Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 47,106 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 |
(*
Title: Blackboard.thy
Author: Diego Marmsoler
*)
section "A Theory of Blackboard Architectures"
text\<open>
In the following, we formalize the specification of the blackboard pattern as described in~\cite{Marmsoler2018c}.
\<close>
theory Blackboard
imports Publisher_Subscriber
begin
subsection "Problems and Solutions"
text \<open>
Blackboards work with problems and solutions for them.
\<close>
typedecl PROB
consts sb :: "(PROB \<times> PROB) set"
axiomatization where sbWF: "wf sb"
typedecl SOL
consts solve:: "PROB \<Rightarrow> SOL"
subsection "Blackboard Architectures"
text \<open>
In the following, we describe the locale for the blackboard pattern.
\<close>
locale blackboard = publisher_subscriber bbactive bbcmp ksactive kscmp bbrp bbcs kscs ksrp
for bbactive :: "'bid \<Rightarrow> cnf \<Rightarrow> bool" ("\<parallel>_\<parallel>\<^bsub>_\<^esub>" [0,110]60)
and bbcmp :: "'bid \<Rightarrow> cnf \<Rightarrow> 'BB" ("\<sigma>\<^bsub>_\<^esub>(_)" [0,110]60)
and ksactive :: "'kid \<Rightarrow> cnf \<Rightarrow> bool" ("\<parallel>_\<parallel>\<^bsub>_\<^esub>" [0,110]60)
and kscmp :: "'kid \<Rightarrow> cnf \<Rightarrow> 'KS" ("\<sigma>\<^bsub>_\<^esub>(_)" [0,110]60)
and bbrp :: "'BB \<Rightarrow> (PROB set) subscription set"
and bbcs :: "'BB \<Rightarrow> (PROB \<times> SOL)"
and kscs :: "'KS \<Rightarrow> (PROB \<times> SOL) set"
and ksrp :: "'KS \<Rightarrow> (PROB set) subscription" +
fixes bbns :: "'BB \<Rightarrow> (PROB \<times> SOL) set"
and ksns :: "'KS \<Rightarrow> (PROB \<times> SOL)"
and bbop :: "'BB \<Rightarrow> PROB"
and ksop :: "'KS \<Rightarrow> PROB set"
and prob :: "'kid \<Rightarrow> PROB"
assumes
ks1: "\<forall>p. \<exists>ks. p=prob ks" \<comment> \<open>Component Parameter\<close>
\<comment> \<open>Assertions about component behavior.\<close>
and bhvbb1: "\<And>t t' bId p s. \<lbrakk>t \<in> arch\<rbrakk> \<Longrightarrow> pb.eval bId t t' 0
(\<box>\<^sub>b ([\<lambda>bb. (p,s)\<in>bbns bb]\<^sub>b
\<longrightarrow>\<^sup>b (\<diamond>\<^sub>b [\<lambda>bb. (p,s) = bbcs bb]\<^sub>b)))"
and bhvbb2: "\<And>t t' bId P q. \<lbrakk>t\<in>arch\<rbrakk> \<Longrightarrow> pb.eval bId t t' 0
(\<box>\<^sub>b ([\<lambda>bb. sub P \<in> bbrp bb \<and> q \<in> P]\<^sub>b \<longrightarrow>\<^sup>b
(\<diamond>\<^sub>b [\<lambda>bb. q = bbop bb]\<^sub>b)))"
and bhvbb3: "\<And>t t' bId p . \<lbrakk>t\<in>arch\<rbrakk> \<Longrightarrow> pb.eval bId t t' 0
(\<box>\<^sub>b ([\<lambda>bb. p = bbop(bb)]\<^sub>b \<longrightarrow>\<^sup>b
([\<lambda>bb. p=bbop(bb)]\<^sub>b \<WW>\<^sub>b [\<lambda>bb. (p,solve(p)) = bbcs(bb)]\<^sub>b)))"
and bhvks1: "\<And>t t' kId p P. \<lbrakk>t\<in>arch; p = prob kId\<rbrakk> \<Longrightarrow> sb.eval kId t t' 0
(\<box>\<^sub>b ([\<lambda>ks. sub P = ksrp ks]\<^sub>b \<and>\<^sup>b
(\<forall>\<^sub>b q. ((sb.pred (q\<in>P)) \<longrightarrow>\<^sup>b (\<diamond>\<^sub>b ([\<lambda>ks. (q,solve(q)) \<in> kscs ks]\<^sub>b))))
\<longrightarrow>\<^sup>b (\<diamond>\<^sub>b [\<lambda>ks. (p, solve p) = ksns ks]\<^sub>b)))"
and bhvks2: "\<And>t t' kId p P q. \<lbrakk>t \<in> arch;p = prob kId\<rbrakk> \<Longrightarrow> sb.eval kId t t' 0
(\<box>\<^sub>b [\<lambda>ks. sub P = ksrp ks \<and> q \<in> P \<longrightarrow> (q,p) \<in> sb]\<^sub>b)"
and bhvks3: "\<And>t t' kId p. \<lbrakk>t\<in>arch;p = prob kId\<rbrakk> \<Longrightarrow> sb.eval kId t t' 0
(\<box>\<^sub>b ([\<lambda>ks. p\<in>ksop ks]\<^sub>b \<longrightarrow>\<^sup>b (\<diamond>\<^sub>b [\<lambda>ks. (\<exists>P. sub P = ksrp ks)]\<^sub>b)))"
and bhvks4: "\<And>t t' kId p P. \<lbrakk>t\<in>arch; p\<in>P\<rbrakk> \<Longrightarrow> sb.eval kId t t' 0
(\<box>\<^sub>b ([\<lambda>ks. sub P = ksrp ks]\<^sub>b \<longrightarrow>\<^sup>b
((\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p\<in>P') \<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))) \<WW>\<^sub>b
[\<lambda>ks. (p,solve p) \<in> kscs ks]\<^sub>b)))"
\<comment> \<open>Assertions about component activation.\<close>
