Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 148,982 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 |
(*
Title: Allen's qualitative temporal calculus
Author: Fadoua Ghourabi (fadouaghourabi@gmail.com)
Affiliation: Ochanomizu University, Japan
*)
section \<open>Time interval relations\<close>
theory allen
imports
Main axioms
"HOL-Eisbach.Eisbach_Tools"
begin
section \<open>Basic relations\<close>
text\<open>We define 7 binary relations between time intervals.
Relations e, m, b, ov, d, s and f stand for equal, meets, before, overlaps, during, starts and finishes, respectively.\<close>
class arelations = interval +
fixes
e::"('a\<times>'a) set" and
m::"('a\<times>'a) set" and
b::"('a\<times>'a) set" and
ov::"('a\<times>'a) set" and
d::"('a\<times>'a) set" and
s::"('a\<times>'a) set" and
f::"('a\<times>'a) set"
assumes
e:"(p,q) \<in> e = (p = q)" and
m:"(p,q) \<in> m = p\<parallel>q" and
b:"(p,q) \<in> b = (\<exists>t::'a. p\<parallel>t \<and> t\<parallel>q)" and
ov:"(p,q) \<in> ov = (\<exists>k l u v t::'a.
(k\<parallel>p \<and> p\<parallel>u \<and> u\<parallel>v) \<and> (k\<parallel>l \<and> l\<parallel>q \<and> q\<parallel>v) \<and> (l\<parallel>t \<and> t\<parallel>u))" and
s:"(p,q) \<in> s = (\<exists>k u v::'a. k\<parallel>p \<and> p\<parallel>u \<and> u\<parallel>v \<and> k\<parallel>q \<and> q\<parallel>v)" and
f:"(p,q) \<in> f = (\<exists>k l u ::'a. k\<parallel>l \<and> l\<parallel>p \<and> p\<parallel>u \<and> k\<parallel>q \<and> q\<parallel>u)" and
d:"(p,q) \<in> d = (\<exists>k l u v::'a. k\<parallel>l \<and> l\<parallel>p \<and> p\<parallel>u \<and>u\<parallel>v \<and> k\<parallel>q \<and> q\<parallel>v)"
(** e compositions **)
subsection \<open>e-composition\<close>
text \<open>Relation e is the identity relation for composition.\<close>
lemma cer:
assumes "r \<in> {e,m,b,ov,s,f,d,m^-1,b^-1,ov^-1,s^-1,f^-1,d^-1}"
shows "e O r = r"
proof -
{ fix x y assume a:"(x,y) \<in> e O r"
then obtain z where "(x,z) \<in> e" and "(z,y) \<in> r" by auto
from \<open>(x,z) \<in> e\<close> have "x = z" using e by auto
with \<open>(z,y)\<in> r\<close> have "(x,y) \<in> r" by simp} note c1 = this
{ fix x y assume a:"(x,y) \<in> r"
have "(x,x) \<in> e" using e by auto
with a have "(x,y) \<in> e O r" by blast} note c2 = this
from c1 c2 show ?thesis by auto
qed
lemma cre:
assumes "r \<in> {e,m,b,ov,s,f,d,m^-1,b^-1,ov^-1,s^-1,f^-1,d^-1}"
shows " r O e = r"
proof -
{ fix x y assume a:"(x,y) \<in> r O e"
then obtain z where "(x,z) \<in> r" and "(z,y) \<in> e" by auto
from \<open>(z,y) \<in> e\<close> have "z = y" using e by auto
with \<open>(x,z)\<in> r\<close> have "(x,y) \<in> r" by simp} note c1 = this
{ fix x y assume a:"(x,y) \<in> r"
have "(y,y) \<in> e" using e by auto
with a have "(x,y) \<in> r O e" by blast} note c2 = this
from c1 c2 show ?thesis by auto
qed
lemmas ceb = cer[of b]
lemmas cebi = cer[of "b^-1"]
lemmas cem = cer[of m]
lemmas cemi = cer[of "m^-1"]
lemmas cee = cer[of e]
lemmas ces = cer[of s]
lemmas cesi = cer[of "s^-1"]
lemmas cef = cer[of f]
lemmas cefi = cer[of "f^-1"]
lemmas ceov = cer[of ov]
lemmas ceovi = cer[of "ov^-1"]
lemmas ced = cer[of d]
lemmas cedi = cer[of "d^-1"]
lemmas cbe = cre[of b]
lemmas cbie = cre[of "b^-1"]
lemmas cme = cre[of m]
lemmas cmie = cre[of "m^-1"]
lemmas cse = cre[of s]
lemmas csie = cre[of "s^-1"]
lemmas cfe = cre[of f]
lemmas cfie = cre[of "f^-1"]
lemmas cove = cre[of ov]
lemmas covie = cre[of "ov^-1"]
lemmas cde = cre[of d]
lemmas cdie = cre[of "d^-1"]
(*******)
(* composition with single relation *)
subsection \<open>r-composition\<close>
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq r$, where $r$ is a basic relation.\<close>
method (in arelations) r_compose uses r1 r2 r3 = ((auto, (subst (asm) r1 ), (subst (asm) r2), (subst r3)) , (meson M5exist_var))
lemma (in arelations) cbb:"b O b \<subseteq> b"
by (r_compose r1:b r2:b r3:b)
lemma (in arelations) cbm:"b O m \<subseteq> b"
by (r_compose r1:b r2:m r3:b)
lemma cbov:"b O ov \<subseteq> b"
apply (auto simp:b ov)
using M1 M5exist_var by blast
lemma cbfi:"b O f^-1 \<subseteq> b"
apply (auto simp:b f)
by (meson M1 M5exist_var)
lemma cbdi:"b O d^-1 \<subseteq> b"
apply (auto simp: b d)
by (meson M1 M5exist_var)
lemma cbs:"b O s \<subseteq> b"
apply (auto simp: b s)
by (meson M1 M5exist_var)
lemma cbsi:"b O s^-1 \<subseteq> b"
apply (auto simp: b s)
by (meson M1 M5exist_var)
lemma (in arelations) cmb:"m O b \<subseteq> b"
by (r_compose r1:m r2:b r3:b)
lemma cmm:"m O m \<subseteq> b"
by (auto simp: b m)
lemma cmov:"m O ov \<subseteq> b"
apply (auto simp:b m ov)
using M1 M5exist_var by blast
lemma cmfi:"m O f^-1 \<subseteq> b"
apply (r_compose r1:m r2:f r3:b)
by (meson M1)
lemma cmdi:"m O d^-1 \<subseteq> b"
apply (auto simp add:m d b)
using M1 by blast
lemma cms:"m O s \<subseteq> m"
apply (auto simp add:m s)
using M1 by auto
lemma cmsi:"m O s^-1 \<subseteq> m"
apply (auto simp add:m s)
using M1 by blast
lemma covb:"ov O b \<subseteq> b"
apply (auto simp:ov b)
using M1 M5exist_var by blast
lemma covm:"ov O m \<subseteq> b"
apply (auto simp:ov m b)
using M1 by blast
lemma covs:"ov O s \<subseteq> ov"
proof
fix p::"'a\<times>'a" assume "p \<in> ov O s" then obtain x y z where p:"p = (x,z)" and xyov:"(x,y)\<in> ov" and yzs:"(y,z) \<in> s" by auto
from xyov obtain r u v t k where rx:"r\<parallel>x" and xu:"x\<parallel>u" and uv:"u\<parallel>v" and rt:"r\<parallel>t" and tk:"t\<parallel>k" and ty:"t\<parallel>y" and yv:"y\<parallel>v" and ku:"k\<parallel>u" using ov by blast
from yzs obtain l1 l2 where yl1:"y\<parallel>l1" and l1l2:"l1\<parallel>l2" and zl2:"z\<parallel>l2" using s by blast
from uv yl1 yv have "u\<parallel>l1" using M1 by blast
with xu l1l2 obtain ul1 where xul1:"x\<parallel>ul1" and ul1l2:"ul1\<parallel>l2" using M5exist_var by blast
from ku xu xul1 l1l2 have kul1:"k\<parallel>ul1" using M1 by blast
from ty yzs have "t\<parallel>z" using s M1 by blast
with rx rt xul1 ul1l2 zl2 tk kul1 have "(x,z) \<in> ov" using ov by blast
with p show "p \<in> ov" by simp
qed
lemma cfib:"f^-1 O b \<subseteq> b"
apply (auto simp:f b)
using M1 by blast
lemma cfim:"f^-1 O m \<subseteq> m"
apply (auto simp:f m)
using M1 by auto
lemma cfiov:"f^-1 O ov \<subseteq> ov"
proof
fix p::"'a\<times>'a" assume "p \<in> f^-1 O ov" then obtain x y z where p:"p = (x,z)" and xyfi:"(x,y)\<in> f^-1" and yzov:"(y,z) \<in> ov" by auto
from xyfi yzov obtain t' r u where tpr:"t'\<parallel>r" and ry:"r\<parallel>y" and yu:"y\<parallel>u" and tpx:"t'\<parallel>x" and xu:"x\<parallel>u" using f by blast
from yzov ry obtain v k t u' where yup:"y\<parallel>u'" and upv:"u'\<parallel>v" and rk:"r\<parallel>k" and kz:"k\<parallel>z" and zv:"z\<parallel>v" and kt:"k\<parallel>t" and tup:"t\<parallel>u'"
using ov using M1 by blast
from yu xu yup have xup:"x\<parallel>u'" using M1 by blast
from tpr rk kt obtain r' where tprp:"t'\<parallel>r'" and rpt:"r'\<parallel>t" using M5exist_var by blast
from kt rpt kz have rpz:"r'\<parallel>z" using M1 by blast
from tprp rpz rpt tpx xup zv upv tup have "(x,z) \<in> ov" using ov by blast
with p show "p \<in> ov" by simp
qed
lemma cfifi:"f^-1 O f^-1 \<subseteq> f^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> f^-1 O f^-1" then obtain p q z where x:"x = (p, q)" and "(p,z) \<in> f^-1" and "(z,q) \<in> f^-1" by auto
from \<open>(p,z) \<in> f^-1\<close> obtain k l u where kp:"k\<parallel>p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and pu:"p\<parallel>u" and zu:"z\<parallel>u" using f by blast
from \<open>(z,q) \<in> f^-1\<close> obtain k' u' l' where kpz:"k'\<parallel>z" and kplp:"k'\<parallel>l'" and lpq:"l'\<parallel>q" and qup:"q\<parallel>u'" and zup:"z\<parallel>u'" using f by blast
from zu zup pu have "p\<parallel>u'" using M1 by blast
from lz kpz kplp have "l\<parallel>l'" using M1 by blast
with kl lpq obtain ll where "k\<parallel>ll" and "ll\<parallel>q" using M5exist_var by blast
with kp \<open>p\<parallel>u'\<close> qup show "x \<in> f^-1" using x f by blast
qed
lemma cfidi:"f^-1 O d^-1 \<subseteq> d^-1"
proof
fix x::"'a\<times>'a" assume "x : f^-1 O d^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> f^-1" and "(z,q) \<in> d^-1" by auto
then obtain k l u where kp:"k \<parallel> p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and pu:"p \<parallel>u" and zu:"z\<parallel>u" using f by blast
obtain k' l' u' v' where kpz:"k' \<parallel>z" and kplp:"k' \<parallel>l'" and lpq:"l' \<parallel>q" and qup:"q \<parallel>u'" and upvp:"u'\<parallel>v'" and zvp:"z\<parallel>v'" using d \<open>(z,q)\<in>d^-1\<close> by blast
from lz kpz kplp have "l\<parallel>l'" using M1 by blast
with kl lpq obtain ll where "k\<parallel>ll" and "ll\<parallel>q" using M5exist_var by blast
moreover from zu zvp upvp have "u' \<parallel> u " using M1 by blast
ultimately show "x \<in> d^-1" using x kp pu qup d by blast
qed
lemma cfis:"f^-1 O s \<subseteq> ov"
proof
fix x::"'a\<times>'a" assume "x \<in> f^-1 O s" then obtain p q z where x:"x = (p,q)" and "(p,z)\<in> f^-1" and "(z,q) \<in> s" by auto
from \<open>(p,z)\<in> f^-1\<close> obtain k l u where kp:"k\<parallel>p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and pu:"p\<parallel>u" and zu:"z\<parallel>u" using f by blast
from \<open>(z,q)\<in> s\<close> obtain k' u' v' where kpz:"k'\<parallel>z" and kpq:"k'\<parallel>q" and zup:"z\<parallel>u'" and upvp:"u'\<parallel>v'" and qvp:"q\<parallel>v'" using s M1 by blast
from pu zu zup have pup:"p\<parallel>u'" using M1 by blast
moreover from lz kpz kpq have lq:"l\<parallel>q" using M1 by blast
ultimately show "x \<in> ov" using x lz zup kp kl upvp upvp ov qvp by blast
qed
lemma cfisi:"f^-1 O s^-1 \<subseteq> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> f^-1 O s^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> f^-1" and "(z,q) \<in> s^-1" by auto
then obtain k l u where kp:"k \<parallel> p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and pu:"p \<parallel>u" and zu:"z\<parallel>u" using f by blast
obtain k' u' v' where kpz:"k' \<parallel>z" and kpq:"k' \<parallel>q" and qup:"q \<parallel>u'" and upvp:"u'\<parallel>v'" and zvp:"z\<parallel>v'" using s \<open>(z,q): s^-1\<close> by blast
from zu zvp upvp have "u'\<parallel>u" using M1 by blast
moreover from lz kpz kpq have "l \<parallel>q " using M1 by blast
ultimately show "x \<in> d^-1" using x d kl kp qup pu by blast
qed
lemma cdifi:"d^-1 O f^-1 \<subseteq> d^-1"
proof
fix x::"'a\<times>'a" assume "x : d^-1 O f^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> d^-1" and "(z,q) \<in> f^-1" by auto
then obtain k l u v where kp:"k \<parallel> p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and zu:"z \<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" using d by blast
obtain k' l' u' where kpz:"k' \<parallel>z" and kplp:"k' \<parallel>l'" and lpq:"l' \<parallel>q" and qup:"q \<parallel>u'" and zup:"z\<parallel>u'" using f \<open>(z,q): f^-1\<close> by blast
from lz kpz kplp have "l\<parallel>l'" using M1 by blast
with kl lpq obtain ll where "k\<parallel>ll" and "ll\<parallel>q" using M5exist_var by blast
moreover from zu qup zup have "q \<parallel> u " using M1 by blast
ultimately show "x \<in> d^-1" using x d kp uv pv by blast
qed
lemma cdidi:"d^-1 O d^-1 \<subseteq> d^-1"
proof
fix x::"'a\<times>'a" assume "x : d^-1 O d^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> d^-1" and "(z,q) \<in> d^-1" by auto
then obtain k l u v where kp:"k \<parallel> p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and zu:"z \<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" using d by blast
obtain k' l' u' v' where kpz:"k' \<parallel>z" and kplp:"k' \<parallel>l'" and lpq:"l' \<parallel>q" and qup:"q \<parallel>u'" and upvp:"u' \<parallel>v'" and zvp:"z \<parallel>v'" using d \<open>(z,q): d^-1\<close> by blast
from lz kpz kplp have "l\<parallel>l'" using M1 by blast
with kl lpq obtain ll where "k\<parallel>ll" and "ll\<parallel>q" using M5exist_var by blast
moreover from zvp zu upvp have "u' \<parallel> u " using M1 by blast
moreover with qup uv obtain uu where "q\<parallel>uu" and "uu\<parallel>v" using M5exist_var by blast
ultimately show "x \<in> d^-1" using x d kp pv by blast
qed
lemma cdisi:"d^-1 O s^-1 \<subseteq> d^-1"
proof
fix x::"'a\<times>'a" assume "x : d^-1 O s^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> d^-1" and "(z,q) \<in> s^-1" by auto
then obtain k l u v where kp:"k \<parallel>p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and zu:"z\<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" using d by blast
