Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 45,277 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
(*
    Author:      René Thiemann
                 Sebastiaan Joosten
                 Akihisa Yamada
    License:     BSD
*)
section \<open>Algebraic Numbers -- Excluding Addition and Multiplication\<close>

text \<open>This theory contains basic definition and results on algebraic numbers, namely that
  algebraic numbers are closed under negation, inversion, $n$-th roots, and
  that every rational number is algebraic. For all of these closure properties, corresponding
  polynomial witnesses are available.

  Moreover, this theory contains the uniqueness result,
  that for every algebraic number there is exactly one content-free irreducible polynomial with
  positive leading coefficient for it.
  This result is stronger than similar ones which you find in many textbooks.
  The reason is that here we do not require a least degree construction.

  This is essential, since given some content-free irreducible polynomial for x,
  how should we check whether the degree is optimal. In the formalized result, this is
  not required. The result is proven via GCDs, and that the GCD does not change
  when executed on the rational numbers or on the reals or complex numbers, and that
  the GCD of a rational polynomial can be expressed via the GCD of integer polynomials.\<close>

text \<open>Many results are taken from the textbook \cite[pages 317ff]{AlgNumbers}.\<close>

theory Algebraic_Numbers_Prelim
imports
  "HOL-Computational_Algebra.Fundamental_Theorem_Algebra"
  Polynomial_Interpolation.Newton_Interpolation (* for lemma smult_1 *)
  Polynomial_Factorization.Gauss_Lemma
  Berlekamp_Zassenhaus.Unique_Factorization_Poly
  Polynomial_Factorization.Square_Free_Factorization
begin

lemma primitive_imp_unit_iff:
  fixes p :: "'a :: {comm_semiring_1,semiring_no_zero_divisors} poly"
  assumes pr: "primitive p"
  shows "p dvd 1 \<longleftrightarrow> degree p = 0"
proof
  assume "degree p = 0"
  from degree0_coeffs[OF this] obtain p0 where p: "p = [:p0:]" by auto
  then have "\<forall>c \<in> set (coeffs p). p0 dvd c" by (simp add: cCons_def)
  with pr have "p0 dvd 1" by (auto dest: primitiveD)
  with p show "p dvd 1" by auto
next
  assume "p dvd 1"
  then show "degree p = 0" by (auto simp: poly_dvd_1)
qed

lemma dvd_all_coeffs_imp_dvd:
  assumes "\<forall>a \<in> set (coeffs p). c dvd a" shows "[:c:] dvd p"
proof (insert assms, induct p)
  case 0
  then show ?case by simp
next
  case (pCons a p)
  have "pCons a p = [:a:] + pCons 0 p" by simp
  also have "[:c:] dvd ..."
  proof (rule dvd_add)
    from pCons show "[:c:] dvd [:a:]" by (auto simp: cCons_def)
    from pCons have "[:c:] dvd p" by auto
    from Rings.dvd_mult[OF this]
    show "[:c:] dvd pCons 0 p" by (subst pCons_0_as_mult)
  qed
  finally show ?case.
qed

lemma irreducible_content:
  fixes p :: "'a::{comm_semiring_1,semiring_no_zero_divisors} poly"
  assumes "irreducible p" shows "degree p = 0 \<or> primitive p"
proof(rule ccontr)
  assume not: "\<not>?thesis"
  then obtain c where c1: "\<not>c dvd 1" and "\<forall>a \<in> set (coeffs p). c dvd a" by (auto elim: not_primitiveE)
  from dvd_all_coeffs_imp_dvd[OF this(2)]
  obtain r where p: "p = r * [:c:]" by (elim dvdE, auto)
  from irreducibleD[OF assms this] have "r dvd 1 \<or> [:c:] dvd 1" by auto
  with c1 have "r dvd 1" unfolding const_poly_dvd_1 by auto
  then have "degree r = 0" unfolding poly_dvd_1 by auto
  with p have "degree p = 0" by auto
  with not show False by auto
qed

(* TODO: move *)
lemma linear_irreducible_field:
  fixes p :: "'a :: field poly"
  assumes deg: "degree p = 1" shows "irreducible p"
proof (intro irreducibleI)
  from deg show p0: "p \<noteq> 0" by auto
  from deg show "\<not> p dvd 1" by (auto simp: poly_dvd_1)
  fix a b assume p: "p = a * b"
  with p0 have a0: "a \<noteq> 0" and b0: "b \<noteq> 0" by auto
  from degree_mult_eq[OF this, folded p] assms
  consider "degree a = 1" "degree b = 0" | "degree a = 0" "degree b = 1" by force
  then show "a dvd 1 \<or> b dvd 1"
    by (cases; insert a0 b0, auto simp: primitive_imp_unit_iff)
qed

(* TODO: move *)
lemma linear_irreducible_int:
  fixes p :: "int poly"
  assumes deg: "degree p = 1" and cp: "content p dvd 1"
  shows "irreducible p"
proof (intro irreducibleI)
  from deg show p0: "p \<noteq> 0" by auto
  from deg show "\<not> p dvd 1" by (auto simp: poly_dvd_1)
  fix a b assume p: "p = a * b"
  note * = cp[unfolded p is_unit_content_iff, unfolded content_mult]
  have a1: "content a dvd 1" and b1: "content b dvd 1"
    using content_ge_0_int[of a] pos_zmult_eq_1_iff_lemma[OF *] * by (auto simp: abs_mult)
  with p0 have a0: "a \<noteq> 0" and b0: "b \<noteq> 0" by auto
  from degree_mult_eq[OF this, folded p] assms
  consider "degree a = 1" "degree b = 0" | "degree a = 0" "degree b = 1" by force
  then show "a dvd 1 \<or> b dvd 1"
    by (cases; insert a1 b1, auto simp: primitive_imp_unit_iff)
qed

lemma irreducible_connect_rev:
  fixes p :: "'a :: {comm_semiring_1,semiring_no_zero_divisors} poly"
  assumes irr: "irreducible p" and deg: "degree p > 0"
  shows "irreducible\<^sub>d p"
proof(intro irreducible\<^sub>dI deg)
  fix q r
  assume degq: "degree q > 0" and diff: "degree q < degree p" and p: "p = q * r"
  from degq have nu: "\<not> q dvd 1" by (auto simp: poly_dvd_1)
  from irreducibleD[OF irr p] nu have "r dvd 1" by auto
  then have "degree r = 0" by (auto simp: poly_dvd_1)
  with degq diff show False unfolding p using degree_mult_le[of q r] by auto
qed

subsection \<open>Polynomial Evaluation of Integer and Rational Polynomials in Fields.\<close>

abbreviation ipoly where "ipoly f x \<equiv> poly (of_int_poly f) x"

lemma poly_map_poly_code[code_unfold]: "poly (map_poly h p) x = fold_coeffs (\<lambda> a b. h a + x * b) p 0"
  by (induct p, auto)

abbreviation real_of_int_poly :: "int poly \<Rightarrow> real poly" where
  "real_of_int_poly \<equiv> of_int_poly"

abbreviation real_of_rat_poly :: "rat poly \<Rightarrow> real poly" where
  "real_of_rat_poly \<equiv> map_poly of_rat"

