Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,972 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
(*
Author: Sebastiaan Joosten
René Thiemann
Akihisa Yamada
License: BSD
*)
section \<open>Interval Arithmetic\<close>
text \<open>We provide basic interval arithmetic operations for real and complex intervals.
As application we prove that complex polynomial evaluation is continuous w.r.t.
interval arithmetic. To be more precise, if an interval sequence converges to some
element $x$, then the interval polynomial evaluation of $f$ tends to $f(x)$.\<close>
theory Interval_Arithmetic
imports
Algebraic_Numbers_Prelim (* for ipoly *)
begin
text \<open>Intervals\<close>
datatype ('a) interval = Interval (lower: 'a) (upper: 'a)
hide_const(open) lower upper
definition to_interval where "to_interval a \<equiv> Interval a a"
abbreviation of_int_interval :: "int \<Rightarrow> 'a :: ring_1 interval" where
"of_int_interval x \<equiv> to_interval (of_int x)"
subsection \<open>Syntactic Class Instantiations\<close>
instantiation interval :: ("zero") zero begin
definition zero_interval where "0 \<equiv> Interval 0 0"
instance..
end
instantiation interval :: (one) one begin
definition "1 = Interval 1 1"
instance..
end
instantiation interval :: (plus) plus begin
fun plus_interval where "Interval lx ux + Interval ly uy = Interval (lx + ly) (ux + uy)"
instance..
end
instantiation interval :: (uminus) uminus begin
fun uminus_interval where "- Interval l u = Interval (-u) (-l)"
instance..
end
instantiation interval :: (minus) minus begin
fun minus_interval where "Interval lx ux - Interval ly uy = Interval (lx - uy) (ux - ly)"
instance..
end
instantiation interval :: ("{ord,times}") times begin
fun times_interval where
"Interval lx ux * Interval ly uy =
(let x1 = lx * ly; x2 = lx * uy; x3 = ux * ly; x4 = ux * uy
in Interval (min x1 (min x2 (min x3 x4))) (max x1 (max x2 (max x3 x4))))"
instance..
end
instantiation interval :: ("{ord,times,inverse}") "inverse" begin
fun inverse_interval where
"inverse (Interval l u) = Interval (inverse u) (inverse l)"
definition divide_interval :: "'a interval \<Rightarrow> _" where
"divide_interval X Y = X * (inverse Y)"
instance..
end
subsection \<open>Class Instantiations\<close>
instance interval :: (semigroup_add) semigroup_add
proof
fix a b c :: "'a interval"
show "a + b + c = a + (b + c)" by (cases a, cases b, cases c, auto simp: ac_simps)
qed
instance interval :: (monoid_add) monoid_add
proof
fix a :: "'a interval"
show "0 + a = a" by (cases a, auto simp: zero_interval_def)
show "a + 0 = a" by (cases a, auto simp: zero_interval_def)
qed
instance interval :: (ab_semigroup_add) ab_semigroup_add
proof
fix a b :: "'a interval"
show "a + b = b + a" by (cases a, cases b, auto simp: ac_simps)
qed
instance interval :: (comm_monoid_add) comm_monoid_add by (intro_classes, auto)
text \<open>Intervals do not form an additive group, but satisfy some properties.\<close>
lemma interval_uminus_zero[simp]:
shows "-(0 :: 'a :: group_add interval) = 0"
by (simp add: zero_interval_def)
lemma interval_diff_zero[simp]:
fixes a :: "'a :: cancel_comm_monoid_add interval"
shows "a - 0 = a" by (cases a, simp add: zero_interval_def)
text \<open>Without type invariant, intervals do not form a multiplicative monoid,
but satisfy some properties.\<close>
instance interval :: ("{linorder,mult_zero}") mult_zero
proof
fix a :: "'a interval"
show "a * 0 = 0" "0 * a = 0" by (atomize(full), cases a, auto simp: zero_interval_def)
qed
subsection \<open>Membership\<close>
