Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 47,106 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
(*
  Title:      Blackboard.thy
  Author:     Diego Marmsoler
*)
section "A Theory of Blackboard Architectures"
text\<open>
  In the following, we formalize the specification of the blackboard pattern as described in~\cite{Marmsoler2018c}.
\<close>

theory Blackboard
imports Publisher_Subscriber
begin

subsection "Problems and Solutions"
text \<open>
  Blackboards work with problems and solutions for them.
\<close>
typedecl PROB
consts sb :: "(PROB \<times> PROB) set"
axiomatization where sbWF: "wf sb"
typedecl SOL
consts solve:: "PROB \<Rightarrow> SOL"

subsection "Blackboard Architectures"
text \<open>
  In the following, we describe the locale for the blackboard pattern.
\<close>
locale blackboard = publisher_subscriber bbactive bbcmp ksactive kscmp bbrp bbcs kscs ksrp
  for bbactive :: "'bid \<Rightarrow> cnf \<Rightarrow> bool" ("\<parallel>_\<parallel>\<^bsub>_\<^esub>" [0,110]60)
    and bbcmp :: "'bid \<Rightarrow> cnf \<Rightarrow> 'BB" ("\<sigma>\<^bsub>_\<^esub>(_)" [0,110]60)
    and ksactive :: "'kid \<Rightarrow> cnf \<Rightarrow> bool" ("\<parallel>_\<parallel>\<^bsub>_\<^esub>" [0,110]60)
    and kscmp :: "'kid \<Rightarrow> cnf \<Rightarrow> 'KS" ("\<sigma>\<^bsub>_\<^esub>(_)" [0,110]60)
    and bbrp :: "'BB \<Rightarrow> (PROB set) subscription set"
    and bbcs :: "'BB \<Rightarrow> (PROB \<times> SOL)"
    and kscs :: "'KS \<Rightarrow> (PROB \<times> SOL) set"
    and ksrp :: "'KS \<Rightarrow> (PROB set) subscription" +
  fixes bbns :: "'BB \<Rightarrow> (PROB \<times> SOL) set"
    and ksns :: "'KS \<Rightarrow> (PROB \<times> SOL)"
    and bbop :: "'BB \<Rightarrow> PROB"
    and ksop :: "'KS \<Rightarrow> PROB set"
    and prob :: "'kid \<Rightarrow> PROB"
  assumes
    ks1: "\<forall>p. \<exists>ks. p=prob ks" \<comment> \<open>Component Parameter\<close>
    \<comment> \<open>Assertions about component behavior.\<close>
    and bhvbb1: "\<And>t t' bId p s. \<lbrakk>t \<in> arch\<rbrakk> \<Longrightarrow> pb.eval bId t t' 0
      (\<box>\<^sub>b ([\<lambda>bb. (p,s)\<in>bbns bb]\<^sub>b
      \<longrightarrow>\<^sup>b (\<diamond>\<^sub>b [\<lambda>bb. (p,s) = bbcs bb]\<^sub>b)))"
    and bhvbb2: "\<And>t t' bId P q. \<lbrakk>t\<in>arch\<rbrakk> \<Longrightarrow> pb.eval bId t t' 0
      (\<box>\<^sub>b ([\<lambda>bb. sub P \<in> bbrp bb \<and> q \<in> P]\<^sub>b \<longrightarrow>\<^sup>b
      (\<diamond>\<^sub>b [\<lambda>bb. q = bbop bb]\<^sub>b)))"
    and bhvbb3: "\<And>t t' bId p . \<lbrakk>t\<in>arch\<rbrakk> \<Longrightarrow> pb.eval bId t t' 0
      (\<box>\<^sub>b ([\<lambda>bb. p = bbop(bb)]\<^sub>b \<longrightarrow>\<^sup>b
      ([\<lambda>bb. p=bbop(bb)]\<^sub>b \<WW>\<^sub>b [\<lambda>bb. (p,solve(p)) = bbcs(bb)]\<^sub>b)))"
    and bhvks1: "\<And>t t' kId p P. \<lbrakk>t\<in>arch; p = prob kId\<rbrakk> \<Longrightarrow> sb.eval kId t t' 0
      (\<box>\<^sub>b ([\<lambda>ks. sub P = ksrp ks]\<^sub>b \<and>\<^sup>b
      (\<forall>\<^sub>b q. ((sb.pred (q\<in>P)) \<longrightarrow>\<^sup>b (\<diamond>\<^sub>b ([\<lambda>ks. (q,solve(q)) \<in> kscs ks]\<^sub>b))))
      \<longrightarrow>\<^sup>b (\<diamond>\<^sub>b [\<lambda>ks. (p, solve p) = ksns ks]\<^sub>b)))"
    and bhvks2: "\<And>t t' kId p P q. \<lbrakk>t \<in> arch;p = prob kId\<rbrakk> \<Longrightarrow> sb.eval kId t t' 0
      (\<box>\<^sub>b [\<lambda>ks. sub P = ksrp ks \<and> q \<in> P \<longrightarrow> (q,p) \<in> sb]\<^sub>b)"
    and bhvks3: "\<And>t t' kId p. \<lbrakk>t\<in>arch;p = prob kId\<rbrakk> \<Longrightarrow> sb.eval kId t t' 0
      (\<box>\<^sub>b ([\<lambda>ks. p\<in>ksop ks]\<^sub>b \<longrightarrow>\<^sup>b (\<diamond>\<^sub>b [\<lambda>ks. (\<exists>P. sub P = ksrp ks)]\<^sub>b)))"
    and bhvks4: "\<And>t t' kId p P. \<lbrakk>t\<in>arch; p\<in>P\<rbrakk> \<Longrightarrow> sb.eval kId t t' 0
      (\<box>\<^sub>b ([\<lambda>ks. sub P = ksrp ks]\<^sub>b \<longrightarrow>\<^sup>b
      ((\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p\<in>P') \<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))) \<WW>\<^sub>b
      [\<lambda>ks. (p,solve p) \<in> kscs ks]\<^sub>b)))"

