Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 20,426 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
subsection "Splay Tree Analysis"
theory Splay_Tree_Analysis
imports
Splay_Tree_Analysis_Base
Amortized_Framework
begin
subsubsection "Analysis of splay"
definition A_splay :: "'a::linorder \<Rightarrow> 'a tree \<Rightarrow> real" where
"A_splay a t = T_splay a t + \<Phi>(splay a t) - \<Phi> t"
text\<open>The following lemma is an attempt to prove a generic lemma that covers
both zig-zig cases. However, the lemma is not as nice as one would like.
Hence it is used only once, as a demo. Ideally the lemma would involve
function @{const A_splay}, but that is impossible because this involves @{const splay}
and thus depends on the ordering. We would need a truly symmetric version of @{const splay}
that takes the ordering as an explicit argument. Then we could define
all the symmetric cases by one final equation
\<^prop>\<open>splay2 less t = splay2 (\<lambda>x y. Not (less x y)) (mirror t)\<close>.
This would simplify the code and the proofs.\<close>
lemma zig_zig: fixes lx x rx lb b rb a ra u lb1 lb2
defines [simp]: "X == Node lx (x) rx" defines[simp]: "B == Node lb b rb"
defines [simp]: "t == Node B a ra" defines [simp]: "A' == Node rb a ra"
defines [simp]: "t' == Node lb1 u (Node lb2 b A')"
assumes hyps: "lb \<noteq> \<langle>\<rangle>" and IH: "T_splay x lb + \<Phi> lb1 + \<Phi> lb2 - \<Phi> lb \<le> 2 * \<phi> lb - 3 * \<phi> X + 1" and
prems: "size lb = size lb1 + size lb2 + 1" "X \<in> subtrees lb"
shows "T_splay x lb + \<Phi> t' - \<Phi> t \<le> 3 * (\<phi> t - \<phi> X)"
proof -
define B' where [simp]: "B' = Node lb2 b A'"
have "T_splay x lb + \<Phi> t' - \<Phi> t = T_splay x lb + \<Phi> lb1 + \<Phi> lb2 - \<Phi> lb + \<phi> B' + \<phi> A' - \<phi> B"
using prems
by(auto simp: A_splay_def size_if_splay algebra_simps in_set_tree_if split: tree.split)
also have "\<dots> \<le> 2 * \<phi> lb + \<phi> B' + \<phi> A' - \<phi> B - 3 * \<phi> X + 1"
using IH prems(2) by(auto simp: algebra_simps)
also have "\<dots> \<le> \<phi> lb + \<phi> B' + \<phi> A' - 3 * \<phi> X + 1" by(simp)
also have "\<dots> \<le> \<phi> B' + 2 * \<phi> t - 3 * \<phi> X "
using prems ld_ld_1_less[of "size1 lb" "size1 A'"]
by(simp add: size_if_splay)
also have "\<dots> \<le> 3 * \<phi> t - 3 * \<phi> X"
using prems by(simp add: size_if_splay)
finally show ?thesis by simp
qed
lemma A_splay_ub: "\<lbrakk> bst t; Node l x r : subtrees t \<rbrakk>
\<Longrightarrow> A_splay x t \<le> 3 * (\<phi> t - \<phi>(Node l x r)) + 1"
proof(induction x t rule: splay.induct)
case 1 thus ?case by simp
next
case 2 thus ?case by (auto simp: A_splay_def)
next
case 4 hence False by(fastforce dest: in_set_tree_if) thus ?case ..
next
case 5 hence False by(fastforce dest: in_set_tree_if) thus ?case ..
next
case 7 hence False by(fastforce dest: in_set_tree_if) thus ?case ..
next
case 10 hence False by(fastforce dest: in_set_tree_if) thus ?case ..
next
case 12 hence False by(fastforce dest: in_set_tree_if) thus ?case ..
next
case 13 hence False by(fastforce dest: in_set_tree_if) thus ?case ..