lemma of_rat_of_int[simp]: "of_rat \<circ> of_int = of_int" by auto

lemma ipoly_of_rat[simp]: "ipoly p (of_rat y) = of_rat (ipoly p y)"
proof-
  have id: "of_int = of_rat o of_int" unfolding comp_def by auto
  show ?thesis by (subst id, subst map_poly_map_poly[symmetric], auto)
qed

lemma ipoly_of_real[simp]:
  "ipoly p (of_real x :: 'a :: {field,real_algebra_1}) = of_real (ipoly p x)"
proof -
  have id: "of_int = of_real o of_int" unfolding comp_def by auto
  show ?thesis by (subst id, subst map_poly_map_poly[symmetric], auto)
qed

lemma finite_ipoly_roots: assumes "p \<noteq> 0"
  shows "finite {x :: real. ipoly p x = 0}"
proof -
  let ?p = "real_of_int_poly p"
  from assms have "?p \<noteq> 0" by auto
  thus ?thesis by (rule poly_roots_finite)
qed

subsection \<open>Algebraic Numbers -- Definition, Inverse, and Roots\<close>

text \<open>A number @{term "x :: 'a :: field"} is algebraic iff it is the root of an integer polynomial.
  Whereas the Isabelle distribution this is defined via the embedding
  of integers in an field via @{const Ints}, we work with integer polynomials
  of type @{type int} and then use @{const ipoly} for evaluating the polynomial at
  a real or complex point.\<close>

lemma algebraic_altdef_ipoly:
  shows "algebraic x \<longleftrightarrow> (\<exists>p. ipoly p x = 0 \<and> p \<noteq> 0)"
unfolding algebraic_def
proof (safe, goal_cases)
  case (1 p)
  define the_int where "the_int = (\<lambda>x::'a. THE r. x = of_int r)"
  define p' where "p' = map_poly the_int p"
  have of_int_the_int: "of_int (the_int x) = x" if "x \<in> \<int>" for x
    unfolding the_int_def by (rule sym, rule theI') (insert that, auto simp: Ints_def)
  have the_int_0_iff: "the_int x = 0 \<longleftrightarrow> x = 0" if "x \<in> \<int>"
    using of_int_the_int[OF that] by auto
  have "map_poly of_int p' = map_poly (of_int \<circ> the_int) p"
      by (simp add: p'_def map_poly_map_poly)
  also from 1 of_int_the_int have "\<dots> = p"
    by (subst poly_eq_iff) (auto simp: coeff_map_poly)
  finally have p_p': "map_poly of_int p' = p" .
  show ?case
  proof (intro exI conjI notI)
    from 1 show "ipoly p' x = 0" by (simp add: p_p')
  next
    assume "p' = 0"
    hence "p = 0" by (simp add: p_p' [symmetric])
    with \<open>p \<noteq> 0\<close> show False by contradiction
  qed
next
  case (2 p)
  thus ?case by (intro exI[of _ "map_poly of_int p"], auto)
qed

text \<open>Definition of being algebraic with explicit witness polynomial.\<close>

definition represents :: "int poly \<Rightarrow> 'a :: field_char_0 \<Rightarrow> bool" (infix "represents" 51)
  where "p represents x = (ipoly p x = 0 \<and> p \<noteq> 0)"

lemma representsI[intro]: "ipoly p x = 0 \<Longrightarrow> p \<noteq> 0 \<Longrightarrow> p represents x"
  unfolding represents_def by auto

lemma representsD:
  assumes "p represents x" shows "p \<noteq> 0" and "ipoly p x = 0" using assms unfolding represents_def by auto

lemma representsE:
  assumes "p represents x" and "p \<noteq> 0 \<Longrightarrow> ipoly p x = 0 \<Longrightarrow> thesis"
  shows thesis using assms unfolding represents_def by auto

lemma represents_imp_degree:
  fixes x :: "'a :: field_char_0"
  assumes "p represents x" shows "degree p \<noteq> 0"
proof-
  from assms have "p \<noteq> 0" and px: "ipoly p x = 0" by (auto dest:representsD)
  then have "(of_int_poly p :: 'a poly) \<noteq> 0" by auto
  then have "degree (of_int_poly p :: 'a poly) \<noteq> 0" by (fold poly_zero[OF px])
  then show ?thesis by auto
qed

lemma representsE_full[elim]:
  assumes rep: "p represents x"
    and main: "p \<noteq> 0 \<Longrightarrow> ipoly p x = 0 \<Longrightarrow> degree p \<noteq> 0 \<Longrightarrow> thesis"
  shows thesis
  by (rule main, insert represents_imp_degree[OF rep] rep, auto elim: representsE)

lemma represents_of_rat[simp]: "p represents (of_rat x) = p represents x" by (auto elim!:representsE)
lemma represents_of_real[simp]: "p represents (of_real x) = p represents x" by (auto elim!:representsE)

lemma algebraic_iff_represents: "algebraic x \<longleftrightarrow> (\<exists> p. p represents x)"
  unfolding algebraic_altdef_ipoly represents_def ..

lemma represents_irr_non_0:
  assumes irr: "irreducible p" and ap: "p represents x" and x0: "x \<noteq> 0"
  shows "poly p 0 \<noteq> 0"
proof
  have nu: "\<not> [:0,1::int:] dvd 1" by (auto simp: poly_dvd_1)
  assume "poly p 0 = 0"
  hence dvd: "[: 0, 1 :] dvd p" by (unfold dvd_iff_poly_eq_0, simp)
  then obtain q where pq: "p = [:0,1:] * q" by (elim dvdE)
  from irreducibleD[OF irr this] nu have "q dvd 1" by auto
  from this obtain r where "q = [:r:]" "r dvd 1" by (auto simp add: poly_dvd_1 dest: degree0_coeffs)
  with pq have "p = [:0,r:]" by auto
  with ap have "x = 0" by (auto simp: of_int_hom.map_poly_pCons_hom)
  with x0 show False by auto
qed

text \<open>The polynomial encoding a rational number.\<close>

definition poly_rat :: "rat \<Rightarrow> int poly" where
  "poly_rat x = (case quotient_of x of (n,d) \<Rightarrow> [:-n,d:])"

definition abs_int_poly:: "int poly \<Rightarrow> int poly" where
  "abs_int_poly p \<equiv> if lead_coeff p < 0 then -p else p"

lemma pos_poly_abs_poly[simp]:
  shows "lead_coeff (abs_int_poly p) > 0 \<longleftrightarrow> p \<noteq> 0"
proof-
  have "p \<noteq> 0 \<longleftrightarrow> lead_coeff p * sgn (lead_coeff p) > 0" by (fold abs_sgn, auto)
  then show ?thesis by (auto simp: abs_int_poly_def mult.commute)
qed

lemma abs_int_poly_0[simp]: "abs_int_poly 0 = 0"
  by (auto simp: abs_int_poly_def)

lemma abs_int_poly_eq_0_iff[simp]: "abs_int_poly p = 0 \<longleftrightarrow> p = 0"
  by (auto simp: abs_int_poly_def sgn_eq_0_iff)

lemma degree_abs_int_poly[simp]: "degree (abs_int_poly p) = degree p"
  by (auto simp: abs_int_poly_def sgn_eq_0_iff)

lemma abs_int_poly_dvd[simp]: "abs_int_poly p dvd q \<longleftrightarrow> p dvd q"
  by (unfold abs_int_poly_def, auto)