    \<comment> \<open>Assertions about component activation.\<close>
    and actks:
      "\<And>t n kid p. \<lbrakk>t \<in> arch; \<parallel>kid\<parallel>\<^bsub>t n\<^esub>; p=prob kid; p\<in>ksop (\<sigma>\<^bsub>kid\<^esub>(t n))\<rbrakk>
      \<Longrightarrow> (\<exists>n'\<ge>n. \<parallel>kid\<parallel>\<^bsub>t n'\<^esub> \<and> (p, solve p) = ksns (\<sigma>\<^bsub>kid\<^esub>(t n')) \<and>
      (\<forall>n''\<ge>n. n''<n' \<longrightarrow> \<parallel>kid\<parallel>\<^bsub>t n''\<^esub>))
      \<or> (\<forall>n'\<ge>n. (\<parallel>kid\<parallel>\<^bsub>t n'\<^esub> \<and> (\<not>(p, solve p) = ksns (\<sigma>\<^bsub>kid\<^esub>(t n')))))"

    \<comment> \<open>Assertions about connections.\<close>
    and conn1: "\<And>k bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>
      \<Longrightarrow> bbns (\<sigma>\<^bsub>bid\<^esub>(k)) = (\<Union>kid\<in>{kid. \<parallel>kid\<parallel>\<^bsub>k\<^esub>}. {ksns (\<sigma>\<^bsub>kid\<^esub>(k))})"
    and conn2: "\<And>k kid. \<parallel>kid\<parallel>\<^bsub>k\<^esub>
      \<Longrightarrow> ksop (\<sigma>\<^bsub>kid\<^esub>(k)) = (\<Union>bid\<in>{bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>}. {bbop (\<sigma>\<^bsub>bid\<^esub>(k))})"
begin
  notation sb.lNAct ("\<langle>_ \<Leftarrow> _\<rangle>\<^bsub>_\<^esub>")
  notation sb.nxtAct ("\<langle>_ \<rightarrow> _\<rangle>\<^bsub>_\<^esub>")
  notation pb.lNAct ("\<langle>_ \<Leftarrow> _\<rangle>\<^bsub>_\<^esub>")
  notation pb.nxtAct ("\<langle>_ \<rightarrow> _\<rangle>\<^bsub>_\<^esub>")

  subsubsection "Calculus Interpretation"
  text \<open>
  \noindent
  @{thm[source] pb.baIA}: @{thm pb.baIA [no_vars]}
\<close>
  text \<open>
  \noindent
  @{thm[source] sb.baIA}: @{thm sb.baIA [no_vars]}
\<close>

  subsubsection "Results from Singleton"
  abbreviation "the_bb \<equiv> the_pb"
  text \<open>
  \noindent
  @{thm[source] pb.ts_prop(1)}: @{thm pb.ts_prop(1) [no_vars]}
\<close>
  text \<open>
  \noindent
  @{thm[source] pb.ts_prop(2)}: @{thm pb.ts_prop(2) [no_vars]}
\<close>
  subsubsection "Results from Publisher Subscriber"
  text \<open>
	\noindent
	@{thm[source] msgDelivery}: @{thm msgDelivery [no_vars]}
\<close>
  lemma conn2_bb:
    fixes k and kid::'kid
    assumes "\<parallel>kid\<parallel>\<^bsub>k\<^esub>"
    shows "bbop (\<sigma>\<^bsub>the_bb\<^esub>(k))\<in>ksop (\<sigma>\<^bsub>kid\<^esub>(k))"
  proof -
    from assms have "ksop (\<sigma>\<^bsub>kid\<^esub>(k)) = (\<Union>bid\<in>{bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>}. {bbop (\<sigma>\<^bsub>bid\<^esub>(k))})" using conn2 by simp
    moreover have "(\<Union>bid.{bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>})={the_bb}" using pb.ts_prop(1) by auto
    hence "(\<Union>bid\<in>{bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>}. {bbop (\<sigma>\<^bsub>bid\<^esub>(k))}) = {bbop (\<sigma>\<^bsub>the_bb\<^esub>(k))}" by auto
    ultimately show ?thesis by simp
  qed