obtain k' u' v' where kpz:"k' \<parallel>z" and kpq:"k' \<parallel>q" and qup:"q \<parallel>u'" and upvp:"u' \<parallel>v'" and zvp:"z \<parallel>v'" using s \<open>(z,q): s^-1\<close> by blast
from upvp zvp zu have "u'\<parallel>u" using M1 by blast
with qup uv obtain uu where "q\<parallel>uu" and "uu\<parallel>v" using M5exist_var by blast
moreover from kpz lz kpq have "l \<parallel>q " using M1 by blast
ultimately show "x \<in> d^-1" using x d kp kl pv by blast
qed
lemma csb:"s O b \<subseteq> b"
apply (auto simp:s b)
using M1 M5exist_var by blast
lemma csm:"s O m \<subseteq> b"
apply (auto simp:s m b)
using M1 by blast
lemma css:"s O s \<subseteq> s"
proof
fix x::"'a\<times>'a" assume "x \<in> s O s" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> s" and "(z,q) \<in> s" by auto
from \<open>(p,z) \<in> s\<close> obtain k u v where kp:"k\<parallel>p" and kz:"k\<parallel>z" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" using s by blast
from \<open>(z,q) \<in> s\<close> obtain k' u' v' where kpq:"k'\<parallel>q" and kpz:"k'\<parallel>z" and zup:"z\<parallel>u'" and upvp:"u'\<parallel>v'" and qvp:"q\<parallel>v'" using s by blast
from kp kpz kz have "k'\<parallel>p" using M1 by blast
moreover from uv zup zv have "u\<parallel>u'" using M1 by blast
moreover with pu upvp obtain uu where "p\<parallel>uu" and "uu\<parallel>v'" using M5exist_var by blast
ultimately show "x \<in> s" using x s kpq qvp by blast
qed
lemma csifi:"s^-1 O f^-1 \<subseteq> d^-1"
proof
fix x::"'a\<times>'a" assume "x : s^-1 O f^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> s^-1" and "(z,q) \<in> f^-1" by auto
then obtain k u v where kp:"k \<parallel> p" and kz:"k\<parallel>z" and zu:"z \<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" using s by blast
obtain k' l' u' where kpz:"k' \<parallel>z" and kplp:"k' \<parallel>l'" and lpq:"l' \<parallel>q" and zup:"z\<parallel>u'" and qup:"q\<parallel>u'" using f \<open>(z,q): f^-1\<close> by blast
from kz kpz kplp have "k\<parallel>l'" using M1 by blast
moreover from qup zup zu have "q \<parallel> u " using M1 by blast
ultimately show "x \<in> d^-1" using x d kp lpq pv uv by blast
qed
lemma csidi:"s^-1 O d^-1 \<subseteq> d^-1"
proof
fix x::"'a\<times>'a" assume "x : s^-1 O d^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> s^-1" and "(z,q) \<in> d^-1" by auto
then obtain k u v where kp:"k \<parallel> p" and kz:"k\<parallel>z" and zu:"z \<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" using s by blast
obtain k' l' u' v' where kpz:"k' \<parallel>z" and kplp:"k' \<parallel>l'" and lpq:"l'\<parallel>q" and qup:"q \<parallel>u'" and upvp:"u' \<parallel>v'" and zvp:"z\<parallel>v'" using d \<open>(z,q): d^-1\<close> by blast
from zvp upvp zu have "u'\<parallel>u" using M1 by blast
with qup uv obtain uu where "q\<parallel>uu" and "uu\<parallel>v" using M5exist_var by blast
moreover from kz kpz kplp have "k \<parallel>l' " using M1 by blast
ultimately show "x \<in> d^-1" using x d kp lpq pv by blast
qed
lemma cdb:"d O b \<subseteq> b"
apply (auto simp:d b)
using M1 M5exist_var by blast
lemma cdm:"d O m \<subseteq> b"
apply (auto simp:d m b)
using M1 by blast
lemma cfb:"f O b \<subseteq> b"
apply (auto simp:f b)
using M1 by blast
lemma cfm:"f O m \<subseteq> m"
proof
fix x::"'a\<times>'a" assume "x \<in> f O m" then obtain p q z where x:"x = (p,q)" and 1:"(p,z) \<in> f" and 2:"(z,q) \<in> m" by auto
from 1 obtain u where pu:"p\<parallel>u" and zu:"z\<parallel>u" using f by auto
with 2 have "(p,q) \<in> m" using M1 m by blast
thus "x\<in> m" using x by auto
qed
(* ========= $\alpah_1$ compositions ============ *)
subsection \<open>$\alpha$-composition\<close>
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq s \cup ov \cup d$.\<close>
lemma (in arelations) cmd:"m O d \<subseteq> s \<union> ov \<union> d"
proof
fix x::"'a\<times>'a" assume a:"x \<in> m O d" then obtain p q z where x:"x =(p,q)" and 1:"(p,z) \<in> m" and 2:"(z,q) \<in> d" by auto
then obtain k l u v where pz:"p\<parallel>z" and kq:"k\<parallel>q" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and zu:"z\<parallel>u" and uv:"u\<parallel>v" and qv:"q\<parallel>v" using m d by blast
obtain k' where kpp:"k'\<parallel>p" using M3 meets_wd pz by blast
from pz zu uv obtain zu where pzu:"p\<parallel>zu" and zuv:"zu\<parallel>v" using M5exist_var by blast
from kpp kq have "k'\<parallel>q \<oplus> ((\<exists>t. k'\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C)\<or>(\<not>?A\<and>?B\<and>\<not>?C)\<or>(\<not>?A\<and>\<not>?B\<and>?C)" using local.meets_atrans xor_distr_L[of ?A ?B ?C] by blast
thus "x \<in> s \<union> ov \<union> d"
proof (elim disjE)
{assume "(?A\<and>\<not>?B\<and>\<not>?C)" then have "?A" by simp
then have "(p,q) \<in> s" using s qv kpp pzu zuv by blast
thus ?thesis using x by simp }
next
{assume "(\<not>?A\<and>?B\<and>\<not>?C)" then have "?B" by simp
then obtain t where kpt:"k'\<parallel>t" and tq:"t\<parallel>q" by auto
moreover from kq kl tq have "t\<parallel>l" using M1 by blast
moreover from lz pz pzu have "l\<parallel>zu" using M1 by blast
ultimately have "(p,q) \<in> ov" using ov kpp qv pzu zuv by blast
thus ?thesis using x by simp}
next
{assume "(\<not>?A\<and>\<not>?B\<and>?C)" then have "?C" by simp
then obtain t where kt:"k\<parallel>t" and tp:"t\<parallel>p" by auto
with kq pzu zuv qv have "(p,q)\<in>d" using d by blast
thus ?thesis using x by simp}
qed
qed
lemma (in arelations) cmf:"m O f \<subseteq> s \<union> ov \<union> d"
proof
fix x::"'a\<times>'a" assume a:"x \<in> m O f" then obtain p q z where x:"x =(p,q)" and 1:"(p,z) \<in> m" and 2:"(z,q) \<in> f" by auto
then obtain k l u where pz:"p\<parallel>z" and kq:"k\<parallel>q" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and zu:"z\<parallel>u" and qu:"q\<parallel>u" using m f by blast
obtain k' where kpp:"k'\<parallel>p" using M3 meets_wd pz by blast
from kpp kq have "k'\<parallel>q \<oplus> ((\<exists>t. k'\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C)\<or>(\<not>?A\<and>?B\<and>\<not>?C)\<or>(\<not>?A\<and>\<not>?B\<and>?C)" using local.meets_atrans xor_distr_L[of ?A ?B ?C] by blast
thus "x \<in> s \<union> ov \<union> d"
proof (elim disjE)
{assume "(?A\<and>\<not>?B\<and>\<not>?C)" then have "?A" by simp
then have "(p,q) \<in> s" using s qu kpp pz zu by blast
thus ?thesis using x by simp }
next
{assume "(\<not>?A\<and>?B\<and>\<not>?C)" then have "?B" by simp
then obtain t where kpt:"k'\<parallel>t" and tq:"t\<parallel>q" by auto
moreover from kq kl tq have "t\<parallel>l" using M1 by blast
moreover from lz pz pz have "l\<parallel>z" using M1 by blast
ultimately have "(p,q) \<in> ov" using ov kpp qu pz zu by blast
thus ?thesis using x by simp}
next
{assume "(\<not>?A\<and>\<not>?B\<and>?C)" then have "?C" by simp
then obtain t where kt:"k\<parallel>t" and tp:"t\<parallel>p" by auto
with kq pz zu qu have "(p,q)\<in>d" using d by blast
thus ?thesis using x by simp}
qed
qed
lemma cmovi:"m O ov^-1 \<subseteq> s \<union> ov \<union> d"
proof
fix x::"'a\<times>'a" assume a:"x \<in> m O ov^-1" then obtain p q z where x:"x =(p,q)" and 1:"(p,z) \<in> m" and 2:"(z,q) \<in> ov^-1" by auto
then obtain k l c u v where pz:"p\<parallel>z" and kq:"k\<parallel>q" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and qu:"q\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" and lc:"l\<parallel>c" and cu:"c\<parallel>u" using m ov by blast
obtain k' where kpp:"k'\<parallel>p" using M3 meets_wd pz by blast
from lz lc pz have pc:"p\<parallel>c" using M1 by auto
from kpp kq have "k'\<parallel>q \<oplus> ((\<exists>t. k'\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C)\<or>(\<not>?A\<and>?B\<and>\<not>?C)\<or>(\<not>?A\<and>\<not>?B\<and>?C)" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> s \<union> ov \<union> d"
proof (elim disjE)
{assume "(?A\<and>\<not>?B\<and>\<not>?C)" then have "?A" by simp
then have "(p,q) \<in> s" using s kpp qu cu pc by blast
thus ?thesis using x by simp }
next
{assume "(\<not>?A\<and>?B\<and>\<not>?C)" then have "?B" by simp
then obtain t where kpt:"k'\<parallel>t" and tq:"t\<parallel>q" by auto
moreover from kq kl tq have "t\<parallel>l" using M1 by auto
ultimately have "(p,q) \<in> ov" using ov kpp qu cu lc pc by blast
thus ?thesis using x by simp}
next
{assume "(\<not>?A\<and>\<not>?B\<and>?C)" then have "?C" by simp
then obtain t where kt:"k\<parallel>t" and tp:"t\<parallel>p" by auto
then have "(p,q)\<in>d" using d kq cu qu pc by blast
thus ?thesis using x by simp}
qed
qed
lemma covd:"ov O d \<subseteq> s \<union> ov \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> ov O d" then obtain p q z where x:"x=(p,q)" and "(p,z) \<in> ov" and "(z,q) \<in> d" by auto
from \<open>(p,z) \<in> ov\<close> obtain k u v l c where kp:"k\<parallel>p" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" and lc:"l\<parallel>c" and cu:"c\<parallel>u" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and cu:"c\<parallel>u" using ov by blast
from \<open>(z,q) \<in> d\<close> obtain k' l' u' v' where kpq:"k'\<parallel>q" and kplp:"k'\<parallel>l'" and lpz:"l'\<parallel>z" and qvp:"q\<parallel>v'" and zup:"z\<parallel>u'" and upvp:"u'\<parallel>v'" using d by blast
from uv zv zup have "u\<parallel>u'" using M1 by auto
from pu upvp obtain uu where puu:"p\<parallel>uu" and uuvp:"uu\<parallel>v'" using \<open>u\<parallel>u'\<close> using M5exist_var by blast
from kp kpq have "k\<parallel>q \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> s \<union> ov \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
then have "(p,q) \<in> s" using s kp qvp puu uuvp by blast
thus ?thesis using x by blast}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"k\<parallel>t" and tq:"t\<parallel>q" by auto
from cu pu puu have "c\<parallel>uu" using M1 by auto
moreover from kpq tq kplp have "t\<parallel>l'" using M1 by auto
moreover from lpz lz lc have lpc:"l'\<parallel>c" using M1 by auto
ultimately obtain lc where "t\<parallel>lc" and "lc\<parallel>uu" using M5exist_var by blast
then have "(p,q) \<in> ov" using ov kp kt tq puu uuvp qvp by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "k'\<parallel>t" and "t\<parallel>p" by auto
with puu uuvp qvp kpq have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma covf:"ov O f \<subseteq> s \<union> ov \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> ov O f" then obtain p q z where x:"x=(p,q)" and "(p,z) \<in> ov" and "(z,q) \<in> f" by auto
from \<open>(p,z) \<in> ov\<close> obtain k u v l c where kp:"k\<parallel>p" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" and lc:"l\<parallel>c" and cu:"c\<parallel>u" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and cu:"c\<parallel>u" using ov by blast
from \<open>(z,q) \<in> f\<close> obtain k' l' u' where kpq:"k'\<parallel>q" and kplp:"k'\<parallel>l'" and lpz:"l'\<parallel>z" and qup:"q\<parallel>u'" and zup:"z\<parallel>u'" using f by blast
from uv zv zup have uu:"u\<parallel>u'" using M1 by auto
from kp kpq have "k\<parallel>q \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> s \<union> ov \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
then have "(p,q) \<in> s" using s kp qup uu pu by blast
thus ?thesis using x by blast}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"k\<parallel>t" and tq:"t\<parallel>q" by auto
moreover from kpq tq kplp have "t\<parallel>l'" using M1 by auto
moreover from lpz lz lc have lpc:"l'\<parallel>c" using M1 by auto
ultimately obtain lc where "t\<parallel>lc" and "lc\<parallel>u" using cu M5exist_var by blast
then have "(p,q) \<in> ov" using ov kp kt tq pu uu qup by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "k'\<parallel>t" and "t\<parallel>p" by auto
with pu uu qup kpq have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cfid:"f^-1 O d \<subseteq> s \<union> ov \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> f^-1 O d" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> f^-1" and "(z,q)\<in> d" by auto
from \<open>(p,z) \<in> f^-1\<close> obtain k l u where "k\<parallel>l" and "l\<parallel>z" and kp:"k\<parallel>p" and pu:"p\<parallel>u" and zu:"z\<parallel>u" using f by blast
from \<open>(z,q) \<in> d\<close> obtain k' l' u' v where kplp:"k'\<parallel>l'" and kpq:"k'\<parallel>q" and lpz:"l'\<parallel>z" and zup:"z\<parallel>u'" and upv:"u'\<parallel>v" and qv:"q\<parallel>v" using d by blast
from pu zu zup have pup:"p\<parallel>u'" using M1 by blast
from kp kpq have "k\<parallel>q \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> s \<union> ov \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with pup upv kp qv have "(p,q) \<in> s" using s by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"k\<parallel>t" and tq:"t\<parallel>q" by auto