(*TODO: move & generalize *)
lemma (in idom) irreducible_uminus[simp]: "irreducible (-x) \<longleftrightarrow> irreducible x"
proof-
  have "-x = -1 * x" by simp
  also have "irreducible ... \<longleftrightarrow> irreducible x" by (rule irreducible_mult_unit_left, auto)
  finally show ?thesis.
qed

lemma irreducible_abs_int_poly[simp]:
  "irreducible (abs_int_poly p) \<longleftrightarrow> irreducible p"
  by (unfold abs_int_poly_def, auto)

lemma coeff_abs_int_poly[simp]:
  "coeff (abs_int_poly p) n = (if lead_coeff p < 0 then - coeff p n else coeff p n)"
  by (simp add: abs_int_poly_def)

lemma lead_coeff_abs_int_poly[simp]:
  "lead_coeff (abs_int_poly p) = abs (lead_coeff p)"
  by auto

lemma ipoly_abs_int_poly_eq_zero_iff[simp]:
  "ipoly (abs_int_poly p) (x :: 'a :: comm_ring_1) = 0 \<longleftrightarrow> ipoly p x = 0"
  by (auto simp: abs_int_poly_def sgn_eq_0_iff of_int_poly_hom.hom_uminus)

lemma abs_int_poly_represents[simp]:
  "abs_int_poly p represents x \<longleftrightarrow> p represents x" by (auto elim!:representsE)


(* TODO: Move *)
lemma content_pCons[simp]: "content (pCons a p) = gcd a (content p)"
  by (unfold content_def coeffs_pCons_eq_cCons cCons_def, auto)

lemma content_uminus[simp]:
  fixes p :: "'a :: ring_gcd poly" shows "content (-p) = content p"
  by (induct p, auto)

lemma primitive_abs_int_poly[simp]:
  "primitive (abs_int_poly p) \<longleftrightarrow> primitive p"
  by (auto simp: abs_int_poly_def)

lemma abs_int_poly_inv[simp]: "smult (sgn (lead_coeff p)) (abs_int_poly p) = p"
  by (cases "lead_coeff p > 0", auto simp: abs_int_poly_def)



definition cf_pos :: "int poly \<Rightarrow> bool" where
  "cf_pos p = (content p = 1 \<and> lead_coeff p > 0)"

definition cf_pos_poly :: "int poly \<Rightarrow> int poly" where
  "cf_pos_poly f = (let
      c = content f;
      d = (sgn (lead_coeff f) * c)
    in sdiv_poly f d)"

lemma sgn_is_unit[intro!]:
  fixes x :: "'a :: linordered_idom" (* find/make better class *)
  assumes "x \<noteq> 0"
  shows "sgn x dvd 1" using assms by(cases x "0::'a" rule:linorder_cases, auto)

lemma cf_pos_poly_0[simp]: "cf_pos_poly 0 = 0" by (unfold cf_pos_poly_def sdiv_poly_def, auto)

lemma cf_pos_poly_eq_0[simp]: "cf_pos_poly f = 0 \<longleftrightarrow> f = 0"
proof(cases "f = 0")
  case True
  thus ?thesis unfolding cf_pos_poly_def Let_def by (simp add: sdiv_poly_def)
next
  case False
  then have lc0: "lead_coeff f \<noteq> 0" by auto
  then have s0: "sgn (lead_coeff f) \<noteq> 0" (is "?s \<noteq> 0") and "content f \<noteq> 0" (is "?c \<noteq> 0") by (auto simp: sgn_0_0)
  then have sc0: "?s * ?c \<noteq> 0" by auto
  { fix i
    from content_dvd_coeff sgn_is_unit[OF lc0]
    have "?s * ?c dvd coeff f i" by (auto simp: unit_dvd_iff)
    then have "coeff f i div (?s * ?c) = 0 \<longleftrightarrow> coeff f i = 0" by (auto simp:dvd_div_eq_0_iff)
  } note * = this
  show ?thesis unfolding cf_pos_poly_def Let_def sdiv_poly_def poly_eq_iff by (auto simp: coeff_map_poly *)
qed

lemma
  shows cf_pos_poly_main: "smult (sgn (lead_coeff f) * content f) (cf_pos_poly f) = f" (is ?g1)
    and content_cf_pos_poly[simp]: "content (cf_pos_poly f) = (if f = 0 then 0 else 1)" (is ?g2)
    and lead_coeff_cf_pos_poly[simp]: "lead_coeff (cf_pos_poly f) > 0 \<longleftrightarrow> f \<noteq> 0" (is ?g3)
    and cf_pos_poly_dvd[simp]: "cf_pos_poly f dvd f" (is ?g4)
proof(atomize(full), (cases "f = 0"; intro conjI))
  case True
  then show ?g1 ?g2 ?g3 ?g4 by simp_all
next
  case f0: False
  let ?s = "sgn (lead_coeff f)"
  have s: "?s \<in> {-1,1}" using f0 unfolding sgn_if by auto
  define g where "g \<equiv> smult ?s f"
  define d where "d \<equiv> ?s * content f"
  have "content g = content ([:?s:] * f)" unfolding g_def by simp
  also have "\<dots> = content [:?s:] * content f" unfolding content_mult by simp
  also have "content [:?s:] = 1" using s by (auto simp: content_def)
  finally have cg: "content g = content f" by simp
  from f0
  have d: "cf_pos_poly f = sdiv_poly f d"  by (auto simp: cf_pos_poly_def Let_def d_def)
  let ?g = "primitive_part g"
  define ng where "ng = primitive_part g"
  note d
  also have "sdiv_poly f d = sdiv_poly g (content g)" unfolding cg unfolding g_def d_def
    by (rule poly_eqI, unfold coeff_sdiv_poly coeff_smult, insert s, auto simp: div_minus_right)
  finally have fg: "cf_pos_poly f = primitive_part g" unfolding primitive_part_alt_def .
  have "lead_coeff f \<noteq> 0" using f0 by auto
  hence lg: "lead_coeff g > 0" unfolding g_def lead_coeff_smult
    by (meson linorder_neqE_linordered_idom sgn_greater sgn_less zero_less_mult_iff)
  hence g0: "g \<noteq> 0" by auto
  from f0 content_primitive_part[OF this]
  show ?g2 unfolding fg by auto
  from g0 have "content g \<noteq> 0" by simp
  with arg_cong[OF content_times_primitive_part[of g], of lead_coeff, unfolded lead_coeff_smult]
    lg content_ge_0_int[of g] have lg': "lead_coeff ng > 0" unfolding ng_def
    by (metis dual_order.antisym dual_order.strict_implies_order zero_less_mult_iff)
  with f0 show ?g3 unfolding fg ng_def by auto

  have d0: "d \<noteq> 0" using s f0 by (force simp add: d_def)
  have "smult d (cf_pos_poly f) = smult ?s (smult (content f) (sdiv_poly (smult ?s f) (content f)))"
    unfolding fg primitive_part_alt_def cg by (simp add: g_def d_def)
  also have "sdiv_poly (smult ?s f) (content f) = smult ?s (sdiv_poly f (content f))"
    using s by (metis cg g_def primitive_part_alt_def primitive_part_smult_int sgn_sgn)
  finally have "smult d (cf_pos_poly f) = smult (content f) (primitive_part f)"
    unfolding primitive_part_alt_def using s by auto
  also have "\<dots> = f" by (rule content_times_primitive_part)
  finally have df: "smult d (cf_pos_poly f) = f" .
  with d0 show ?g1 by (auto simp: d_def)
  from df have *: "f = cf_pos_poly f * [:d:]" by simp
  from dvdI[OF this] show ?g4.
qed