  subsubsection "Knowledge Sources"
  text \<open>
    In the following we introduce an abbreviation for knowledge sources which are able to solve a specific problem.
\<close>
  definition sKs:: "PROB \<Rightarrow> 'kid" where
    "sKs p \<equiv> (SOME kid. p = prob kid)"

  lemma sks_prob:
    "p = prob (sKs p)"
  using sKs_def someI_ex[of "\<lambda>kid. p = prob kid"] ks1 by auto

  subsubsection "Architectural Guarantees"
  text\<open>
    The following theorem verifies that a problem is eventually solved by the pattern even if no knowledge source exist which can solve the problem on its own.
    It assumes, however, that for every open sub problem, a corresponding knowledge source able to solve the problem will be eventually activated.
\<close>
  lemma pSolved_Ind:
    fixes t and t'::"nat \<Rightarrow>'BB" and p and t''::"nat \<Rightarrow>'KS"
    assumes "t\<in>arch" and
      "\<forall>n. (\<exists>n'\<ge>n. \<parallel>sKs (bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n)))\<parallel>\<^bsub>t n'\<^esub>)"
    shows
      "\<forall>n. (\<exists>P. sub P \<in> bbrp(\<sigma>\<^bsub>the_bb\<^esub>(t n)) \<and> p \<in> P) \<longrightarrow>
        (\<exists>m\<ge>n. (p,solve(p)) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m)))" (*\eqref{eq:bb:g}*)
  \<comment> \<open>The proof is by well-founded induction over the subproblem relation @{term sb}\<close>
  proof (rule wf_induct[where r=sb])
    \<comment> \<open>We first show that the subproblem relation is indeed well-founded ...\<close>
    show "wf sb" by (simp add: sbWF)
  next
    \<comment> \<open>... then we show that a problem @{term p} is indeed solved\<close>
    \<comment> \<open>if all its sub-problems @{term p'} are eventually solved\<close>
    fix p assume indH: "\<forall>p'. (p', p) \<in> sb \<longrightarrow> (\<forall>n. (\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n)) \<and> p'\<in>P)
      \<longrightarrow> (\<exists>m\<ge>n. (p',solve(p')) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m))))"
    show "\<forall>n. (\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n)) \<and> p \<in> P)
      \<longrightarrow> (\<exists>m\<ge>n. (p,solve(p)) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m)))"
    proof
      fix n\<^sub>0 show "(\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0)) \<and> p \<in> P) \<longrightarrow>
      (\<exists>m\<ge>n\<^sub>0. (p,solve(p)) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m)))"
      proof
        assume "\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0)) \<and> p \<in> P"
        moreover have "(\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0)) \<and> p \<in> P) \<longrightarrow> (\<exists>n'\<ge>n\<^sub>0. p=bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n')))"
        proof
          assume "\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0)) \<and> p \<in> P"
          then obtain P where "sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0))" and "p \<in> P" by auto
          hence "pb.eval the_bb t t' n\<^sub>0 [\<lambda>bb. sub P \<in> bbrp bb \<and> p \<in> P]\<^sub>b" using pb.baI by simp
          moreover from pb.globE[OF bhvbb2] have
            "pb.eval the_bb t t' n\<^sub>0 ([\<lambda>bb. sub P \<in> bbrp bb \<and> p \<in> P]\<^sub>b \<longrightarrow>\<^sup>b \<diamond>\<^sub>b [\<lambda>bb. p = bbop bb]\<^sub>b)"
            using \<open>t\<in>arch\<close> by simp
          ultimately have "pb.eval the_bb t t' n\<^sub>0 (\<diamond>\<^sub>b [\<lambda>bb. p = bbop bb]\<^sub>b)" using pb.impE by blast
          then obtain n' where "n'\<ge>n\<^sub>0" and "pb.eval the_bb t t' n' [\<lambda>bb. p = bbop bb]\<^sub>b"
            using pb.evtE by blast
          hence "p=bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n'))" using pb.baE by auto
          with \<open>n'\<ge>n\<^sub>0\<close> show "\<exists>n'\<ge>n\<^sub>0. p=bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n'))" by auto
        qed
        ultimately obtain n where "n\<ge>n\<^sub>0" and "p=bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n))" by auto

