Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 21,972 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
(*  
    Author:      Sebastiaan Joosten 
                 René Thiemann
                 Akihisa Yamada
    License:     BSD
*)
section \<open>Interval Arithmetic\<close>

text \<open>We provide basic interval arithmetic operations for real and complex intervals.
  As application we prove that complex polynomial evaluation is continuous w.r.t.
  interval arithmetic. To be more precise, if an interval sequence converges to some 
  element $x$, then the interval polynomial evaluation of $f$ tends to $f(x)$.\<close>
  
theory Interval_Arithmetic
imports
  Algebraic_Numbers_Prelim (* for ipoly *)
begin

text \<open>Intervals\<close>

datatype ('a) interval = Interval (lower: 'a) (upper: 'a)

hide_const(open) lower upper

definition to_interval where "to_interval a \<equiv> Interval a a"

abbreviation of_int_interval :: "int \<Rightarrow> 'a :: ring_1 interval" where
  "of_int_interval x \<equiv> to_interval (of_int x)" 


subsection \<open>Syntactic Class Instantiations\<close>

instantiation interval :: ("zero") zero begin
  definition zero_interval where "0 \<equiv> Interval 0 0"
  instance..
end

instantiation interval :: (one) one begin
  definition "1 = Interval 1 1"
  instance..
end

instantiation interval :: (plus) plus begin
  fun plus_interval where "Interval lx ux + Interval ly uy = Interval (lx + ly) (ux + uy)"
  instance..
end

instantiation interval :: (uminus) uminus begin
  fun uminus_interval where "- Interval l u = Interval (-u) (-l)"
  instance..
end

instantiation interval :: (minus) minus begin
  fun minus_interval where "Interval lx ux - Interval ly uy = Interval (lx - uy) (ux - ly)"
  instance..
end

instantiation interval :: ("{ord,times}") times begin
  fun times_interval where
  "Interval lx ux * Interval ly uy =
     (let x1 = lx * ly; x2 = lx * uy; x3 = ux * ly; x4 = ux * uy
      in Interval (min x1 (min x2 (min x3 x4))) (max x1 (max x2 (max x3 x4))))"
  instance..
end

instantiation interval :: ("{ord,times,inverse}") "inverse" begin
  fun inverse_interval where
    "inverse (Interval l u) = Interval (inverse u) (inverse l)"
  definition divide_interval :: "'a interval \<Rightarrow> _" where
    "divide_interval X Y = X  * (inverse Y)"
  instance..
end

subsection \<open>Class Instantiations\<close>

instance interval :: (semigroup_add) semigroup_add
proof
  fix a b c :: "'a interval"
  show "a + b + c = a + (b + c)" by (cases a, cases b, cases c, auto simp: ac_simps)
qed

instance interval :: (monoid_add) monoid_add
proof
  fix a :: "'a interval"
  show "0 + a = a" by (cases a, auto simp: zero_interval_def)
  show "a + 0 = a" by (cases a, auto simp: zero_interval_def)
qed

instance interval :: (ab_semigroup_add) ab_semigroup_add
proof
  fix a b :: "'a interval"
  show "a + b = b + a" by (cases a, cases b, auto simp: ac_simps)
qed

instance interval :: (comm_monoid_add) comm_monoid_add by (intro_classes, auto)

text \<open>Intervals do not form an additive group, but satisfy some properties.\<close>

lemma interval_uminus_zero[simp]:
  shows "-(0 :: 'a :: group_add interval) = 0"
  by (simp add: zero_interval_def)

lemma interval_diff_zero[simp]:
  fixes a :: "'a :: cancel_comm_monoid_add interval"
  shows "a - 0 = a" by (cases a, simp add: zero_interval_def)

text \<open>Without type invariant, intervals do not form a multiplicative monoid,
 but satisfy some properties.\<close>