from tq kpq kplp have "t\<parallel>l'" using M1 by blast
with lpz zup obtain lpz where "t\<parallel>lpz" and "lpz\<parallel>u'" using M5exist_var by blast
with kp pup upv kt tq qv have "(p,q)\<in>ov" using ov by blast
thus ?thesis using x by blast}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "k'\<parallel>t" and "t\<parallel>p" by auto
with pup upv kpq qv have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cfov:"f O ov \<subseteq> ov \<union> s \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> f O ov" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> f" and "(z,q)\<in> ov" by auto
from \<open>(p,z) \<in> f\<close> obtain k l u where "k\<parallel>l" and kz:"k\<parallel>z" and lp:"l\<parallel>p" and pu:"p\<parallel>u" and zu:"z\<parallel>u" using f by blast
from \<open>(z,q) \<in> ov\<close> obtain k' l' c u' v where "k'\<parallel>l'" and kpz:"k'\<parallel>z" and lpq:"l'\<parallel> q" and zup:"z\<parallel>u'" and upv:"u'\<parallel>v" and qv:"q\<parallel>v" and lpc:"l'\<parallel>c" and cup:"c\<parallel>u'" using ov by blast
from pu zu zup have pup:"p\<parallel>u'" using M1 by blast
from lp lpq have "l\<parallel>q \<oplus> ((\<exists>t. l\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. l'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with lp pup upv qv have "(p,q) \<in> s" using s by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where lt:"l\<parallel>t" and tq:"t\<parallel>q" by auto
from tq lpq lpc have "t\<parallel>c" using M1 by blast
with lp lt tq pup upv qv cup have "(p,q)\<in>ov" using ov by blast
thus ?thesis using x by blast}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "l'\<parallel>t" and "t\<parallel>p" by auto
with lpq pup upv qv have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
(* ========= $\alpha_2$ composition ========== *)
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq ov \cup f^{-1} \cup d^{-1}$.\<close>
lemma covsi:"ov O s^-1 \<subseteq> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> ov O s^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> ov" and "(z,q) \<in> s^-1" by auto
from \<open>(p,z) \<in> ov\<close> obtain k l c u where kp:"k\<parallel>p" and pu:"p\<parallel>u" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and lc:"l\<parallel>c" and cu:"c\<parallel>u" using ov by blast
from \<open>(z,q) \<in> s^-1\<close> obtain k' u' v' where kpz:"k'\<parallel>z" and kpq:"k'\<parallel>q" and kpz:"k'\<parallel>z" and zup:"z\<parallel>u'" and qvp:"q\<parallel>v'" using s by blast
from lz kpz kpq have lq:"l\<parallel>q" using M1 by blast
from pu qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qvp kp kl lq have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where ptp:"p\<parallel>t" and "t\<parallel>v'" by auto
moreover with pu cu have "c\<parallel>t" using M1 by blast
ultimately have "(p,q)\<in> ov" using kp kl lc cu lq qvp ov by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where qt:"q\<parallel>t" and "t\<parallel>u" by auto
with kp kl lq pu have "(p,q) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cdim:"d^-1 O m \<subseteq> ov \<union> d^-1 \<union> f^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> d^-1 O m" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> d^-1" and "(z,q) \<in> m" by auto
from \<open>(p,z) \<in> d^-1\<close> obtain k l u v where kp:"k\<parallel>p" and pv:"p\<parallel>v" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and zu:"z\<parallel>u" and uv:"u\<parallel>v" using d by blast
from \<open>(z,q) \<in> m\<close> have zq:"z\<parallel>q" using m by blast
obtain v' where qvp:"q\<parallel>v'" using M3 meets_wd zq by blast
from kl lz zq obtain lz where klz:"k\<parallel>lz" and lzq:"lz\<parallel>q" using M5exist_var by blast
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> ov \<union> d^-1 \<union> f^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qvp kp klz lzq\<open>?A\<close> have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tvp:"t\<parallel>v'" by auto
from zq lzq zu have "lz\<parallel>u" using M1 by auto
moreover from pt pv uv have "u\<parallel>t" using M1 by auto
ultimately have "(p,q)\<in> ov" using kp klz lzq pt tvp qvp ov by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where qt:"q\<parallel>t" and "t\<parallel>v" by auto
with kp klz lzq pv have "(p,q) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cdiov:"d^-1 O ov \<subseteq> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> d^-1 O ov" then obtain p q r where x:"x = (p,r)" and "(p,q) \<in> d^-1" and "(q,r) \<in> ov" by auto
from \<open>(p,q) \<in> d^-1\<close> obtain u v k l where kp:"k\<parallel>p" and pv:"p\<parallel>v" and kl:"k\<parallel>l" and lq:"l\<parallel>q" and qu:"q\<parallel>u" and uv:"u\<parallel>v" using d by blast
from \<open>(q,r) \<in> ov\<close> obtain k' l' t u' v' where lpr:"l'\<parallel>r" and kpq:"k'\<parallel>q" and kplp:"k'\<parallel>l'" and qup:"q\<parallel>u'" and "u'\<parallel>v'" and rvp:"r\<parallel>v'" and lpt:"l'\<parallel>t" and tup:"t\<parallel>u'" using ov by blast
from lq kplp kpq have "l\<parallel>l'" using M1 by blast
with kl lpr obtain ll where kll:"k\<parallel>ll" and llr:"ll\<parallel>r" using M5exist_var by blast
from pv rvp have "p\<parallel>v' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>v') \<oplus> (\<exists>t'. r\<parallel>t' \<and> t'\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with rvp llr kp kll have "(p,r) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where ptp:"p\<parallel>t'" and tpvp:"t'\<parallel>v'" by auto
moreover from lpt lpr llr have llt:"ll\<parallel>t" using M1 by blast
moreover from ptp uv pv have utp:"u\<parallel>t'" using M1 by blast
moreover from qu tup qup have "t\<parallel>u" using M1 by blast
moreover with utp llt obtain tu where "ll\<parallel>tu" and "tu\<parallel>t'" using M5exist_var by blast
with kp ptp tpvp kll llr rvp have "(p,r)\<in> ov" using ov by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where rtp:"r\<parallel>t'" and "t'\<parallel>v" by auto
with kll llr kp pv have "(p,r) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cdis:"d^-1 O s \<subseteq> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> d^-1 O s" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> d^-1" and "(z,q) \<in> s" by auto
from \<open>(p,z)\<in>d^-1\<close> obtain k l u v where kl:"k\<parallel>l" and lz:"l\<parallel>z" and kp:"k\<parallel>p" and zu:"z\<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" using d by blast
from \<open>(z,q) \<in> s\<close> obtain l' v' where lpz:"l'\<parallel>z" and lpq:"l'\<parallel>q" and qvp:"q\<parallel>v'" using s by blast
from lz lpz lpq have lq:"l\<parallel>q" using M1 by blast
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with kl lq qvp kp have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tvp:"t\<parallel>v'" by auto
from pt pv uv have "u\<parallel>t" using M1 by blast
with lz zu obtain zu where "l\<parallel>zu" and "zu\<parallel>t" using M5exist_var by blast
with kp pt tvp kl lq qvp have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "q\<parallel>t" and "t\<parallel>v" by auto
with kl lq kp pv have "(p,q)\<in>d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma csim:"s^-1 O m \<subseteq> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> s^-1 O m" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> s^-1" and "(z,q) \<in> m" by auto
from \<open>(p,z)\<in>s^-1\<close> obtain k u v where kp:"k\<parallel>p" and kz:"k\<parallel>z" and zu:"z\<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" using s by blast
from \<open>(z,q) \<in> m\<close> have zq:"z\<parallel>q" using m by auto
obtain v' where qvp:"q\<parallel>v'" using M3 meets_wd zq by blast
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with kp kz zq qvp have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tvp:"t\<parallel>v'" by auto
from pt pv uv have "u\<parallel>t" using M1 by blast
with kp pt tvp kz zq qvp zu have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "q\<parallel>t" and "t\<parallel>v" by auto
with kp kz zq pv have "(p,q)\<in>d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma csiov:"s^-1 O ov \<subseteq> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> s^-1 O ov" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> s^-1" and "(z,q) \<in> ov" by auto
from \<open>(p,z)\<in>s^-1\<close> obtain k u v where kp:"k\<parallel>p" and kz:"k\<parallel>z" and zu:"z\<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" using s by blast
from \<open>(z,q) \<in> ov\<close> obtain k' l' u' v' c where kpz:"k'\<parallel>z" and zup:"z\<parallel>u'" and upvp:"u'\<parallel>v'" and kplp:"k'\<parallel>l'" and lpq:"l'\<parallel>q" and qvp:"q\<parallel>v'" and lpc:"l'\<parallel>c" and cup:"c\<parallel>u'" using ov by blast
from kz kpz kplp have klp:"k\<parallel>l'" using M1 by auto
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with kp kplp lpq qvp klp have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tvp:"t\<parallel>v'" by auto
from pt pv uv have "u\<parallel>t" using M1 by blast
moreover from cup zup zu have cu:"c\<parallel>u" using M1 by auto
ultimately obtain cu where "l'\<parallel>cu" and "cu\<parallel>t" using lpc M5exist_var by blast
with kp pt tvp klp lpq qvp have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "q\<parallel>t" and "t\<parallel>v" by auto
with kp klp lpq pv have "(p,q)\<in>d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma covim:"ov^-1 O m \<subseteq> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> ov^-1 O m" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> ov^-1" and "(z,q) \<in> m" by auto
from \<open>(p,z) \<in> ov^-1\<close> obtain k l c u v where kz:"k\<parallel>z" and zu:"z\<parallel>u" and kl:"k\<parallel>l" and lp:"l\<parallel>p" and lc:"l\<parallel>c" and cu:"c\<parallel>u" and pv:"p\<parallel>v" and uv:"u\<parallel>v" using ov by blast
from \<open>(z,q) \<in> m\<close> have zq:"z\<parallel>q" using m by auto
obtain v' where qvp:"q\<parallel>v'" using M3 meets_wd zq by blast
from zu zq cu have cq:"c\<parallel>q" using M1 by blast
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with lp lc cq qvp have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where ptp:"p\<parallel>t" and "t\<parallel>v'" by auto
moreover with pv uv have "u\<parallel>t" using M1 by blast
ultimately have "(p,q)\<in> ov" using lp lc cq qvp cu ov by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where qt:"q\<parallel>t" and "t\<parallel>v" by auto
with lp lc cq pv have "(p,q) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
(* =========$\alpha_3$ compositions========== *)
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq b \cup m \cup ov$.\<close>
lemma covov:"ov O ov \<subseteq> b \<union> m \<union> ov"
proof
fix x::"'a\<times>'a" assume "x \<in> ov O ov" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> ov" and "(z,q)\<in> ov" by auto
from \<open>(p,z) \<in> ov\<close> obtain k u l t v where kp:"k\<parallel>p" and pu:"p\<parallel>u" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and "l\<parallel>t" and "t\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" using ov by blast
from \<open>(z,q) \<in> ov\<close> obtain k' l' y u' v' where kplp:"k'\<parallel>l'" and kpz:"k'\<parallel>z" and lpq:"l'\<parallel>q" and lpy:"l'\<parallel>y" and "y\<parallel>u'" and zup:"z\<parallel>u'" and upvp:"u'\<parallel>v'" and qvp:"q\<parallel>v'" using ov by blast
from lz kplp kpz have llp:"l\<parallel>l'" using M1 by blast
from uv zv zup have "u\<parallel>u'" using M1 by blast
with pu upvp obtain uu where puu:"p\<parallel>uu" and uuv:"uu\<parallel>v'" using M5exist_var by blast
from puu lpq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. l'\<parallel>t' \<and> t'\<parallel>uu))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
then have "(p,q) \<in> m" using m by auto
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then have "(p,q) \<in> b" using b by auto
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where lptp:"l'\<parallel>t'" and "t'\<parallel>uu" by auto
from kl llp lpq obtain ll where kll:"k\<parallel>ll" and llq:"ll\<parallel>q" using M5exist_var by blast
with lpq lptp have "ll\<parallel>t'" using M1 by blast
with kp puu uuv kll llq qvp \<open>t'\<parallel>uu\<close> have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
qed
lemma covfi:"ov O f^-1 \<subseteq> b \<union> m \<union> ov"
proof
fix x::"'a\<times>'a" assume "x \<in> ov O f^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> ov" and "(z,q)\<in> f^-1" by auto