fun in_interval :: "'a :: order \<Rightarrow> 'a interval \<Rightarrow> bool" ("(_/ \<in>\<^sub>i _)" [51, 51] 50) where
"y \<in>\<^sub>i Interval lx ux = (lx \<le> y \<and> y \<le> ux)"
lemma in_interval_to_interval[intro!]: "a \<in>\<^sub>i to_interval a"
by (auto simp: to_interval_def)
lemma plus_in_interval:
fixes x y :: "'a :: ordered_comm_monoid_add"
shows "x \<in>\<^sub>i X \<Longrightarrow> y \<in>\<^sub>i Y \<Longrightarrow> x + y \<in>\<^sub>i X + Y"
by (cases X, cases Y, auto dest:add_mono)
lemma uminus_in_interval:
fixes x :: "'a :: ordered_ab_group_add"
shows "x \<in>\<^sub>i X \<Longrightarrow> -x \<in>\<^sub>i -X"
by (cases X, auto)
lemma minus_in_interval:
fixes x y :: "'a :: ordered_ab_group_add"
shows "x \<in>\<^sub>i X \<Longrightarrow> y \<in>\<^sub>i Y \<Longrightarrow> x - y \<in>\<^sub>i X - Y"
by (cases X, cases Y, auto dest:diff_mono)
lemma times_in_interval:
fixes x y :: "'a :: linordered_ring"
assumes "x \<in>\<^sub>i X" "y \<in>\<^sub>i Y"
shows "x * y \<in>\<^sub>i X * Y"
proof -
obtain X1 X2 where X:"Interval X1 X2 = X" by (cases X,auto)
obtain Y1 Y2 where Y:"Interval Y1 Y2 = Y" by (cases Y,auto)
from assms X Y have assms: "X1 \<le> x" "x \<le> X2" "Y1 \<le> y" "y \<le> Y2" by auto
have "(X1 * Y1 \<le> x * y \<or> X1 * Y2 \<le> x * y \<or> X2 * Y1 \<le> x * y \<or> X2 * Y2 \<le> x * y) \<and>
(X1 * Y1 \<ge> x * y \<or> X1 * Y2 \<ge> x * y \<or> X2 * Y1 \<ge> x * y \<or> X2 * Y2 \<ge> x * y)"
proof (cases x "0::'a" rule: linorder_cases)
case x0: less
show ?thesis
proof (cases "y < 0")
case y0: True
from y0 x0 assms have "x * y \<le> X1 * y" by (intro mult_right_mono_neg, auto)
also from x0 y0 assms have "X1 * y \<le> X1 * Y1" by (intro mult_left_mono_neg, auto)
finally have 1: "x * y \<le> X1 * Y1".
show ?thesis proof(cases "X2 \<le> 0")
case True
with assms have "X2 * Y2 \<le> X2 * y" by (auto intro: mult_left_mono_neg)
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono_neg)
finally have "X2 * Y2 \<le> x * y".
with 1 show ?thesis by auto
next
case False
with assms have "X2 * Y1 \<le> X2 * y" by (auto intro: mult_left_mono)
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono_neg)
finally have "X2 * Y1 \<le> x * y".
with 1 show ?thesis by auto
qed
next
case False
then have y0: "y \<ge> 0" by auto
from x0 y0 assms have "X1 * Y2 \<le> x * Y2" by (intro mult_right_mono, auto)
also from y0 x0 assms have "... \<le> x * y" by (intro mult_left_mono_neg, auto)
finally have 1: "X1 * Y2 \<le> x * y".
show ?thesis
proof(cases "X2 \<le> 0")
case X2: True
from assms y0 have "x * y \<le> X2 * y" by (intro mult_right_mono)
also from assms X2 have "... \<le> X2 * Y1" by (auto intro: mult_left_mono_neg)
finally have "x * y \<le> X2 * Y1".
with 1 show ?thesis by auto
next
case X2: False
from assms y0 have "x * y \<le> X2 * y" by (intro mult_right_mono)
also from assms X2 have "... \<le> X2 * Y2" by (auto intro: mult_left_mono)
finally have "x * y \<le> X2 * Y2".
with 1 show ?thesis by auto
qed
qed
next
case [simp]: equal
with assms show ?thesis by (cases "Y2 \<le> 0", auto intro:mult_sign_intros)
next
case x0: greater
show ?thesis
proof (cases "y < 0")
case y0: True
from x0 y0 assms have "X2 * Y1 \<le> X2 * y" by (intro mult_left_mono, auto)
also from y0 x0 assms have "X2 * y \<le> x * y" by (intro mult_right_mono_neg, auto)
finally have 1: "X2 * Y1 \<le> x * y".
show ?thesis
proof(cases "Y2 \<le> 0")
case Y2: True
from x0 assms have "x * y \<le> x * Y2" by (auto intro: mult_left_mono)
also from assms Y2 have "... \<le> X1 * Y2" by (auto intro: mult_right_mono_neg)
finally have "x * y \<le> X1 * Y2".