next
case (3 x b A B CD)
(* A readable proof *)
let ?t = "\<langle>\<langle>A, x, B\<rangle>, b, CD\<rangle>"
let ?t' = "\<langle>A, x, \<langle>B, b, CD\<rangle>\<rangle>"
have *: "l = A \<and> r = B" using "3.prems" by(fastforce dest: in_set_tree_if)
have "A_splay x ?t = 1 + \<Phi> ?t' - \<Phi> ?t" using "3.hyps" by (simp add: A_splay_def)
also have "\<dots> = 1 + \<phi> ?t' + \<phi> \<langle>B, b, CD\<rangle> - \<phi> ?t - \<phi> \<langle>A, x, B\<rangle>" by(simp)
also have "\<dots> = 1 + \<phi> \<langle>B, b, CD\<rangle> - \<phi> \<langle>A, x, B\<rangle>" by(simp)
also have "\<dots> \<le> 1 + \<phi> ?t - \<phi>(Node A x B)"
using log_le_cancel_iff[of 2 "size1(Node B b CD)" "size1 ?t"] by (simp)
also have "\<dots> \<le> 1 + 3 * (\<phi> ?t - \<phi>(Node A x B))"
using log_le_cancel_iff[of 2 "size1(Node A x B)" "size1 ?t"] by (simp)
finally show ?case using * by simp
next
case (9 b x AB C D)
(* An automatic proof *)
let ?A = "\<langle>AB, b, \<langle>C, x, D\<rangle>\<rangle>"
have "x \<notin> set_tree AB" using "9.prems"(1) by auto
with 9 show ?case using
log_le_cancel_iff[of 2 "size1(Node AB b C)" "size1 ?A"]
log_le_cancel_iff[of 2 "size1(Node C x D)" "size1 ?A"]
by (auto simp: A_splay_def algebra_simps simp del:log_le_cancel_iff)
next
case (6 x a b A B C)
hence *: "\<langle>l, x, r\<rangle> \<in> subtrees A" by(fastforce dest: in_set_tree_if)
obtain A1 a' A2 where sp: "splay x A = Node A1 a' A2"
using splay_not_Leaf[OF \<open>A \<noteq> Leaf\<close>] by blast
let ?X = "Node l x r" let ?AB = "Node A a B" let ?ABC = "Node ?AB b C"
let ?A' = "Node A1 a' A2"
let ?BC = "Node B b C" let ?A2BC = "Node A2 a ?BC" let ?A1A2BC = "Node A1 a' ?A2BC"
have 0: "\<phi> ?A1A2BC = \<phi> ?ABC" using sp by(simp add: size_if_splay)
have 1: "\<Phi> ?A1A2BC - \<Phi> ?ABC = \<Phi> A1 + \<Phi> A2 + \<phi> ?A2BC + \<phi> ?BC - \<Phi> A - \<phi> ?AB"
using 0 by (simp)
have "A_splay x ?ABC = T_splay x A + 1 + \<Phi> ?A1A2BC - \<Phi> ?ABC"
using "6.hyps" sp by(simp add: A_splay_def)
also have "\<dots> = T_splay x A + 1 + \<Phi> A1 + \<Phi> A2 + \<phi> ?A2BC + \<phi> ?BC - \<Phi> A - \<phi> ?AB"
using 1 by simp
also have "\<dots> = T_splay x A + \<Phi> ?A' - \<phi> ?A' - \<Phi> A + \<phi> ?A2BC + \<phi> ?BC - \<phi> ?AB + 1"
by(simp)
also have "\<dots> = A_splay x A + \<phi> ?A2BC + \<phi> ?BC - \<phi> ?AB - \<phi> ?A' + 1"
using sp by(simp add: A_splay_def)
also have "\<dots> \<le> 3 * \<phi> A + \<phi> ?A2BC + \<phi> ?BC - \<phi> ?AB - \<phi> ?A' - 3 * \<phi> ?X + 2"
using "6.IH" "6.prems"(1) * by(simp)
