Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 18,153 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
(*<*)
(* An abstract completeness theorem *)
theory Abstract_Completeness
imports
  Collections.Locale_Code
  "HOL-Library.Countable_Set"
  "HOL-Library.FSet"
  "HOL-Library.Code_Target_Nat"
  "HOL-Library.Linear_Temporal_Logic_on_Streams"
begin
(*>*)

section\<open>General Tree Concepts\<close>

codatatype 'a tree = Node (root: 'a) (cont: "'a tree fset")

inductive tfinite where
  tfinite: "(\<And> t'. t' |\<in>| cont t \<Longrightarrow> tfinite t') \<Longrightarrow> tfinite t"


(*<*)(* Infinite paths in trees. *)(*>*)
coinductive ipath where
  ipath: "\<lbrakk>root t = shd steps; t' |\<in>| cont t; ipath t' (stl steps)\<rbrakk> \<Longrightarrow> ipath t steps"

(*<*)(* Finite trees have no infinite paths. *)
lemma ftree_no_ipath: "tfinite t \<Longrightarrow> \<not> ipath t steps"
  by (induct t arbitrary: steps rule: tfinite.induct) (auto elim: ipath.cases)
(*>*)

primcorec konig where
  "shd (konig t) = root t"
| "stl (konig t) = konig (SOME t'. t' |\<in>| cont t \<and> \<not> tfinite t')"

lemma Konig: "\<not> tfinite t \<Longrightarrow> ipath t (konig t)"
  by (coinduction arbitrary: t) (metis (lifting) tfinite.simps konig.simps someI_ex)


section\<open>Rule Systems\<close>

(*<*)(* A step consists of a pair (s,r) such that the rule r is taken in state s. *)(*>*)
type_synonym ('state, 'rule) step = "'state \<times> 'rule"
(*<*)(* A derivation tree is a tree of steps: *)(*>*)
type_synonym ('state, 'rule) dtree = "('state, 'rule) step tree"

locale RuleSystem_Defs =
fixes eff :: "'rule \<Rightarrow> 'state \<Rightarrow> 'state fset \<Rightarrow> bool"
(* The countable set of rules is initially provided as a stream: *)
and rules :: "'rule stream"
begin

abbreviation "R \<equiv> sset rules"

lemma countable_R: "countable R" by (metis countableI_type countable_image sset_range)
lemma NE_R: "R \<noteq> {}" by (metis UNIV_witness all_not_in_conv empty_is_image sset_range)

definition "enabled r s \<equiv> \<exists> sl. eff r s sl"
definition "pickEff r s \<equiv> if enabled r s then (SOME sl. eff r s sl) else the None"

lemma pickEff: "enabled r s \<Longrightarrow> eff r s (pickEff r s)"
  by (metis enabled_def pickEff_def tfl_some)

abbreviation "effStep step \<equiv> eff (snd step) (fst step)"
abbreviation "enabledAtStep r step \<equiv> enabled r (fst step)"
abbreviation "takenAtStep r step \<equiv> snd step = r"

text \<open>Saturation is a very strong notion of fairness:
  If a rule is enabled at some point, it will eventually be taken.\<close>
definition "saturated r \<equiv> alw (holds (enabledAtStep r) impl ev (holds (takenAtStep r)))"
definition "Saturated steps \<equiv> \<forall> r \<in> R. saturated r steps"

(*<*)(* Well-formed derivation trees *)(*>*)
coinductive wf where
  wf: "\<lbrakk>snd (root t) \<in> R; effStep (root t) (fimage (fst o root) (cont t));
    \<And>t'. t' |\<in>| cont t \<Longrightarrow> wf t'\<rbrakk> \<Longrightarrow> wf t"