instance interval :: ("{linorder,mult_zero}") mult_zero
proof
  fix a :: "'a interval"
  show "a * 0 = 0" "0 * a = 0" by (atomize(full), cases a, auto simp: zero_interval_def)
qed

subsection \<open>Membership\<close>

fun in_interval :: "'a :: order \<Rightarrow> 'a interval \<Rightarrow> bool" ("(_/ \<in>\<^sub>i _)" [51, 51] 50) where
  "y \<in>\<^sub>i Interval lx ux = (lx \<le> y \<and> y \<le> ux)" 

lemma in_interval_to_interval[intro!]: "a \<in>\<^sub>i to_interval a"
  by (auto simp: to_interval_def)

lemma plus_in_interval:
  fixes x y :: "'a :: ordered_comm_monoid_add"
  shows "x \<in>\<^sub>i X \<Longrightarrow> y \<in>\<^sub>i Y \<Longrightarrow> x + y \<in>\<^sub>i X + Y"
  by (cases X, cases Y, auto dest:add_mono)

lemma uminus_in_interval:
  fixes x :: "'a :: ordered_ab_group_add"
  shows "x \<in>\<^sub>i X \<Longrightarrow> -x \<in>\<^sub>i -X"
  by (cases X, auto)

lemma minus_in_interval:
  fixes x y :: "'a :: ordered_ab_group_add"
  shows "x \<in>\<^sub>i X \<Longrightarrow> y \<in>\<^sub>i Y \<Longrightarrow> x - y \<in>\<^sub>i X - Y"
  by (cases X, cases Y, auto dest:diff_mono)

