Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 7,479 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
(* Author: Tobias Nipkow *)

section "Skew Heap Analysis"

theory Skew_Heap_Analysis
imports
  Complex_Main
  Skew_Heap.Skew_Heap
  Amortized_Framework
  Priority_Queue_ops_merge
begin

text\<open>The following proof is a simplified version of the one by Kaldewaij and
Schoenmakers~\cite{KaldewaijS-IPL91}.\<close>

text \<open>right-heavy:\<close>
definition rh :: "'a tree => 'a tree => nat" where
"rh l r = (if size l < size r then 1 else 0)"

text \<open>Function \<open>\<Gamma>\<close> in \cite{KaldewaijS-IPL91}: number of right-heavy nodes on left spine.\<close>
fun lrh :: "'a tree \<Rightarrow> nat" where
"lrh Leaf = 0" |
"lrh (Node l _ r) = rh l r + lrh l"

text \<open>Function \<open>\<Delta>\<close> in \cite{KaldewaijS-IPL91}: number of not-right-heavy nodes on right spine.\<close>
fun rlh :: "'a tree \<Rightarrow> nat" where
"rlh Leaf = 0" |
"rlh (Node l _ r) = (1 - rh l r) + rlh r"

lemma Gexp: "2 ^ lrh t \<le> size t + 1"
by (induction t) (auto simp: rh_def)

corollary Glog: "lrh t \<le> log 2 (size1 t)"
by (metis Gexp le_log2_of_power size1_size)

lemma Dexp: "2 ^ rlh t \<le> size t + 1"
by (induction t) (auto simp: rh_def)

corollary Dlog: "rlh t \<le> log 2 (size1 t)"
by (metis Dexp le_log2_of_power size1_size)

function T_merge :: "'a::linorder tree \<Rightarrow> 'a tree \<Rightarrow> nat" where
"T_merge Leaf t = 1" |
"T_merge t Leaf = 1" |
"T_merge (Node l1 a1 r1) (Node l2 a2 r2) =
   (if a1 \<le> a2 then T_merge (Node l2 a2 r2) r1 else T_merge (Node l1 a1 r1) r2) + 1"
by pat_completeness auto
termination
by (relation "measure (\<lambda>(x, y). size x + size y)") auto

fun \<Phi> :: "'a tree \<Rightarrow> int" where
"\<Phi> Leaf = 0" |
"\<Phi> (Node l _ r) = \<Phi> l + \<Phi> r + rh l r"

lemma \<Phi>_nneg: "\<Phi> t \<ge> 0"
by (induction t) auto

lemma plus_log_le_2log_plus: "\<lbrakk> x > 0; y > 0; b > 1 \<rbrakk>
  \<Longrightarrow> log b x + log b y \<le> 2 * log b (x + y)"
by(subst mult_2; rule add_mono; auto)

lemma rh1: "rh l r \<le> 1"
by(simp add: rh_def)

lemma amor_le_long:
  "T_merge t1 t2 + \<Phi> (merge t1 t2) - \<Phi> t1 - \<Phi> t2 \<le>
   lrh(merge t1 t2) + rlh t1 + rlh t2 + 1"
proof (induction t1 t2 rule: merge.induct)
  case 1 thus ?case by simp
next
  case 2 thus ?case by simp
next
  case (3 l1 a1 r1 l2 a2 r2)
  show ?case
  proof (cases "a1 \<le> a2")
    case True
    let ?t1 = "Node l1 a1 r1" let ?t2 = "Node l2 a2 r2" let ?m = "merge ?t2 r1"
    have "T_merge ?t1 ?t2 + \<Phi> (merge ?t1 ?t2) - \<Phi> ?t1 - \<Phi> ?t2
          = T_merge ?t2 r1 + 1 + \<Phi> ?m + \<Phi> l1 + rh ?m l1 - \<Phi> ?t1 - \<Phi> ?t2"
      using True by (simp)
    also have "\<dots> = T_merge ?t2 r1 + 1 + \<Phi> ?m + rh ?m l1 - \<Phi> r1 - rh l1 r1 - \<Phi> ?t2"
      by simp
    also have "\<dots> \<le> lrh ?m + rlh ?t2 + rlh r1 + rh ?m l1 + 2 - rh l1 r1"
      using "3.IH"(1)[OF True] by linarith
    also have "\<dots> = lrh ?m + rlh ?t2 + rlh r1 + rh ?m l1 + 1 + (1 - rh l1 r1)"
      using rh1[of l1 r1] by (simp)
    also have "\<dots> = lrh ?m + rlh ?t2 + rlh ?t1 + rh ?m l1 + 1"
      by (simp)
    also have "\<dots> = lrh (merge ?t1 ?t2) + rlh ?t1 + rlh ?t2 + 1"
      using True by(simp)
    finally show ?thesis .
  next
    case False with 3 show ?thesis by auto
  qed
qed

lemma amor_le:
  "T_merge t1 t2 + \<Phi> (merge t1 t2) - \<Phi> t1 - \<Phi> t2 \<le>
   lrh(merge t1 t2) + rlh t1 + rlh t2 + 1"
by(induction t1 t2 rule: merge.induct)(auto)