from \<open>(p,z) \<in> ov\<close> obtain k u l c v where kp:"k\<parallel>p" and pu:"p\<parallel>u" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and "l\<parallel>c" and "c\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" using ov by blast
from \<open>(z,q) \<in> f^-1\<close> obtain k' l' v' where kplp:"k'\<parallel>l'" and kpz:"k'\<parallel>z" and lpq:"l'\<parallel>q" and qvp:"q\<parallel>v'" and zvp:"z\<parallel>v'" using f by blast
from lz kplp kpz have llp:"l\<parallel>l'" using M1 by blast
from zv qvp zvp have qv:"q\<parallel>v" using M1 by blast
from pu lpq have "p\<parallel>q \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. l'\<parallel>t \<and> t\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
then have "(p,q) \<in> m" using m by auto
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then have "(p,q) \<in> b" using b by auto
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where lptp:"l'\<parallel>t" and "t\<parallel>u" by auto
from kl llp lpq obtain ll where kll:"k\<parallel>ll" and llr:"ll\<parallel>q" using M5exist_var by blast
with lpq lptp have "ll\<parallel>t" using M1 by blast
with kp pu uv kll llr qv \<open>t\<parallel>u\<close> have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
qed
lemma csov:"s O ov \<subseteq> b \<union> m \<union> ov"
proof
fix x::"'a\<times>'a" assume "x \<in> s O ov" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> s" and "(z,q)\<in> ov" by auto
from \<open>(p,z) \<in> s\<close> obtain k u v where kp:"k\<parallel>p" and kz:"k\<parallel>z" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" using s by blast
from \<open>(z,q) \<in> ov\<close> obtain k' l' u' v' where kpz:"k'\<parallel>z" and kplp:"k'\<parallel>l'" and lpq:"l'\<parallel>q" and zup:"z\<parallel>u'" and qvp:"q\<parallel>v'" and upvp:"u'\<parallel>v'" using ov by blast
from kz kpz kplp have klp:"k\<parallel>l'" using M1 by blast
from uv zv zup have uup:"u\<parallel>u'" using M1 by blast
with pu upvp obtain uu where puu:"p\<parallel>uu" and uuvp:"uu\<parallel>v'" using M5exist_var by blast
from pu lpq have "p\<parallel>q \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. l'\<parallel>t \<and> t\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
then have "(p,q) \<in> m" using m by auto
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then have "(p,q) \<in> b" using b by auto
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where lpt:"l'\<parallel>t" and "t\<parallel>u" by auto
with pu puu have "t\<parallel>uu" using M1 by blast
with lpt kp puu uuvp klp lpq qvp have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
qed
lemma csfi:"s O f^-1 \<subseteq> b \<union> m \<union> ov"
proof
fix x::"'a\<times>'a" assume "x \<in> s O f^-1" then obtain p q r where x:"x = (p,r)" and "(p,q) \<in> s" and "(q,r)\<in> f^-1" by auto
from \<open>(p,q) \<in> s\<close> obtain k u v where kp:"k\<parallel>p" and kq:"k\<parallel>q" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and qv:"q\<parallel>v" using s by blast
from \<open>(q,r) \<in> f^-1\<close> obtain k' l v' where kpq:"k'\<parallel>q" and kpl:"k'\<parallel>l" and lr:"l\<parallel>r" and rvp:"r\<parallel>v'" and qvp:"q\<parallel>v'" using f by blast
from kpq kpl kq have kl:"k\<parallel>l" using M1 by blast
from qvp qv uv have uvp:"u\<parallel>v'" using M1 by blast
from pu lr have "p\<parallel>r \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>r) \<oplus> (\<exists>t'. l\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
then have "(p,r) \<in> m" using m by auto
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then have "(p,r) \<in> b" using b by auto
thus ?thesis using x by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where ltp:"l\<parallel>t'" and "t'\<parallel>u" by auto
with kp pu uvp kl lr rvp have "(p,r) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
qed
(* =========$\alpha_4$ compositions========== *)
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq f \cup f^{-1} \cup e$.\<close>
lemma cmmi:"m O m^-1 \<subseteq> f \<union> f^-1 \<union> e"
proof
fix x::"'a\<times>'a" assume a:"x \<in> m O m^-1" then obtain p q z where x:"x =(p,q)" and 1:"(p,z) \<in> m" and 2:"(z,q) \<in> m^-1" by auto
then have pz:"p\<parallel>z" and qz:"q\<parallel>z" using m by auto
obtain k k' where kp:"k\<parallel>p" and kpq:"k'\<parallel>q" using M3 meets_wd qz pz by blast
from kp kpq have "k\<parallel>q \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C)\<or>(\<not>?A\<and>?B\<and>\<not>?C)\<or>(\<not>?A\<and>\<not>?B\<and>?C)" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in>f \<union> f^-1 \<union> e"
proof (elim disjE)
{assume "(?A\<and>\<not>?B\<and>\<not>?C)" then have "?A" by simp
then have "p = q" using M4 kp pz qz by blast
then have "(p,q) \<in> e" using e by auto
thus ?thesis using x by simp }
next
{assume "(\<not>?A\<and>?B\<and>\<not>?C)" then have "?B" by simp
then obtain t where kt:"k\<parallel>t" and tq:"t\<parallel>q" by auto
then have "(p,q) \<in> f^-1" using f qz pz kp by blast
thus ?thesis using x by simp}
next
{assume "(\<not>?A\<and>\<not>?B\<and>?C)" then have "?C" by simp
then obtain t where kt:"k'\<parallel>t" and tp:"t\<parallel>p" by auto
with kpq pz qz have "(p,q)\<in>f" using f by blast
thus ?thesis using x by simp}
qed
qed
lemma cfif:"f^-1 O f \<subseteq> e \<union> f^-1 \<union> f"
proof
fix x::"'a\<times>'a" assume a:"x \<in> f^-1 O f" then obtain p q z where x:"x =(p,q)" and 1:"(p,z) \<in> f^-1" and 2:"(z,q) \<in> f" by auto
from 1 obtain k l u where kp:"k\<parallel>p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and zu:"z\<parallel>u" and pu:"p\<parallel>u" using f by blast
from 2 obtain k' l' u' where kpq:"k'\<parallel>q" and kplp:"k'\<parallel>l'" and lpz:"l'\<parallel>z" and zup:"z\<parallel>u'" and qup:"q\<parallel>u'" using f by blast
from zu zup qup have qu:"q\<parallel>u" using M1 by auto
from kp kpq have "k\<parallel>q \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C)\<or>(\<not>?A\<and>?B\<and>\<not>?C)\<or>(\<not>?A\<and>\<not>?B\<and>?C)" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> e \<union> f^-1 \<union> f"
proof (elim disjE)
{assume "(?A\<and>\<not>?B\<and>\<not>?C)" then have "?A" by simp
then have "p = q" using M4 kp pu qu by blast
then have "(p,q) \<in> e" using e by auto
thus ?thesis using x by simp }
next
{assume "(\<not>?A\<and>?B\<and>\<not>?C)" then have "?B" by simp
then obtain t where kt:"k\<parallel>t" and tq:"t\<parallel>q" by auto
then have "(p,q) \<in> f^-1" using f qu pu kp by blast
thus ?thesis using x by simp}
next
{assume "(\<not>?A\<and>\<not>?B\<and>?C)" then have "?C" by simp
then obtain t where kt:"k'\<parallel>t" and tp:"t\<parallel>p" by auto
with kpq pu qu have "(p,q)\<in>f" using f by blast
thus ?thesis using x by simp}
qed
qed
lemma cffi:"f O f^-1 \<subseteq> e \<union> f \<union> f^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> f O f^-1" then obtain p q r where x:"x = (p,r)" and "(p,q)\<in>f" and "(q,r) \<in>f^-1" by auto
from \<open>(p,q)\<in>f\<close> \<open>(q,r) \<in> f^-1\<close> obtain k k' where kp:"k\<parallel>p" and kpr:"k'\<parallel>r" using f by blast
from \<open>(p,q)\<in>f\<close> \<open>(q,r) \<in> f^-1\<close> obtain u where pu:"p\<parallel>u" and "q\<parallel>u" and ru:"r\<parallel>u" using f M1 by blast
from kp kpr have "k\<parallel>r \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>r) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> e \<union> f \<union> f^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with pu ru kp have "p = r" using M4 by auto
thus ?thesis using x e by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"k\<parallel>t" and tr:"t\<parallel>r" by auto
with ru kp pu show ?thesis using x f by blast}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where rtp:"k'\<parallel>t" and "t\<parallel>p" by auto
with kpr ru pu show ?thesis using x f by blast}
qed
qed
(* =========$\alpha_5$ composition========== *)
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq e \cup s \cup s^{-1}$.\<close>
lemma cssi:"s O s^-1 \<subseteq> e \<union> s \<union> s^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> s O s^-1" then obtain p q r where x:"x = (p,r)" and "(p,q)\<in>s" and "(q,r) \<in>s^-1" by auto
from \<open>(p,q)\<in>s\<close> \<open>(q,r) \<in> s^-1\<close> obtain k where kp:"k\<parallel>p" and kr:"k\<parallel>r" and kq:"k\<parallel>q" using s M1 by blast
from \<open>(p,q)\<in>s\<close> \<open>(q,r) \<in> s^-1\<close> obtain u u' where pu:"p\<parallel>u" and rup:"r\<parallel>u'" using s by blast
then have "p\<parallel>u' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>u') \<oplus> (\<exists>t. r\<parallel>t \<and> t\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> e \<union> s \<union> s^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with rup kp kr have "p = r" using M4 by auto
thus ?thesis using x e by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"p\<parallel>t" and tr:"t\<parallel>u'" by auto
with rup kp kr show ?thesis using x s by blast}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where rtp:"r\<parallel>t" and "t\<parallel>u" by auto
with pu kp kr show ?thesis using x s by blast}
qed
qed
lemma csis:"s^-1 O s \<subseteq> e \<union> s \<union> s^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> s^-1 O s" then obtain p q r where x:"x = (p,r)" and "(p,q)\<in>s^-1" and "(q,r) \<in>s" by auto
from \<open>(p,q)\<in>s^-1\<close> \<open>(q,r) \<in> s\<close> obtain k where kp:"k\<parallel>p" and kr:"k\<parallel>r" and kq:"k\<parallel>q" using s M1 by blast
from \<open>(p,q)\<in>s^-1\<close> \<open>(q,r) \<in> s\<close> obtain u u' where pu:"p\<parallel>u" and rup:"r\<parallel>u'" using s by blast
then have "p\<parallel>u' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>u') \<oplus> (\<exists>t. r\<parallel>t \<and> t\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> e \<union> s \<union> s^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with rup kp kr have "p = r" using M4 by auto
thus ?thesis using x e by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"p\<parallel>t" and tr:"t\<parallel>u'" by auto
with rup kp kr show ?thesis using x s by blast}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where rtp:"r\<parallel>t" and "t\<parallel>u" by auto
with pu kp kr show ?thesis using x s by blast}
qed
qed
lemma cmim:"m^-1 O m \<subseteq> s \<union> s^-1 \<union> e"
proof
fix x::"'a\<times>'a" assume "x \<in> m^-1 O m" then obtain p q r where x:"x = (p,r)" and "(p,q)\<in>m^-1" and "(q,r) \<in>m" by auto
from \<open>(p,q)\<in>m^-1\<close> \<open>(q,r) \<in> m\<close> have qp:"q\<parallel>p" and qr:"q\<parallel>r" using m by auto
obtain u u' where pu:"p\<parallel>u" and rup:"r\<parallel>u'" using M3 meets_wd qp qr by fastforce
then have "p\<parallel>u' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>u') \<oplus> (\<exists>t. r\<parallel>t \<and> t\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> s \<union> s^-1 \<union> e"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with rup qp qr have "p = r" using M4 by auto
thus ?thesis using x e by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"p\<parallel>t" and tr:"t\<parallel>u'" by auto
with rup qp qr show ?thesis using x s by blast}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where rtp:"r\<parallel>t" and "t\<parallel>u" by auto
with pu qp qr show ?thesis using x s by blast}
qed
qed
(* =========$\beta_1$ composition========== *)
subsection \<open>$\beta$-composition\<close>
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq b \cup m \cup ov \cup s \cup d$.\<close>
lemma cbd:"b O d \<subseteq> b \<union> m \<union> ov \<union> s \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> b O d" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> b" and "(z,q) \<in> d" by auto
from \<open>(p,z) \<in> b\<close> obtain c where pc:"p\<parallel>c" and cz:"c\<parallel>z" using b by auto
obtain a where ap:"a\<parallel>p" using M3 meets_wd pc by blast
from \<open>(z,q) \<in> d\<close> obtain k l u v where "k\<parallel>l" and "l\<parallel>z" and kq:"k\<parallel>q" and zu:"z\<parallel>u" and uv:"u\<parallel>v" and qv:"q\<parallel>v" using d by blast
from pc cz zu obtain cz where pcz:"p\<parallel>cz" and czu:"cz\<parallel>u" using M5exist_var by blast
with uv obtain czu where pczu:"p\<parallel>czu" and czuv:"czu\<parallel>v" using M5exist_var by blast
from ap kq have "a\<parallel>q \<oplus> ((\<exists>t. a\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with ap pczu czuv uv qv have "(p,q) \<in> s" using s by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where at:"a\<parallel>t" and tq:"t\<parallel>q" by auto