lemma times_in_interval:
  fixes x y :: "'a :: linordered_ring"
  assumes "x \<in>\<^sub>i X" "y \<in>\<^sub>i Y"
  shows "x * y \<in>\<^sub>i X * Y"
proof -
  obtain X1 X2 where X:"Interval X1 X2 = X" by (cases X,auto)
  obtain Y1 Y2 where Y:"Interval Y1 Y2 = Y" by (cases Y,auto)
  from assms X Y have assms: "X1 \<le> x" "x \<le> X2" "Y1 \<le> y" "y \<le> Y2" by auto
  have "(X1 * Y1 \<le> x * y \<or> X1 * Y2 \<le> x * y \<or> X2 * Y1 \<le> x * y \<or> X2 * Y2 \<le> x * y) \<and>
        (X1 * Y1 \<ge> x * y \<or> X1 * Y2 \<ge> x * y \<or> X2 * Y1 \<ge> x * y \<or> X2 * Y2 \<ge> x * y)"
  proof (cases x "0::'a" rule: linorder_cases)
    case x0: less
    show ?thesis
    proof (cases "y < 0")
      case y0: True
      from y0 x0 assms have "x * y \<le> X1 * y" by (intro mult_right_mono_neg, auto)
      also from x0 y0 assms have "X1 * y \<le> X1 * Y1" by (intro mult_left_mono_neg, auto)
      finally have 1: "x * y \<le> X1 * Y1".
      show ?thesis proof(cases "X2 \<le> 0")
        case True
        with assms have "X2 * Y2 \<le> X2 * y" by (auto intro: mult_left_mono_neg)
        also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono_neg)
        finally have "X2 * Y2 \<le> x * y".
        with 1 show ?thesis by auto
      next
        case False
        with assms have "X2 * Y1 \<le> X2 * y" by (auto intro: mult_left_mono)
        also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono_neg)
        finally have "X2 * Y1 \<le> x * y".
        with 1 show ?thesis by auto
      qed
    next
      case False
      then have y0: "y \<ge> 0" by auto
      from x0 y0 assms have "X1 * Y2 \<le> x * Y2" by (intro mult_right_mono, auto)
      also from y0 x0 assms have "... \<le> x * y" by (intro mult_left_mono_neg, auto)
      finally have 1: "X1 * Y2 \<le> x * y".
      show ?thesis
      proof(cases "X2 \<le> 0")
        case X2: True
        from assms y0 have "x * y \<le> X2 * y" by (intro mult_right_mono)
        also from assms X2 have "... \<le> X2 * Y1" by (auto intro: mult_left_mono_neg)
        finally have "x * y \<le> X2 * Y1".
        with 1 show ?thesis by auto
      next
        case X2: False
        from assms y0 have "x * y \<le> X2 * y" by (intro mult_right_mono)
        also from assms X2 have "... \<le> X2 * Y2" by (auto intro: mult_left_mono)
        finally have "x * y \<le> X2 * Y2".
        with 1 show ?thesis by auto
      qed
    qed
  next
    case [simp]: equal
    with assms show ?thesis by (cases "Y2 \<le> 0", auto intro:mult_sign_intros)
  next
    case x0: greater
    show ?thesis
    proof (cases "y < 0")
      case y0: True
      from x0 y0 assms have "X2 * Y1 \<le> X2 * y" by (intro mult_left_mono, auto)
      also from y0 x0 assms have "X2 * y \<le> x * y" by (intro mult_right_mono_neg, auto)
      finally have 1: "X2 * Y1 \<le> x * y".
      show ?thesis
      proof(cases "Y2 \<le> 0")
        case Y2: True
        from x0 assms have "x * y \<le> x * Y2" by (auto intro: mult_left_mono)
        also from assms Y2 have "... \<le> X1 * Y2" by (auto intro: mult_right_mono_neg)
        finally have "x * y \<le> X1 * Y2".
        with 1 show ?thesis by auto
      next
        case Y2: False
        from x0 assms have "x * y \<le> x * Y2" by (auto intro: mult_left_mono)
        also from assms Y2 have "... \<le> X2 * Y2" by (auto intro: mult_right_mono)
        finally have "x * y \<le> X2 * Y2".
        with 1 show ?thesis by auto
      qed
    next
      case y0: False
      from x0 y0 assms have "x * y \<le> X2 * y" by (intro mult_right_mono, auto)
      also from y0 x0 assms have "... \<le> X2 * Y2" by (intro mult_left_mono, auto)
      finally have 1: "x * y \<le> X2 * Y2".
      show ?thesis
      proof(cases "X1 \<le> 0")
        case True
        with assms have "X1 * Y2 \<le> X1 * y" by (auto intro: mult_left_mono_neg)
        also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono)
        finally have "X1 * Y2 \<le> x * y".
        with 1 show ?thesis by auto
      next
        case False
        with assms have "X1 * Y1 \<le> X1 * y" by (auto intro: mult_left_mono)
        also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono)
        finally have "X1 * Y1 \<le> x * y".
        with 1 show ?thesis by auto
      qed
    qed
  qed
  hence min:"min (X1 * Y1) (min (X1 * Y2) (min (X2 * Y1) (X2 * Y2))) \<le> x * y"
    and max:"x * y \<le> max (X1 * Y1) (max (X1 * Y2) (max (X2 * Y1) (X2 * Y2)))"
    by (auto simp:min_le_iff_disj le_max_iff_disj)
  show ?thesis using min max X Y by (auto simp: Let_def)
qed

subsection \<open>Convergence\<close>

definition interval_tendsto :: "(nat \<Rightarrow> 'a :: topological_space interval) \<Rightarrow> 'a \<Rightarrow> bool"
  (infixr "\<longlonglongrightarrow>\<^sub>i" 55) where
  "(X \<longlonglongrightarrow>\<^sub>i x) \<equiv> ((interval.upper \<circ> X) \<longlonglongrightarrow> x) \<and> ((interval.lower \<circ> X) \<longlonglongrightarrow> x)"

lemma interval_tendstoI[intro]:
  assumes "(interval.upper \<circ> X) \<longlonglongrightarrow> x" and "(interval.lower \<circ> X) \<longlonglongrightarrow> x"
  shows "X \<longlonglongrightarrow>\<^sub>i x"
  using assms by (auto simp:interval_tendsto_def)