        \<comment> \<open>Problem p is provided at the output of the blackboard until it is solved\<close>
        \<comment> \<open>or forever...\<close>
        from pb.globE[OF bhvbb3] have
          "pb.eval the_bb t t' n ([\<lambda> bb. p = bbop(bb)]\<^sub>b \<longrightarrow>\<^sup>b
          ([\<lambda> bb. p=bbop(bb)]\<^sub>b \<WW>\<^sub>b [\<lambda>bb. (p,solve(p)) = bbcs(bb)]\<^sub>b))"
          using \<open>t\<in>arch\<close> by auto
        moreover from \<open>p = bbop (\<sigma>\<^bsub>the_bb\<^esub>(t n))\<close> have
          "pb.eval the_bb t t' n [\<lambda> bb. p=bbop bb]\<^sub>b"
          using \<open>t\<in>arch\<close> pb.baI by simp
        ultimately have "pb.eval the_bb t t' n
          ([\<lambda> bb. p=bbop(bb)]\<^sub>b \<WW>\<^sub>b [\<lambda> bb. (p,solve(p)) = bbcs(bb)]\<^sub>b)"
          using pb.impE by blast
        hence "pb.eval the_bb t t' n (([\<lambda> bb. p=bbop bb]\<^sub>b \<UU>\<^sub>b
          [\<lambda> bb. (p,solve(p)) = bbcs bb]\<^sub>b) \<or>\<^sup>b (\<box>\<^sub>b [\<lambda> bb. p=bbop bb]\<^sub>b))"
          using pb.wuntil_def by simp
        hence "pb.eval the_bb t t' n
          ([\<lambda>bb. p=bbop bb]\<^sub>b \<UU>\<^sub>b [\<lambda>bb. (p,solve(p)) = bbcs bb]\<^sub>b) \<or>
          (pb.eval the_bb t t' n (\<box>\<^sub>b [\<lambda> bb. p=bbop bb]\<^sub>b))"
          using pb.disjE by simp
        thus "\<exists>m\<ge>n\<^sub>0. (p,solve p) = bbcs(\<sigma>\<^bsub>the_bb\<^esub>(t m))"
        \<comment> \<open>We need to consider both cases, the case in which the problem is eventually\<close>
        \<comment> \<open>solved and the case in which the problem is always provided as an output\<close>
        proof
          \<comment> \<open>First we consider the case in which the problem is eventually solved:\<close>
          assume "pb.eval the_bb t t' n
            ([\<lambda>bb. p=bbop bb]\<^sub>b \<UU>\<^sub>b [\<lambda>bb. (p,solve(p)) = bbcs bb]\<^sub>b)"
          hence "\<exists>i\<ge>n. (pb.eval the_bb t t' i
            [\<lambda>bb. (p,solve(p)) = bbcs bb]\<^sub>b \<and>
            (\<forall>k\<ge>n. k<i \<longrightarrow> pb.eval the_bb t t' k [\<lambda>bb. p = bbop bb]\<^sub>b))"
            using \<open>t\<in>arch\<close> pb.untilE by simp
          then obtain i where "i\<ge>n" and
            "pb.eval the_bb t t' i [\<lambda>bb. (p,solve(p)) = bbcs bb]\<^sub>b" by auto
          hence "(p,solve(p)) = bbcs(\<sigma>\<^bsub>the_bb\<^esub>(t i))"
            using \<open>t\<in>arch\<close> pb.baEA by auto
          moreover from \<open>i\<ge>n\<close> \<open>n\<ge>n\<^sub>0\<close> have "i\<ge>n\<^sub>0" by simp
          ultimately show ?thesis by auto
        next
          \<comment> \<open>Now we consider the case in which p is always provided at the output\<close>
          \<comment> \<open>of the blackboard:\<close>
          assume "pb.eval the_bb t t' n
            (\<box>\<^sub>b [\<lambda>bb. p=bbop bb]\<^sub>b)"
          hence "\<forall>n'\<ge>n. (pb.eval the_bb t t' n' [\<lambda>bb. p = bbop bb]\<^sub>b)"
            using \<open>t\<in>arch\<close> pb.globE by auto
          hence outp: "\<forall>n'\<ge>n. (p = bbop (\<sigma>\<^bsub>the_bb\<^esub>(t n')))"
            using \<open>t\<in>arch\<close> pb.baE by blast

          \<comment> \<open>thus, by assumption there exists a KS which is able to solve p and which\<close>
          \<comment> \<open>is active at @{text n'}...\<close>
          with assms(2) have "\<exists>n'\<ge>n. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub>" by auto
          then obtain n\<^sub>k where "n\<^sub>k\<ge>n" and "\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>" by auto
          \<comment> \<open>... and get the problem as its input.\<close>
          moreover from \<open>n\<^sub>k\<ge>n\<close> have "p = bbop (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>k))"
            using outp by simp
          ultimately have "p\<in>ksop(\<sigma>\<^bsub>sKs p\<^esub>(t n\<^sub>k))" using conn2_bb[of "sKs p" "t n\<^sub>k"] by simp

          \<comment> \<open>thus the ks will either solve the problem or not solve it and\<close>
          \<comment> \<open>be activated forever\<close>
          hence "(\<exists>n'\<ge>n\<^sub>k. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub> \<and>
            (p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>(t n')) \<and>
            (\<forall>n''\<ge>n\<^sub>k. n''<n' \<longrightarrow> \<parallel>sKs p\<parallel>\<^bsub>t n''\<^esub>)) \<or>
            (\<forall>n'\<ge>n\<^sub>k. (\<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub> \<and>
            (\<not>(p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>(t n')))))"
            using \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> actks[of t "sKs p"] \<open>t\<in>arch\<close> sks_prob by simp
          thus ?thesis
          proof
            \<comment> \<open>if the ks solves it\<close>
            assume "\<exists>n'\<ge>n\<^sub>k. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub> \<and> (p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>t n')
              \<and> (\<forall>n''\<ge>n\<^sub>k. n'' < n' \<longrightarrow> \<parallel>sKs p\<parallel>\<^bsub>t n''\<^esub>)"
            \<comment> \<open>it is forwarded to the blackboard\<close>
            then obtain n\<^sub>s where "n\<^sub>s\<ge>n\<^sub>k" and "\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>s\<^esub>"
              and "(p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>t n\<^sub>s)" by auto
            moreover have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub> = n\<^sub>s"
              by (simp add: \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>s\<^esub>\<close> sb.nxtAct_active)
            ultimately have
              "(p,solve(p)) \<in> bbns (\<sigma>\<^bsub>the_bb\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)))"
              using conn1[OF pb.ts_prop(2)] \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>s\<^esub>\<close> by auto