also have "\<dots> = 2 * \<phi> A + \<phi> ?A2BC + \<phi> ?BC - \<phi> ?AB - 3 * \<phi> ?X + 2"
using sp by(simp add: size_if_splay)
also have "\<dots> < \<phi> A + \<phi> ?A2BC + \<phi> ?BC - 3 * \<phi> ?X + 2" by(simp)
also have "\<dots> < \<phi> ?A2BC + 2 * \<phi> ?ABC - 3 * \<phi> ?X + 1"
using sp ld_ld_1_less[of "size1 A" "size1 ?BC"]
by(simp add: size_if_splay)
also have "\<dots> < 3 * \<phi> ?ABC - 3 * \<phi> ?X + 1"
using sp by(simp add: size_if_splay)
finally show ?case by simp
next
case (8 a x b B A C)
hence *: "\<langle>l, x, r\<rangle> \<in> subtrees B" by(fastforce dest: in_set_tree_if)
obtain B1 b' B2 where sp: "splay x B = Node B1 b' B2"
using splay_not_Leaf[OF \<open>B \<noteq> Leaf\<close>] by blast
let ?X = "Node l x r" let ?AB = "Node A a B" let ?ABC = "Node ?AB b C"
let ?B' = "Node B1 b' B2"
let ?AB1 = "Node A a B1" let ?B2C = "Node B2 b C" let ?AB1B2C = "Node ?AB1 b' ?B2C"
have 0: "\<phi> ?AB1B2C = \<phi> ?ABC" using sp by(simp add: size_if_splay)
have 1: "\<Phi> ?AB1B2C - \<Phi> ?ABC = \<Phi> B1 + \<Phi> B2 + \<phi> ?AB1 + \<phi> ?B2C - \<Phi> B - \<phi> ?AB"
using 0 by (simp)
have "A_splay x ?ABC = T_splay x B + 1 + \<Phi> ?AB1B2C - \<Phi> ?ABC"
using "8.hyps" sp by(simp add: A_splay_def)
also have "\<dots> = T_splay x B + 1 + \<Phi> B1 + \<Phi> B2 + \<phi> ?AB1 + \<phi> ?B2C - \<Phi> B - \<phi> ?AB"
using 1 by simp
also have "\<dots> = T_splay x B + \<Phi> ?B' - \<phi> ?B' - \<Phi> B + \<phi> ?AB1 + \<phi> ?B2C - \<phi> ?AB + 1"
by simp
also have "\<dots> = A_splay x B + \<phi> ?AB1 + \<phi> ?B2C - \<phi> ?AB - \<phi> ?B' + 1"
using sp by (simp add: A_splay_def)
also have "\<dots> \<le> 3 * \<phi> B + \<phi> ?AB1 + \<phi> ?B2C - \<phi> ?AB - \<phi> ?B' - 3 * \<phi> ?X + 2"
using "8.IH" "8.prems"(1) * by(simp)
also have "\<dots> = 2 * \<phi> B + \<phi> ?AB1 + \<phi> ?B2C - \<phi> ?AB - 3 * \<phi> ?X + 2"
using sp by(simp add: size_if_splay)
also have "\<dots> < \<phi> B + \<phi> ?AB1 + \<phi> ?B2C - 3 * \<phi> ?X + 2" by(simp)
also have "\<dots> < \<phi> B + 2 * \<phi> ?ABC - 3 * \<phi> ?X + 1"
using sp ld_ld_1_less[of "size1 ?AB1" "size1 ?B2C"]
by(simp add: size_if_splay)
also have "\<dots> < 3 * \<phi> ?ABC - 3 * \<phi> ?X + 1" by(simp)
finally show ?case by simp
next
case (11 b x c C A D)
hence *: "\<langle>l, x, r\<rangle> \<in> subtrees C" by(fastforce dest: in_set_tree_if)
obtain C1 c' C2 where sp: "splay x C = Node C1 c' C2"
using splay_not_Leaf[OF \<open>C \<noteq> Leaf\<close>] by blast
let ?X = "Node l x r" let ?CD = "Node C c D" let ?ACD = "Node A b ?CD"
let ?C' = "Node C1 c' C2"
let ?C2D = "Node C2 c D" let ?AC1 = "Node A b C1"