lemma const_interval_tendsto: "(\<lambda>i. to_interval a) \<longlonglongrightarrow>\<^sub>i a"
  by (auto simp: o_def to_interval_def)

lemma interval_tendsto_0: "(\<lambda>i. 0) \<longlonglongrightarrow>\<^sub>i 0"
  by (auto simp: o_def zero_interval_def)

lemma plus_interval_tendsto:
  fixes x y :: "'a :: topological_monoid_add"
  assumes "X \<longlonglongrightarrow>\<^sub>i x" "Y \<longlonglongrightarrow>\<^sub>i y"
  shows "(\<lambda> i. X i + Y i) \<longlonglongrightarrow>\<^sub>i x + y"
proof -
  have *: "X i + Y i = Interval (interval.lower (X i) + interval.lower (Y i)) (interval.upper (X i) + interval.upper (Y i))" for i
     by (cases "X i"; cases "Y i", auto)
  from assms show ?thesis unfolding * interval_tendsto_def o_def by (auto intro: tendsto_intros)
qed

lemma uminus_interval_tendsto:
  fixes x :: "'a :: topological_group_add"
  assumes "X \<longlonglongrightarrow>\<^sub>i x"
  shows "(\<lambda>i. - X i) \<longlonglongrightarrow>\<^sub>i -x"
proof-
  have *: "- X i = Interval (- interval.upper (X i)) (- interval.lower (X i))" for i
    by (cases "X i", auto)
  from assms show ?thesis unfolding o_def * interval_tendsto_def by (auto intro: tendsto_intros)
qed

lemma minus_interval_tendsto:
  fixes x y :: "'a :: topological_group_add"
  assumes "X \<longlonglongrightarrow>\<^sub>i x" "Y \<longlonglongrightarrow>\<^sub>i y"
  shows "(\<lambda> i. X i - Y i) \<longlonglongrightarrow>\<^sub>i x - y"
proof -
  have *: "X i - Y i = Interval (interval.lower (X i) - interval.upper (Y i)) (interval.upper (X i) - interval.lower (Y i))" for i
    by (cases "X i"; cases "Y i", auto)
  from assms show ?thesis unfolding o_def * interval_tendsto_def by (auto intro: tendsto_intros)
qed

lemma times_interval_tendsto:
  fixes x y :: "'a :: {linorder_topology, real_normed_algebra}"
  assumes "X \<longlonglongrightarrow>\<^sub>i x" "Y \<longlonglongrightarrow>\<^sub>i y"
  shows "(\<lambda> i. X i * Y i) \<longlonglongrightarrow>\<^sub>i x * y"
proof -
  have *: "(interval.lower (X i * Y i)) = (
    let lx = (interval.lower (X i)); ux = (interval.upper (X i));
        ly = (interval.lower (Y i)); uy = (interval.upper (Y i)); 
        x1 = lx * ly; x2 = lx * uy; x3 = ux * ly; x4 = ux * uy in 
      (min x1 (min x2 (min x3 x4))))" "(interval.upper (X i * Y i)) = (
    let lx = (interval.lower (X i)); ux = (interval.upper (X i));
        ly = (interval.lower (Y i)); uy = (interval.upper (Y i)); 
      x1 = lx * ly; x2 = lx * uy; x3 = ux * ly; x4 = ux * uy in 
      (max x1 (max x2 (max x3 x4))))" for i
    by (cases "X i"; cases "Y i", auto simp: Let_def)+
  have "(\<lambda>i. (interval.lower (X i * Y i))) \<longlonglongrightarrow> min (x * y) (min (x * y) (min (x * y) (x *y)))" 
    using assms unfolding interval_tendsto_def * Let_def o_def
    by (intro tendsto_min tendsto_intros, auto)
  moreover 
  have "(\<lambda>i. (interval.upper (X i * Y i))) \<longlonglongrightarrow> max (x * y) (max (x * y) (max (x * y) (x *y)))" 
    using assms unfolding interval_tendsto_def * Let_def o_def
    by (intro tendsto_max tendsto_intros, auto)
  ultimately show ?thesis unfolding interval_tendsto_def o_def by auto
qed