            \<comment> \<open>finally, the blackboard will forward the solution which finishes the proof.\<close>
            with bhvbb1 have "pb.eval the_bb t t' (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)
              (\<diamond>\<^sub>b [\<lambda>bb. (p, solve p) = bbcs bb]\<^sub>b)"
              using \<open>t\<in>arch\<close> pb.globE pb.impE[of the_bb t t'] by blast
            then obtain n\<^sub>f where "n\<^sub>f\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>" and
              "pb.eval the_bb t t' n\<^sub>f [\<lambda>bb. (p, solve p) = bbcs bb]\<^sub>b"
              using \<open>t\<in>arch\<close> pb.evtE[of t t' "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>"] by auto
            hence "(p, solve p) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>f))"
              using \<open>t \<in> arch\<close> pb.baEA by auto
            moreover have "n\<^sub>f\<ge>n\<^sub>0"
            proof -
              from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<ge>n\<^sub>k"
                using sb.nxtActI by blast
              with \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub> = n\<^sub>s\<close> show ?thesis
                using \<open>n\<^sub>f\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>\<close> \<open>n\<^sub>s\<ge>n\<^sub>k\<close> \<open>n\<^sub>k\<ge>n\<close> \<open>n\<ge>n\<^sub>0\<close> by arith
            qed
            ultimately show ?thesis by auto
          next
            \<comment> \<open>otherwise, we derive a contradiction\<close>
            assume case_ass: "\<forall>n'\<ge>n\<^sub>k. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub> \<and> \<not>(p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>t n')"

            \<comment> \<open>first, the KS will eventually register for the subproblems P it requires to solve p...\<close>
            from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" by auto
            moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>0\<^esub> \<le> n\<^sub>k" by simp
            ultimately have "sb.eval (sKs p) t t'' n\<^sub>k
              ([\<lambda>ks. p\<in>ksop ks]\<^sub>b \<longrightarrow>\<^sup>b (\<diamond>\<^sub>b [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b))"
              using sb.globEA[OF _ bhvks3[of t p "sKs p" t'']] \<open>t\<in>arch\<close> sks_prob by simp
            moreover have "sb.eval (sKs p) t t'' n\<^sub>k [\<lambda>ks. p \<in> ksop ks]\<^sub>b"
            proof -
              from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<exists>n'\<ge>n\<^sub>k. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub>" by auto
              moreover have "p \<in> ksop (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>)))"
              proof -
                from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>=n\<^sub>k"
                  using sb.nxtAct_active by blast
                with \<open>p\<in>ksop(\<sigma>\<^bsub>sKs p\<^esub>(t n\<^sub>k))\<close> show ?thesis by simp
              qed
              ultimately show ?thesis using sb.baIA[of n\<^sub>k "sKs p" t] by blast
            qed
            ultimately have "sb.eval (sKs p) t t'' n\<^sub>k (\<diamond>\<^sub>b [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b)"
              using sb.impE by blast
            then obtain n\<^sub>r where "n\<^sub>r\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>" and
              "\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub> \<and>
              (\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>. n'' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>
              \<longrightarrow> sb.eval (sKs p) t t'' n'' [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b) \<or>
              \<not> (\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>) \<and>
              sb.eval (sKs p) t t'' n\<^sub>r [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b"
              using \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> sb.evtEA[of n\<^sub>k "sKs p" t] by blast
            moreover from case_ass have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<ge>n\<^sub>k" using sb.nxtActI by blast
            with \<open>n\<^sub>r\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<close> have "n\<^sub>r\<ge>n\<^sub>k" by arith
            hence "\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" using case_ass by auto
            hence "n\<^sub>r \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" using sb.nxtActLe by simp
            moreover have "n\<^sub>r \<ge> \<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" by simp
            ultimately have
              "sb.eval (sKs p) t t'' n\<^sub>r [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b" by blast
            with \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> obtain P where
              "sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))"
              using sb.baEA by blast
            hence "sb.eval (sKs p) t t'' n\<^sub>r [\<lambda>ks. sub P = ksrp ks]\<^sub>b"
              using \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> sb.baIA sks_prob by blast