from pc tq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. t\<parallel>t' \<and> t'\<parallel>c))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where "t\<parallel>t'" and "t'\<parallel>c" by auto
with pc pczu have "t'\<parallel>czu" using M1 by auto
with at tq ap pczu czuv qv \<open>t\<parallel>t'\<close> have "(p,q)\<in>ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "k\<parallel>t" and "t\<parallel>p" by auto
with kq pczu czuv uv qv have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cbf:"b O f \<subseteq> b \<union> m \<union> ov \<union> s \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> b O f" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> b" and "(z,q) \<in> f" by auto
from \<open>(p,z) \<in> b\<close> obtain c where pc:"p\<parallel>c" and cz:"c\<parallel>z" using b by auto
obtain a where ap:"a\<parallel>p" using M3 meets_wd pc by blast
from \<open>(z,q) \<in> f\<close> obtain k l u where "k\<parallel>l" and "l\<parallel>z" and kq:"k\<parallel>q" and zu:"z\<parallel>u" and qu:"q\<parallel>u" using f by blast
from pc cz zu obtain cz where pcz:"p\<parallel>cz" and czu:"cz\<parallel>u" using M5exist_var by blast
from ap kq have "a\<parallel>q \<oplus> ((\<exists>t. a\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with ap pcz czu qu have "(p,q) \<in> s" using s by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where at:"a\<parallel>t" and tq:"t\<parallel>q" by auto
from pc tq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. t\<parallel>t' \<and> t'\<parallel>c))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where "t\<parallel>t'" and "t'\<parallel>c" by auto
with pc pcz have "t'\<parallel>cz" using M1 by auto
with at tq ap pcz czu qu \<open>t\<parallel>t'\<close> have "(p,q)\<in>ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "k\<parallel>t" and "t\<parallel>p" by auto
with kq pcz czu qu have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cbovi:"b O ov^-1 \<subseteq> b \<union> m \<union> ov \<union> s \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> b O ov^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> b" and "(z,q) \<in> ov^-1" by auto
from \<open>(p,z) \<in> b\<close> obtain c where pc:"p\<parallel>c" and cz:"c\<parallel>z" using b by auto
obtain a where ap:"a\<parallel>p" using M3 meets_wd pc by blast
from \<open>(z,q) \<in> ov^-1\<close> obtain k l u v w where "k\<parallel>l" and lz:"l\<parallel>z" and kq:"k\<parallel>q" and zv:"z\<parallel>v" and qu:"q\<parallel>u" and uv:"u\<parallel>v" and lw:"l\<parallel>w" and wu:"w\<parallel>u" using ov by blast
from cz lz lw have "c\<parallel>w" using M1 by auto
with pc wu obtain cw where pcw:"p\<parallel>cw" and cwu:"cw\<parallel>u" using M5exist_var by blast
from ap kq have "a\<parallel>q \<oplus> ((\<exists>t. a\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with ap qu pcw cwu have "(p,q) \<in> s" using s by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where at:"a\<parallel>t" and tq:"t\<parallel>q" by auto
from pc tq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. t\<parallel>t' \<and> t'\<parallel>c))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where "t\<parallel>t'" and "t'\<parallel>c" by auto
with pc pcw have "t'\<parallel>cw" using M1 by auto
with at tq ap pcw cwu qu \<open>t\<parallel>t'\<close> have "(p,q)\<in>ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "k\<parallel>t" and "t\<parallel>p" by auto
with kq pcw cwu qu have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cbmi:"b O m^-1 \<subseteq> b \<union> m \<union> ov \<union> s \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> b O m^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> b" and "(z,q) \<in> m^-1" by auto
from \<open>(p,z) \<in> b\<close> obtain c where pc:"p\<parallel>c" and cz:"c\<parallel>z" using b by auto
obtain k where kp:"k\<parallel>p" using M3 meets_wd pc by blast
from \<open>(z,q) \<in> m^-1\<close> have qz:"q\<parallel>z" using m by auto
obtain k' where kpq:"k'\<parallel>q" using M3 meets_wd qz by blast
from kp kpq have "k\<parallel>q \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with kp pc cz qz have "(p,q) \<in> s" using s by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"k\<parallel>t" and tq:"t\<parallel>q" by auto
from pc tq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. t\<parallel>t' \<and> t'\<parallel>c))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where "t\<parallel>t'" and "t'\<parallel>c" by auto
with pc cz qz kt tq kp have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "k'\<parallel>t" and "t\<parallel>p" by auto
with kpq pc cz qz have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cdov:"d O ov \<subseteq>b \<union> m \<union> ov \<union> s \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> d O ov" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> d" and "(z,q) \<in> ov" by auto
from \<open>(p,z) \<in> d\<close> obtain k l u v where kl:"k\<parallel>l" and lp:"l\<parallel>p" and kz:"k\<parallel>z" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" using d by blast
from \<open>(z,q) \<in> ov\<close> obtain k' l' u' v' c where kplp:"k'\<parallel>l'" and kpz:"k'\<parallel>z" and lpq:"l'\<parallel>q" and zup:"z\<parallel>u'" and upvp:"u'\<parallel>v'" and qvp:"q\<parallel>v'" and "l'\<parallel>c" and "c\<parallel>u'" using ov by blast
from zup zv uv have "u\<parallel>u'" using M1 by auto
with pu upvp obtain uu where puu:"p\<parallel>uu" and uuvp:"uu\<parallel>v'" using M5exist_var by blast
from lp lpq have "l\<parallel>q \<oplus> ((\<exists>t. l\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. l'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with lp puu uuvp qvp have "(p,q) \<in> s" using s by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where lt:"l\<parallel>t" and tq:"t\<parallel>q" by auto
from pu tq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. t\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where ttp:"t\<parallel>t'" and "t'\<parallel>u" by auto
with pu puu have "t'\<parallel>uu" using M1 by auto
with lp puu qvp uuvp lt tq ttp have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "l'\<parallel>t" and "t\<parallel>p" by auto
with lpq puu uuvp qvp have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cdfi:"d O f^-1 \<subseteq> b \<union> m \<union> ov \<union> s \<union> d"
proof
fix x::"'a\<times>'a" assume "x \<in> d O f^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> d" and "(z,q) \<in> f^-1" by auto
from \<open>(p,z) \<in> d\<close> obtain k l u v where kl:"k\<parallel>l" and lp:"l\<parallel>p" and kz:"k\<parallel>z" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" using d by blast
from \<open>(z,q) \<in> f^-1\<close> obtain k' l' u' where kpz:"k'\<parallel>z" and kplp:"k'\<parallel>l'" and lpq:"l'\<parallel>q" and zup:"z\<parallel>u'" and qup:"q\<parallel>u'" using f by blast
from zup zv uv have uup:"u\<parallel>u'" using M1 by auto
from lp lpq have "l\<parallel>q \<oplus> ((\<exists>t. l\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. l'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with lp pu uup qup have "(p,q) \<in> s" using s by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where lt:"l\<parallel>t" and tq:"t\<parallel>q" by auto
from pu tq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. t\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> s \<union> d"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where ttp:"t\<parallel>t'" and tpu:"t'\<parallel>u" by auto
with lt tq lp pu uup qup have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "l'\<parallel>t" and "t\<parallel>p" by auto
with lpq pu uup qup have "(p,q) \<in> d" using d by blast
thus ?thesis using x by auto}
qed
qed
(* =========$\beta_2$ composition ==========*)
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq b \cup m \cup ov \cup f^{-1} \cup d^{-1}$.\<close>
lemma covdi:"ov O d^-1 \<subseteq> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> ov O d^-1" then obtain p q z where "(p,z) : ov" and "(z,q) : d^-1" and x:"x = (p,q)" by auto
from \<open>(p,z) : ov\<close> obtain k l u v c where kp:"k\<parallel>p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" and lc:"l\<parallel>c" and cu:"c\<parallel>u" using ov by blast
from \<open>(z,q) : d^-1\<close> obtain l' k' u' v' where lpq:"l'\<parallel>q" and kplp:"k'\<parallel>l'" and kpz:"k'\<parallel>z" and qup:"q\<parallel>u'" and upvp:"u'\<parallel>v'" and zvp:"z\<parallel>v'" using d by blast
from lz kpz kplp have "l\<parallel>l'" using M1 by auto
with kl lpq obtain ll where kll:"k\<parallel>ll" and llq:"ll\<parallel>q" using M5exist_var by blast
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>u') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qup kll llq kp have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tup:"t\<parallel>u'" by auto
from pt lpq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. l'\<parallel>t' \<and> t'\<parallel>t))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where lptp:"l'\<parallel>t'" and tpt:"t'\<parallel>t" by auto
from lpq lptp llq have "ll\<parallel>t'" using M1 by auto
with kp kll llq pt tup qup tpt have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "q\<parallel>t" and "t\<parallel>u" by auto
with pu kll llq kp have "(p,q) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cdib:"d^-1 O b \<subseteq> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> d^-1 O b" then obtain p q z where "(p,z) : d^-1" and "(z,q) : b" and x:"x = (p,q)" by auto
from \<open>(p,z) : d^-1\<close> obtain k l u v where kp:"k\<parallel>p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and pv:"p\<parallel>v" and uv:"u\<parallel>v" and zu:"z\<parallel>u" using d by blast
from \<open>(z,q) : b\<close> obtain c where zc:"z\<parallel>c" and cq:"c\<parallel>q" using b by blast
with kl lz obtain lzc where klzc:"k\<parallel>lzc" and lzcq:"lzc\<parallel>q" using M5exist_var by blast
obtain v' where qvp:"q\<parallel>v'" using M3 meets_wd cq by blast
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qvp kp klzc lzcq have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tvp:"t\<parallel>v'" by auto
from pt cq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. c\<parallel>t' \<and> t'\<parallel>t))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where ctp:"c\<parallel>t'" and tpt:"t'\<parallel>t" by auto
from lzcq cq ctp have "lzc\<parallel>t'" using M1 by auto
with pt tvp qvp kp klzc lzcq tpt have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "q\<parallel>t" and "t\<parallel>v" by auto
with pv kp klzc lzcq have "(p,q) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma csdi:"s O d^-1 \<subseteq> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> s O d^-1" then obtain p q z where "(p,z) : s" and "(z,q) : d^-1" and x:"x = (p,q)" by auto
from \<open>(p,z) : s\<close> obtain k u v where kp:"k\<parallel>p" and kz:"k\<parallel>z" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" using s by blast
from \<open>(z,q) : d^-1\<close> obtain l' k' u' v' where lpq:"l'\<parallel>q" and kplp:"k'\<parallel>l'" and kpz:"k'\<parallel>z" and qup:"q\<parallel>u'" and upvp:"u'\<parallel>v'" and zvp:"z\<parallel>v'" using d by blast
from kp kz kpz have kpp:"k'\<parallel>p" using M1 by auto
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>u') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qup kpp kplp lpq have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tup:"t\<parallel>u'" by auto
from pt lpq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. l'\<parallel>t' \<and> t'\<parallel>t))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where lptp:"l'\<parallel>t'" and tpt:"t'\<parallel>t" by auto
with pt tup qup kpp kplp lpq have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "q\<parallel>t" and "t\<parallel>u" by auto
with pu kpp kplp lpq have "(p,q) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma csib:"s^-1 O b \<subseteq> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> s^-1 O b" then obtain p q z where "(p,z) : s^-1" and "(z,q) : b" and x:"x = (p,q)" by auto
from \<open>(p,z) : s^-1\<close> obtain k u v where kp:"k\<parallel>p" and kz:"k\<parallel>z" and zu:"z\<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" using s by blast
from \<open>(z,q) : b\<close> obtain c where zc:"z\<parallel>c" and cq:"c\<parallel>q" using b by blast
from kz zc cq obtain zc where kzc:"k\<parallel>zc" and zcq:"zc\<parallel>q" using M5exist_var by blast
obtain v' where qvp:"q\<parallel>v'" using M3 meets_wd cq by blast
