
"\<forall>i. (a,f i) : r^* \<and> (f i,f(Suc i)) : r \<Longrightarrow> \<exists>f. f 0 = a & (\<forall>i. (f i, f(Suc i)) : r)"
by(blast dest:renumber_aux)
definition inf :: "com list \<Rightarrow> state \<Rightarrow> bool" where
"inf cs s \<longleftrightarrow> (\<exists>f. f 0 = (cs,s) \<and> (\<forall>i. f i \<rightarrow> f(Suc i)))"
lemma [iff]: "\<not> inf [] s"
apply(unfold inf_def)
apply clarify
apply(erule_tac x = 0 in allE)
apply simp
done
lemma [iff]: "\<not> inf [Do f] s"
apply(unfold inf_def)
apply clarify
apply(frule_tac x = 0 in spec)
apply(erule_tac x = 1 in allE)
apply(case_tac "fa (Suc 0)")
apply clarsimp
done
lemma [iff]: "inf ((c1;c2)#cs) s = inf (c1#c2#cs) s"
apply(unfold inf_def)
apply(rule iffI)
apply clarify
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply(frule_tac x = 0 in spec)
apply(case_tac "f (Suc 0)")
apply clarsimp
apply clarify
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((c1;c2)#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp split:nat.split)
done
lemma [iff]: "inf ((IF b THEN c1 ELSE c2)#cs) s =
inf ((if b s then c1 else c2)#cs) s"
apply(unfold inf_def)
apply(rule iffI)
apply clarsimp
apply(frule_tac x = 0 in spec)
apply (case_tac "f (Suc 0)")
apply(rule conjI)
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply clarsimp
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((IF b THEN c1 ELSE c2)#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp add: exec1.intros split:nat.split)
done
lemma [simp]:
"inf ((WHILE b DO c)#cs) s =
(if b s then inf (c#(WHILE b DO c)#cs) s else inf cs s)"
apply(unfold inf_def)
apply(rule iffI)
apply clarsimp
apply(frule_tac x = 0 in spec)
apply (case_tac "f (Suc 0)")
apply(rule conjI)
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply (clarsimp split:if_splits)
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((WHILE b DO c)#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp add: exec1.intros split:nat.split)
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((WHILE b DO c)#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp add: exec1.intros split:nat.split)
done
lemma [iff]: "inf (CALL#cs) s = inf (body#cs) s"
apply(unfold inf_def)
apply(rule iffI)
apply clarsimp
apply(frule_tac x = 0 in spec)
apply (case_tac "f (Suc 0)")
apply clarsimp
apply(rule_tac x = "\<lambda>i. f(Suc i)" in exI)
apply clarsimp
apply clarsimp
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> (CALL#cs,s) | Suc i \<Rightarrow> f i" in exI)
apply(simp add: exec1.intros split:nat.split)
done
lemma [iff]: "inf ((LOCAL f;c;g)#cs) s =
inf (c#Do(\<lambda>t. {g s t})#cs) (f s)"
apply(unfold inf_def)
apply(rule iffI)
apply clarsimp
apply(rename_tac F)
apply(frule_tac x = 0 in spec)
apply (case_tac "F (Suc 0)")
apply clarsimp
apply(rule_tac x = "\<lambda>i. F(Suc i)" in exI)
apply clarsimp
apply (clarsimp)
apply(rename_tac F)
apply(rule_tac x = "\<lambda>i. case i of 0 \<Rightarrow> ((LOCAL f;c;g)#cs,s) | Suc i \<Rightarrow> F i" in exI)
apply(simp add: exec1.intros split:nat.split)
done
lemma exec1_only1_aux: "(ccs,s) \<rightarrow> (cs',t) \<Longrightarrow>
\<forall>c cs. ccs = c#cs \<longrightarrow> (\<exists>cs1. cs' = cs1 @ cs)"
apply(erule exec1.induct)
apply blast
apply force+
done
lemma exec1_only1: "(c#cs,s) \<rightarrow> (cs',t) \<Longrightarrow> \<exists>cs1. cs' = cs1 @ cs"
by(blast dest:exec1_only1_aux)
lemma exec1_drop_suffix_aux:
"(cs12,s) \<rightarrow> (cs1'2,s') \<Longrightarrow> \<forall>cs1 cs2 cs1'.