            \<comment> \<open>the knowledgesource will eventually get a solution for each required subproblem:\<close>
            moreover have "sb.eval (sKs p) t t'' n\<^sub>r (\<forall>\<^sub>b p'. (sb.pred (p'\<in>P) \<longrightarrow>\<^sup>b
              (\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b)))"
            proof -
              have "\<forall>p'. sb.eval (sKs p) t t'' n\<^sub>r (sb.pred (p'\<in>P) \<longrightarrow>\<^sup>b
                (\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
              proof
                \<comment> \<open>by induction hypothesis, the blackboard will eventually provide solutions for subproblems\<close>
                fix p'
                have "sb.eval (sKs p) t t'' n\<^sub>r (sb.pred (p'\<in>P)) \<longrightarrow>
                  (sb.eval (sKs p) t t'' n\<^sub>r
                  (\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
                proof
                  assume "sb.eval (sKs p) t t'' n\<^sub>r (sb.pred (p'\<in>P))"
                  hence "p' \<in> P" using sb.predE by blast
                  thus "(sb.eval (sKs p) t t'' n\<^sub>r (\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
                  proof -
                    have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>0\<^esub> \<le> n\<^sub>r" by simp
                    moreover from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" by auto
                    ultimately have "sb.eval (sKs p) t t'' n\<^sub>r ([\<lambda>ks. sub P = ksrp ks]\<^sub>b
                      \<longrightarrow>\<^sup>b ((\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))) \<WW>\<^sub>b
                      [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
                      using sb.globEA[OF _ bhvks4[of t p' P "sKs p" t'']]
                      \<open>t\<in>arch\<close> \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> \<open>p'\<in>P\<close> by simp
                    with \<open>sb.eval (sKs p) t t'' n\<^sub>r [\<lambda>ks. sub P = ksrp ks]\<^sub>b\<close> have
                      "sb.eval (sKs p) t t'' n\<^sub>r ((\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b
                      [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))) \<WW>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b)"
                      using sb.impE[of "(sKs p)" t t'' n\<^sub>r "[\<lambda>ks. sub P = ksrp ks]\<^sub>b"] by blast
                    hence "sb.eval (sKs p) t t'' n\<^sub>r ((\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b
                      [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))) \<UU>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b) \<or>
                      sb.eval (sKs p) t t'' n\<^sub>r (\<box>\<^sub>b (\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b
                      [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))))" using sb.wuntil_def by auto
                    thus "(sb.eval (sKs p) t t'' n\<^sub>r (\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
                    proof
                      let ?\<gamma>'="\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b ([\<lambda>ks. unsub P' = ksrp ks]\<^sub>b)))"
                      let ?\<gamma>="[\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b"
                      assume "sb.eval (sKs p) t t'' n\<^sub>r (?\<gamma>' \<UU>\<^sub>b ?\<gamma>)"
                      with \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> obtain n' where "n'\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" and
                        lass: "(\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>) \<and> (\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>
                        \<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>) \<and>
                        (\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>. n'' < \<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>
                        \<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>') \<or>
                        \<not> (\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>) \<and> sb.eval (sKs p) t t'' n' ?\<gamma> \<and>
                        (\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>. n'' < n' \<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>')"
                        using sb.untilEA[of n\<^sub>r "sKs p" t t''] \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by blast
                      thus "?thesis"
                      proof cases
                        assume "\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>"
                        with lass have "\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>
                          \<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>" by auto
                        moreover have "n'\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>" by simp
                        moreover have "n' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>"
                          using \<open>\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> sb.nxtActLe by simp
                        ultimately have "sb.eval (sKs p) t t'' n' ?\<gamma>" by simp
                        moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n'" using \<open>n\<^sub>r \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close>
                        \<open>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n\<^sub>r\<close> \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n'\<close> by linarith
                        ultimately show ?thesis using \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> \<open>\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close>
                          \<open>n'\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>\<close> \<open>n' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>\<close>
                          sb.evtIA[of n\<^sub>r "sKs p" t n' t'' ?\<gamma>] by blast
                      next
                        assume "\<not> (\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>)"
                        with lass have "sb.eval (sKs p) t t'' n' ?\<gamma> \<and>
                          (\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>. n'' < n' \<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>')" by auto
                        moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n'"
                          using \<open>n\<^sub>r \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close> \<open>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n\<^sub>r\<close>
                          \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n'\<close> by linarith
                        ultimately show ?thesis using \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> \<open>\<not> (\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>)\<close>
                            sb.evtIA[of n\<^sub>r "sKs p" t n' t'' ?\<gamma>] by blast
                      qed
                    next
                      assume cass: "sb.eval (sKs p) t t'' n\<^sub>r
                        (\<box>\<^sub>b (\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))))"

                      have "sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>))) \<and>
                        p' \<in> P \<longrightarrow> (p', p) \<in> sb"
                      proof -
                        have "\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" using \<open>\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by auto
                        moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>0\<^esub> \<le> (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)" by simp
                        ultimately have "sb.eval (sKs p) t t'' (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)
                          [\<lambda>ks. sub P = ksrp ks \<and> p' \<in> P \<longrightarrow> (p', p) \<in> sb]\<^sub>b"
                          using sb.globEA[OF _ bhvks2[of t p "sKs p" t'' P]] \<open>t \<in> arch\<close> sks_prob by blast
                        moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have
                          "\<parallel>sKs p\<parallel>\<^bsub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)\<^esub>" using sb.nxtActI by blast
                        ultimately show ?thesis
                          using sb.baEANow[of "sKs p" t t'' "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>"] by simp
                      qed
                      with \<open>p' \<in> P\<close> have "(p', p) \<in> sb"
                        using \<open>sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))\<close>
                        sks_prob by simp
                      moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have "\<parallel>sKs p\<parallel>\<^bsub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)\<^esub>"
                        using sb.nxtActI by blast
                        with \<open>sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))\<close>
                          have "sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))"
                          using conn1A by auto
                      with \<open> p' \<in> P\<close> have "sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)) \<and> p' \<in> P" by auto
                      ultimately obtain m where "m\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" and "(p', solve p') = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m))"
                        using indH by auto