(* TODO: remove *)
lemma irreducible_connect_int:
  fixes p :: "int poly"
  assumes ir: "irreducible\<^sub>d p" and c: "content p = 1"
  shows "irreducible p"
  using c primitive_iff_content_eq_1 ir irreducible_primitive_connect by blast

lemma
  fixes x :: "'a :: {idom,ring_char_0}"
  shows ipoly_cf_pos_poly_eq_0[simp]: "ipoly (cf_pos_poly p) x = 0 \<longleftrightarrow> ipoly p x = 0"
    and degree_cf_pos_poly[simp]: "degree (cf_pos_poly p) = degree p"
    and cf_pos_cf_pos_poly[intro]: "p \<noteq> 0 \<Longrightarrow> cf_pos (cf_pos_poly p)"
proof-
  show "degree (cf_pos_poly p) = degree p"
    by (subst(3) cf_pos_poly_main[symmetric], auto simp:sgn_eq_0_iff)
  {
    assume p: "p \<noteq> 0"
    show "cf_pos (cf_pos_poly p)" using cf_pos_poly_main p by (auto simp: cf_pos_def)
    have "(ipoly (cf_pos_poly p) x = 0) = (ipoly p x = 0)"
      apply (subst(3) cf_pos_poly_main[symmetric]) by (auto simp: sgn_eq_0_iff hom_distribs)
  }
  then show "(ipoly (cf_pos_poly p) x = 0) = (ipoly p x = 0)" by (cases "p = 0", auto)
qed


lemma cf_pos_poly_eq_1: "cf_pos_poly f = 1 \<longleftrightarrow> degree f = 0 \<and> f \<noteq> 0" (is "?l \<longleftrightarrow> ?r")
proof(intro iffI conjI)
  assume ?r
  then have df0: "degree f = 0" and f0: "f \<noteq> 0" by auto
  from  degree0_coeffs[OF df0] obtain f0 where f: "f = [:f0:]" by auto
  show "cf_pos_poly f = 1" using f0 unfolding f cf_pos_poly_def Let_def sdiv_poly_def
    by (auto simp: content_def mult_sgn_abs)
next
  assume l: ?l
  then have "degree (cf_pos_poly f) = 0" by auto
  then show "degree f = 0" by simp
  from l have "cf_pos_poly f \<noteq> 0" by auto
  then show "f \<noteq> 0" by simp
qed



lemma irr_cf_poly_rat[simp]: "irreducible (poly_rat x)"
  "lead_coeff (poly_rat x) > 0" "primitive (poly_rat x)"
proof -
  obtain n d where x: "quotient_of x = (n,d)" by force
  hence id: "poly_rat x = [:-n,d:]" by (auto simp: poly_rat_def)
  from quotient_of_denom_pos[OF x] have d: "d > 0" by auto
  show "lead_coeff (poly_rat x) > 0" "primitive (poly_rat x)"
    unfolding id cf_pos_def using d quotient_of_coprime[OF x] by (auto simp: content_def)
  from this[unfolded cf_pos_def]
  show irr: "irreducible (poly_rat x)" unfolding id using d by (auto intro!: linear_irreducible_int)
qed

lemma poly_rat[simp]: "ipoly (poly_rat x) (of_rat x :: 'a :: field_char_0) = 0" "ipoly (poly_rat x) x = 0"
  "poly_rat x \<noteq> 0" "ipoly (poly_rat x) y = 0 \<longleftrightarrow> y = (of_rat x :: 'a)"
proof -
  from irr_cf_poly_rat(1)[of x] show "poly_rat x \<noteq> 0"
    unfolding Factorial_Ring.irreducible_def by auto
  obtain n d where x: "quotient_of x = (n,d)" by force
  hence id: "poly_rat x = [:-n,d:]" by (auto simp: poly_rat_def)
  from quotient_of_denom_pos[OF x] have d: "d \<noteq> 0" by auto
  have "y * of_int d = of_int n \<Longrightarrow> y = of_int n / of_int d" using d
    by (simp add: eq_divide_imp)
  with d id show "ipoly (poly_rat x) (of_rat x) = 0" "ipoly (poly_rat x) x = 0"
    "ipoly (poly_rat x) y = 0 \<longleftrightarrow> y = (of_rat x :: 'a)"
    by (auto simp: of_rat_minus of_rat_divide simp: quotient_of_div[OF x])
qed

lemma poly_rat_represents_of_rat: "(poly_rat x) represents (of_rat x)" by auto

lemma ipoly_smult_0_iff: assumes c: "c \<noteq> 0"
  shows "(ipoly (smult c p) x = (0 :: real)) = (ipoly p x = 0)"
  using c by (simp add: hom_distribs)


(* TODO *)
lemma not_irreducibleD:
  assumes "\<not> irreducible x" and "x \<noteq> 0" and "\<not> x dvd 1"
  shows "\<exists>y z. x = y * z \<and> \<not> y dvd 1 \<and> \<not> z dvd 1" using assms
  apply (unfold Factorial_Ring.irreducible_def) by auto


lemma cf_pos_poly_represents[simp]: "(cf_pos_poly p) represents x \<longleftrightarrow> p represents x"
  unfolding represents_def by auto

lemma coprime_prod: (* TODO: move *)
  "a \<noteq> 0 \<Longrightarrow> c \<noteq> 0 \<Longrightarrow> coprime (a * b) (c * d) \<Longrightarrow> coprime b (d::'a::{semiring_gcd})"
  by auto

lemma smult_prod: (* TODO: move or find corresponding lemma *)
  "smult a b = monom a 0 * b"
  by (simp add: monom_0)

lemma degree_map_poly_2:
  assumes "f (lead_coeff p) \<noteq> 0"
  shows   "degree (map_poly f p) = degree p"
proof (cases "p=0")
  case False thus ?thesis
    unfolding degree_eq_length_coeffs Polynomial.coeffs_map_poly
    using assms by (simp add:coeffs_def)
qed auto

lemma irreducible_cf_pos_poly:
  assumes irr: "irreducible p" and deg: "degree p \<noteq> 0"
  shows "irreducible (cf_pos_poly p)" (is "irreducible ?p")
proof (unfold irreducible_altdef, intro conjI allI impI)
  from irr show "?p \<noteq> 0" by auto
  from deg have "degree ?p \<noteq> 0" by simp
  then show "\<not> ?p dvd 1" unfolding poly_dvd_1 by auto
  fix b assume "b dvd cf_pos_poly p"
  also note cf_pos_poly_dvd
  finally have "b dvd p".
  with irr[unfolded irreducible_altdef] have "p dvd b \<or> b dvd 1" by auto
  then show "?p dvd b \<or> b dvd 1" by (auto dest: dvd_trans[OF cf_pos_poly_dvd])
qed

locale dvd_preserving_hom = comm_semiring_1_hom +
  assumes hom_eq_mult_hom_imp: "hom x = hom y * hz \<Longrightarrow> \<exists>z. hz = hom z \<and> x = y * z"
begin

