Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 6,853 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
(* Title: Inductive definition of Hoare logic for total correctness
Author: Tobias Nipkow, 2001/2006
Maintainer: Tobias Nipkow
*)
theory HoareTotal imports Hoare Termi begin
subsection\<open>Hoare logic for total correctness\<close>
text\<open>
Now that we have termination, we can define
total validity, \<open>\<Turnstile>\<^sub>t\<close>, as partial validity and guaranteed termination:\<close>
definition
hoare_tvalid :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<Turnstile>\<^sub>t {(1_)}/ (_)/ {(1_)}" 50) where
"\<Turnstile>\<^sub>t {P}c{Q} \<longleftrightarrow> \<Turnstile> {P}c{Q} \<and> (\<forall>s. P s \<longrightarrow> c\<down>s)"
text\<open>Proveability of Hoare triples in the proof system for total
correctness is written \<open>\<turnstile>\<^sub>t {P}c{Q}\<close> and defined
inductively. The rules for \<open>\<turnstile>\<^sub>t\<close> differ from those for
\<open>\<turnstile>\<close> only in the one place where nontermination can arise: the
@{term While}-rule.\<close>
inductive
thoare :: "assn \<Rightarrow> com \<Rightarrow> assn \<Rightarrow> bool" ("\<turnstile>\<^sub>t ({(1_)}/ (_)/ {(1_)})" 50)
where
Do: "\<turnstile>\<^sub>t {\<lambda>s. (\<forall>t \<in> f s. P t) \<and> f s \<noteq> {}} Do f {P}"
| Semi: "\<lbrakk> \<turnstile>\<^sub>t {P}c{Q}; \<turnstile>\<^sub>t {Q}d{R} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P} c;d {R}"
| If: "\<lbrakk> \<turnstile>\<^sub>t {\<lambda>s. P s \<and> b s}c{Q}; \<turnstile>\<^sub>t {\<lambda>s. P s \<and> ~b s}d{Q} \<rbrakk> \<Longrightarrow>
\<turnstile>\<^sub>t {P} IF b THEN c ELSE d {Q}"
| While:
"\<lbrakk>wf r; \<forall>s'. \<turnstile>\<^sub>t {\<lambda>s. P s \<and> b s \<and> s' = s} c {\<lambda>s. P s \<and> (s,s') \<in> r}\<rbrakk>
\<Longrightarrow> \<turnstile>\<^sub>t {P} WHILE b DO c {\<lambda>s. P s \<and> \<not>b s}"
| Conseq: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile>\<^sub>t {P}c{Q}; \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow>
\<turnstile>\<^sub>t {P'}c{Q'}"
| Local: "(!!s. P s \<Longrightarrow> P' s (f s)) \<Longrightarrow> \<forall>p. \<turnstile>\<^sub>t {P' p} c {Q o (g p)} \<Longrightarrow>
\<turnstile>\<^sub>t {P} LOCAL f;c;g {Q}"
text\<open>\noindent The@{term While}- rule is like the one for partial
correctness but it requires additionally that with every execution of
the loop body a wellfounded relation (@{prop"wf r"}) on the state
space decreases.
The soundness theorem\<close>
(* Tried to use this lemma to simplify the soundness proof.
But "\<turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> (!s. P s \<longrightarrow> c\<down>s)" is not provable because too weak
lemma total_implies_partial: "\<turnstile>\<^sub>t {P} c {Q} \<Longrightarrow> \<turnstile> {P} c {Q}"
apply(erule thoare.induct)
apply(rule hoare.intros)
apply (clarify) apply assumption
apply(rule hoare.intros)
apply blast
apply(blast intro:hoare.intros)
apply(blast intro:hoare.intros)
defer
apply(blast intro:hoare.intros)
apply(blast intro:hoare.intros)
apply(rule hoare.intros)
apply(rule hoare_relative_complete)
apply(unfold hoare_valid_def)
apply(clarify)
apply(erule allE, erule conjE)
apply(drule hoare_sound)
apply(unfold hoare_valid_def)
apply(blast)
done
*)
theorem "\<turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<Turnstile>\<^sub>t {P}c{Q}"
apply(unfold hoare_tvalid_def hoare_valid_def)
apply(erule thoare.induct)
apply blast
apply blast
apply clarsimp
defer
apply blast
apply(rule conjI)
apply clarify
apply(erule allE)
apply clarify
apply(erule allE, erule allE, erule impE, erule asm_rl)
apply simp
apply(erule mp)
apply(simp)
apply blast
apply(rule conjI)
apply(rule allI)
apply(erule wf_induct)
apply clarify
apply(drule unfold_while[THEN iffD1])
apply (simp split: if_split_asm)
apply blast
apply(rule allI)
apply(erule wf_induct)
apply clarify
apply(case_tac "b x")
apply (blast intro: termi.WhileTrue)
apply (erule termi.WhileFalse)
done
(*>*)
text\<open>\noindent In the @{term While}-case we perform a
local proof by wellfounded induction over the given relation @{term r}.