                      \<comment> \<open>and due to the publisher subscriber property,\<close>
                      \<comment> \<open>the knowledge source will receive them\<close>
                      moreover have
                        "\<nexists>n P. \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n \<and> n \<le> m \<and> \<parallel>sKs p\<parallel>\<^bsub>t n\<^esub> \<and>
                        unsub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t n)) \<and> p' \<in> P"
                      proof
                        assume "\<exists>n P'. \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n \<and> n \<le> m \<and> \<parallel>sKs p\<parallel>\<^bsub>t n\<^esub> \<and>
                          unsub P' = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t n)) \<and> p' \<in> P'"
                        then obtain n P' where
                          "\<parallel>sKs p\<parallel>\<^bsub>t n\<^esub>" and "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n" and "n \<le> m" and
                          "unsub P' = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t n))" and "p' \<in> P'" by auto
                        hence "sb.eval (sKs p) t t'' n (\<exists>\<^sub>b P'. sb.pred (p'\<in>P') \<and>\<^sup>b
                          [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b)" by blast
                        moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n"
                          using \<open>n\<^sub>r \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close> \<open>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n\<^sub>r\<close>
                          \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n\<close> by linarith
                        with cass have "sb.eval (sKs p) t t'' n (\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P')
                          \<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b)))"
                          using sb.globEA[of n\<^sub>r "sKs p" t t''
                          "\<not>\<^sup>b (\<exists>\<^sub>bP'. sb.pred (p' \<in> P') \<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b)" n]
                          \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by auto
                        ultimately show False using sb.negE by auto
                      qed
                      moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have
                        "\<parallel>sKs p\<parallel>\<^bsub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)\<^esub>" using sb.nxtActI by blast
                      moreover have "sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))"
                        using \<open>sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))\<close> .
                      moreover from \<open>m\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> m" by simp
                      moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close>
                        have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<ge>n\<^sub>r" using sb.nxtActI by blast
                      hence "m\<ge>n\<^sub>k" using \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> m\<close> \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub> \<le> n\<^sub>r\<close>
                        \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub> \<ge> n\<^sub>k\<close> by simp
                      with case_ass have "\<parallel>sKs p\<parallel>\<^bsub>t m\<^esub>" by simp
                      ultimately have "(p', solve p') \<in> kscs (\<sigma>\<^bsub>sKs p\<^esub>(t m))"
                        and "\<parallel>sKs p\<parallel>\<^bsub>t m\<^esub>"
                        using \<open>t \<in> arch\<close> msgDelivery[of t "sKs p" "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" P m p' "solve p'"]
                        \<open>p' \<in> P\<close> by auto
                      hence "sb.eval (sKs p) t t'' m [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b"
                        using sb.baIANow by simp
                      moreover have "m \<ge> \<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>m\<^esub>" by simp
                      moreover from \<open>\<parallel>sKs p\<parallel>\<^bsub>t m\<^esub>\<close> have "m \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>m\<^esub>"
                        using sb.nxtActLe by auto
                      moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have
                        "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" by simp
                      with \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> m\<close> have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> m" by arith
                      ultimately show "sb.eval (sKs p) t t'' n\<^sub>r
                        (\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b)"
                        using \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> sb.evtIA by blast
                    qed
                  qed
                qed
                thus "sb.eval (sKs p) t t'' n\<^sub>r (sb.pred (p'\<in>P) \<longrightarrow>\<^sup>b
                  (\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
                  using sb.impI by auto
              qed
              thus ?thesis using sb.allI by blast
            qed

            \<comment> \<open>Thus, the knowlege source will eventually solve the problem at hand...\<close>
            ultimately have "sb.eval (sKs p) t t'' n\<^sub>r
              ([\<lambda>ks. sub P = ksrp ks]\<^sub>b \<and>\<^sup>b
              (\<forall>\<^sub>b q. (sb.pred (q \<in> P) \<longrightarrow>\<^sup>b \<diamond>\<^sub>b [\<lambda>ks. (q, solve q) \<in> kscs ks]\<^sub>b)))"
              using sb.conjI by simp
            moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have "\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" by blast
            hence "sb.eval (sKs p) t t'' n\<^sub>r
              (([\<lambda>ks. sub P = ksrp ks]\<^sub>b \<and>\<^sup>b
              (\<forall>\<^sub>b q. (sb.pred (q \<in> P) \<longrightarrow>\<^sup>b
              \<diamond>\<^sub>b [\<lambda>ks. (q, solve q) \<in> kscs ks]\<^sub>b))) \<longrightarrow>\<^sup>b
              (\<diamond>\<^sub>b [\<lambda>ks. (p, solve p) = ksns ks]\<^sub>b))" using \<open>t \<in> arch\<close>
              sb.globEA[OF _ bhvks1[of t p "sKs p" t'' P]] sks_prob by simp
            ultimately have "sb.eval (sKs p) t t'' n\<^sub>r
              (\<diamond>\<^sub>b [\<lambda>ks. (p,solve(p))=ksns(ks)]\<^sub>b)"
              using sb.impE[of "sKs p" t t'' n\<^sub>r] by blast

