Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 6,523 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
theory Preliminaries
  imports "HOL-Analysis.Analysis"
begin

notation powr (infixr ".^" 80)


section \<open>Preliminary Definitions and Lemmas\<close>

lemma seq_part_multiple: fixes m n :: nat assumes "m \<noteq> 0" defines "A \<equiv> \<lambda>i::nat. {i*m ..< (i+1)*m}"
  shows "\<forall>i j. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}" and "(\<Union>i<n. A i) = {..< n*m}"
proof -
  { fix i j :: nat
    have "i \<noteq> j \<Longrightarrow> A i \<inter> A j = {}"
    proof (erule contrapos_np)
      assume "A i \<inter> A j \<noteq> {}"
      then obtain k where "k \<in> A i \<inter> A j" by blast
      hence "i*m < (j+1)*m \<and> j*m < (i+1)*m" unfolding A_def by force
      hence "i < j+1 \<and> j < i+1" using mult_less_cancel2 by blast
      thus "i = j" by force
    qed }
  thus "\<forall>i j. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}" by blast
next
  show "(\<Union>i<n. A i) = {..< n*m}"
  proof
    show "(\<Union>i<n. A i) \<subseteq> {..< n*m}"
    proof
      fix x::nat
      assume "x \<in> (\<Union>i<n. A i)"
      then obtain i where i_n: "i < n" and i_x: "x < (i+1)*m" unfolding A_def by force
      hence "i+1 \<le> n" by linarith
      hence "x < n*m" by (meson less_le_trans mult_le_cancel2 i_x)
      thus "x \<in> {..< n*m}"
        using diff_mult_distrib mult_1 i_n by auto
    qed
  next
    show "{..< n*m} \<subseteq> (\<Union>i<n. A i)"
    proof
      fix x::nat
      let ?i = "x div m"
      assume "x \<in> {..< n*m}"
      hence "?i < n" by (simp add: less_mult_imp_div_less)
      moreover have "?i*m \<le> x \<and> x < (?i+1)*m"
        using assms div_times_less_eq_dividend dividend_less_div_times by auto
      ultimately show "x \<in> (\<Union>i<n. A i)" unfolding A_def by force
    qed
  qed
qed

lemma(in field) divide_mult_cancel[simp]: fixes a b assumes "b \<noteq> 0"
  shows "a / b * b = a"
  by (simp add: assms)

lemma inverse_powr: "(1/a).^b = a.^-b" if "a > 0" for a b :: real
  by (smt that powr_divide powr_minus_divide powr_one_eq_one)

lemma powr_eq_one_iff_gen[simp]: "a.^x = 1 \<longleftrightarrow> x = 0" if "a > 0" "a \<noteq> 1" for a x :: real
  by (metis powr_eq_0_iff powr_inj powr_zero_eq_one that)

lemma powr_less_cancel2: "0 < a \<Longrightarrow> 0 < x \<Longrightarrow> 0 < y \<Longrightarrow> x.^a < y.^a \<Longrightarrow> x < y"
  for a x y ::real
proof -
  assume a_pos: "0 < a" and x_pos: "0 < x" and y_pos: "0 < y"
  show "x.^a < y.^a \<Longrightarrow> x < y"
  proof (erule contrapos_pp)
    assume "\<not> x < y"
    hence "x \<ge> y" by fastforce
    hence "x.^a \<ge> y.^a"
    proof (cases "x = y")
      case True
      thus ?thesis by simp
    next
      case False
      hence "x.^a > y.^a"
        using \<open>x \<ge> y\<close> powr_less_mono2 a_pos y_pos by auto
      thus ?thesis by auto
    qed
    thus "\<not> x.^a < y.^a" by fastforce
  qed
qed

lemma geometric_increasing_sum_aux: "(1-r)^2 * (\<Sum>k<n. (k+1)*r^k) = 1 - (n+1)*r^n + n*r^(n+1)"
  for n::nat and r::real
proof (induct n)
  case 0
  thus ?case by simp
next
  case (Suc n)
  thus ?case
    by (simp add: distrib_left power2_diff field_simps power2_eq_square)
qed

lemma geometric_increasing_sum: "(\<Sum>k<n. (k+1)*r^k) = (1 - (n+1)*r^n + n*r^(n+1)) / (1-r)^2"
  if "r \<noteq> 1" for n::nat and r::real
  by (subst geometric_increasing_sum_aux[THEN sym], simp add: that)