have "A_splay x ?ACD = A_splay x C + \<phi> ?C2D + \<phi> ?AC1 - \<phi> ?CD - \<phi> ?C' + 1"
using "11.hyps" sp
by(auto simp: A_splay_def size_if_splay algebra_simps split: tree.split)
also have "\<dots> \<le> 3 * \<phi> C + \<phi> ?C2D + \<phi> ?AC1 - \<phi> ?CD - \<phi> ?C' - 3 * \<phi> ?X + 2"
using "11.IH" "11.prems"(1) * by(auto simp: algebra_simps)
also have "\<dots> = 2 * \<phi> C + \<phi> ?C2D + \<phi> ?AC1 - \<phi> ?CD - 3 * \<phi> ?X + 2"
using sp by(simp add: size_if_splay)
also have "\<dots> \<le> \<phi> C + \<phi> ?C2D + \<phi> ?AC1 - 3 * \<phi> ?X + 2" by(simp)
also have "\<dots> \<le> \<phi> C + 2 * \<phi> ?ACD - 3 * \<phi> ?X + 1"
using sp ld_ld_1_less[of "size1 ?C2D" "size1 ?AC1"]
by(simp add: size_if_splay algebra_simps)
also have "\<dots> \<le> 3 * \<phi> ?ACD - 3 * \<phi> ?X + 1" by(simp)
finally show ?case by simp
next
case (14 a x b CD A B)
hence 0: "x \<notin> set_tree B \<and> x \<notin> set_tree A"
using "14.prems"(1) \<open>b<x\<close> by(auto)
hence 1: "x \<in> set_tree CD" using "14.prems" \<open>b<x\<close> \<open>a<x\<close> by (auto)
obtain C c D where sp: "splay x CD = Node C c D"
using splay_not_Leaf[OF \<open>CD \<noteq> Leaf\<close>] by blast
from zig_zig[of CD x D C l r _ b B a A] 14 sp 0
show ?case by(auto simp: A_splay_def size_if_splay algebra_simps)
(* The explicit version:
have "A_splay x ?A = A_splay x ?R + \<phi> ?B' + \<phi> ?A' - \<phi> ?B - \<phi> ?R' + 1"
using "14.prems" 1 sp
by(auto simp: A_splay_def size_if_splay algebra_simps split: tree.split)
also have "\<dots> \<le> 3 * \<phi> ?R + \<phi> ?B' + \<phi> ?A' - \<phi> ?B - \<phi> ?R' - 3 * \<phi> ?X + 2"
using 14 0 by(auto simp: algebra_simps)
also have "\<dots> = 2 * \<phi> rb + \<phi> ?B' + \<phi> ?A' - \<phi> ?B - 3 * \<phi> ?X + 2"
using sp by(simp add: size_if_splay)
also have "\<dots> \<le> \<phi> ?R + \<phi> ?B' + \<phi> ?A' - 3 * \<phi> ?X + 2" by(simp)
also have "\<dots> \<le> \<phi> ?B' + 2 * \<phi> ?A - 3 * \<phi> ?X + 1"
using sp ld_ld_1_less[of "size1 ?R" "size1 ?A'"]
by(simp add: size_if_splay algebra_simps)
also have "\<dots> \<le> 3 * \<phi> ?A - 3 * \<phi> ?X + 1"
using sp by(simp add: size_if_splay)
finally show ?case by simp
*)
qed
lemma A_splay_ub2: assumes "bst t" "x : set_tree t"
shows "A_splay x t \<le> 3 * (\<phi> t - 1) + 1"
proof -
from assms(2) obtain l r where N: "Node l x r : subtrees t"
by (metis set_treeE)
have "A_splay x t \<le> 3 * (\<phi> t - \<phi>(Node l x r)) + 1" by(rule A_splay_ub[OF assms(1) N])
also have "\<dots> \<le> 3 * (\<phi> t - 1) + 1" by(simp add: field_simps)
finally show ?thesis .