with 1 show ?thesis by auto
next
case Y2: False
from x0 assms have "x * y \<le> x * Y2" by (auto intro: mult_left_mono)
also from assms Y2 have "... \<le> X2 * Y2" by (auto intro: mult_right_mono)
finally have "x * y \<le> X2 * Y2".
with 1 show ?thesis by auto
qed
next
case y0: False
from x0 y0 assms have "x * y \<le> X2 * y" by (intro mult_right_mono, auto)
also from y0 x0 assms have "... \<le> X2 * Y2" by (intro mult_left_mono, auto)
finally have 1: "x * y \<le> X2 * Y2".
show ?thesis
proof(cases "X1 \<le> 0")
case True
with assms have "X1 * Y2 \<le> X1 * y" by (auto intro: mult_left_mono_neg)
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono)
finally have "X1 * Y2 \<le> x * y".
with 1 show ?thesis by auto
next
case False
with assms have "X1 * Y1 \<le> X1 * y" by (auto intro: mult_left_mono)
also from assms y0 have "... \<le> x * y" by (auto intro: mult_right_mono)
finally have "X1 * Y1 \<le> x * y".
with 1 show ?thesis by auto
qed
qed
qed
hence min:"min (X1 * Y1) (min (X1 * Y2) (min (X2 * Y1) (X2 * Y2))) \<le> x * y"
and max:"x * y \<le> max (X1 * Y1) (max (X1 * Y2) (max (X2 * Y1) (X2 * Y2)))"
by (auto simp:min_le_iff_disj le_max_iff_disj)
show ?thesis using min max X Y by (auto simp: Let_def)
qed
subsection \<open>Convergence\<close>
definition interval_tendsto :: "(nat \<Rightarrow> 'a :: topological_space interval) \<Rightarrow> 'a \<Rightarrow> bool"
(infixr "\<longlonglongrightarrow>\<^sub>i" 55) where
"(X \<longlonglongrightarrow>\<^sub>i x) \<equiv> ((interval.upper \<circ> X) \<longlonglongrightarrow> x) \<and> ((interval.lower \<circ> X) \<longlonglongrightarrow> x)"
lemma interval_tendstoI[intro]:
assumes "(interval.upper \<circ> X) \<longlonglongrightarrow> x" and "(interval.lower \<circ> X) \<longlonglongrightarrow> x"
shows "X \<longlonglongrightarrow>\<^sub>i x"
using assms by (auto simp:interval_tendsto_def)
lemma const_interval_tendsto: "(\<lambda>i. to_interval a) \<longlonglongrightarrow>\<^sub>i a"
by (auto simp: o_def to_interval_def)
lemma interval_tendsto_0: "(\<lambda>i. 0) \<longlonglongrightarrow>\<^sub>i 0"
by (auto simp: o_def zero_interval_def)
lemma plus_interval_tendsto:
fixes x y :: "'a :: topological_monoid_add"
assumes "X \<longlonglongrightarrow>\<^sub>i x" "Y \<longlonglongrightarrow>\<^sub>i y"
shows "(\<lambda> i. X i + Y i) \<longlonglongrightarrow>\<^sub>i x + y"
proof -
have *: "X i + Y i = Interval (interval.lower (X i) + interval.lower (Y i)) (interval.upper (X i) + interval.upper (Y i))" for i
by (cases "X i"; cases "Y i", auto)
from assms show ?thesis unfolding * interval_tendsto_def o_def by (auto intro: tendsto_intros)
qed
lemma uminus_interval_tendsto:
fixes x :: "'a :: topological_group_add"
assumes "X \<longlonglongrightarrow>\<^sub>i x"
shows "(\<lambda>i. - X i) \<longlonglongrightarrow>\<^sub>i -x"
proof-
have *: "- X i = Interval (- interval.upper (X i)) (- interval.lower (X i))" for i
by (cases "X i", auto)
from assms show ?thesis unfolding o_def * interval_tendsto_def by (auto intro: tendsto_intros)
qed
lemma minus_interval_tendsto:
fixes x y :: "'a :: topological_group_add"
assumes "X \<longlonglongrightarrow>\<^sub>i x" "Y \<longlonglongrightarrow>\<^sub>i y"
shows "(\<lambda> i. X i - Y i) \<longlonglongrightarrow>\<^sub>i x - y"
proof -
have *: "X i - Y i = Interval (interval.lower (X i) - interval.upper (Y i)) (interval.upper (X i) - interval.lower (Y i))" for i