lemma interval_tendsto_neq:
  fixes a b :: "real"
  assumes "(\<lambda> i. f i) \<longlonglongrightarrow>\<^sub>i a" and "a \<noteq> b" 
  shows "\<exists> n. \<not> b \<in>\<^sub>i f n" 
proof -
  let ?d = "norm (b - a) / 2" 
  from assms have d: "?d > 0" by auto
  from assms(1)[unfolded interval_tendsto_def] 
  have cvg: "(interval.lower o f) \<longlonglongrightarrow> a" "(interval.upper o f) \<longlonglongrightarrow> a" by auto
  from LIMSEQ_D[OF cvg(1) d] obtain n1 where 
    n1: "\<And> n. n \<ge> n1 \<Longrightarrow> norm ((interval.lower \<circ> f) n - a) < ?d " by auto
  from LIMSEQ_D[OF cvg(2) d] obtain n2 where
    n2: "\<And> n. n \<ge> n2 \<Longrightarrow> norm ((interval.upper \<circ> f) n - a) < ?d " by auto
  define n where "n = max n1 n2"  
  from n1[of n] n2[of n] have bnd: 
    "norm ((interval.lower \<circ> f) n - a) < ?d" 
    "norm ((interval.upper \<circ> f) n - a) < ?d" 
    unfolding n_def by auto
  show ?thesis by (rule exI[of _ n], insert bnd, cases "f n", auto,argo)
qed

subsection \<open>Complex Intervals\<close>

datatype complex_interval = Complex_Interval (Re_interval: "real interval") (Im_interval: "real interval")

definition in_complex_interval :: "complex \<Rightarrow> complex_interval \<Rightarrow> bool" ("(_/ \<in>\<^sub>c _)" [51, 51] 50) where
  "y \<in>\<^sub>c x \<equiv> (case x of Complex_Interval r i \<Rightarrow> Re y \<in>\<^sub>i r \<and> Im y \<in>\<^sub>i i)" 
      
instantiation complex_interval :: comm_monoid_add begin

  definition "0 \<equiv> Complex_Interval 0 0"

  fun plus_complex_interval :: "complex_interval \<Rightarrow> complex_interval \<Rightarrow> complex_interval" where
    "Complex_Interval rx ix + Complex_Interval ry iy = Complex_Interval (rx + ry) (ix + iy)" 

  instance
  proof
    fix a b c :: complex_interval
    show "a + b + c = a + (b + c)" by (cases a, cases b, cases c, simp add: ac_simps)
    show "a + b = b + a" by (cases a, cases b, simp add: ac_simps)
    show "0 + a = a" by (cases a, simp add: ac_simps zero_complex_interval_def)
  qed
end

lemma plus_complex_interval: "x \<in>\<^sub>c X \<Longrightarrow> y \<in>\<^sub>c Y \<Longrightarrow> x + y \<in>\<^sub>c X + Y"
  unfolding in_complex_interval_def using plus_in_interval by (cases X, cases Y, auto)

definition of_int_complex_interval :: "int \<Rightarrow> complex_interval" where
  "of_int_complex_interval x = Complex_Interval (of_int_interval x) 0" 

lemma of_int_complex_interval_0[simp]: "of_int_complex_interval 0 = 0"
  by (simp add: of_int_complex_interval_def zero_complex_interval_def to_interval_def zero_interval_def)

lemma of_int_complex_interval: "of_int i \<in>\<^sub>c of_int_complex_interval i" 
  unfolding in_complex_interval_def of_int_complex_interval_def
  by (auto simp: zero_complex_interval_def zero_interval_def)