  lemma hom_dvd_hom_iff[simp]: "hom x dvd hom y \<longleftrightarrow> x dvd y"
  proof
    assume "hom x dvd hom y"
    then obtain hz where "hom y = hom x * hz" by (elim dvdE)
    from hom_eq_mult_hom_imp[OF this] obtain z
    where "hz = hom z" and mult: "y = x * z" by auto
    then show "x dvd y" by auto
  qed auto

  sublocale unit_preserving_hom
  proof unfold_locales
    fix x assume "hom x dvd 1" then have "hom x dvd hom 1" by simp
    then show "x dvd 1" by (unfold hom_dvd_hom_iff)
  qed

  sublocale zero_hom_0
  proof (unfold_locales)
    fix a :: 'a
    assume "hom a = 0"
    then have "hom 0 dvd hom a" by auto
    then have "0 dvd a" by (unfold hom_dvd_hom_iff)
    then show "a = 0" by auto
  qed

end

lemma smult_inverse_monom:"p \<noteq> 0 \<Longrightarrow> smult (inverse c) (p::rat poly) = 1 \<longleftrightarrow> p = [: c :]"
  proof (cases "c=0")
    case True thus "p \<noteq> 0 \<Longrightarrow> ?thesis" by auto
  next
    case False thus ?thesis by (metis left_inverse right_inverse smult_1 smult_1_left smult_smult)
  qed

lemma of_int_monom:"of_int_poly p = [:rat_of_int c:] \<longleftrightarrow> p = [: c :]" by (induct p, auto)

lemma degree_0_content:
  fixes p :: "int poly"
  assumes deg: "degree p = 0" shows "content p = abs (coeff p 0)"
proof-
  from deg obtain a where p: "p = [:a:]" by (auto dest: degree0_coeffs)
  show ?thesis by (auto simp: p)
qed

lemma prime_elem_imp_gcd_eq:
  fixes x::"'a:: ring_gcd"
  shows "prime_elem x \<Longrightarrow> gcd x y = normalize x \<or> gcd x y = 1"
  using prime_elem_imp_coprime [of x y]
  by (auto simp add: gcd_proj1_iff intro: coprime_imp_gcd_eq_1) 

lemma irreducible_pos_gcd:
  fixes p :: "int poly"
  assumes ir: "irreducible p" and pos: "lead_coeff p > 0" shows "gcd p q \<in> {1,p}"
proof-
  from pos have "[:sgn (lead_coeff p):] = 1" by auto
  with prime_elem_imp_gcd_eq[of p, unfolded prime_elem_iff_irreducible, OF ir, of q]
  show ?thesis by (auto simp: normalize_poly_def)
qed

lemma irreducible_pos_gcd_twice:
  fixes p q :: "int poly"
  assumes p: "irreducible p" "lead_coeff p > 0"
  and q: "irreducible q" "lead_coeff q > 0"
  shows "gcd p q = 1 \<or> p = q"
proof (cases "gcd p q = 1")
  case False note pq = this
  have "p = gcd p q" using irreducible_pos_gcd [OF p, of q] pq
    by auto
  also have "\<dots> = q" using irreducible_pos_gcd [OF q, of p] pq
    by (auto simp add: ac_simps)
  finally show ?thesis by auto
qed simp

interpretation of_rat_hom: field_hom_0' of_rat..

lemma poly_zero_imp_not_unit:
  assumes "poly p x = 0" shows "\<not> p dvd 1"
proof (rule notI)
  assume "p dvd 1"
  from poly_hom.hom_dvd_1[OF this] have "poly p x dvd 1" by auto
  with assms show False by auto
qed

lemma poly_prod_mset_zero_iff:
  fixes x :: "'a :: idom"
  shows "poly (prod_mset F) x = 0 \<longleftrightarrow> (\<exists>f \<in># F. poly f x = 0)"
  by (induct F, auto simp: poly_mult_zero_iff)

lemma algebraic_imp_represents_irreducible:
  fixes x :: "'a :: field_char_0"
  assumes "algebraic x"
  shows "\<exists>p. p represents x \<and> irreducible p"
proof -
  from assms obtain p
  where px0: "ipoly p x = 0" and p0: "p \<noteq> 0" unfolding algebraic_altdef_ipoly by auto
  from poly_zero_imp_not_unit[OF px0]
  have "\<not> p dvd 1" by (auto dest: of_int_poly_hom.hom_dvd_1[where 'a = 'a])
  from mset_factors_exist[OF p0 this]
  obtain F where F: "mset_factors F p" by auto
  then have "p = prod_mset F" by auto
  also have "(of_int_poly ... :: 'a poly) = prod_mset (image_mset of_int_poly F)" by simp
  finally have "poly ... x = 0" using px0 by auto
  from this[unfolded poly_prod_mset_zero_iff]
  obtain f where "f \<in># F" and fx0: "ipoly f x = 0" by auto
  with F have "irreducible f" by auto
  with fx0 show ?thesis by auto
qed

lemma algebraic_imp_represents_irreducible_cf_pos:
  assumes "algebraic (x::'a::field_char_0)"
  shows "\<exists>p. p represents x \<and> irreducible p \<and> lead_coeff p > 0 \<and> primitive p"
proof -
  from algebraic_imp_represents_irreducible[OF assms(1)]
  obtain p where px: "p represents x" and irr: "irreducible p" by auto
  let ?p = "cf_pos_poly p"
  from px irr represents_imp_degree
  have 1: "?p represents x" and 2: "irreducible ?p" and 3: "cf_pos ?p"
    by (auto intro: irreducible_cf_pos_poly)
  then show ?thesis by (auto intro: exI[of _ ?p] simp: cf_pos_def)
qed

lemma gcd_of_int_poly: "gcd (of_int_poly f) (of_int_poly g :: 'a :: {field_char_0,field_gcd} poly) =
  smult (inverse (of_int (lead_coeff (gcd f g)))) (of_int_poly (gcd f g))"
proof -
  let ?ia = "of_int_poly :: _ \<Rightarrow> 'a poly"
  let ?ir = "of_int_poly :: _ \<Rightarrow> rat poly"
  let ?ra = "map_poly of_rat :: _ \<Rightarrow> 'a poly"
  have id: "?ia x = ?ra (?ir x)" for x by (subst map_poly_map_poly, auto)
  show ?thesis
    unfolding id
    unfolding of_rat_hom.map_poly_gcd[symmetric]
    unfolding gcd_rat_to_gcd_int by (auto simp: hom_distribs)
qed