cs12 = cs1@cs2 & cs1'2 = cs1'@cs2 & cs1 \<noteq> [] \<longrightarrow> (cs1,s) \<rightarrow> (cs1',s')"
apply(erule exec1.induct)
apply (force intro:exec1.intros simp add: neq_Nil_conv)+
done
lemma exec1_drop_suffix:
"(cs1@cs2,s) \<rightarrow> (cs1'@cs2,s') \<Longrightarrow> cs1 \<noteq> [] \<Longrightarrow> (cs1,s) \<rightarrow> (cs1',s')"
by(blast dest:exec1_drop_suffix_aux)
lemma execs_drop_suffix[rule_format(no_asm)]:
"\<lbrakk> f 0 = (c#cs,s);\<forall>i. f(i) \<rightarrow> f(Suc i) \<rbrakk> \<Longrightarrow>
(\<forall>i<k. p i \<noteq> [] & fst(f i) = p i@cs) \<longrightarrow> fst(f k) = p k@cs
\<longrightarrow> ([c],s) \<rightarrow>\<^sup>* (p k,snd(f k))"
apply(induct_tac k)
apply simp
apply (clarsimp)
apply(erule rtrancl_into_rtrancl)
apply(erule_tac x = n in allE)
apply(erule_tac x = n in allE)
apply(case_tac "f n")
apply(case_tac "f(Suc n)")
apply simp
apply(blast dest:exec1_drop_suffix)
done
lemma execs_drop_suffix0:
"\<lbrakk> f 0 = (c#cs,s);\<forall>i. f(i) \<rightarrow> f(Suc i); \<forall>i<k. p i \<noteq> [] & fst(f i) = p i@cs;
fst(f k) = cs; p k = [] \<rbrakk> \<Longrightarrow> ([c],s) \<rightarrow>\<^sup>* ([],snd(f k))"
apply(drule execs_drop_suffix,assumption,assumption)
apply simp
apply simp
done
lemma skolemize1: "\<forall>x. P x \<longrightarrow> (\<exists>y. Q x y) \<Longrightarrow> \<exists>f.\<forall>x. P x \<longrightarrow> Q x (f x)"
apply(rule_tac x = "\<lambda>x. SOME y. Q x y" in exI)
apply(fast intro:someI2)
done
lemma least_aux: "\<lbrakk>f 0 = (c # cs, s); \<forall>i. f i \<rightarrow> f (Suc i);
fst(f k) = cs; \<forall>i<k. fst(f i) \<noteq> cs\<rbrakk>
\<Longrightarrow> \<forall>i \<le> k. (\<exists>p. (p \<noteq> []) = (i < k) & fst(f i) = p @ cs)"
apply(rule allI)
apply(induct_tac i)
apply simp
apply (rule ccontr)
apply simp
apply clarsimp
apply(drule order_le_imp_less_or_eq)
apply(erule disjE)
prefer 2
apply simp
apply simp
apply(erule_tac x = n in allE)
apply(erule_tac x = "Suc n" in allE)
apply(case_tac "f n")
apply(case_tac "f(Suc n)")
apply simp
apply(rename_tac sn csn1 sn1)
apply (clarsimp simp add: neq_Nil_conv)
apply(drule exec1_only1)
apply (clarsimp simp add: neq_Nil_conv)
apply(erule disjE)
apply clarsimp
apply clarsimp
apply(case_tac cs1)
apply simp
apply simp
done
lemma least_lem: "\<lbrakk>f 0 = (c#cs,s); \<forall>i. f i \<rightarrow> f(Suc i); \<exists>i. fst(f i) = cs \<rbrakk>
\<Longrightarrow> \<exists>k. fst(f k) = cs & ([c],s) \<rightarrow>\<^sup>* ([],snd(f k))"
apply(rule_tac x="LEAST i. fst(f i) = cs" in exI)
apply(rule conjI)
apply(fast intro: LeastI)
apply(subgoal_tac