(*<*)(* Escape paths *)(*>*)
coinductive epath where
  epath: "\<lbrakk>snd (shd steps) \<in> R; fst (shd (stl steps)) |\<in>| sl; effStep (shd steps) sl;
    epath (stl steps)\<rbrakk> \<Longrightarrow> epath steps"

lemma wf_ipath_epath:
  assumes "wf t" "ipath t steps"
  shows "epath steps"
proof -
  have *: "\<And>t st. ipath t st \<Longrightarrow> root t = shd st" by (auto elim: ipath.cases)
  show ?thesis using assms
  proof (coinduction arbitrary: t steps)
    case epath
    then show ?case by (cases rule: wf.cases[case_product ipath.cases]) (metis * o_apply fimageI)
  qed
qed

definition "fair rs \<equiv> sset rs \<subseteq> R \<and> (\<forall> r \<in> R. alw (ev (holds ((=) r))) rs)"

lemma fair_stl: "fair rs \<Longrightarrow> fair (stl rs)"
  unfolding fair_def by (metis alw.simps subsetD stl_sset subsetI)

lemma sdrop_fair: "fair rs \<Longrightarrow> fair (sdrop m rs)"
  using alw_sdrop unfolding fair_def by (metis alw.coinduct alw_nxt fair_def fair_stl)


section\<open>A Fair Enumeration of the Rules\<close>

(*<*)(* The fair enumeration of rules *)(*>*)
definition "fenum \<equiv> flat (smap (\<lambda>n. stake n rules) (fromN 1))"

lemma sset_fenum: "sset fenum = R"
  unfolding fenum_def by (subst sset_flat)
   (auto simp: stream.set_map in_set_conv_nth sset_range[of rules],
     metis atLeast_Suc_greaterThan greaterThan_0 lessI range_eqI stake_nth)

lemma fair_fenum: "fair fenum"
proof -
  { fix r assume "r \<in> R"
    then obtain m where r: "r = rules !! m" unfolding sset_range by blast
    { fix n :: nat and rs let ?fenum = "\<lambda>n. flat (smap (\<lambda>n. stake n rules) (fromN n))"
      assume "n > 0"
      hence "alw (ev (holds ((=) r))) (rs @- ?fenum n)"
      proof (coinduction arbitrary: n rs)
        case alw
        show ?case
        proof (rule exI[of _ "rs @- ?fenum n"], safe)
          show "\<exists>n' rs'. stl (rs @- ?fenum n) = rs' @- ?fenum n' \<and> n' > 0"
          proof(cases rs)
            case Nil thus ?thesis unfolding alw by (intro exI) auto
          qed (auto simp: alw intro: exI[of _ n])
        next
          show "ev (holds ((=) r)) (rs @- flat (smap (\<lambda>n. stake n rules) (fromN n)))"
            using alw r unfolding ev_holds_sset
            by (cases "m < n") (force simp: stream.set_map in_set_conv_nth)+
        qed
     qed
    }
  }
  thus "fair fenum" unfolding fair_def sset_fenum
    by (metis fenum_def alw_shift le_less zero_less_one)
qed

definition "trim rs s = sdrop_while (\<lambda>r. Not (enabled r s)) rs"


(*<*)(* The fair tree associated to a stream of rules and a state *)(*>*)
primcorec mkTree where
  "root (mkTree rs s) = (s, (shd (trim rs s)))"
| "cont (mkTree rs s) = fimage (mkTree (stl (trim rs s))) (pickEff (shd (trim rs s)) s)"

(*<*)(* More efficient code equation for mkTree *)(*>*)
lemma mkTree_unfold[code]: "mkTree rs s =
  (case trim rs s of SCons r s' \<Rightarrow> Node (s, r) (fimage (mkTree s') (pickEff r s)))"
  by (subst mkTree.ctr) (simp split: stream.splits)

end

locale RuleSystem = RuleSystem_Defs eff rules
for eff :: "'rule \<Rightarrow> 'state \<Rightarrow> 'state fset \<Rightarrow> bool" and rules :: "'rule stream" +
fixes S :: "'state set"
assumes eff_S: "\<And> s r sl s'. \<lbrakk>s \<in> S; r \<in> R; eff r s sl; s' |\<in>| sl\<rbrakk> \<Longrightarrow> s' \<in> S"
and enabled_R: "\<And> s. s \<in> S \<Longrightarrow> \<exists> r \<in> R. \<exists> sl. eff r s sl"
begin