by (cases "X i"; cases "Y i", auto)
from assms show ?thesis unfolding o_def * interval_tendsto_def by (auto intro: tendsto_intros)
qed
lemma times_interval_tendsto:
fixes x y :: "'a :: {linorder_topology, real_normed_algebra}"
assumes "X \<longlonglongrightarrow>\<^sub>i x" "Y \<longlonglongrightarrow>\<^sub>i y"
shows "(\<lambda> i. X i * Y i) \<longlonglongrightarrow>\<^sub>i x * y"
proof -
have *: "(interval.lower (X i * Y i)) = (
let lx = (interval.lower (X i)); ux = (interval.upper (X i));
ly = (interval.lower (Y i)); uy = (interval.upper (Y i));
x1 = lx * ly; x2 = lx * uy; x3 = ux * ly; x4 = ux * uy in
(min x1 (min x2 (min x3 x4))))" "(interval.upper (X i * Y i)) = (
let lx = (interval.lower (X i)); ux = (interval.upper (X i));
ly = (interval.lower (Y i)); uy = (interval.upper (Y i));
x1 = lx * ly; x2 = lx * uy; x3 = ux * ly; x4 = ux * uy in
(max x1 (max x2 (max x3 x4))))" for i
by (cases "X i"; cases "Y i", auto simp: Let_def)+
have "(\<lambda>i. (interval.lower (X i * Y i))) \<longlonglongrightarrow> min (x * y) (min (x * y) (min (x * y) (x *y)))"
using assms unfolding interval_tendsto_def * Let_def o_def
by (intro tendsto_min tendsto_intros, auto)
moreover
have "(\<lambda>i. (interval.upper (X i * Y i))) \<longlonglongrightarrow> max (x * y) (max (x * y) (max (x * y) (x *y)))"
using assms unfolding interval_tendsto_def * Let_def o_def
by (intro tendsto_max tendsto_intros, auto)
ultimately show ?thesis unfolding interval_tendsto_def o_def by auto
qed
lemma interval_tendsto_neq:
fixes a b :: "real"
assumes "(\<lambda> i. f i) \<longlonglongrightarrow>\<^sub>i a" and "a \<noteq> b"
shows "\<exists> n. \<not> b \<in>\<^sub>i f n"
proof -
let ?d = "norm (b - a) / 2"
from assms have d: "?d > 0" by auto
from assms(1)[unfolded interval_tendsto_def]
have cvg: "(interval.lower o f) \<longlonglongrightarrow> a" "(interval.upper o f) \<longlonglongrightarrow> a" by auto
from LIMSEQ_D[OF cvg(1) d] obtain n1 where
n1: "\<And> n. n \<ge> n1 \<Longrightarrow> norm ((interval.lower \<circ> f) n - a) < ?d " by auto
from LIMSEQ_D[OF cvg(2) d] obtain n2 where
n2: "\<And> n. n \<ge> n2 \<Longrightarrow> norm ((interval.upper \<circ> f) n - a) < ?d " by auto
define n where "n = max n1 n2"
from n1[of n] n2[of n] have bnd:
"norm ((interval.lower \<circ> f) n - a) < ?d"
"norm ((interval.upper \<circ> f) n - a) < ?d"
unfolding n_def by auto
show ?thesis by (rule exI[of _ n], insert bnd, cases "f n", auto,argo)
qed
subsection \<open>Complex Intervals\<close>
datatype complex_interval = Complex_Interval (Re_interval: "real interval") (Im_interval: "real interval")
definition in_complex_interval :: "complex \<Rightarrow> complex_interval \<Rightarrow> bool" ("(_/ \<in>\<^sub>c _)" [51, 51] 50) where
"y \<in>\<^sub>c x \<equiv> (case x of Complex_Interval r i \<Rightarrow> Re y \<in>\<^sub>i r \<and> Im y \<in>\<^sub>i i)"
instantiation complex_interval :: comm_monoid_add begin
definition "0 \<equiv> Complex_Interval 0 0"
fun plus_complex_interval :: "complex_interval \<Rightarrow> complex_interval \<Rightarrow> complex_interval" where
"Complex_Interval rx ix + Complex_Interval ry iy = Complex_Interval (rx + ry) (ix + iy)"
instance
proof
fix a b c :: complex_interval
show "a + b + c = a + (b + c)" by (cases a, cases b, cases c, simp add: ac_simps)
show "a + b = b + a" by (cases a, cases b, simp add: ac_simps)
show "0 + a = a" by (cases a, simp add: ac_simps zero_complex_interval_def)