lemma algebraic_imp_represents_unique:
  fixes x :: "'a :: {field_char_0,field_gcd}"
  assumes "algebraic x"
  shows "\<exists>! p. p represents x \<and> irreducible p \<and> lead_coeff p > 0" (is "Ex1 ?p")
proof -
  from assms obtain p
  where p: "?p p" and cfp: "cf_pos p"
    by (auto simp: cf_pos_def dest: algebraic_imp_represents_irreducible_cf_pos)
  show ?thesis
  proof (rule ex1I)
    show "?p p" by fact
    fix q
    assume q: "?p q"
    then have "q represents x" by auto
    from represents_imp_degree[OF this] q irreducible_content[of q]
    have cfq: "cf_pos q" by (auto simp: cf_pos_def)
    show "q = p"
    proof (rule ccontr)
      let ?ia = "map_poly of_int :: int poly \<Rightarrow> 'a poly"
      assume "q \<noteq> p"
      with irreducible_pos_gcd_twice[of p q] p q cfp cfq have gcd: "gcd p q = 1" by auto
      from p q have rt: "ipoly p x = 0" "ipoly q x = 0" unfolding represents_def by auto
      define c :: 'a where "c = inverse (of_int (lead_coeff (gcd p q)))"
      have rt: "poly (?ia p) x = 0" "poly (?ia q) x = 0" using rt by auto
      hence "[:-x,1:] dvd ?ia p" "[:-x,1:] dvd ?ia q"
        unfolding poly_eq_0_iff_dvd by auto
      hence "[:-x,1:] dvd gcd (?ia p) (?ia q)" by (rule gcd_greatest)
      also have "\<dots> = smult c (?ia (gcd p q))" unfolding gcd_of_int_poly c_def ..
      also have "?ia (gcd p q) = 1" by (simp add: gcd)
      also have "smult c 1 = [: c :]" by simp
      finally show False using c_def gcd by (simp add: dvd_iff_poly_eq_0)
    qed
  qed
qed

lemma ipoly_poly_compose:
  fixes x :: "'a :: idom"
  shows "ipoly (p \<circ>\<^sub>p q) x = ipoly p (ipoly q x)"
proof (induct p)
  case (pCons a p)
  have "ipoly ((pCons a p) \<circ>\<^sub>p q) x = of_int a + ipoly (q * p \<circ>\<^sub>p q) x" by (simp add: hom_distribs)
  also have "ipoly (q * p \<circ>\<^sub>p q) x = ipoly q x * ipoly (p \<circ>\<^sub>p q) x" by (simp add: hom_distribs)
  also have "ipoly (p \<circ>\<^sub>p q) x = ipoly p (ipoly q x)" unfolding pCons(2) ..
  also have "of_int a + ipoly q x * \<dots> = ipoly (pCons a p) (ipoly q x)"
    unfolding map_poly_pCons[OF pCons(1)] by simp
  finally show ?case .
qed simp

lemma algebraic_0[simp]: "algebraic 0"
  unfolding algebraic_altdef_ipoly
  by (intro exI[of _ "[:0,1:]"], auto)

lemma algebraic_1[simp]: "algebraic 1"
  unfolding algebraic_altdef_ipoly
  by (intro exI[of _ "[:-1,1:]"], auto)


text \<open>Polynomial for unary minus.\<close>

definition poly_uminus :: "'a :: ring_1 poly \<Rightarrow> 'a poly" where [code del]:
  "poly_uminus p \<equiv> \<Sum>i\<le>degree p. monom ((-1)^i * coeff p i) i"

lemma poly_uminus_pCons_pCons[simp]:
  "poly_uminus (pCons a (pCons b p)) = pCons a (pCons (-b) (poly_uminus p))" (is "?l = ?r")
proof(cases "p = 0")
  case False
  then have deg: "degree (pCons a (pCons b p)) = Suc (Suc (degree p))" by simp
  show ?thesis
  by (unfold poly_uminus_def deg sum.atMost_Suc_shift monom_Suc monom_0 sum_pCons_0_commute, simp)
next
  case True
  then show ?thesis by (auto simp add: poly_uminus_def monom_0 monom_Suc)
qed

fun poly_uminus_inner :: "'a :: ring_1 list \<Rightarrow> 'a poly"
where "poly_uminus_inner [] = 0"
  |   "poly_uminus_inner [a] = [:a:]"
  |   "poly_uminus_inner (a#b#cs) = pCons a (pCons (-b) (poly_uminus_inner cs))"

lemma poly_uminus_code[code,simp]: "poly_uminus p = poly_uminus_inner (coeffs p)"
proof-
  have "poly_uminus (Poly as) = poly_uminus_inner as" for as :: "'a list"
  proof (induct "length as" arbitrary:as rule: less_induct)
    case less
    show ?case
    proof(cases as)
      case Nil
      then show ?thesis by (simp add: poly_uminus_def)
    next
      case [simp]: (Cons a bs)
      show ?thesis
      proof (cases bs)
        case Nil
        then show ?thesis by (simp add: poly_uminus_def monom_0)
      next
        case [simp]: (Cons b cs)
        show ?thesis by (simp add: less)
      qed
    qed
  qed
  from this[of "coeffs p"]
  show ?thesis by simp
qed

lemma poly_uminus_inner_0[simp]: "poly_uminus_inner as = 0 \<longleftrightarrow> Poly as = 0"
  by (induct as rule: poly_uminus_inner.induct, auto)

lemma degree_poly_uminus_inner[simp]: "degree (poly_uminus_inner as) = degree (Poly as)"
  by (induct as rule: poly_uminus_inner.induct, auto)

lemma ipoly_uminus_inner[simp]:
  "ipoly (poly_uminus_inner as) (x::'a::comm_ring_1) = ipoly (Poly as) (-x)"
  by (induct as rule: poly_uminus_inner.induct, auto simp: hom_distribs ring_distribs)

lemma represents_uminus: assumes alg: "p represents x"
  shows "(poly_uminus p) represents (-x)"
proof -
  from representsD[OF alg] have "p \<noteq> 0" and rp: "ipoly p x = 0" by auto
  hence 0: "poly_uminus p \<noteq> 0" by simp
  show ?thesis
    by (rule representsI[OF _ 0], insert rp, auto)
qed


lemma content_poly_uminus_inner[simp]:
  fixes as :: "'a :: ring_gcd list"
  shows "content (poly_uminus_inner as) = content (Poly as)"
  by (induct as rule: poly_uminus_inner.induct, auto)


text \<open>Multiplicative inverse is represented by @{const reflect_poly}.\<close>

lemma inverse_pow_minus: assumes "x \<noteq> (0 :: 'a :: field)"
  and "i \<le> n"
  shows "inverse x ^ n * x ^ i = inverse x ^ (n - i)"
  using assms by (simp add: field_class.field_divide_inverse power_diff power_inverse)

lemma (in inj_idom_hom) reflect_poly_hom:
  "reflect_poly (map_poly hom p) = map_poly hom (reflect_poly p)"
proof -
  obtain xs where xs: "rev (coeffs p) = xs" by auto
  show ?thesis unfolding reflect_poly_def coeffs_map_poly_hom rev_map
    xs by (induct xs, auto simp: hom_distribs)
qed

lemma ipoly_reflect_poly: assumes x: "(x :: 'a :: field_char_0) \<noteq> 0"
  shows "ipoly (reflect_poly p) x = x ^ (degree p) * ipoly p (inverse x)" (is "?l = ?r")
proof -
  let ?or = "of_int :: int \<Rightarrow> 'a"
  have hom: "inj_idom_hom ?or" ..
  show ?thesis
    using poly_reflect_poly_nz[OF x, of "map_poly ?or p"] by (simp add: inj_idom_hom.reflect_poly_hom[OF hom])
qed

lemma represents_inverse: assumes x: "x \<noteq> 0"
  and alg: "p represents x"
  shows "(reflect_poly p) represents (inverse x)"
proof (intro representsI)
  from representsD[OF alg] have "p \<noteq> 0" and rp: "ipoly p x = 0" by auto
  then show "reflect_poly p \<noteq> 0" by (metis reflect_poly_0 reflect_poly_at_0_eq_0_iff)
  show "ipoly (reflect_poly p) (inverse x) = 0" by (subst ipoly_reflect_poly, insert x, auto simp:rp)
qed