"\<forall>i\<le>LEAST i. fst (f i) = cs. \<exists>p. ((p \<noteq> []) = (i<(LEAST i. fst (f i) = cs))) & fst(f i) = p@cs")
apply(drule skolemize1)
apply clarify
apply(rename_tac p)
apply(erule_tac p=p in execs_drop_suffix0, assumption)
apply (blast dest:order_less_imp_le)
apply(fast intro: LeastI)
apply(erule thin_rl)
apply(erule_tac x = "LEAST j. fst (f j) = fst (f i)" in allE)
apply blast
apply(erule least_aux,assumption)
apply(fast intro: LeastI)
apply clarify
apply(drule not_less_Least)
apply blast
done
lemma skolemize2: "\<forall>x.\<exists>y. P x y \<Longrightarrow> \<exists>f.\<forall>x. P x (f x)"
apply(rule_tac x = "\<lambda>x. SOME y. P x y" in exI)
apply(fast intro:someI2)
done
lemma inf_cases: "inf (c#cs) s \<Longrightarrow> inf [c] s \<or> (\<exists>t. s -c\<rightarrow> t \<and> inf cs t)"
apply(unfold inf_def)
apply (clarsimp del: disjCI)
apply(case_tac "\<exists>i. fst(f i) = cs")
apply(rule disjI2)
apply(drule least_lem, assumption, assumption)
apply clarify
apply(drule exec1s_impl_exec)
apply(case_tac "f k")
apply simp
apply (rule exI, rule conjI, assumption)
apply(rule_tac x="\<lambda>i. f(i+k)" in exI)
apply (clarsimp)
apply(rule disjI1)
apply simp
apply(subgoal_tac "\<forall>i. \<exists>p. p \<noteq> [] \<and> fst(f i) = p@cs")
apply(drule skolemize2)
apply clarify
apply(rename_tac p)
apply(rule_tac x = "\<lambda>i. (p i, snd(f i))" in exI)
apply(rule conjI)
apply(erule_tac x = 0 in allE, erule conjE)
apply simp
apply clarify
apply(erule_tac x = i in allE)
apply(erule_tac x = i in allE)
apply(frule_tac x = i in spec)
apply(erule_tac x = "Suc i" in allE)
apply(case_tac "f i")
apply(case_tac "f(Suc i)")
apply clarsimp
apply(blast intro:exec1_drop_suffix)
apply(clarify)
apply(induct_tac i)
apply force
apply clarsimp
apply(case_tac p)
apply blast
apply(erule_tac x=n in allE)
apply(erule_tac x="Suc n" in allE)
apply(case_tac "f n")
apply(case_tac "f(Suc n)")
apply clarsimp
apply(drule exec1_only1)
apply clarsimp
done
lemma termi_impl_not_inf: "c \<down> s \<Longrightarrow> \<not> inf [c] s"
apply(erule termi.induct)
(*Do*)
apply clarify
(*Semi*)
apply(blast dest:inf_cases)
(* Cond *)
apply clarsimp
apply clarsimp
(*While*)
apply clarsimp
apply(fastforce dest:inf_cases)
(*Call*)
apply blast
(*Local*)
apply(blast dest:inf_cases)
done
lemma termi_impl_no_inf_chain:
"c\<down>s \<Longrightarrow> \<not>(\<exists>f. f 0 = ([c],s) \<and> (\<forall>i::nat. (f i, f(i+1)) : exec1^+))"
apply(subgoal_tac "wf({(y,x). ([c],s) \<rightarrow>\<^sup>* x & x \<rightarrow> y}^+)")
apply(simp only:wf_iff_no_infinite_down_chain)
apply(erule contrapos_nn)
apply clarify