qed
lemma A_splay_ub3: assumes "bst t" shows "A_splay x t \<le> 3 * \<phi> t + 1"
proof cases
assume "t = Leaf" thus ?thesis by(simp add: A_splay_def)
next
assume "t \<noteq> Leaf"
from ex_in_set_tree[OF this assms] obtain x' where
a': "x' \<in> set_tree t" "splay x' t = splay x t" "T_splay x' t = T_splay x t"
by blast
show ?thesis using A_splay_ub2[OF assms a'(1)] by(simp add: A_splay_def a')
qed
subsubsection "Analysis of insert"
lemma amor_insert: assumes "bst t"
shows "T_insert x t + \<Phi>(Splay_Tree.insert x t) - \<Phi> t \<le> 4 * log 2 (size1 t) + 3" (is "?l \<le> ?r")
proof cases
assume "t = Leaf" thus ?thesis by(simp add: T_insert_def)
next
assume "t \<noteq> Leaf"
then obtain l e r where [simp]: "splay x t = Node l e r"
by (metis tree.exhaust splay_Leaf_iff)
let ?t = "real(T_splay x t)"
let ?Plr = "\<Phi> l + \<Phi> r" let ?Ps = "\<Phi> t"
let ?slr = "real(size1 l) + real(size1 r)" let ?LR = "log 2 (1 + ?slr)"
have opt: "?t + \<Phi> (splay x t) - ?Ps \<le> 3 * log 2 (real (size1 t)) + 1"
using A_splay_ub3[OF \<open>bst t\<close>, simplified A_splay_def, of x] by (simp)
from less_linear[of e x]
show ?thesis
proof (elim disjE)
assume "e=x"
have nneg: "log 2 (1 + real (size t)) \<ge> 0" by simp
thus ?thesis using \<open>t \<noteq> Leaf\<close> opt \<open>e=x\<close>
apply(simp add: T_insert_def algebra_simps) using nneg by arith
next
let ?L = "log 2 (real(size1 l) + 1)"
assume "e < x" hence "e \<noteq> x" by simp
hence "?l = (?t + ?Plr - ?Ps) + ?L + ?LR + 1"
using \<open>t \<noteq> Leaf\<close> \<open>e<x\<close> by(simp add: T_insert_def)
also have "?t + ?Plr - ?Ps \<le> 2 * log 2 ?slr + 1"
using opt size_splay[of x t,symmetric] by(simp)
also have "?L \<le> log 2 ?slr" by(simp)
also have "?LR \<le> log 2 ?slr + 1"
proof -
have "?LR \<le> log 2 (2 * ?slr)" by (simp add:)
also have "\<dots> \<le> log 2 ?slr + 1"
by (simp add: log_mult del:distrib_left_numeral)
finally show ?thesis .
qed
finally show ?thesis using size_splay[of x t,symmetric] by (simp)
next
let ?R = "log 2 (2 + real(size r))"
assume "x < e" hence "e \<noteq> x" by simp
hence "?l = (?t + ?Plr - ?Ps) + ?R + ?LR + 1"
using \<open>t \<noteq> Leaf\<close> \<open>x < e\<close> by(simp add: T_insert_def)
also have "?t + ?Plr - ?Ps \<le> 2 * log 2 ?slr + 1"
using opt size_splay[of x t,symmetric] by(simp)
also have "?R \<le> log 2 ?slr" by(simp)
also have "?LR \<le> log 2 ?slr + 1"
proof -
have "?LR \<le> log 2 (2 * ?slr)" by (simp add:)
also have "\<dots> \<le> log 2 ?slr + 1"
by (simp add: log_mult del:distrib_left_numeral)
finally show ?thesis .