(*<*)(* The minimum waiting time in a stream for the enabled rules in a given state: *)(*>*)
definition "minWait rs s \<equiv> LEAST n. enabled (shd (sdrop n rs)) s"

lemma trim_alt:
  assumes s: "s \<in> S" and rs: "fair rs"
  shows "trim rs s = sdrop (minWait rs s) rs"
proof (unfold trim_def minWait_def sdrop_simps, rule sdrop_while_sdrop_LEAST[unfolded o_def])
  from enabled_R[OF s] obtain r sl where r: "r \<in> R" and sl: "eff r s sl" by blast
  from bspec[OF conjunct2[OF rs[unfolded fair_def]] r] obtain m where "r = rs !! m"
    by atomize_elim (erule alw.cases, auto simp only: ev_holds_sset sset_range)
  with r sl show "\<exists>n. enabled (rs !! n) s" unfolding enabled_def by auto
qed

lemma minWait_ex:
  assumes s: "s \<in> S" and rs: "fair rs"
  shows "\<exists> n. enabled (shd (sdrop n rs)) s"
proof -
  obtain r where r: "r \<in> R" and e: "enabled r s" using enabled_R s unfolding enabled_def by blast
  then obtain n where "shd (sdrop n rs) = r" using sdrop_fair[OF rs]
    by (metis (full_types) alw_nxt holds.simps sdrop.simps(1) fair_def sdrop_wait)
  thus ?thesis using r e by auto
qed

lemma assumes "s \<in> S" and "fair rs"
  shows trim_in_R: "shd (trim rs s) \<in> R"
  and trim_enabled: "enabled (shd (trim rs s)) s"
  and trim_fair: "fair (trim rs s)"
  unfolding trim_alt[OF assms] minWait_def
  using LeastI_ex[OF minWait_ex[OF assms]] sdrop_fair[OF assms(2)]
    conjunct1[OF assms(2)[unfolded fair_def]] by simp_all (metis subsetD snth_sset)

lemma minWait_least: "\<lbrakk>enabled (shd (sdrop n rs)) s\<rbrakk> \<Longrightarrow> minWait rs s \<le> n"
  unfolding minWait_def by (intro Least_le conjI)

lemma in_cont_mkTree:
  assumes s: "s \<in> S" and rs: "fair rs" and t': "t' |\<in>| cont (mkTree rs s)"
  shows "\<exists> sl' s'. s' \<in> S \<and> eff (shd (trim rs s)) s sl' \<and>
                 s' |\<in>| sl' \<and> t' = mkTree (stl (trim rs s)) s'"
proof -
  define sl' where "sl' = pickEff (shd (trim rs s)) s"
  obtain s' where s': "s' |\<in>| sl'" and "t' = mkTree (stl (trim rs s)) s'"
    using t' unfolding sl'_def by auto
  moreover have 1: "enabled (shd (trim rs s)) s" using trim_enabled[OF s rs] .
  moreover with trim_in_R pickEff eff_S s rs s'[unfolded sl'_def] have "s' \<in> S" by blast
  ultimately show ?thesis unfolding sl'_def using pickEff by blast
qed