apply(subgoal_tac "\<forall>i. ([c], s) \<rightarrow>\<^sup>* f i")
prefer 2
apply(rule allI)
apply(induct_tac i)
apply simp
apply simp
apply(blast intro: trancl_into_rtrancl rtrancl_trans)
apply(rule_tac x=f in exI)
apply clarify
apply(drule_tac x=i in spec)
apply(subst lem)
apply(blast intro: trancl_into_rtrancl rtrancl_trans)
apply clarsimp
apply(rule wf_trancl)
apply(simp only:wf_iff_no_infinite_down_chain)
apply(clarify)
apply simp
apply(drule renumber)
apply(fold inf_def)
apply(simp add: termi_impl_not_inf)
done
primrec cseq :: "(nat \<Rightarrow> state) \<Rightarrow> nat \<Rightarrow> com list" where
"cseq S 0 = []"
| "cseq S (Suc i) = (SOME cs. ([body], S i) \<rightarrow>\<^sup>* (CALL # cs, S(i+1))) @ cseq S i"
lemma wf_termi_call_steps: "wf termi_call_steps"
apply(unfold termi_call_steps_def)
apply(simp only:wf_iff_no_infinite_down_chain)
apply(clarify)
apply(rename_tac S)
apply simp
apply(subgoal_tac "\<exists>Cs. Cs 0 = [] & (\<forall>i. (body # Cs i,S i) \<rightarrow>\<^sup>* (CALL # Cs(i+1), S(i+1)))")
prefer 2
apply(rule_tac x = "cseq S" in exI)
apply clarsimp
apply(erule_tac x=i in allE)
apply(clarify)
apply(erule_tac P = "\<lambda>cs.([body],S i) \<rightarrow>\<^sup>* (CALL # cs, S(Suc i))" in someI2)
apply(fastforce dest:app_execs)
apply clarify
apply(subgoal_tac "\<forall>i. ((body # Cs i,S i), (body # Cs(i+1), S(i+1))) : exec1^+")
prefer 2
apply(blast intro:rtrancl_into_trancl1)
apply(subgoal_tac "\<exists>f. f 0 = ([body],S 0) \<and> (\<forall>i. (f i, f(i+1)) : exec1^+)")
prefer 2
apply(rule_tac x = "\<lambda>i.(body#Cs i,S i)" in exI)
apply blast
apply(blast dest:termi_impl_no_inf_chain)
done
lemma CALL_lemma:
"{(\<lambda>z s. (z=s \<and> body\<down>s) \<and> (s,t) \<in> termi_call_steps, CALL, \<lambda>z s. z -body\<rightarrow> s)} \<turnstile>\<^sub>t
{\<lambda>z s. (z=s \<and> body\<down>t) \<and> (\<exists>cs. ([body],t) \<rightarrow>\<^sup>* (c#cs,s))} c {\<lambda>z s. z -c\<rightarrow> s}"
apply(induct_tac c)
(*Do*)
apply (rule strengthen_pre[OF _ thoare.Do])
apply(blast dest: execs_pres_termi)
(*Semi*)
apply(rename_tac c1 c2)
apply(rule_tac Q = "\<lambda>z s. body\<down>t & (\<exists>cs. ([body], t) \<rightarrow>\<^sup>* (c2#cs,s)) & z -c1\<rightarrow>s & c2\<down>s" in thoare.Semi)
apply(erule thoare.Conseq)
apply(rule conjI)
apply clarsimp
apply(subgoal_tac "s -c1\<rightarrow> ta")
prefer 2
apply(blast intro: exec1.Semi exec_impl_execs rtrancl_trans)
apply(subgoal_tac "([body], t) \<rightarrow>\<^sup>* (c2 # cs, ta)")
prefer 2
apply(blast intro:exec1.Semi[THEN r_into_rtrancl] exec_impl_execs rtrancl_trans)