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qvp kp kzc zcq have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tvp:"t\<parallel>v'" by auto
from pt cq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. c\<parallel>t' \<and> t'\<parallel>t))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where ctp:"c\<parallel>t'" and tpt:"t'\<parallel>t" by auto
from zcq cq ctp have "zc\<parallel>t'" using M1 by auto
with zcq pt tvp qvp kzc kp ctp tpt have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "q\<parallel>t" and "t\<parallel>v" by auto
with pv kp kzc zcq have "(p,q) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma covib:"ov^-1 O b \<subseteq> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> ov^-1 O b" then obtain p q z where "(p,z) : ov^-1" and "(z,q) : b" and x:"x = (p,q)" by auto
from \<open>(p,z) : ov^-1\<close> obtain k l u v c where kz:"k\<parallel>z" and kl:"k\<parallel>l" and lp:"l\<parallel>p" and zu:"z\<parallel>u" and uv:"u\<parallel>v" and pv:"p\<parallel>v" and lc:"l\<parallel>c" and cu:"c\<parallel>u" using ov by blast
from \<open>(z,q) : b\<close> obtain w where zw:"z\<parallel>w" and wq:"w\<parallel>q" using b by blast
from cu zu zw have cw:"c\<parallel>w" using M1 by auto
with lc wq obtain cw where lcw:"l\<parallel>cw" and cwq:"cw\<parallel>q" using M5exist_var by blast
obtain v' where qvp:"q\<parallel>v'" using M3 meets_wd wq by blast
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qvp lp lcw cwq have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tvp:"t\<parallel>v'" by auto
from pt wq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. w\<parallel>t' \<and> t'\<parallel>t))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where wtp:"w\<parallel>t'" and tpt:"t'\<parallel>t" by auto
moreover with wq cwq have "cw\<parallel>t'" using M1 by auto
ultimately have "(p,q) \<in> ov" using ov cwq lp lcw pt tvp qvp by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "q\<parallel>t" and "t\<parallel>v" by auto
with pv lp lcw cwq have "(p,q) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
lemma cmib:"m^-1 O b \<subseteq> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> m^-1 O b" then obtain p q z where "(p,z) : m^-1" and "(z,q) : b" and x:"x = (p,q)" by auto
from \<open>(p,z) : m^-1\<close> have zp:"z\<parallel>p" using m by auto
from \<open>(z,q) : b\<close> obtain w where zw:"z\<parallel>w" and wq:"w\<parallel>q" using b by blast
obtain v where pv:"p\<parallel>v" using M3 meets_wd zp by blast
obtain v' where qvp:"q\<parallel>v'" using M3 meets_wd wq by blast
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t. p\<parallel>t \<and> t\<parallel>v') \<oplus> (\<exists>t. q\<parallel>t \<and> t\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with zp zw wq qvp have "(p,q) \<in> f^-1" using f by blast
thus ?thesis using x by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where pt:"p\<parallel>t" and tvp:"t\<parallel>v'" by auto
from pt wq have "p\<parallel>q \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>q) \<oplus> (\<exists>t'. w\<parallel>t' \<and> t'\<parallel>t))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> b \<union> m \<union> ov \<union> f^-1 \<union> d^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t' where wtp:"w\<parallel>t'" and tpt:"t'\<parallel>t" by auto
with zp zw wq pt tvp qvp have "(p,q) \<in> ov" using ov by blast
thus ?thesis using x by auto}
qed
}
next
{ assume "\<not>?A \<and> \<not>?B \<and> ?C" then have ?C by simp
then obtain t where "q\<parallel>t" and "t\<parallel>v" by auto
with zp zw wq pv have "(p,q) \<in> d^-1" using d by blast
thus ?thesis using x by auto}
qed
qed
(*==========$\gamma$ composition =======*)
subsection \<open>$\gamma$-composition\<close>
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq ov \cup s \cup d \cup f \cup e \cup f^{-1} \cup d^{-1} \cup s^{-1} \cup ov^{-1}$.\<close>
lemma covovi:"ov O ov^-1 \<subseteq> e \<union> ov \<union> ov^-1 \<union> d \<union> d^-1 \<union> s \<union> s^-1 \<union> f \<union> f^-1 "
proof
fix x::"'a\<times>'a" assume "x \<in> ov O ov^-1" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> ov" and "(z, q) \<in> ov^-1" by auto
from \<open>(p,z) \<in> ov\<close> obtain k l c u where kp:"k\<parallel>p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and lc:"l\<parallel>c" and pu:"p\<parallel>u" and cu:"c\<parallel>u" using ov by blast
from \<open>(z,q) \<in> ov^-1\<close> obtain k' l' c' u' where kpq:"k'\<parallel>q" and kplp:"k'\<parallel>l'" and lpz:"l'\<parallel>z" and lpcp:"l'\<parallel>c'" and qup:"q\<parallel>u'" and cpup:"c'\<parallel>u'" using ov by blast
from kp kpq have "k\<parallel>q \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> e \<union> ov \<union> ov^-1 \<union> d \<union> d^-1 \<union> s \<union> s^-1 \<union> f \<union> f^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have kq:?A by simp
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>u') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with kq kp qup have "p = q" using M4 by auto
thus ?thesis using x e by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
with kq kp qup show ?thesis using x s by blast}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
with kq kp pu show ?thesis using x s by blast}
qed}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"k\<parallel>t" and tq:"t\<parallel>q" by auto
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>u') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qup kp kt tq show ?thesis using x f by blast}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where ptp:"p\<parallel>t'" and tpup:"t'\<parallel>u'" by auto
from tq kpq kplp have "t\<parallel>l'" using M1 by auto
moreover with lpz lz lc have "l'\<parallel>c" using M1 by auto
moreover with cu pu ptp have "c\<parallel>t'" using M1 by auto
ultimately obtain lc where "t\<parallel>lc" and "lc\<parallel>t'" using M5exist_var by blast
with ptp tpup kp kt tq qup show ?thesis using x ov by blast}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
with pu kp kt tq show ?thesis using x d by blast}
qed}
next
{assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by auto
then obtain t where kpt:"k'\<parallel>t" and tp:"t\<parallel>p" by auto
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>u') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with kpq kpt tp qup show ?thesis using x f by blast}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where "p\<parallel>t'" and "t'\<parallel>u'" by auto
with kpq kpt tp qup show ?thesis using x d by blast}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain t' where qtp:"q\<parallel>t'" and tpu:"t'\<parallel>u" by auto
from tp kp kl have "t\<parallel>l" using M1 by auto
moreover with lpcp lpz lz have "l\<parallel>c'" using M1 by auto
moreover with cpup qup qtp have "c'\<parallel>t'" using M1 by auto
ultimately obtain lc where "t\<parallel>lc" and "lc\<parallel>t'" using M5exist_var by blast
with kpt tp kpq qtp tpu pu show ?thesis using x ov by blast}
qed}
qed
qed
lemma cdid:"d^-1 O d \<subseteq> e \<union> ov \<union> ov^-1 \<union> d \<union> d^-1 \<union> s \<union> s^-1 \<union> f \<union> f^-1 "
proof
fix x::"'a\<times>'a" assume "x \<in> d^-1 O d" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> d^-1" and "(z, q) \<in> d" by auto
from \<open>(p,z) \<in> d^-1\<close> obtain k l u v where kp:"k\<parallel>p" and kl:"k\<parallel>l" and lz:"l\<parallel>z" and pv:"p\<parallel>v" and zu:"z\<parallel>u" and uv:"u\<parallel>v" using d by blast
from \<open>(z,q) \<in> d\<close> obtain k' l' u' v' where kpq:"k'\<parallel>q" and kplp:"k'\<parallel>l'" and lpz:"l'\<parallel>z" and qvp:"q\<parallel>v'" and zup:"z\<parallel>u'" and upvp:"u'\<parallel>v'" using d by blast
from kp kpq have "k\<parallel>q \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> e \<union> ov \<union> ov^-1 \<union> d \<union> d^-1 \<union> s \<union> s^-1 \<union> f \<union> f^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have kq:?A by simp
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>v') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with kq kp qvp have "p = q" using M4 by auto
thus ?thesis using x e by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
with kq kp qvp show ?thesis using x s by blast}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
with kq kp pv show ?thesis using x s by blast}
qed}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"k\<parallel>t" and tq:"t\<parallel>q" by auto
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>v') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qvp kp kt tq show ?thesis using x f by blast}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where ptp:"p\<parallel>t'" and tpvp:"t'\<parallel>v'" by auto
from tq kpq kplp have "t\<parallel>l'" using M1 by auto
moreover with ptp pv uv have "u\<parallel>t'" using M1 by auto
moreover with lpz zu \<open>t\<parallel>l'\<close> obtain lzu where "t\<parallel>lzu" and "lzu\<parallel>t'" using M5exist_var by blast
ultimately show ?thesis using x ov kt tq kp ptp tpvp qvp by blast}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
with pv kp kt tq show ?thesis using x d by blast}
qed}
next
{assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by auto
then obtain t where kpt:"k'\<parallel>t" and tp:"t\<parallel>p" by auto
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>v') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with kpq kpt tp qvp show ?thesis using x f by blast}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where "p\<parallel>t'" and "t'\<parallel>v'" by auto
with kpq kpt tp qvp show ?thesis using x d by blast}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain t' where qtp:"q\<parallel>t'" and tpv:"t'\<parallel>v" by auto
from tp kp kl have "t\<parallel>l" using M1 by auto
moreover with qtp qvp upvp have "u'\<parallel>t'" using M1 by auto
moreover with lz zup \<open>t\<parallel>l\<close> obtain lzu where "t\<parallel>lzu" and "lzu\<parallel>t'" using M5exist_var by blast
ultimately show ?thesis using x ov kpt tp kpq qtp tpv pv by blast}
qed}
qed
qed
lemma coviov:"ov^-1 O ov \<subseteq> e \<union> ov \<union> ov^-1 \<union> d \<union> d^-1 \<union> s \<union> s^-1 \<union> f \<union> f^-1"
proof
fix x::"'a\<times>'a" assume "x \<in> ov^-1 O ov" then obtain p q z where x:"x = (p,q)" and "(p,z) \<in> ov^-1" and "(z, q) \<in> ov" by auto
from \<open>(p,z) \<in> ov^-1\<close> obtain k l c u v where kz:"k\<parallel>z" and kl:"k\<parallel>l" and lp:"l\<parallel>p" and lc:"l\<parallel>c" and zu:"z\<parallel>u" and pv:"p\<parallel>v" and cu:"c\<parallel>u" and uv:"u\<parallel>v" using ov by blast
from \<open>(z,q) \<in> ov\<close> obtain k' l' c' u' v' where kpz:"k'\<parallel>z" and kplp:"k'\<parallel>l'" and lpq:"l'\<parallel>q" and lpcp:"l'\<parallel>c'" and qvp:"q\<parallel>v'" and zup:"z\<parallel>u'" and cpup:"c'\<parallel>u'" and upvp:"u'\<parallel>v'" using ov by blast
from lp lpq have "l\<parallel>q \<oplus> ((\<exists>t. l\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. l'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in> e \<union> ov \<union> ov^-1 \<union> d \<union> d^-1 \<union> s \<union> s^-1 \<union> f \<union> f^-1"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have lq:?A by simp
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>v') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with lq lp qvp have "p = q" using M4 by auto
thus ?thesis using x e by auto}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
with lq lp qvp show ?thesis using x s by blast}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
with lq lp pv show ?thesis using x s by blast}
qed}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where lt:"l\<parallel>t" and tq:"t\<parallel>q" by auto
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>v') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qvp lp lt tq show ?thesis using x f by blast}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where ptp:"p\<parallel>t'" and tpvp:"t'\<parallel>v'" by auto
from tq lpq lpcp have "t\<parallel>c'" using M1 by auto
moreover with cpup zup zu have "c'\<parallel>u" using M1 by auto
moreover with ptp pv uv have "u\<parallel>t'" using M1 by auto
ultimately obtain cu where "t\<parallel>cu" and "cu\<parallel>t'" using M5exist_var by blast
with lt tq lp ptp tpvp qvp show ?thesis using x ov by blast}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
with pv lp lt tq show ?thesis using x d by blast}
qed}
next
{assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by auto