lemma Reals_UNIV[simp]: "\<real> = {x::real. True}"
  unfolding Reals_def by auto

lemma DERIV_fun_powr2:
  fixes a::real
  assumes a_pos: "a > 0"
    and f: "DERIV f x :> r"
  shows "DERIV (\<lambda>x. a.^(f x)) x :> a.^(f x) * r * ln a"
proof -
  let ?g = "(\<lambda>x. a)"
  have g: "DERIV ?g x :> 0" by simp
  have pos: "?g x > 0" by (simp add: a_pos)
  show ?thesis
    using DERIV_powr[OF g pos f] a_pos by (auto simp add: field_simps)
qed

lemma has_real_derivative_powr2:
  assumes a_pos: "a > 0"
  shows "((\<lambda>x. a.^x) has_real_derivative a.^x * ln a) (at x)"
proof -
  let ?f = "(\<lambda>x. x::real)"
  have f: "DERIV ?f x :> 1" by simp
  thus ?thesis using DERIV_fun_powr2[OF a_pos f] by simp
qed

lemma has_integral_powr2_from_0:
  fixes a c :: real
  assumes a_pos: "a > 0" and a_neq_1: "a \<noteq> 1" and c_nneg: "c \<ge> 0"
  shows "((\<lambda>x. a.^x) has_integral ((a.^c - 1) / (ln a))) {0..c}"
proof -
  have "((\<lambda>x. a.^x) has_integral ((a.^c)/(ln a) - (a.^0)/(ln a))) {0..c}"
  proof (rule fundamental_theorem_of_calculus[OF c_nneg])
    fix x::real
    assume "x \<in> {0..c}"
    show "((\<lambda>y. a.^y / ln a) has_vector_derivative a.^x) (at x within {0..c})"
      using has_real_derivative_powr2[OF a_pos, of x]
      apply -
      apply (drule DERIV_cdivide[where c = "ln a"], simp add: assms)
      apply (rule has_vector_derivative_within_subset[where S=UNIV and T="{0..c}"], auto)
      by (rule iffD1[OF has_field_derivative_iff_has_vector_derivative])
  qed
  thus ?thesis
    using assms powr_zero_eq_one by (simp add: field_simps)
qed

lemma integrable_on_powr2_from_0:
  fixes a c :: real
  assumes a_pos: "a > 0" and a_neq_1: "a \<noteq> 1" and c_nneg: "c \<ge> 0"
  shows "(\<lambda>x. a.^x) integrable_on {0..c}"
  using has_integral_powr2_from_0[OF assms] unfolding integrable_on_def by blast

lemma integrable_on_powr2_from_0_general:
  fixes a c :: real
  assumes a_pos: "a > 0" and c_nneg: "c \<ge> 0"
  shows "(\<lambda>x. a.^x) integrable_on {0..c}"
proof (cases "a = 1")
  case True
  thus ?thesis
    using has_integral_const_real by auto
next
  case False
  thus ?thesis
    using has_integral_powr2_from_0 False assms by auto
qed

lemma has_integral_null_interval: fixes a b :: real and f::"real \<Rightarrow> real" assumes "a \<ge> b"
  shows "(f has_integral 0) {a..b}"
  using assms content_real_eq_0 by blast

lemma has_integral_interval_reverse: fixes f :: "real \<Rightarrow> real" and a b :: real
  assumes "a \<le> b"
    and "continuous_on {a..b} f"
  shows "((\<lambda>x. f (a+b-x)) has_integral (integral {a..b} f)) {a..b}"
proof -
  let ?g = "\<lambda>x. a + b - x"
  let ?g' = "\<lambda>x. -1"
  have g_C0: "continuous_on {a..b} ?g" using continuous_on_op_minus by simp
  have Dg_g': "\<And>x. x\<in>{a..b} \<Longrightarrow> (?g has_field_derivative ?g' x) (at x within {a..b})"
    by (auto intro!: derivative_eq_intros)
  show ?thesis
    using has_integral_substitution_general
      [of "{}" a b ?g a b f, simplified, OF assms g_C0 Dg_g', simplified]
    apply (simp add: has_integral_null_interval[OF assms(1), THEN integral_unique])
    by (simp add: has_integral_neg_iff)
qed

end