instantiation complex_interval :: mult_zero begin

  fun times_complex_interval where
    "Complex_Interval rx ix * Complex_Interval ry iy =
     Complex_Interval (rx * ry - ix * iy) (rx * iy + ix * ry)"

  instance
  proof
    fix a :: complex_interval
    show "0 * a = 0" "a * 0 = 0" by (atomize(full), cases a, auto simp: zero_complex_interval_def)
  qed
end

instantiation complex_interval :: minus begin

  fun minus_complex_interval where
    "Complex_Interval R I - Complex_Interval R' I' = Complex_Interval (R-R') (I-I')"

  instance..

end

lemma times_complex_interval: "x \<in>\<^sub>c X \<Longrightarrow> y \<in>\<^sub>c Y \<Longrightarrow> x * y \<in>\<^sub>c X * Y"
  unfolding in_complex_interval_def
  by (cases X, cases Y, auto intro: times_in_interval minus_in_interval plus_in_interval)

definition ipoly_complex_interval :: "int poly \<Rightarrow> complex_interval \<Rightarrow> complex_interval" where
  "ipoly_complex_interval p x = fold_coeffs (\<lambda>a b. of_int_complex_interval a + x * b) p 0" 

lemma ipoly_complex_interval_0[simp]:
  "ipoly_complex_interval 0 x = 0"
  by (auto simp: ipoly_complex_interval_def)

lemma ipoly_complex_interval_pCons[simp]:
  "ipoly_complex_interval (pCons a p) x = of_int_complex_interval a + x * (ipoly_complex_interval p x)"
  by (cases "p = 0"; cases "a = 0", auto simp: ipoly_complex_interval_def)

lemma ipoly_complex_interval: assumes x: "x \<in>\<^sub>c X" 
  shows "ipoly p x \<in>\<^sub>c ipoly_complex_interval p X" 
proof -
  define xs where "xs = coeffs p"
  have 0: "in_complex_interval 0 0" (is "in_complex_interval ?Z ?z")
    unfolding in_complex_interval_def zero_complex_interval_def zero_interval_def by auto
  define Z where "Z = ?Z" 
  define z where "z = ?z" 
  from 0 have 0: "in_complex_interval Z z" unfolding Z_def z_def by auto
  note x = times_complex_interval[OF x]
  show ?thesis 
    unfolding poly_map_poly_code ipoly_complex_interval_def fold_coeffs_def 
      xs_def[symmetric] Z_def[symmetric] z_def[symmetric] using 0
    by (induct xs arbitrary: Z z, auto intro!: plus_complex_interval of_int_complex_interval x)
qed
  
definition complex_interval_tendsto (infix "\<longlonglongrightarrow>\<^sub>c" 55) where
  "C \<longlonglongrightarrow>\<^sub>c c \<equiv> ((Re_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Re c) \<and> ((Im_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Im c)"

lemma complex_interval_tendstoI[intro!]:
  "(Re_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Re c \<Longrightarrow> (Im_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Im c \<Longrightarrow> C \<longlonglongrightarrow>\<^sub>c c"
  by (simp add: complex_interval_tendsto_def)

lemma of_int_complex_interval_tendsto: "(\<lambda>i. of_int_complex_interval n) \<longlonglongrightarrow>\<^sub>c of_int n"
  by (auto simp: o_def of_int_complex_interval_def intro!:const_interval_tendsto interval_tendsto_0)

lemma Im_interval_plus: "Im_interval (A + B) = Im_interval A + Im_interval B" 
  by (cases A; cases B, auto)

lemma Re_interval_plus: "Re_interval (A + B) = Re_interval A + Re_interval B" 
  by (cases A; cases B, auto)

lemma Im_interval_minus: "Im_interval (A - B) = Im_interval A - Im_interval B" 
  by (cases A; cases B, auto)