lemma ipath_mkTree_sdrop:
  assumes s: "s \<in> S" and rs: "fair rs" and i: "ipath (mkTree rs s) steps"
  shows "\<exists> n s'. s' \<in> S \<and> ipath (mkTree (sdrop n rs) s') (sdrop m steps)"
using s rs i proof (induct m arbitrary: steps rs)
  case (Suc m)
  then obtain n s' where s': "s' \<in> S"
    and ip: "ipath (mkTree (sdrop n rs) s') (sdrop m steps)" (is "ipath ?t _") by blast
  from ip obtain t' where r: "root ?t = shd (sdrop m steps)" and t': "t' |\<in>| cont ?t"
    and i: "ipath t' (sdrop (Suc m) steps)" by (cases, simp)
  from in_cont_mkTree[OF s' sdrop_fair[OF Suc.prems(2)] t'] obtain sl'' s'' where
    e: "eff (shd (trim (sdrop n rs) s')) s' sl''" and
    s'': "s'' |\<in>| sl''" and t'_def: "t' = mkTree (stl (trim (sdrop n rs) s')) s''" by blast
  have "shd (trim (sdrop n rs) s') \<in> R" by (metis sdrop_fair Suc.prems(2) trim_in_R s')
  thus ?case using i s'' e s' unfolding sdrop_stl t'_def sdrop_add add.commute[of n]
    trim_alt[OF s' sdrop_fair[OF Suc.prems(2)]]
    by (intro exI[of _ "minWait (sdrop n rs) s' + Suc n"] exI[of _ s'']) (simp add: eff_S)
qed (auto intro!: exI[of _ 0] exI[of _ s])

lemma wf_mkTree:
  assumes s: "s \<in> S" and "fair rs"
  shows "wf (mkTree rs s)"
using assms proof (coinduction arbitrary: rs s)
  case (wf rs s) let ?t = "mkTree rs s"
  have "snd (root ?t) \<in> R" using trim_in_R[OF wf] by simp
  moreover have "fst \<circ> root \<circ> mkTree (stl (trim rs s)) = id" by auto
  hence "effStep (root ?t) (fimage (fst \<circ> root) (cont ?t))"
    using trim_enabled[OF wf] by (simp add: pickEff)
  ultimately show ?case using fair_stl[OF trim_fair[OF wf]] in_cont_mkTree[OF wf]
    by (auto intro!: exI[of _ "stl (trim rs s)"])
qed


(*<*)(* The position of a rule in a rule stream *)(*>*)
definition "pos rs r \<equiv> LEAST n. shd (sdrop n rs) = r"

lemma pos: "\<lbrakk>fair rs; r \<in> R\<rbrakk> \<Longrightarrow> shd (sdrop (pos rs r) rs) = r"
  unfolding pos_def
  by (rule LeastI_ex) (metis (full_types) alw.cases fair_def holds.simps sdrop_wait)

lemma pos_least: "shd (sdrop n rs) = r \<Longrightarrow> pos rs r \<le> n"
  unfolding pos_def by (metis (full_types) Least_le)

lemma minWait_le_pos: "\<lbrakk>fair rs; r \<in> R; enabled r s\<rbrakk> \<Longrightarrow> minWait rs s \<le> pos rs r"
  by (auto simp del: sdrop_simps intro: minWait_least simp: pos)

lemma stake_pos_minWait:
  assumes rs: "fair rs" and m: "minWait rs s < pos rs r" and r: "r \<in> R" and s: "s \<in> S"
  shows "pos (stl (trim rs s)) r = pos rs r - Suc (minWait rs s)"
proof -
  have "pos rs r - Suc (minWait rs s) + minWait rs s = pos rs r - Suc 0" using m by auto
  moreover have "shd (stl (sdrop (pos rs r - Suc 0) rs)) = shd (sdrop (pos rs r) rs)"
    by (metis Suc_pred gr_implies_not0 m neq0_conv sdrop.simps(2) sdrop_stl)
  ultimately have "pos (stl (trim rs s)) r \<le> pos rs r - Suc (minWait rs s)"
    using pos[OF rs r] by (auto simp: add.commute trim_alt[OF s rs] intro: pos_least)
  moreover
  have "pos rs r \<le> pos (stl (trim rs s)) r + Suc (minWait rs s)"
    using pos[OF sdrop_fair[OF fair_stl[OF rs]] r, of "minWait rs s"]
    by (auto simp: trim_alt[OF s rs] add.commute intro: pos_least)
  hence "pos rs r - Suc (minWait rs s) \<le> pos (stl (trim rs s)) r" by linarith
  ultimately show ?thesis by simp
qed