            \<comment> \<open>and forward it to the blackboard\<close>
            then obtain n\<^sub>s where "n\<^sub>s\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" and
              "(\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub> \<and>
              (\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>. n'' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub> \<longrightarrow>
              sb.eval (sKs p) t t'' n'' [\<lambda>ks. (p,solve(p))=ksns(ks)]\<^sub>b)) \<or>
              \<not> (\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>) \<and>
              sb.eval (sKs p) t t'' n\<^sub>s [\<lambda>ks. (p,solve(p))=ksns(ks)]\<^sub>b"
              using sb.evtEA[of n\<^sub>r "sKs p" t] \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by blast
            moreover from \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<ge> n\<^sub>r\<close> \<open>n\<^sub>r\<ge>n\<^sub>k\<close> \<open>n\<^sub>s\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close>
              have "n\<^sub>s\<ge>n\<^sub>k" by arith
            with case_ass have "\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" by auto
            moreover have "n\<^sub>s\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>" by simp
            moreover from \<open>\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have "n\<^sub>s \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>"
              using sb.nxtActLe by simp
            ultimately have "sb.eval (sKs p) t t'' n\<^sub>s [\<lambda>ks. (p,solve(p))=ksns(ks)]\<^sub>b"
              using sb.evtEA[of n\<^sub>r "sKs p" t] \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by blast
            with \<open>\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have
              "(p,solve(p)) = ksns (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)))"
              using sb.baEA[of n\<^sub>s "sKs p" t t'' "\<lambda>ks. (p, solve p) = ksns ks"] by auto
            moreover from \<open>\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close>
              have "\<parallel>sKs p\<parallel>\<^bsub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)\<^esub>" using sb.nxtActI by simp
            ultimately have "(p,solve(p)) \<in> bbns (\<sigma>\<^bsub>the_bb\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)))"
              using conn1[OF pb.ts_prop(2)[of "t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)"]] by auto
            hence "pb.eval the_bb t t' \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub> [\<lambda>bb. (p,solve(p)) \<in> bbns bb]\<^sub>b"
              using \<open>t\<in>arch\<close> pb.baI by simp

            \<comment> \<open>finally, the blackboard will forward the solution which finishes the proof.\<close>
            with bhvbb1 have "pb.eval the_bb t t' \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>
              (\<diamond>\<^sub>b [\<lambda>bb. (p, solve p) = bbcs bb]\<^sub>b)"
              using \<open>t\<in>arch\<close> pb.globE pb.impE[of the_bb t t'] by blast
            then obtain n\<^sub>f where "n\<^sub>f\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>" and
              "pb.eval the_bb t t' n\<^sub>f [\<lambda>bb. (p, solve p) = bbcs bb]\<^sub>b"
              using \<open>t\<in>arch\<close> pb.evtE[of t t' "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>"] by auto
            hence "(p, solve p) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>f))"
              using \<open>t \<in> arch\<close> pb.baEA by auto
            moreover have "n\<^sub>f\<ge>n\<^sub>0"
            proof -
              from \<open>\<exists>n'''\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t n'''\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>\<ge>n\<^sub>s"
                using sb.nxtActLe by simp
              moreover from \<open>n\<^sub>k\<ge>n\<close> and \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<ge>n\<^sub>k"
                using sb.nxtActI by blast
              ultimately show ?thesis
                using \<open>n\<^sub>f\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>\<close> \<open>n\<^sub>s\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close>
                \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<ge>n\<^sub>r\<close> \<open>n\<^sub>r\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<close> \<open>n\<^sub>k\<ge>n\<close> \<open>n\<ge>n\<^sub>0\<close> by arith
            qed
            ultimately show ?thesis by auto
          qed
        qed
      qed
    qed
  qed

  theorem pSolved:
    fixes t and t'::"nat \<Rightarrow>'BB" and t''::"nat \<Rightarrow>'KS"
    assumes "t\<in>arch" and
      "\<forall>n. (\<exists>n'\<ge>n. \<parallel>sKs (bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n)))\<parallel>\<^bsub>t n'\<^esub>)"
    shows
      "\<forall>n. (\<forall>P. (sub P \<in> bbrp(\<sigma>\<^bsub>the_bb\<^esub>(t n))
        \<longrightarrow> (\<forall>p \<in> P. (\<exists>m\<ge>n. (p,solve(p)) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m))))))"
    using assms pSolved_Ind by blast
end

end