lemma a_merge:
  "T_merge t1 t2 + \<Phi>(merge t1 t2) - \<Phi> t1 - \<Phi> t2 \<le>
   3 * log 2 (size1 t1 + size1 t2) + 1" (is "?l \<le> _")
proof -
  have "?l \<le> lrh(merge t1 t2) + rlh t1 + rlh t2 + 1" using amor_le[of t1 t2] by arith
  also have "\<dots> = real(lrh(merge t1 t2)) + rlh t1 + rlh t2 + 1" by simp
  also have "\<dots> = real(lrh(merge t1 t2)) + (real(rlh t1) + rlh t2) + 1" by simp
  also have "rlh t1 \<le> log 2 (size1 t1)" by(rule Dlog)
  also have "rlh t2 \<le> log 2 (size1 t2)" by(rule Dlog)
  also have "lrh (merge t1 t2) \<le> log 2 (size1(merge t1 t2))" by(rule Glog)
  also have "size1(merge t1 t2) = size1 t1 + size1 t2 - 1" by(simp add: size1_size size_merge)
  also have "log 2 (size1 t1 + size1 t2 - 1) \<le> log 2 (size1 t1 + size1 t2)" by(simp add: size1_size)
  also have "log 2 (size1 t1) + log 2 (size1 t2) \<le> 2 * log 2 (real(size1 t1) + (size1 t2))"
    by(rule plus_log_le_2log_plus) (auto simp: size1_size)
  finally show ?thesis by(simp)
qed

definition T_insert :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> int" where
"T_insert a t = T_merge (Node Leaf a Leaf) t + 1"

lemma a_insert: "T_insert a t + \<Phi>(skew_heap.insert a t) - \<Phi> t \<le> 3 * log 2 (size1 t + 2) + 2"
using a_merge[of "Node Leaf a Leaf" "t"]
by (simp add: numeral_eq_Suc T_insert_def rh_def)

definition T_del_min :: "('a::linorder) tree \<Rightarrow> int" where
"T_del_min t = (case t of Leaf \<Rightarrow> 1 | Node t1 a t2 \<Rightarrow> T_merge t1 t2 + 1)"

lemma a_del_min: "T_del_min t + \<Phi>(skew_heap.del_min t) - \<Phi> t \<le> 3 * log 2 (size1 t + 2) + 2"
proof (cases t)
  case Leaf thus ?thesis by (simp add: T_del_min_def)
next
  case (Node t1 _ t2)
  have [arith]: "log 2 (2 + (real (size t1) + real (size t2))) \<le>
                log 2 (4 + (real (size t1) + real (size t2)))" by simp
  from Node show ?thesis using a_merge[of t1 t2]
    by (simp add: size1_size T_del_min_def rh_def)
qed


subsubsection "Instantiation of Amortized Framework"

lemma T_merge_nneg: "T_merge t1 t2 \<ge> 0"
by(induction t1 t2 rule: T_merge.induct) auto

fun exec :: "'a::linorder op \<Rightarrow> 'a tree list \<Rightarrow> 'a tree" where
"exec Empty [] = Leaf" |
"exec (Insert a) [t] = skew_heap.insert a t" |
"exec Del_min [t] = skew_heap.del_min t" |
"exec Merge [t1,t2] = merge t1 t2"

fun cost :: "'a::linorder op \<Rightarrow> 'a tree list \<Rightarrow> nat" where
"cost Empty [] = 1" |
"cost (Insert a) [t] = T_merge (Node Leaf a Leaf) t + 1" |
"cost Del_min [t] = (case t of Leaf \<Rightarrow> 1 | Node t1 a t2 \<Rightarrow> T_merge t1 t2 + 1)" |
"cost Merge [t1,t2] = T_merge t1 t2"

fun U where
"U Empty [] = 1" |
"U (Insert _) [t] = 3 * log 2 (size1 t + 2) + 2" |
"U Del_min [t] = 3 * log 2 (size1 t + 2) + 2" |
"U Merge [t1,t2] = 3 * log 2 (size1 t1 + size1 t2) + 1"

interpretation Amortized
where arity = arity and exec = exec and inv = "\<lambda>_. True"
and cost = cost and \<Phi> = \<Phi> and U = U
proof (standard, goal_cases)
  case 1 show ?case by simp
next
  case (2 t) show ?case using \<Phi>_nneg[of t] by linarith
next
  case (3 ss f)
  show ?case
  proof (cases f)
    case Empty thus ?thesis using 3(2) by (auto)
  next
    case [simp]: (Insert a)
    obtain t where [simp]: "ss = [t]" using 3(2) by (auto)
    thus ?thesis using a_merge[of "Node Leaf a Leaf" "t"]
      by (simp add: numeral_eq_Suc insert_def rh_def T_merge_nneg)
  next
    case [simp]: Del_min
    obtain t where [simp]: "ss = [t]" using 3(2) by (auto)
    thus ?thesis
    proof (cases t)
      case Leaf with Del_min show ?thesis by simp
    next
      case (Node t1 _ t2)
      have [arith]: "log 2 (2 + (real (size t1) + real (size t2))) \<le>
               log 2 (4 + (real (size t1) + real (size t2)))" by simp
      from Del_min Node show ?thesis using a_merge[of t1 t2]
        by (simp add: size1_size T_merge_nneg)
    qed
  next
    case [simp]: Merge
    obtain t1 t2 where "ss = [t1,t2]" using 3(2) by (auto simp: numeral_eq_Suc)
    thus ?thesis using a_merge[of t1 t2] by (simp add: T_merge_nneg)
  qed
qed

end