lemma inverse_roots: assumes x: "(x :: 'a :: field_char_0) \<noteq> 0"
  shows "ipoly (reflect_poly p) x = 0 \<longleftrightarrow> ipoly p (inverse x) = 0"
  using x by (auto simp: ipoly_reflect_poly)

context
  fixes n :: nat
begin
text \<open>Polynomial for n-th root.\<close>

definition poly_nth_root :: "'a :: idom poly \<Rightarrow> 'a poly" where
  "poly_nth_root p = p \<circ>\<^sub>p monom 1 n"

lemma ipoly_nth_root:
  fixes x :: "'a :: idom"
  shows "ipoly (poly_nth_root p) x = ipoly p (x ^ n)"
  unfolding poly_nth_root_def ipoly_poly_compose by (simp add: map_poly_monom poly_monom)

context
  assumes n: "n \<noteq> 0"
begin
lemma poly_nth_root_0[simp]: "poly_nth_root p = 0 \<longleftrightarrow> p = 0"
  unfolding poly_nth_root_def
  by (rule pcompose_eq_0, insert n, auto simp: degree_monom_eq)

lemma represents_nth_root:
  assumes y: "y^n = x" and alg: "p represents x"
  shows "(poly_nth_root p) represents y"
proof -
  from representsD[OF alg] have "p \<noteq> 0" and rp: "ipoly p x = 0" by auto
  hence 0: "poly_nth_root p \<noteq> 0" by simp
  show ?thesis
    by (rule representsI[OF _ 0], unfold ipoly_nth_root y rp, simp)
qed

lemma represents_nth_root_odd_real:
  assumes alg: "p represents x" and odd: "odd n"
  shows "(poly_nth_root p) represents (root n x)"
  by (rule represents_nth_root[OF odd_real_root_pow[OF odd] alg])

lemma represents_nth_root_pos_real:
  assumes alg: "p represents x" and pos: "x > 0"
  shows "(poly_nth_root p) represents (root n x)"
proof -
  from n have id: "Suc (n - 1) = n" by auto
  show ?thesis
  proof (rule represents_nth_root[OF _ alg])
    show "root n x ^ n = x" using id pos by auto
  qed
qed

lemma represents_nth_root_neg_real:
  assumes alg: "p represents x" and neg: "x < 0"
  shows "(poly_uminus (poly_nth_root (poly_uminus p))) represents (root n x)"
proof -
  have rt: "root n x = - root n (-x)" unfolding real_root_minus by simp
  show ?thesis unfolding rt
    by (rule represents_uminus[OF represents_nth_root_pos_real[OF represents_uminus[OF alg]]], insert neg, auto)
qed
end
end

lemma represents_csqrt:
  assumes alg: "p represents x" shows "(poly_nth_root 2 p) represents (csqrt x)"
  by (rule represents_nth_root[OF _ _ alg], auto)

lemma represents_sqrt:
  assumes alg: "p represents x" and pos: "x \<ge> 0"
  shows "(poly_nth_root 2 p) represents (sqrt x)"
  by (rule represents_nth_root[OF _ _ alg], insert pos, auto)

lemma represents_degree:
  assumes "p represents x" shows "degree p \<noteq> 0"
proof
  assume "degree p = 0"
  from degree0_coeffs[OF this] obtain c where p: "p = [:c:]" by auto
  from assms[unfolded represents_def p]
  show False by auto
qed


text \<open>Polynomial for multiplying a rational number with an algebraic number.\<close>

definition poly_mult_rat_main where
  "poly_mult_rat_main n d (f :: 'a :: idom poly) = (let fs = coeffs f; k = length fs in
    poly_of_list (map (\<lambda> (fi, i). fi * d ^ i * n ^ (k - Suc i)) (zip fs [0 ..< k])))"

definition poly_mult_rat :: "rat \<Rightarrow> int poly \<Rightarrow> int poly" where
  "poly_mult_rat r p \<equiv> case quotient_of r of (n,d) \<Rightarrow> poly_mult_rat_main n d p"

lemma coeff_poly_mult_rat_main: "coeff (poly_mult_rat_main n d f) i = coeff f i * n ^ (degree f - i) * d ^ i"
proof -
  have id: "coeff (poly_mult_rat_main n d f) i = (coeff f i * d ^ i) * n ^ (length (coeffs f) - Suc i)"
    unfolding poly_mult_rat_main_def Let_def poly_of_list_def coeff_Poly
    unfolding nth_default_coeffs_eq[symmetric]
    unfolding nth_default_def by auto
  show ?thesis unfolding id by (simp add: degree_eq_length_coeffs)
qed

lemma degree_poly_mult_rat_main: "n \<noteq> 0 \<Longrightarrow> degree (poly_mult_rat_main n d f) = (if d = 0 then 0 else degree f)"
proof (cases "d = 0")
  case True
  thus ?thesis unfolding degree_def unfolding coeff_poly_mult_rat_main by simp
next
  case False
  hence id: "(d = 0) = False" by simp
  show "n \<noteq> 0 \<Longrightarrow> ?thesis" unfolding degree_def coeff_poly_mult_rat_main id
    by (simp add: id)
qed

lemma ipoly_mult_rat_main:
  fixes x :: "'a :: {field,ring_char_0}"
  assumes "d \<noteq> 0" and "n \<noteq> 0"
  shows "ipoly (poly_mult_rat_main n d p) x = of_int n ^ degree p * ipoly p (x * of_int d / of_int n)"
proof -
  from assms have d: "(if d = 0 then t else f) = f" for t f :: 'b by simp
  show ?thesis
    unfolding poly_altdef of_int_hom.coeff_map_poly_hom mult.assoc[symmetric] of_int_mult[symmetric]
      sum_distrib_left
    unfolding of_int_hom.degree_map_poly_hom degree_poly_mult_rat_main[OF assms(2)] d
  proof (rule sum.cong[OF refl])
    fix i
    assume "i \<in> {..degree p}"
    hence i: "i \<le> degree p" by auto
    hence id: "of_int n ^ (degree p - i) = (of_int n ^ degree p / of_int n ^ i :: 'a)"
      by (simp add: assms(2) power_diff)
    thus "of_int (coeff (poly_mult_rat_main n d p) i) * x ^ i = of_int n ^ degree p * of_int (coeff p i) * (x * of_int d / of_int n) ^ i"
      unfolding coeff_poly_mult_rat_main
      by (simp add: field_simps)
  qed
qed

lemma degree_poly_mult_rat[simp]: assumes "r \<noteq> 0" shows "degree (poly_mult_rat r p) = degree p"
proof -
  obtain n d where quot: "quotient_of r = (n,d)" by force
  from quotient_of_div[OF quot] have r: "r = of_int n / of_int d" by auto
  from quotient_of_denom_pos[OF quot] have d: "d \<noteq> 0" by auto
  with assms r have n0: "n \<noteq> 0" by simp
  from quot have id: "poly_mult_rat r p = poly_mult_rat_main n d p"  unfolding poly_mult_rat_def by simp
  show ?thesis unfolding id degree_poly_mult_rat_main[OF n0] using d by simp
qed