apply(subgoal_tac "([body], t) \<rightarrow>\<^sup>* (c2 # cs, ta)")
prefer 2
apply(blast intro: exec_impl_execs rtrancl_trans)
apply(blast intro:exec_impl_execs rtrancl_trans execs_pres_termi)
apply(fast intro: exec1.Semi rtrancl_trans)
apply(erule thoare.Conseq)
apply blast
(*Call*)
prefer 3
apply(simp only:termi_call_steps_def)
apply(rule thoare.Conseq[OF thoare.Asm])
apply(blast dest: execs_pres_termi)
(*If*)
apply(rule thoare.If)
apply(erule thoare.Conseq)
apply simp
apply(blast intro: exec1.IfTrue rtrancl_trans)
apply(erule thoare.Conseq)
apply simp
apply(blast intro: exec1.IfFalse rtrancl_trans)
(*Var*)
defer
apply simp
apply(rule thoare.Local)
apply(rule allI)
apply(erule thoare.Conseq)
apply (clarsimp)
apply(rule conjI)
apply (clarsimp)
apply(drule rtrancl_trans[OF _ r_into_rtrancl[OF exec1.Local]])
apply(fast)
apply (clarsimp)
apply(drule rtrancl_trans[OF _ r_into_rtrancl[OF exec1.Local]])
apply blast
apply(rename_tac b c)
apply(rule_tac P' = "\<lambda>z s. (z,s) \<in> ({(s,t). b s \<and> s -c\<rightarrow> t})^* \<and> body \<down> t \<and>
(\<exists>cs. ([body], t) \<rightarrow>\<^sup>* ((WHILE b DO c) # cs, s))" in thoare.Conseq)
apply(rule_tac thoare.While[OF wf_termi])
apply(rule allI)
apply(erule thoare.Conseq)
apply clarsimp
apply(rule conjI)
apply clarsimp
apply(rule conjI)
apply(blast intro: rtrancl_trans exec1.WhileTrue)
apply(rule conjI)
apply(rule exI, rule rtrancl_trans, assumption)
apply(blast intro: exec1.WhileTrue exec_impl_execs rtrancl_trans)
apply(rule conjI)
apply(blast intro:execs_pres_termi)
apply(blast intro: exec1.WhileTrue exec_impl_execs rtrancl_trans)
apply(blast intro: exec1.WhileTrue exec_impl_execs rtrancl_trans)
apply(rule conjI)
apply clarsimp
apply(erule_tac x = s in allE)
apply clarsimp
apply(erule impE)
apply blast
apply clarify
apply(erule_tac a=s in converse_rtrancl_induct)
apply simp
apply(fast elim:exec.WhileTrue)
apply(fast intro: rtrancl_refl)
done
lemma CALL_cor:
"{(\<lambda>z s. (z=s \<and> body\<down>s) \<and> (s,t) \<in> termi_call_steps, CALL, \<lambda>z s. z -body\<rightarrow> s)} \<turnstile>\<^sub>t
{\<lambda>z s. (z=s \<and> body\<down>s) \<and> s = t} body {\<lambda>z s. z -body\<rightarrow> s}"
apply(rule strengthen_pre[OF _ CALL_lemma])
apply blast
done
lemma MGT_CALL: "{} \<turnstile>\<^sub>t MGT\<^sub>t CALL"
apply(simp add: MGT\<^sub>t_def)
apply(blast intro:thoare.Call wf_termi_call_steps CALL_cor)
done
theorem "{} \<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> {} \<turnstile>\<^sub>t {P}c{Q::state assn}"
apply(erule MGT_implies_complete[OF MGT_lemma[OF MGT_CALL]])
done
end
|