Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 2,928 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
(*
Author: René Thiemann
Akihisa Yamada
License: BSD
*)
section \<open>Algebraic Number Tests\<close>
text \<open>We provide a sequence of examples which demonstrate what can be done with
the implementation of algebraic numbers.\<close>
theory Algebraic_Number_Tests
imports
Jordan_Normal_Form.Char_Poly
Jordan_Normal_Form.Determinant_Impl
Show.Show_Complex
"HOL-Library.Code_Target_Nat"
"HOL-Library.Code_Target_Int"
Berlekamp_Zassenhaus.Factorize_Rat_Poly
Complex_Algebraic_Numbers
Show_Real_Precise
begin
subsection \<open>Stand-Alone Examples\<close>
abbreviation (input) "show_lines x \<equiv> shows_lines x Nil"
fun show_factorization :: "'a :: {semiring_1,show} \<times> (('a poly \<times> nat)list) \<Rightarrow> string" where
"show_factorization (c,[]) = show c"
| "show_factorization (c,((p,i) # ps)) = show_factorization (c,ps) @ '' * ('' @ show p @ '')'' @
(if i = 1 then [] else ''^'' @ show i)"
definition show_sf_factorization :: "'a :: {semiring_1,show} \<times> (('a poly \<times> nat)list) \<Rightarrow> string" where
"show_sf_factorization x = show_factorization (map_prod id (map (map_prod id Suc)) x)
"
text \<open>Determine the roots over the rational, real, and complex numbers.\<close>
definition "testpoly = [:5/2, -7/2, 1/2, -5, 7, -1, 5/2, -7/2, 1/2:]"
definition "test = show_lines ( real_roots_of_rat_poly testpoly)"
value [code] "show_lines ( roots_of_rat_poly testpoly)"
value [code] "show_lines ( real_roots_of_rat_poly testpoly)"
value [code] "show_lines (complex_roots_of_rat_poly testpoly)"
text \<open>Compute real and complex roots of a polynomial with rational coefficients.\<close>
value [code] "show (complex_roots_of_rat_poly testpoly)"
value [code] "show (real_roots_of_rat_poly testpoly)"
text \<open>A sequence of calculations.\<close>
value [code] "show (- sqrt 2 - sqrt 3)"
lemma "root 3 4 > sqrt (root 4 3) + \<lfloor>1/10 * root 3 7\<rfloor>" by eval
lemma "csqrt (4 + 3 * \<i>) \<notin> \<real>" by eval
value [code] "show (csqrt (4 + 3 * \<i>))"
value [code] "show (csqrt (1 + \<i>))"
subsection \<open>Example Application: Compute Norms of Eigenvalues\<close>
text \<open>For complexity analysis of some matrix $A$ it is important to compute the spectral
radius of a matrix, i.e., the maximal norm of all complex eigenvalues,
since the spectral radius determines
the growth rates of matrix-powers $A^n$, cf.~\cite{JNF-AFP} for a formalized statement
of this fact.\<close>
definition eigenvalues :: "rat mat \<Rightarrow> complex list" where
"eigenvalues A = complex_roots_of_rat_poly (char_poly A)"
definition "testmat = mat_of_rows_list 3 [
[1,-4,2],
[1/5,7,9],
[7,1,5 :: rat]
]"
definition "spectral_radius_test = show (Max (set [ norm ev. ev \<leftarrow> eigenvalues testmat]))"
value [code] "char_poly testmat"
value [code] spectral_radius_test
end
|