lemma ipoly_mult_rat:
  assumes r0: "r \<noteq> 0"
  shows "ipoly (poly_mult_rat r p) x = of_int (fst (quotient_of r)) ^ degree p * ipoly p (x * inverse (of_rat r))"
proof -
  obtain n d where quot: "quotient_of r = (n,d)" by force
  from quotient_of_div[OF quot] have r: "r = of_int n / of_int d" by auto
  from quotient_of_denom_pos[OF quot] have d: "d \<noteq> 0" by auto
  from r r0 have n: "n \<noteq> 0" by simp
  from r d n have inv: "of_int d / of_int n = inverse r" by simp
  from quot have id: "poly_mult_rat r p = poly_mult_rat_main n d p"  unfolding poly_mult_rat_def by simp
  show ?thesis unfolding id ipoly_mult_rat_main[OF d n] quot fst_conv of_rat_inverse[symmetric] inv[symmetric]
    by (simp add: of_rat_divide)
qed

lemma poly_mult_rat_main_0[simp]:
  assumes "n \<noteq> 0" "d \<noteq> 0" shows "poly_mult_rat_main n d p = 0 \<longleftrightarrow> p = 0"
proof
  assume "p = 0" thus "poly_mult_rat_main n d p = 0"
    by (simp add: poly_mult_rat_main_def)
next
  assume 0: "poly_mult_rat_main n d p = 0"
  {
    fix i
    from 0 have "coeff (poly_mult_rat_main n d p) i = 0" by simp
    hence "coeff p i = 0" unfolding coeff_poly_mult_rat_main using assms by simp
  }
  thus "p = 0" by (intro poly_eqI, auto)
qed


lemma poly_mult_rat_0[simp]: assumes r0: "r \<noteq> 0" shows "poly_mult_rat r p = 0 \<longleftrightarrow> p = 0"
proof -
  obtain n d where quot: "quotient_of r = (n,d)" by force
  from quotient_of_div[OF quot] have r: "r = of_int n / of_int d" by auto
  from quotient_of_denom_pos[OF quot] have d: "d \<noteq> 0" by auto
  from r r0 have n: "n \<noteq> 0" by simp
  from quot have id: "poly_mult_rat r p = poly_mult_rat_main n d p"  unfolding poly_mult_rat_def by simp
  show ?thesis unfolding id using n d by simp
qed

lemma represents_mult_rat:
  assumes r: "r \<noteq> 0" and "p represents x" shows "(poly_mult_rat r p) represents (of_rat r * x)"
  using assms
  unfolding represents_def ipoly_mult_rat[OF r] by (simp add: field_simps)

text \<open>Polynomial for adding a rational number on an algebraic number.
  Again, we do not have to factor afterwards.\<close>

definition poly_add_rat :: "rat \<Rightarrow> int poly \<Rightarrow> int poly" where
  "poly_add_rat r p \<equiv> case quotient_of r of (n,d) \<Rightarrow>
     (poly_mult_rat_main d 1 p \<circ>\<^sub>p [:-n,d:])"

lemma poly_add_rat_code[code]: "poly_add_rat r p \<equiv> case quotient_of r of (n,d) \<Rightarrow>
     let p' = (let fs = coeffs p; k = length fs in poly_of_list (map (\<lambda>(fi, i). fi * d ^ (k - Suc i)) (zip fs [0..<k])));
         p'' = p' \<circ>\<^sub>p [:-n,d:]
      in p''"
  unfolding poly_add_rat_def poly_mult_rat_main_def Let_def by simp

lemma degree_poly_add_rat[simp]: "degree (poly_add_rat r p) = degree p"
proof -
  obtain n d where quot: "quotient_of r = (n,d)" by force
  from quotient_of_div[OF quot] have r: "r = of_int n / of_int d" by auto
  from quotient_of_denom_pos[OF quot] have d: "d \<noteq> 0" "d > 0" by auto
  show ?thesis unfolding poly_add_rat_def quot split
    by (simp add: degree_poly_mult_rat_main d)
qed

lemma ipoly_add_rat: "ipoly (poly_add_rat r p) x = (of_int (snd (quotient_of r)) ^ degree p) * ipoly p (x - of_rat r)"
proof -
  obtain n d where quot: "quotient_of r = (n,d)" by force
  from quotient_of_div[OF quot] have r: "r = of_int n / of_int d" by auto
  from quotient_of_denom_pos[OF quot] have d: "d \<noteq> 0" "d > 0" by auto
  have id: "ipoly [:- n, 1:] (x / of_int d :: 'a) = - of_int n + x / of_int d" by simp
  show ?thesis unfolding poly_add_rat_def quot split
    by (simp add: ipoly_mult_rat_main ipoly_poly_compose d r degree_poly_mult_rat_main field_simps id of_rat_divide)
qed

lemma poly_add_rat_0[simp]: "poly_add_rat r p = 0 \<longleftrightarrow> p = 0"
proof -
  obtain n d where quot: "quotient_of r = (n,d)" by force
  from quotient_of_div[OF quot] have r: "r = of_int n / of_int d" by auto
  from quotient_of_denom_pos[OF quot] have d: "d \<noteq> 0" "d > 0" by auto
  show ?thesis unfolding poly_add_rat_def quot split
    by (simp add: d pcompose_eq_0)
qed

lemma add_rat_roots: "ipoly (poly_add_rat r p) x = 0 \<longleftrightarrow> ipoly p (x - of_rat r) = 0"
  unfolding ipoly_add_rat using quotient_of_nonzero by auto

lemma represents_add_rat:
  assumes "p represents x" shows "(poly_add_rat r p) represents (of_rat r + x)"
  using assms unfolding represents_def ipoly_add_rat by simp

(* TODO: move? *)
lemmas pos_mult[simplified,simp] = mult_less_cancel_left_pos[of _ 0] mult_less_cancel_left_pos[of _ _ 0]

lemma ipoly_add_rat_pos_neg:
  "ipoly (poly_add_rat r p) (x::'a::linordered_field) < 0 \<longleftrightarrow> ipoly p (x - of_rat r) < 0"
  "ipoly (poly_add_rat r p) (x::'a::linordered_field) > 0 \<longleftrightarrow> ipoly p (x - of_rat r) > 0"
  using quotient_of_nonzero unfolding ipoly_add_rat by auto

lemma sgn_ipoly_add_rat[simp]:
  "sgn (ipoly (poly_add_rat r p) (x::'a::linordered_field)) = sgn (ipoly p (x - of_rat r))" (is "sgn ?l = sgn ?r")
  using ipoly_add_rat_pos_neg[of r p x]
  by (cases ?r "0::'a" rule: linorder_cases,auto simp:  sgn_1_pos sgn_1_neg sgn_eq_0_iff)

lemma deg_nonzero_represents:
  assumes deg: "degree p \<noteq> 0" shows "\<exists> x :: complex. p represents x"
proof -
  let ?p = "of_int_poly p :: complex poly"
  from fundamental_theorem_algebra_factorized[of ?p]
  obtain as c where id: "smult c (\<Prod>a\<leftarrow>as. [:- a, 1:]) = ?p"
    and len: "length as = degree ?p" by blast
  have "degree ?p = degree p" by simp
  with deg len obtain b bs where as: "as = b # bs" by (cases as, auto)
  have "p represents b" unfolding represents_def id[symmetric] as using deg by auto
  thus ?thesis by blast
qed

end