then obtain t where lpt:"l'\<parallel>t" and tp:"t\<parallel>p" by auto
from pv qvp have "p\<parallel>v' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>v') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>v))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qvp lpq lpt tp show ?thesis using x f by blast}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where "p\<parallel>t'" and "t'\<parallel>v'" by auto
with qvp lpq lpt tp show ?thesis using x d by blast}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain t' where qtp:"q\<parallel>t'" and tpv:"t'\<parallel>v" by auto
from tp lp lc have "t\<parallel>c" using M1 by auto
moreover with cu zu zup have "c\<parallel>u'" using M1 by auto
moreover with qtp qvp upvp have "u'\<parallel>t'" using M1 by auto
ultimately obtain cu where "t\<parallel>cu" and "cu\<parallel>t'" using M5exist_var by blast
with lpt tp lpq pv qtp tpv show ?thesis using x ov by blast}
qed}
qed
qed
(* ===========$\delta$ composition =========*)
subsection \<open>$\gamma$-composition\<close>
text \<open>We prove compositions of the form $r_1 \circ r_2 \subseteq b \cup m \cup ov \cup s \cup d \cup f \cup e \cup f^{-1} \cup d^{-1} \cup s^{-1} \cup ov^{-1} \cup b^{-1} \cup m^{-1}$.\<close>
lemma cbbi:"b O b^-1 \<subseteq> b \<union> b^-1 \<union> m \<union> m^-1 \<union> e \<union> ov \<union> ov^-1 \<union> s \<union> s^-1 \<union> d \<union> d^-1 \<union> f \<union> f^-1" (is "b O b^-1 \<subseteq> ?R")
proof
fix x::"'a\<times>'a" assume "x \<in> b O b^-1" then obtain p q z::'a where x:"x = (p,q)" and "(p,z) \<in> b" and "(z,q) \<in> b^-1" by auto
from \<open>(p,z)\<in>b\<close> obtain c where pc:"p\<parallel>c" and "c\<parallel>z" using b by blast
from \<open>(z,q) \<in> b^-1\<close> obtain c' where qcp:"q\<parallel>c'" and "c'\<parallel>z" using b by blast
obtain k k' where kp:"k\<parallel>p" and kpq:"k'\<parallel>q" using M3 meets_wd pc qcp by fastforce
then have "k\<parallel>q \<oplus> ((\<exists>t. k\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. k'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in>?R"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have kq:?A by simp
from pc qcp have "p\<parallel>c' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>c') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>c))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "(?A\<and>\<not>?B\<and>\<not>?C)" then have "?A" by simp
with kp kq qcp have "p = q" using M4 by auto
thus ?thesis using x e by auto}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have "?B" by simp
with kq kp qcp show ?thesis using x s by blast}
next
{assume "(\<not>?A\<and>\<not>?B\<and>?C)" then have "?C" by simp
with kq kp pc show ?thesis using x s by blast}
qed}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where kt:"k\<parallel>t" and tq:"t\<parallel>q" by auto
from pc qcp have "p\<parallel>c' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>c') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>c))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with kp qcp kt tq show ?thesis using f x by blast}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where ptp:"p\<parallel>t'" and tpcp:"t'\<parallel>c'" by auto
from pc tq have "p\<parallel>q \<oplus> ((\<exists>t''. p\<parallel>t'' \<and> t''\<parallel>q) \<oplus> (\<exists>t''. t\<parallel>t'' \<and> t''\<parallel>c))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain g where "t\<parallel>g" and "g\<parallel>c" by auto
moreover with pc ptp have "g\<parallel>t'" using M1 by blast
ultimately show ?thesis using x ov kt tq kp ptp tpcp qcp by blast}
qed}
next
{assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain t' where "q\<parallel>t'" and "t'\<parallel>c" by auto
with kp kt tq pc show ?thesis using d x by blast}
qed}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain t where kpt:"k'\<parallel>t" and tp:"t\<parallel>p" by auto
from pc qcp have "p\<parallel>c' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>c') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>c))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qcp kpt tp kpq show ?thesis using x f by blast}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
with qcp kpt tp kpq show ?thesis using x d by blast}
next
{assume "\<not>?A\<and>\<not>?B\<and>?C" then obtain t' where qt':"q\<parallel>t'" and tpc:"t'\<parallel>c" by auto
from qcp tp have "q\<parallel>p \<oplus> ((\<exists>t''. q\<parallel>t'' \<and> t''\<parallel>p) \<oplus> (\<exists>t''. t\<parallel>t'' \<and> t''\<parallel>c'))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then obtain g where tg:"t\<parallel>g" and "g\<parallel>c'" by auto
with qcp qt' have "g\<parallel>t'" using M1 by blast
with qt' tpc pc kpq kpt tp tg show ?thesis using x ov by blast}
qed}
qed}
qed
qed
lemma cbib:"b^-1 O b \<subseteq> b \<union> b^-1 \<union> m \<union> m^-1 \<union> e \<union> ov \<union> ov^-1 \<union> s \<union> s^-1 \<union> d \<union> d^-1 \<union> f \<union> f^-1" (is "b^-1 O b \<subseteq> ?R")
proof
fix x::"'a\<times>'a" assume "x \<in> b^-1 O b" then obtain p q z::'a where x:"x = (p,q)" and "(p,z) \<in> b^-1" and "(z,q) \<in> b" by auto
from \<open>(p,z)\<in>b^-1\<close> obtain c where zc:"z\<parallel>c" and cp:"c\<parallel>p" using b by blast
from \<open>(z,q) \<in> b\<close> obtain c' where zcp:"z\<parallel>c'" and cpq:"c'\<parallel>q" using b by blast
obtain u u' where pu:"p\<parallel>u" and qup:"q\<parallel>u'" using M3 meets_wd cp cpq by fastforce
from cp cpq have "c\<parallel>q \<oplus> ((\<exists>t. c\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. c'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in>?R"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have cq:?A by simp
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>u') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "(?A\<and>\<not>?B\<and>\<not>?C)" then have "?A" by simp
with cq cp qup have "p = q" using M4 by auto
thus ?thesis using x e by auto}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have "?B" by simp
with cq cp qup show ?thesis using x s by blast}
next
{assume "(\<not>?A\<and>\<not>?B\<and>?C)" then have "?C" by simp
with pu cq cp show ?thesis using x s by blast}
qed}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where ct:"c\<parallel>t" and tq:"t\<parallel>q" by auto
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>u') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qup ct tq cp show ?thesis using f x by blast}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where ptp:"p\<parallel>t'" and tpup:"t'\<parallel>u'" by auto
from pu tq have "p\<parallel>q \<oplus> ((\<exists>t''. p\<parallel>t'' \<and> t''\<parallel>q) \<oplus> (\<exists>t''. t\<parallel>t'' \<and> t''\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain g where "t\<parallel>g" and "g\<parallel>u" by auto
moreover with pu ptp have "g\<parallel>t'" using M1 by blast
ultimately show ?thesis using x ov ct tq cp ptp tpup qup by blast}
qed}
next
{assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain t' where "q\<parallel>t'" and "t'\<parallel>u" by auto
with cp ct tq pu show ?thesis using d x by blast}
qed}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain t where cpt:"c'\<parallel>t" and tp:"t\<parallel>p" by auto
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>u') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qup cpt tp cpq show ?thesis using x f by blast}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
with qup cpt tp cpq show ?thesis using x d by blast}
next
{assume "\<not>?A\<and>\<not>?B\<and>?C" then obtain t' where qt':"q\<parallel>t'" and tpc:"t'\<parallel>u" by auto
from qup tp have "q\<parallel>p \<oplus> ((\<exists>t''. q\<parallel>t'' \<and> t''\<parallel>p) \<oplus> (\<exists>t''. t\<parallel>t'' \<and> t''\<parallel>u'))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then obtain g where tg:"t\<parallel>g" and "g\<parallel>u'" by auto
with qup qt' have "g\<parallel>t'" using M1 by blast
with qt' tpc pu cpq cpt tp tg show ?thesis using x ov by blast}
qed}
qed}
qed
qed
lemma cddi:"d O d^-1 \<subseteq> b \<union> b^-1 \<union> m \<union> m^-1 \<union> e \<union> ov \<union> ov^-1 \<union> s \<union> s^-1 \<union> d \<union> d^-1 \<union> f \<union> f^-1" (is "d O d^-1 \<subseteq> ?R")
proof
fix x::"'a\<times>'a" assume "x \<in> d O d^-1" then obtain p q z::'a where x:"x = (p,q)" and "(p,z) \<in> d" and "(z,q) \<in> d^-1" by auto
from \<open>(p,z) \<in> d\<close> obtain k l u v where lp:"l\<parallel>p" and kl:"k\<parallel>l" and kz:"k\<parallel>z" and pu:"p\<parallel>u" and uv:"u\<parallel>v" and zv:"z\<parallel>v" using d by blast
from \<open>(z,q) \<in> d^-1\<close> obtain k' l' u' v' where lpq:"l'\<parallel>q" and kplp:"k'\<parallel>l'" and kpz:"k'\<parallel>z" and qup:"q\<parallel>u'" and upvp:"u'\<parallel>v'" and zv':"z\<parallel>v'" using d by blast
from lp lpq have "l\<parallel>q \<oplus> ((\<exists>t. l\<parallel>t \<and> t\<parallel>q) \<oplus> (\<exists>t. l'\<parallel>t \<and> t\<parallel>p))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus "x \<in>?R"
proof (elim disjE)
{ assume "?A\<and>\<not>?B\<and>\<not>?C" then have lq:?A by simp
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>u') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "(?A\<and>\<not>?B\<and>\<not>?C)" then have "?A" by simp
with lq lp qup have "p = q" using M4 by auto
thus ?thesis using x e by auto}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have "?B" by simp
with lq lp qup show ?thesis using x s by blast}
next
{assume "(\<not>?A\<and>\<not>?B\<and>?C)" then have "?C" by simp
with pu lq lp show ?thesis using x s by blast}
qed}
next
{ assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t where lt:"l\<parallel>t" and tq:"t\<parallel>q" by auto
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>u') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qup lt tq lp show ?thesis using f x by blast}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
then obtain t' where ptp:"p\<parallel>t'" and tpup:"t'\<parallel>u'" by auto
from pu tq have "p\<parallel>q \<oplus> ((\<exists>t''. p\<parallel>t'' \<and> t''\<parallel>q) \<oplus> (\<exists>t''. t\<parallel>t'' \<and> t''\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain g where "t\<parallel>g" and "g\<parallel>u" by auto
moreover with pu ptp have "g\<parallel>t'" using M1 by blast
ultimately show ?thesis using x ov lt tq lp ptp tpup qup by blast}
qed}
next
{assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain t' where "q\<parallel>t'" and "t'\<parallel>u" by auto
with lp lt tq pu show ?thesis using d x by blast}
qed}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then have ?C by simp
then obtain t where lpt:"l'\<parallel>t" and tp:"t\<parallel>p" by auto
from pu qup have "p\<parallel>u' \<oplus> ((\<exists>t'. p\<parallel>t' \<and> t'\<parallel>u') \<oplus> (\<exists>t'. q\<parallel>t' \<and> t'\<parallel>u))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
with qup lpt tp lpq show ?thesis using x f by blast}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
with qup lpt tp lpq show ?thesis using x d by blast}
next
{assume "\<not>?A\<and>\<not>?B\<and>?C" then obtain t' where qt':"q\<parallel>t'" and tpc:"t'\<parallel>u" by auto
from qup tp have "q\<parallel>p \<oplus> ((\<exists>t''. q\<parallel>t'' \<and> t''\<parallel>p) \<oplus> (\<exists>t''. t\<parallel>t'' \<and> t''\<parallel>u'))" (is "?A \<oplus> (?B \<oplus> ?C)") using M2 by blast
then have "(?A\<and>\<not>?B\<and>\<not>?C) \<or> ((\<not>?A\<and>?B\<and>\<not>?C) \<or> (\<not>?A\<and>\<not>?B\<and>?C))" by (insert xor_distr_L[of ?A ?B ?C], auto simp:elimmeets)
thus ?thesis
proof (elim disjE)
{assume "?A\<and>\<not>?B\<and>\<not>?C" then have ?A by simp
thus ?thesis using x m by auto}
next
{assume "\<not>?A\<and>?B\<and>\<not>?C" then have ?B by simp
thus ?thesis using x b by auto}
next
{ assume "\<not>?A\<and>\<not>?B\<and>?C" then obtain g where tg:"t\<parallel>g" and "g\<parallel>u'" by auto
with qup qt' have "g\<parallel>t'" using M1 by blast
with qt' tpc pu lpq lpt tp tg show ?thesis using x ov by blast}
qed}
qed}
qed
qed
(* ========= inverse ========== *)
subsection \<open>The rest of the composition table\<close>
text \<open>Because of the symmetry $(r_1 \circ r_2)^{-1} = r_2^{-1} \circ r_1^{-1} $, the rest of the compositions is easily deduced.\<close>
lemma cmbi:"m O b^-1 \<subseteq> b^-1 \<union> m^-1 \<union> s^-1 \<union> ov^-1 \<union> d^-1"
using cbmi by auto
lemma covmi:"ov O m^-1 \<subseteq> ov^-1 \<union> d^-1 \<union> s^-1"
using cmovi by auto