lemma ipath_mkTree_ev:
  assumes s: "s \<in> S" and rs: "fair rs"
  and i: "ipath (mkTree rs s) steps" and r: "r \<in> R"
  and alw: "alw (holds (enabledAtStep r)) steps"
  shows "ev (holds (takenAtStep r)) steps"
using s rs i alw proof (induction "pos rs r" arbitrary: rs s steps rule: less_induct)
  case (less rs s steps) note s = \<open>s \<in> S\<close> and trim_def' = trim_alt[OF s \<open>fair rs\<close>]
  let ?t = "mkTree rs s"
  from less(4,3) s in_cont_mkTree obtain t' :: "('state, 'rule) step tree" and s' where
    rt: "root ?t = shd steps" and i: "ipath (mkTree (stl (trim rs s)) s') (stl steps)" and
    s': "s' \<in> S" by cases fast
  show ?case
  proof(cases "pos rs r = minWait rs s")
    case True
    with pos[OF less.prems(2) r] rt[symmetric] show ?thesis by (auto simp: trim_def' ev.base)
  next
    case False
    have e: "enabled r s" using less.prems(4) rt  by (subst (asm) alw_nxt, cases steps) auto
    with False r less.prems(2) have 2: "minWait rs s < pos rs r" using minWait_le_pos by force
    let ?m1 = "pos rs r - Suc (minWait rs s)"
    have "Suc ?m1 \<le> pos rs r" using 2 by auto
    moreover have "?m1 = pos (stl (trim rs s)) r" using e \<open>fair rs\<close> 2 r s
      by (auto intro: stake_pos_minWait[symmetric])
    moreover have "fair (stl (trim rs s))" "alw (holds (enabledAtStep r)) (stl steps)"
      using less.prems by (metis fair_stl trim_fair, metis alw.simps)
    ultimately show "?thesis" by (auto intro: ev.step[OF less.hyps[OF _ s' _ i]])
  qed
qed

section\<open>Persistent rules\<close>

definition
  "per r \<equiv>
    \<forall>s r1 sl' s'. s \<in> S \<and> enabled r s \<and> r1 \<in> R - {r} \<and> eff r1 s sl' \<and> s' |\<in>| sl' \<longrightarrow> enabled r s'"

lemma per_alw:
  assumes p: "per r" and e: "epath steps \<and> fst (shd steps) \<in> S"
  shows "alw (holds (enabledAtStep r) impl
    (holds (takenAtStep r) or nxt (holds (enabledAtStep r)))) steps"
using e proof coinduct
  case (alw steps)
  moreover
  { let ?s = "fst (shd steps)"  let ?r1 = "snd (shd steps)"
    let ?s' = "fst (shd (stl steps))"
    assume "?s \<in> S" and "enabled r ?s" and "?r1 \<noteq> r"
    moreover have "?r1 \<in> R" using alw by (auto elim: epath.cases)
    moreover obtain sl' where "eff ?r1 ?s sl' \<and> ?s' |\<in>| sl'" using alw by (auto elim: epath.cases)
    ultimately have "enabled r ?s'" using p unfolding per_def by blast
  }
  ultimately show ?case by (auto intro: eff_S elim: epath.cases)
qed

end \<comment> \<open>context RuleSystem\<close>


(*<*) (* Rule-persistent rule system *) (*>*)
locale PersistentRuleSystem = RuleSystem eff rules S
for eff :: "'rule \<Rightarrow> 'state \<Rightarrow> 'state fset \<Rightarrow> bool" and rules :: "'rule stream" and S +
assumes per: "\<And> r. r \<in> R \<Longrightarrow> per r"
begin