qed
finally show ?thesis using size_splay[of x t, symmetric] by simp
qed
qed
subsubsection "Analysis of delete"
definition A_splay_max :: "'a::linorder tree \<Rightarrow> real" where
"A_splay_max t = T_splay_max t + \<Phi>(splay_max t) - \<Phi> t"
lemma A_splay_max_ub: "t \<noteq> Leaf \<Longrightarrow> A_splay_max t \<le> 3 * (\<phi> t - 1) + 1"
proof(induction t rule: splay_max.induct)
case 1 thus ?case by (simp)
next
case (2 A)
thus ?case using one_le_log_cancel_iff[of 2 "size1 A + 1"]
by (simp add: A_splay_max_def del: one_le_log_cancel_iff)
next
case (3 l b rl c rr)
show ?case
proof cases
assume "rr = Leaf"
thus ?thesis
using one_le_log_cancel_iff[of 2 "1 + size1 rl"]
one_le_log_cancel_iff[of 2 "1 + size1 l + size1 rl"]
log_le_cancel_iff[of 2 "size1 l + size1 rl" "1 + size1 l + size1 rl"]
by (auto simp: A_splay_max_def field_simps
simp del: log_le_cancel_iff one_le_log_cancel_iff)
next
assume "rr \<noteq> Leaf"
then obtain l' u r' where sp: "splay_max rr = Node l' u r'"
using splay_max_Leaf_iff tree.exhaust by blast
hence 1: "size rr = size l' + size r' + 1"
using size_splay_max[of rr,symmetric] by(simp)
let ?C = "Node rl c rr" let ?B = "Node l b ?C"
let ?B' = "Node l b rl" let ?C' = "Node ?B' c l'"
have "A_splay_max ?B = A_splay_max rr + \<phi> ?B' + \<phi> ?C' - \<phi> rr - \<phi> ?C + 1" using "3.prems" sp 1
by(auto simp add: A_splay_max_def)
also have "\<dots> \<le> 3 * (\<phi> rr - 1) + \<phi> ?B' + \<phi> ?C' - \<phi> rr - \<phi> ?C + 2"
using 3 \<open>rr \<noteq> Leaf\<close> by auto
also have "\<dots> = 2 * \<phi> rr + \<phi> ?B' + \<phi> ?C' - \<phi> ?C - 1" by simp
also have "\<dots> \<le> \<phi> rr + \<phi> ?B' + \<phi> ?C' - 1" by simp
also have "\<dots> \<le> 2 * \<phi> ?B + \<phi> ?C' - 2"
using ld_ld_1_less[of "size1 ?B'" "size1 rr"] by(simp add:)
also have "\<dots> \<le> 3 * \<phi> ?B - 2" using 1 by simp
finally show ?case by simp
qed
qed
lemma A_splay_max_ub3: "A_splay_max t \<le> 3 * \<phi> t + 1"
proof cases
assume "t = Leaf" thus ?thesis by(simp add: A_splay_max_def)
next
assume "t \<noteq> Leaf"
show ?thesis using A_splay_max_ub[OF \<open>t \<noteq> Leaf\<close>] by(simp)
qed
lemma amor_delete: assumes "bst t"
shows "T_delete a t + \<Phi>(Splay_Tree.delete a t) - \<Phi> t \<le> 6 * log 2 (size1 t) + 3"
proof (cases t)
case Leaf thus ?thesis by(simp add: Splay_Tree.delete_def T_delete_def)
next
case [simp]: (Node ls x rs)
then obtain l e r where sp[simp]: "splay a (Node ls x rs) = Node l e r"
by (metis tree.exhaust splay_Leaf_iff)
let ?t = "real(T_splay a t)"
let ?Plr = "\<Phi> l + \<Phi> r" let ?Ps = "\<Phi> t"
let ?slr = "real(size1 l) + real(size1 r)" let ?LR = "log 2 (1 + ?slr)"
let ?lslr = "log 2 (real (size ls) + (real (size rs) + 2))"
have "?lslr \<ge> 0" by simp
have opt: "?t + \<Phi> (splay a t) - ?Ps \<le> 3 * log 2 (real (size1 t)) + 1"
using A_splay_ub3[OF \<open>bst t\<close>, simplified A_splay_def, of a]
by (simp add: field_simps)
show ?thesis
proof (cases "e=a")
case False thus ?thesis