The completeness proof proceeds along the same lines as the one for partial
correctness. First we have to strengthen our notion of weakest precondition
to take termination into account:\<close>
definition
wpt :: "com \<Rightarrow> assn \<Rightarrow> assn" ("wp\<^sub>t") where
"wp\<^sub>t c Q = (\<lambda>s. wp c Q s \<and> c\<down>s)"
lemmas wp_defs = wp_def wpt_def
lemma [simp]: "wp\<^sub>t (Do f) Q = (\<lambda>s. (\<forall>t \<in> f s. Q t) \<and> f s \<noteq> {})"
by(simp add: wpt_def)
lemma [simp]: "wp\<^sub>t (c\<^sub>1;c\<^sub>2) R = wp\<^sub>t c\<^sub>1 (wp\<^sub>t c\<^sub>2 R)"
apply(unfold wp_defs)
apply(rule ext)
apply blast
done
lemma [simp]:
"wp\<^sub>t (IF b THEN c\<^sub>1 ELSE c\<^sub>2) Q = (\<lambda>s. wp\<^sub>t (if b s then c\<^sub>1 else c\<^sub>2) Q s)"
apply(unfold wp_defs)
apply(rule ext)
apply auto
done
lemma [simp]: "wp\<^sub>t (LOCAL f;c;g) Q = (\<lambda>s. wp\<^sub>t c (Q o (g s)) (f s))"
apply(unfold wp_defs)
apply(rule ext)
apply auto
done
lemma strengthen_pre: "\<lbrakk> \<forall>s. P' s \<longrightarrow> P s; \<turnstile>\<^sub>t {P}c{Q} \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P'}c{Q}"
by(erule thoare.Conseq, assumption, blast)
lemma weaken_post: "\<lbrakk> \<turnstile>\<^sub>t {P}c{Q}; \<forall>s. Q s \<longrightarrow> Q' s \<rbrakk> \<Longrightarrow> \<turnstile>\<^sub>t {P}c{Q'}"
apply(rule thoare.Conseq)
apply(fast, assumption, assumption)
done
inductive_cases [elim!]: "WHILE b DO c \<down> s"
lemma wp_is_pre[rule_format]: "\<turnstile>\<^sub>t {wp\<^sub>t c Q} c {Q}"
apply (induct c arbitrary: Q)
apply simp_all
apply(blast intro:thoare.Do thoare.Conseq)
apply(blast intro:thoare.Semi thoare.Conseq)
apply(blast intro:thoare.If thoare.Conseq)
defer
apply(fastforce intro!: thoare.Local)
apply(rename_tac b c Q)
apply(rule weaken_post)
apply(rule_tac b=b and c=c in thoare.While)
apply(rule_tac b=b and c=c in wf_termi)
defer
apply (simp add:wp_defs unfold_while)
apply(rule allI)
apply(rule strengthen_pre)
prefer 2
apply fast
apply(clarsimp simp add: wp_defs)
apply(blast intro:exec.intros)
done
text\<open>\noindent The @{term While}-case is interesting because we now have to furnish a
suitable wellfounded relation. Of course the execution of the loop
body directly yields the required relation.
The actual completeness theorem follows directly, in the same manner
as for partial correctness.\<close>
theorem "\<Turnstile>\<^sub>t {P}c{Q} \<Longrightarrow> \<turnstile>\<^sub>t {P}c{Q}"
apply (rule strengthen_pre[OF _ wp_is_pre])
apply(unfold hoare_tvalid_def hoare_valid_def wp_defs)
apply blast
done
end
|