lemma Re_interval_minus: "Re_interval (A - B) = Re_interval A - Re_interval B" 
  by (cases A; cases B, auto)
    
lemma Re_interval_times: "Re_interval (A * B) = Re_interval A * Re_interval B - Im_interval A * Im_interval B" 
  by (cases A; cases B, auto)

lemma Im_interval_times: "Im_interval (A * B) = Re_interval A * Im_interval B + Im_interval A * Re_interval B" 
  by (cases A; cases B, auto)

lemma plus_complex_interval_tendsto:
  "A \<longlonglongrightarrow>\<^sub>c a \<Longrightarrow> B \<longlonglongrightarrow>\<^sub>c b \<Longrightarrow> (\<lambda>i. A i + B i) \<longlonglongrightarrow>\<^sub>c a + b" 
  unfolding complex_interval_tendsto_def
  by (auto intro!: plus_interval_tendsto simp: o_def Re_interval_plus Im_interval_plus)

lemma minus_complex_interval_tendsto:
  "A \<longlonglongrightarrow>\<^sub>c a \<Longrightarrow> B \<longlonglongrightarrow>\<^sub>c b \<Longrightarrow> (\<lambda>i. A i - B i) \<longlonglongrightarrow>\<^sub>c a - b" 
  unfolding complex_interval_tendsto_def
  by (auto intro!: minus_interval_tendsto simp: o_def Re_interval_minus Im_interval_minus)

lemma times_complex_interval_tendsto:
  "A \<longlonglongrightarrow>\<^sub>c a \<Longrightarrow> B \<longlonglongrightarrow>\<^sub>c b \<Longrightarrow> (\<lambda>i. A i * B i) \<longlonglongrightarrow>\<^sub>c a * b"
  unfolding complex_interval_tendsto_def
  by (auto intro!: minus_interval_tendsto times_interval_tendsto plus_interval_tendsto 
    simp: o_def Re_interval_times Im_interval_times)

lemma ipoly_complex_interval_tendsto:
  assumes "C \<longlonglongrightarrow>\<^sub>c c"
  shows "(\<lambda>i. ipoly_complex_interval p (C i)) \<longlonglongrightarrow>\<^sub>c ipoly p c"
proof(induct p)
  case 0
  show ?case by (auto simp: o_def zero_complex_interval_def zero_interval_def complex_interval_tendsto_def)
next
  case (pCons a p)
  show ?case
    apply (unfold ipoly_complex_interval_pCons of_int_hom.map_poly_pCons_hom poly_pCons)
    apply (intro plus_complex_interval_tendsto times_complex_interval_tendsto assms pCons of_int_complex_interval_tendsto)
    done
qed

lemma complex_interval_tendsto_neq: assumes "(\<lambda> i. f i) \<longlonglongrightarrow>\<^sub>c a" 
  and "a \<noteq> b" 
shows "\<exists> n. \<not> b \<in>\<^sub>c f n" 
proof -
  from assms(1)[unfolded complex_interval_tendsto_def o_def]
  have cvg: "(\<lambda>x. Re_interval (f x)) \<longlonglongrightarrow>\<^sub>i Re a" "(\<lambda>x. Im_interval (f x)) \<longlonglongrightarrow>\<^sub>i Im a" by auto
  from assms(2) have "Re a \<noteq> Re b \<or> Im a \<noteq> Im b"
    using complex.expand by blast
  thus ?thesis
  proof
    assume "Re a \<noteq> Re b" 
    from interval_tendsto_neq[OF cvg(1) this] show ?thesis
      unfolding in_complex_interval_def by (metis (no_types, lifting) complex_interval.case_eq_if)
  next
    assume "Im a \<noteq> Im b" 
    from interval_tendsto_neq[OF cvg(2) this] show ?thesis
      unfolding in_complex_interval_def by (metis (no_types, lifting) complex_interval.case_eq_if)
  qed
qed
  
end