using opt apply(simp add: Splay_Tree.delete_def T_delete_def field_simps)
using \<open>?lslr \<ge> 0\<close> by arith
next
case [simp]: True
show ?thesis
proof (cases l)
case Leaf
have 1: "log 2 (real (size r) + 2) \<ge> 0" by(simp)
show ?thesis
using Leaf opt apply(simp add: Splay_Tree.delete_def T_delete_def field_simps)
using 1 \<open>?lslr \<ge> 0\<close> by arith
next
case (Node ll y lr)
then obtain l' y' r' where [simp]: "splay_max (Node ll y lr) = Node l' y' r'"
using splay_max_Leaf_iff tree.exhaust by blast
have "bst l" using bst_splay[OF \<open>bst t\<close>, of a] by simp
have "\<Phi> r' \<ge> 0" apply (induction r') by (auto)
have optm: "real(T_splay_max l) + \<Phi> (splay_max l) - \<Phi> l \<le> 3 * \<phi> l + 1"
using A_splay_max_ub3[of l, simplified A_splay_max_def] by (simp add: field_simps Node)
have 1: "log 2 (2+(real(size l')+real(size r))) \<le> log 2 (2+(real(size l)+real(size r)))"
using size_splay_max[of l] Node by simp
have 2: "log 2 (2 + (real (size l') + real (size r'))) \<ge> 0" by simp
have 3: "log 2 (size1 l' + size1 r) \<le> log 2 (size1 l' + size1 r') + log 2 ?slr"
apply simp using 1 2 by arith
have 4: "log 2 (real(size ll) + (real(size lr) + 2)) \<le> ?lslr"
using size_if_splay[OF sp] Node by simp
show ?thesis using add_mono[OF opt optm] Node 3
apply(simp add: Splay_Tree.delete_def T_delete_def field_simps)
using 4 \<open>\<Phi> r' \<ge> 0\<close> by arith
qed
qed
qed
subsubsection "Overall analysis"
fun U where
"U Empty [] = 1" |
"U (Splay _) [t] = 3 * log 2 (size1 t) + 1" |
"U (Insert _) [t] = 4 * log 2 (size1 t) + 3" |
"U (Delete _) [t] = 6 * log 2 (size1 t) + 3"
interpretation Amortized
where arity = arity and exec = exec and inv = bst
and cost = cost and \<Phi> = \<Phi> and U = U
proof (standard, goal_cases)
case (1 ss f) show ?case
proof (cases f)
case Empty thus ?thesis using 1 by auto
next
case (Splay a)
then obtain t where "ss = [t]" "bst t" using 1 by auto
with Splay bst_splay[OF \<open>bst t\<close>, of a] show ?thesis
by (auto split: tree.split)
next
case (Insert a)
then obtain t where "ss = [t]" "bst t" using 1 by auto
with bst_splay[OF \<open>bst t\<close>, of a] Insert show ?thesis
by (auto simp: splay_bstL[OF \<open>bst t\<close>] splay_bstR[OF \<open>bst t\<close>] split: tree.split)
next
case (Delete a)
then obtain t where "ss = [t]" "bst t" using 1 by auto
with 1 Delete show ?thesis by(simp add: bst_delete)
qed
next
case (2 t) thus ?case by (induction t) auto
next
case (3 ss f)
show ?case (is "?l \<le> ?r")
proof(cases f)
case Empty thus ?thesis using 3(2) by(simp add: A_splay_def)
next
case (Splay a)
then obtain t where "ss = [t]" "bst t" using 3 by auto
thus ?thesis using Splay A_splay_ub3[OF \<open>bst t\<close>] by(simp add: A_splay_def)
next
case [simp]: (Insert a)
then obtain t where [simp]: "ss = [t]" and "bst t" using 3 by auto
thus ?thesis using amor_insert[of t a] by auto
next
case [simp]: (Delete a)
then obtain t where [simp]: "ss = [t]" and "bst t" using 3 by auto
thus ?thesis using amor_delete[of t a] by auto
qed
qed
end
|