lemma covbi:"ov O b^-1 \<subseteq> b^-1 \<union> m^-1 \<union> s^-1 \<union> ov^-1 \<union> d^-1"
using cbovi by auto
lemma cfiovi:"f^-1 O ov^-1 \<subseteq> ov^-1 \<union> s^-1 \<union> d^-1"
using covf by auto
lemma cfimi:"(f^-1 O m^-1) \<subseteq> s^-1 \<union> ov^-1 \<union> d^-1"
using cmf by auto
lemma cfibi:"f^-1 O b^-1 \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> s^-1 \<union> d^-1"
using cbf by auto
lemma cdif:"d^-1 O f \<subseteq> ov^-1 \<union> s^-1 \<union> d^-1"
using cfid by auto
lemma cdiovi:"d^-1 O ov ^-1 \<subseteq> ov^-1 \<union> s^-1 \<union> d^-1"
using covd by auto
lemma cdimi:"d^-1 O m^-1 \<subseteq> s^-1 \<union> ov^-1 \<union> d^-1 "
using cmd by auto
lemma cdibi:"d^-1 O b^-1 \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> s^-1 \<union> d^-1"
using cbd by auto
lemma csd:"s O d \<subseteq> d"
using cdisi by auto
lemma csf:"s O f \<subseteq> d"
using cfisi by auto
lemma csovi:"s O ov^-1 \<subseteq> ov^-1 \<union> f \<union> d"
using covsi by auto
lemma csmi:"s O m^-1 \<subseteq> m^-1"
using cmsi by auto
lemma csbi:"s O b^-1 \<subseteq> b^-1"
using cbsi by auto
lemma csisi:"s^-1 O s^-1 \<subseteq> s^-1"
using css by auto
lemma csid:"s^-1 O d \<subseteq> ov^-1 \<union> f \<union> d"
using cdis by auto
lemma csif:"s^-1 O f \<subseteq> ov^-1"
using cfis by auto
lemma csiovi:"s^-1 O ov^-1 \<subseteq> ov^-1"
using covs by auto
lemma csimi:"s^-1 O m^-1 \<subseteq> m^-1"
using cms by auto
lemma csibi:"s^-1 O b^-1 \<subseteq> b^-1"
using cbs by auto
lemma cds:"d O s \<subseteq> d"
using csidi by auto
lemma cdsi:"d O s^-1 \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> f \<union> d"
using csdi by auto
lemma cdd:"d O d \<subseteq> d"
using cdidi by auto
lemma cdf:"d O f \<subseteq> d"
using cfidi by auto
lemma cdovi:"d O ov^-1 \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> f \<union> d"
using covdi by auto
lemma cdmi:"d O m^-1 \<subseteq> b^-1"
using cmdi by auto
lemma cdbi:"d O b^-1 \<subseteq> b^-1"
using cbdi by auto
lemma cfdi:"f O d^-1 \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> s^-1 \<union> d^-1 "
using cdfi by auto
lemma cfs:"f O s \<subseteq> d"
using csifi by auto
lemma cfsi:"f O s^-1 \<subseteq> b ^-1 \<union> m^-1 \<union> ov ^-1"
using csfi by auto
lemma cfd:"f O d \<subseteq> d"
using cdifi by auto
lemma cff:"f O f \<subseteq> f"
using cfifi by auto
lemma cfovi:"f O ov^-1 \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1"
using covfi by auto
lemma cfmi:"f O m^-1 \<subseteq> b^-1"
using cmfi by auto
lemma cfbi:"f O b^-1 \<subseteq> b^-1"
using cbfi by auto
lemma covifi:"ov^-1 O f^-1 \<subseteq> ov^-1 \<union> s^-1 \<union> d^-1"
using cfov by auto
lemma covidi:"ov^-1 O d^-1 \<subseteq> b^-1 \<union> m^-1 \<union> s^-1 \<union> ov^-1 \<union> d^-1"
using cdov by auto
lemma covis:"ov^-1 O s \<subseteq> ov^-1 \<union> f \<union> d"
using csiov by auto
lemma covisi:"ov^-1 O s^-1 \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1"
using csov by auto
lemma covid:"ov^-1 O d \<subseteq> ov^-1 \<union> f \<union> d"
using cdiov by auto
lemma covif:"ov^-1 O f \<subseteq> ov^-1"
using cfiov by auto
lemma coviovi:"ov^-1 O ov^-1 \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1"
using covov by auto
lemma covimi:"ov^-1 O m^-1 \<subseteq> b^-1"
using cmov by auto
lemma covibi:"ov^-1 O b^-1 \<subseteq> b^-1"
using cbov by auto
lemma cmiov:"m^-1 O ov \<subseteq> ov^-1 \<union> d \<union> f"
using covim by auto
lemma cmifi:"m^-1 O f^-1 \<subseteq> m^-1"
using cfm by auto
lemma cmidi:"m^-1 O d^-1 \<subseteq> b^-1"
using cdm by auto
lemma cmis:"m^-1 O s \<subseteq> ov^-1 \<union> d \<union> f"
using csim by auto
lemma cmisi:"m^-1 O s^-1 \<subseteq> b^-1"
using csm by auto
lemma cmid:"m^-1 O d \<subseteq> ov^-1 \<union> d \<union> f"
using cdim by auto
lemma cmif:"m^-1 O f \<subseteq> m^-1"
using cfim by auto
lemma cmiovi:"m^-1 O ov^-1 \<subseteq> b^-1"
using covm by auto
lemma cmimi:"m^-1 O m^-1 \<subseteq> b^-1"
using cmm by auto
lemma cmibi:"m^-1 O b^-1 \<subseteq> b^-1"
using cbm by auto
lemma cbim:"b^-1 O m \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> f \<union> d"
using cmib by auto
lemma cbiov:"b^-1 O ov \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> f \<union> d"
using covib by auto
lemma cbifi:"b^-1 O f^-1 \<subseteq> b^-1"
using cfb by auto
lemma cbidi:"b^-1 O d^-1 \<subseteq> b^-1"
using cdb by auto
lemma cbis:"b^-1 O s \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> f \<union> d"
using csib by auto
lemma cbisi:"b^-1 O s^-1 \<subseteq> b^-1"
using csb by auto
lemma cbid:"b^-1 O d \<subseteq> b^-1 \<union> m^-1 \<union> ov^-1 \<union> f \<union> d"
using cdib by auto
lemma cbif:"b^-1 O f \<subseteq> b^-1"
using cfib by auto
lemma cbiovi:"b^-1 O ov^-1 \<subseteq> b^-1"
using covb by auto
lemma cbimi:"b^-1 O m^-1 \<subseteq> b^-1"
using cmb by auto
lemma cbibi:"b^-1 O b^-1 \<subseteq> b^-1"
using cbb by auto
(****)
subsection \<open>Composition rules\<close>
named_theorems ce_rules declare cem[ce_rules] and ceb[ce_rules] and ceov[ce_rules] and ces[ce_rules] and cef[ce_rules] and ced[ce_rules] and
cemi[ce_rules] and cebi[ce_rules] and ceovi[ce_rules] and cesi[ce_rules] and cefi[ce_rules] and cedi[ce_rules]
named_theorems cm_rules declare cme[cm_rules] and cmb[cm_rules] and cmm[cm_rules] and cmov[cm_rules] and cms [cm_rules] and cmd[cm_rules] and cmf[cm_rules] and
cmbi[cm_rules] and cmmi[cm_rules] and cmovi[cm_rules] and cmsi[cm_rules] and cmdi[cm_rules] and cmfi[cm_rules]
named_theorems cb_rules declare cbe[cb_rules] and cbm[cb_rules] and cbb[cb_rules] and cbov[cb_rules] and cbs [cb_rules] and cbd[cb_rules] and cbf[cb_rules] and
cbbi[cb_rules] and cbbi[cb_rules] and cbovi[cb_rules] and cbsi[cb_rules] and cbdi[cb_rules] and cbfi[cb_rules]
named_theorems cov_rules declare cove[cov_rules] and covb[cov_rules] and covb[cov_rules] and covov[cov_rules] and covs [cov_rules] and covd[cov_rules] and covf[cov_rules] and
covbi[cov_rules] and covbi[cov_rules] and covovi[cov_rules] and covsi[cov_rules] and covdi[cov_rules] and covfi[cov_rules]
named_theorems cs_rules declare cse[cs_rules] and csb[cs_rules] and csb[cs_rules] and csov[cs_rules] and css [cs_rules] and csd[cs_rules] and csf[cs_rules] and
csbi[cs_rules] and csbi[cs_rules] and csovi[cs_rules] and cssi[cs_rules] and csdi[cs_rules] and csfi[cs_rules]
named_theorems cf_rules declare cfe[cf_rules] and cfb[cf_rules] and cfb[cf_rules] and cfov[cf_rules] and cfs [cf_rules] and cfd[cf_rules] and cff[cf_rules] and
cfbi[cf_rules] and cfbi[cf_rules] and cfovi[cf_rules] and cfsi[cf_rules] and cfdi[cf_rules] and cffi[cf_rules]
named_theorems cd_rules declare cde[cd_rules] and cdb[cd_rules] and cdb[cd_rules] and cdov[cd_rules] and cds [cd_rules] and cdd[cd_rules] and cdf[cd_rules] and
cdbi[cd_rules] and cdbi[cd_rules] and cdovi[cd_rules] and cdsi[cd_rules] and cddi[cd_rules] and cdfi[cd_rules]
named_theorems cmi_rules declare cmie[cmi_rules] and cmib[cmi_rules] and cmib[cmi_rules] and cmiov[cmi_rules] and cmis [cmi_rules] and cmid[cmi_rules] and cmif[cmi_rules] and
cmibi[cmi_rules] and cmibi[cmi_rules] and cmiovi[cmi_rules] and cmisi[cmi_rules] and cmidi[cmi_rules] and cmifi[cmi_rules]
named_theorems cbi_rules declare cbie[cbi_rules] and cbim[cbi_rules] and cbib[cbi_rules] and cbiov[cbi_rules] and cbis [cbi_rules] and cbid[cbi_rules] and cbif[cbi_rules] and
cbimi[cbi_rules] and cbibi[cbi_rules] and cbiovi[cbi_rules] and cbisi[cbi_rules] and cbidi[cbi_rules] and cbifi[cbi_rules]
named_theorems covi_rules declare covie[covi_rules] and covib[covi_rules] and covib[covi_rules] and coviov[covi_rules] and covis [covi_rules] and covid[covi_rules] and covif[covi_rules] and
covibi[covi_rules] and covibi[covi_rules] and coviovi[covi_rules] and covisi[covi_rules] and covidi[covi_rules] and covifi[covi_rules]
named_theorems csi_rules declare csie[csi_rules] and csib[csi_rules] and csib[csi_rules] and csiov[csi_rules] and csis [csi_rules] and csid[csi_rules] and csif[csi_rules] and
csibi[csi_rules] and csibi[csi_rules] and csiovi[csi_rules] and csisi[csi_rules] and csidi[csi_rules] and csifi[csi_rules]
named_theorems cfi_rules declare cfie[cfi_rules] and cfib[cfi_rules] and cfib[cfi_rules] and cfiov[cfi_rules] and cfis [cfi_rules] and cfid[cfi_rules] and cfif[cfi_rules] and
cfibi[cfi_rules] and cfibi[cfi_rules] and cfiovi[cfi_rules] and cfisi[cfi_rules] and cfidi[cfi_rules] and cfifi[cfi_rules]
named_theorems cdi_rules declare cdie[cdi_rules] and cdib[cdi_rules] and cdib[cdi_rules] and cdiov[cdi_rules] and cdis [cdi_rules] and cdid[cdi_rules] and cdif[cdi_rules] and
cdibi[cdi_rules] and cdibi[cdi_rules] and cdiovi[cdi_rules] and cdisi[cdi_rules] and cdidi[cdi_rules] and cdifi[cdi_rules]
(**)
named_theorems cre_rules declare cee[cre_rules] and cme[cre_rules] and cbe[cre_rules] and cove[cre_rules] and cse[cre_rules] and cfe[cre_rules] and cde[cre_rules] and
cmie[cre_rules] and cbie[cre_rules] and covie[cre_rules] and csie[cre_rules] and cfie[cre_rules] and cdie[cre_rules]
named_theorems crm_rules declare cem[crm_rules] and cbm[crm_rules] and cmm[crm_rules] and covm[crm_rules] and csm[crm_rules] and cfm[crm_rules] and cdm[crm_rules] and
cmim[crm_rules] and cbim[crm_rules] and covim[crm_rules] and csim[crm_rules] and cfim[crm_rules] and cdim[crm_rules]
named_theorems crmi_rules declare cemi[crmi_rules] and cbmi[crmi_rules] and cmmi[crmi_rules] and covmi[crmi_rules] and csmi[crmi_rules] and cfmi[crmi_rules] and cdmi[crmi_rules] and
cmimi[crmi_rules] and cbimi[crmi_rules] and covimi[crmi_rules] and csimi[crmi_rules] and cfimi[crmi_rules] and cdimi[crmi_rules]
named_theorems crs_rules declare ces[crs_rules] and cbs[crs_rules] and cms[crs_rules] and covs[crs_rules] and css[crs_rules] and cfs[crs_rules] and cds[crs_rules] and
cmis[crs_rules] and cbis[crs_rules] and covis[crs_rules] and csis[crs_rules] and cfis[crs_rules] and cdis[crs_rules]
named_theorems crsi_rules declare cesi[crsi_rules] and cbsi[crsi_rules] and cmsi[crsi_rules] and covsi[crsi_rules] and cssi[crsi_rules] and cfsi[crsi_rules] and cdsi[crsi_rules] and
cmisi[crsi_rules] and cbisi[crsi_rules] and covisi[crsi_rules] and csisi[crsi_rules] and cfisi[crsi_rules] and cdisi[crsi_rules]
named_theorems crb_rules declare ceb[crb_rules] and cbb[crb_rules] and cmb[crb_rules] and covb[crb_rules] and csb[crb_rules] and cfb[crb_rules] and cdb[crb_rules] and
cmib[crb_rules] and cbib[crb_rules] and covib[crb_rules] and csib[crb_rules] and cfib[crb_rules] and cdib[crb_rules]
named_theorems crbi_rules declare cebi[crbi_rules] and cbbi[crbi_rules] and cmbi[crbi_rules] and covbi[crbi_rules] and csbi[crbi_rules] and cfbi[crbi_rules] and cdbi[crbi_rules] and
cmibi[crbi_rules] and cbibi[crbi_rules] and covibi[crbi_rules] and csibi[crbi_rules] and cfibi[crbi_rules] and cdibi[crbi_rules]
named_theorems crov_rules declare ceov[crov_rules] and cbov[crov_rules] and cmov[crov_rules] and covov[crov_rules] and csov[crov_rules] and cfov[crov_rules] and cdov[crov_rules] and
cmiov[crov_rules] and cbiov[crov_rules] and coviov[crov_rules] and csiov[crov_rules] and cfiov[crov_rules] and cdiov[crov_rules]
named_theorems crovi_rules declare ceovi[crovi_rules] and cbovi[crovi_rules] and cmovi[crovi_rules] and covovi[crovi_rules] and csovi[crovi_rules] and cfovi[crovi_rules] and cdovi[crovi_rules] and
cmiovi[crovi_rules] and cbiovi[crovi_rules] and coviovi[crovi_rules] and csiovi[crovi_rules] and cfiovi[crovi_rules] and cdiovi[crovi_rules]
named_theorems crf_rules declare cef[crf_rules] and cbf[crf_rules] and cmf[crf_rules] and covf[crf_rules] and csf[crf_rules] and cff[crf_rules] and cdf[crf_rules] and
cmif[crf_rules] and cbif[crf_rules] and covif[crf_rules] and csif[crf_rules] and cfif[crf_rules] and cdif[crf_rules]
named_theorems crfi_rules declare cefi[crfi_rules] and cbfi[crfi_rules] and cmfi[crfi_rules] and covfi[crfi_rules] and csfi[crfi_rules] and cffi[crfi_rules] and cdfi[crfi_rules] and
cmifi[crfi_rules] and cbifi[crfi_rules] and covifi[crfi_rules] and csifi[crfi_rules] and cfifi[crfi_rules] and cdifi[crfi_rules]
named_theorems crd_rules declare ced[crd_rules] and cbd[crd_rules] and cmd[crd_rules] and covd[crd_rules] and csd[crd_rules] and cfd[crd_rules] and cdd[crd_rules] and
cmid[crd_rules] and cbid[crd_rules] and covid[crd_rules] and csid[crd_rules] and cfid[crd_rules] and cdid[crd_rules]
named_theorems crdi_rules declare cedi[crdi_rules] and cbdi[crdi_rules] and cmdi[crdi_rules] and covdi[crdi_rules] and csdi[crdi_rules] and cfdi[crdi_rules] and cddi[crdi_rules] and
cmidi[crdi_rules] and cbidi[crdi_rules] and covidi[crdi_rules] and csidi[crdi_rules] and cfidi[crdi_rules] and cdidi[crdi_rules]
end
|