qed
end
lemma plus_complex_interval: "x \<in>\<^sub>c X \<Longrightarrow> y \<in>\<^sub>c Y \<Longrightarrow> x + y \<in>\<^sub>c X + Y"
unfolding in_complex_interval_def using plus_in_interval by (cases X, cases Y, auto)
definition of_int_complex_interval :: "int \<Rightarrow> complex_interval" where
"of_int_complex_interval x = Complex_Interval (of_int_interval x) 0"
lemma of_int_complex_interval_0[simp]: "of_int_complex_interval 0 = 0"
by (simp add: of_int_complex_interval_def zero_complex_interval_def to_interval_def zero_interval_def)
lemma of_int_complex_interval: "of_int i \<in>\<^sub>c of_int_complex_interval i"
unfolding in_complex_interval_def of_int_complex_interval_def
by (auto simp: zero_complex_interval_def zero_interval_def)
instantiation complex_interval :: mult_zero begin
fun times_complex_interval where
"Complex_Interval rx ix * Complex_Interval ry iy =
Complex_Interval (rx * ry - ix * iy) (rx * iy + ix * ry)"
instance
proof
fix a :: complex_interval
show "0 * a = 0" "a * 0 = 0" by (atomize(full), cases a, auto simp: zero_complex_interval_def)
qed
end
instantiation complex_interval :: minus begin
fun minus_complex_interval where
"Complex_Interval R I - Complex_Interval R' I' = Complex_Interval (R-R') (I-I')"
instance..
end
lemma times_complex_interval: "x \<in>\<^sub>c X \<Longrightarrow> y \<in>\<^sub>c Y \<Longrightarrow> x * y \<in>\<^sub>c X * Y"
unfolding in_complex_interval_def
by (cases X, cases Y, auto intro: times_in_interval minus_in_interval plus_in_interval)
definition ipoly_complex_interval :: "int poly \<Rightarrow> complex_interval \<Rightarrow> complex_interval" where
"ipoly_complex_interval p x = fold_coeffs (\<lambda>a b. of_int_complex_interval a + x * b) p 0"
lemma ipoly_complex_interval_0[simp]:
"ipoly_complex_interval 0 x = 0"
by (auto simp: ipoly_complex_interval_def)
lemma ipoly_complex_interval_pCons[simp]:
"ipoly_complex_interval (pCons a p) x = of_int_complex_interval a + x * (ipoly_complex_interval p x)"
by (cases "p = 0"; cases "a = 0", auto simp: ipoly_complex_interval_def)
lemma ipoly_complex_interval: assumes x: "x \<in>\<^sub>c X"
shows "ipoly p x \<in>\<^sub>c ipoly_complex_interval p X"
proof -
define xs where "xs = coeffs p"
have 0: "in_complex_interval 0 0" (is "in_complex_interval ?Z ?z")
unfolding in_complex_interval_def zero_complex_interval_def zero_interval_def by auto
define Z where "Z = ?Z"
define z where "z = ?z"
from 0 have 0: "in_complex_interval Z z" unfolding Z_def z_def by auto
note x = times_complex_interval[OF x]
show ?thesis
unfolding poly_map_poly_code ipoly_complex_interval_def fold_coeffs_def
xs_def[symmetric] Z_def[symmetric] z_def[symmetric] using 0
by (induct xs arbitrary: Z z, auto intro!: plus_complex_interval of_int_complex_interval x)
qed
definition complex_interval_tendsto (infix "\<longlonglongrightarrow>\<^sub>c" 55) where
"C \<longlonglongrightarrow>\<^sub>c c \<equiv> ((Re_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Re c) \<and> ((Im_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Im c)"
lemma complex_interval_tendstoI[intro!]:
"(Re_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Re c \<Longrightarrow> (Im_interval \<circ> C) \<longlonglongrightarrow>\<^sub>i Im c \<Longrightarrow> C \<longlonglongrightarrow>\<^sub>c c"
by (simp add: complex_interval_tendsto_def)