lemma ipath_mkTree_saturated:
  assumes s: "s \<in> S" and rs: "fair rs"
  and i: "ipath (mkTree rs s) steps" and r: "r \<in> R"
  shows "saturated r steps"
unfolding saturated_def using s rs i proof (coinduction arbitrary: rs s steps)
  case (alw rs s steps)
  show ?case
  proof (intro exI[of _ steps], safe)
    assume "holds (enabledAtStep r) steps"
    hence "alw (holds (enabledAtStep r)) steps \<or> ev (holds (takenAtStep r)) steps"
      by (rule variance[OF _ per_alw[OF per[OF r]]])
        (metis wf_ipath_epath wf_mkTree alw mkTree.simps(1) ipath.simps fst_conv)
    thus "ev (holds (takenAtStep r)) steps" by (metis ipath_mkTree_ev[OF alw r])
  next
    from alw show "\<exists>rs' s' steps'.
      stl steps = steps' \<and> s' \<in> S \<and> fair rs' \<and> ipath (mkTree rs' s') steps'"
      using ipath_mkTree_sdrop[where m=1, simplified] trim_in_R sdrop_fair by fast
  qed
qed

theorem ipath_mkTree_Saturated:
  assumes "s \<in> S" and "fair rs" and "ipath (mkTree rs s) steps"
  shows "Saturated steps"
  unfolding Saturated_def using ipath_mkTree_saturated[OF assms] by blast

theorem epath_completeness_Saturated:
  assumes "s \<in> S"
  shows
  "(\<exists> t. fst (root t) = s \<and> wf t \<and> tfinite t) \<or>
   (\<exists> steps. fst (shd steps) = s \<and> epath steps \<and> Saturated steps)" (is "?A \<or> ?B")
proof -
  { assume "\<not> ?A"
    with assms have "\<not> tfinite (mkTree fenum s)" using wf_mkTree fair_fenum by auto
    then obtain steps where "ipath (mkTree fenum s) steps" using Konig by blast
    with assms have "fst (shd steps) = s \<and> epath steps \<and> Saturated steps"
      by (metis wf_ipath_epath ipath.simps ipath_mkTree_Saturated
        wf_mkTree fair_fenum mkTree.simps(1) fst_conv)
    hence ?B by blast
  }
  thus ?thesis by blast
qed


end \<comment> \<open>context PersistentRuleSystem\<close>



section\<open>Code generation\<close>

(* Here we assume a deterministic effect eff': *)

locale RuleSystem_Code =
fixes eff' :: "'rule \<Rightarrow> 'state \<Rightarrow> 'state fset option"
and rules :: "'rule stream" \<comment> \<open>countably many rules\<close>
begin

definition "eff r s sl \<equiv> eff' r s = Some sl"

end (* context RuleSystem_Code *)

definition [code del]: "effG eff' r s sl \<equiv> RuleSystem_Code.eff eff' r s sl"

sublocale RuleSystem_Code < RuleSystem_Defs
  where eff = "effG eff'" and rules = rules .

context RuleSystem_Code
begin

lemma enabled_eff': "enabled r s \<longleftrightarrow> eff' r s \<noteq> None"
unfolding enabled_def effG_def eff_def by auto

lemma pickEff_the[code]: "pickEff r s = the (eff' r s)"
unfolding pickEff_def enabled_def effG_def eff_def by auto

lemmas [code_unfold] = trim_def enabled_eff' pickEff_the

(*<*)
end (* context RuleSystem_Code *)
(*>*)

setup Locale_Code.open_block
interpretation i: RuleSystem_Code eff' rules for eff' and rules .
declare [[lc_delete "RuleSystem_Defs.mkTree (effG ?eff')"]]
declare [[lc_delete RuleSystem_Defs.trim]]
declare [[lc_delete RuleSystem_Defs.enabled]]
declare [[lc_delete RuleSystem_Defs.pickEff]]
declare [[lc_add "RuleSystem_Defs.mkTree (effG ?eff')" i.mkTree_unfold]]
setup Locale_Code.close_block

code_printing
  constant the \<rightharpoonup> (Haskell) "fromJust"
| constant Option.is_none \<rightharpoonup> (Haskell) "isNothing"

export_code mkTree_effG_uu in Haskell module_name Tree (*file "."*)

(*<*)
end
(*>*)