lemma of_int_complex_interval_tendsto: "(\<lambda>i. of_int_complex_interval n) \<longlonglongrightarrow>\<^sub>c of_int n"
by (auto simp: o_def of_int_complex_interval_def intro!:const_interval_tendsto interval_tendsto_0)
lemma Im_interval_plus: "Im_interval (A + B) = Im_interval A + Im_interval B"
by (cases A; cases B, auto)
lemma Re_interval_plus: "Re_interval (A + B) = Re_interval A + Re_interval B"
by (cases A; cases B, auto)
lemma Im_interval_minus: "Im_interval (A - B) = Im_interval A - Im_interval B"
by (cases A; cases B, auto)
lemma Re_interval_minus: "Re_interval (A - B) = Re_interval A - Re_interval B"
by (cases A; cases B, auto)
lemma Re_interval_times: "Re_interval (A * B) = Re_interval A * Re_interval B - Im_interval A * Im_interval B"
by (cases A; cases B, auto)
lemma Im_interval_times: "Im_interval (A * B) = Re_interval A * Im_interval B + Im_interval A * Re_interval B"
by (cases A; cases B, auto)
lemma plus_complex_interval_tendsto:
"A \<longlonglongrightarrow>\<^sub>c a \<Longrightarrow> B \<longlonglongrightarrow>\<^sub>c b \<Longrightarrow> (\<lambda>i. A i + B i) \<longlonglongrightarrow>\<^sub>c a + b"
unfolding complex_interval_tendsto_def
by (auto intro!: plus_interval_tendsto simp: o_def Re_interval_plus Im_interval_plus)
lemma minus_complex_interval_tendsto:
"A \<longlonglongrightarrow>\<^sub>c a \<Longrightarrow> B \<longlonglongrightarrow>\<^sub>c b \<Longrightarrow> (\<lambda>i. A i - B i) \<longlonglongrightarrow>\<^sub>c a - b"
unfolding complex_interval_tendsto_def
by (auto intro!: minus_interval_tendsto simp: o_def Re_interval_minus Im_interval_minus)
lemma times_complex_interval_tendsto:
"A \<longlonglongrightarrow>\<^sub>c a \<Longrightarrow> B \<longlonglongrightarrow>\<^sub>c b \<Longrightarrow> (\<lambda>i. A i * B i) \<longlonglongrightarrow>\<^sub>c a * b"
unfolding complex_interval_tendsto_def
by (auto intro!: minus_interval_tendsto times_interval_tendsto plus_interval_tendsto
simp: o_def Re_interval_times Im_interval_times)
lemma ipoly_complex_interval_tendsto:
assumes "C \<longlonglongrightarrow>\<^sub>c c"
shows "(\<lambda>i. ipoly_complex_interval p (C i)) \<longlonglongrightarrow>\<^sub>c ipoly p c"
proof(induct p)
case 0
show ?case by (auto simp: o_def zero_complex_interval_def zero_interval_def complex_interval_tendsto_def)
next
case (pCons a p)
show ?case
apply (unfold ipoly_complex_interval_pCons of_int_hom.map_poly_pCons_hom poly_pCons)
apply (intro plus_complex_interval_tendsto times_complex_interval_tendsto assms pCons of_int_complex_interval_tendsto)
done
qed
lemma complex_interval_tendsto_neq: assumes "(\<lambda> i. f i) \<longlonglongrightarrow>\<^sub>c a"
and "a \<noteq> b"
shows "\<exists> n. \<not> b \<in>\<^sub>c f n"
proof -
from assms(1)[unfolded complex_interval_tendsto_def o_def]
have cvg: "(\<lambda>x. Re_interval (f x)) \<longlonglongrightarrow>\<^sub>i Re a" "(\<lambda>x. Im_interval (f x)) \<longlonglongrightarrow>\<^sub>i Im a" by auto
from assms(2) have "Re a \<noteq> Re b \<or> Im a \<noteq> Im b"
using complex.expand by blast
thus ?thesis
proof
assume "Re a \<noteq> Re b"
from interval_tendsto_neq[OF cvg(1) this] show ?thesis
unfolding in_complex_interval_def by (metis (no_types, lifting) complex_interval.case_eq_if)
next
assume "Im a \<noteq> Im b"
from interval_tendsto_neq[OF cvg(2) this] show ?thesis
unfolding in_complex_interval_def by (metis (no_types, lifting) complex_interval.case_eq_if)
qed
qed
end
|