and actks:
"\<And>t n kid p. \<lbrakk>t \<in> arch; \<parallel>kid\<parallel>\<^bsub>t n\<^esub>; p=prob kid; p\<in>ksop (\<sigma>\<^bsub>kid\<^esub>(t n))\<rbrakk>
\<Longrightarrow> (\<exists>n'\<ge>n. \<parallel>kid\<parallel>\<^bsub>t n'\<^esub> \<and> (p, solve p) = ksns (\<sigma>\<^bsub>kid\<^esub>(t n')) \<and>
(\<forall>n''\<ge>n. n''<n' \<longrightarrow> \<parallel>kid\<parallel>\<^bsub>t n''\<^esub>))
\<or> (\<forall>n'\<ge>n. (\<parallel>kid\<parallel>\<^bsub>t n'\<^esub> \<and> (\<not>(p, solve p) = ksns (\<sigma>\<^bsub>kid\<^esub>(t n')))))"
\<comment> \<open>Assertions about connections.\<close>
and conn1: "\<And>k bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>
\<Longrightarrow> bbns (\<sigma>\<^bsub>bid\<^esub>(k)) = (\<Union>kid\<in>{kid. \<parallel>kid\<parallel>\<^bsub>k\<^esub>}. {ksns (\<sigma>\<^bsub>kid\<^esub>(k))})"
and conn2: "\<And>k kid. \<parallel>kid\<parallel>\<^bsub>k\<^esub>
\<Longrightarrow> ksop (\<sigma>\<^bsub>kid\<^esub>(k)) = (\<Union>bid\<in>{bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>}. {bbop (\<sigma>\<^bsub>bid\<^esub>(k))})"
begin
notation sb.lNAct ("\<langle>_ \<Leftarrow> _\<rangle>\<^bsub>_\<^esub>")
notation sb.nxtAct ("\<langle>_ \<rightarrow> _\<rangle>\<^bsub>_\<^esub>")
notation pb.lNAct ("\<langle>_ \<Leftarrow> _\<rangle>\<^bsub>_\<^esub>")
notation pb.nxtAct ("\<langle>_ \<rightarrow> _\<rangle>\<^bsub>_\<^esub>")
subsubsection "Calculus Interpretation"
text \<open>
\noindent
@{thm[source] pb.baIA}: @{thm pb.baIA [no_vars]}
\<close>
text \<open>
\noindent
@{thm[source] sb.baIA}: @{thm sb.baIA [no_vars]}
\<close>
subsubsection "Results from Singleton"
abbreviation "the_bb \<equiv> the_pb"
text \<open>
\noindent
@{thm[source] pb.ts_prop(1)}: @{thm pb.ts_prop(1) [no_vars]}
\<close>
text \<open>
\noindent
@{thm[source] pb.ts_prop(2)}: @{thm pb.ts_prop(2) [no_vars]}
\<close>
subsubsection "Results from Publisher Subscriber"
text \<open>
\noindent
@{thm[source] msgDelivery}: @{thm msgDelivery [no_vars]}
\<close>
lemma conn2_bb:
fixes k and kid::'kid
assumes "\<parallel>kid\<parallel>\<^bsub>k\<^esub>"
shows "bbop (\<sigma>\<^bsub>the_bb\<^esub>(k))\<in>ksop (\<sigma>\<^bsub>kid\<^esub>(k))"
proof -
from assms have "ksop (\<sigma>\<^bsub>kid\<^esub>(k)) = (\<Union>bid\<in>{bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>}. {bbop (\<sigma>\<^bsub>bid\<^esub>(k))})" using conn2 by simp
moreover have "(\<Union>bid.{bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>})={the_bb}" using pb.ts_prop(1) by auto
hence "(\<Union>bid\<in>{bid. \<parallel>bid\<parallel>\<^bsub>k\<^esub>}. {bbop (\<sigma>\<^bsub>bid\<^esub>(k))}) = {bbop (\<sigma>\<^bsub>the_bb\<^esub>(k))}" by auto
ultimately show ?thesis by simp
qed
subsubsection "Knowledge Sources"
text \<open>
In the following we introduce an abbreviation for knowledge sources which are able to solve a specific problem.
\<close>
definition sKs:: "PROB \<Rightarrow> 'kid" where
"sKs p \<equiv> (SOME kid. p = prob kid)"
lemma sks_prob:
"p = prob (sKs p)"
using sKs_def someI_ex[of "\<lambda>kid. p = prob kid"] ks1 by auto
subsubsection "Architectural Guarantees"
text\<open>
The following theorem verifies that a problem is eventually solved by the pattern even if no knowledge source exist which can solve the problem on its own.
It assumes, however, that for every open sub problem, a corresponding knowledge source able to solve the problem will be eventually activated.
\<close>
lemma pSolved_Ind:
fixes t and t'::"nat \<Rightarrow>'BB" and p and t''::"nat \<Rightarrow>'KS"
assumes "t\<in>arch" and
"\<forall>n. (\<exists>n'\<ge>n. \<parallel>sKs (bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n)))\<parallel>\<^bsub>t n'\<^esub>)"
shows
"\<forall>n. (\<exists>P. sub P \<in> bbrp(\<sigma>\<^bsub>the_bb\<^esub>(t n)) \<and> p \<in> P) \<longrightarrow>
(\<exists>m\<ge>n. (p,solve(p)) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m)))" (*\eqref{eq:bb:g}*)
\<comment> \<open>The proof is by well-founded induction over the subproblem relation @{term sb}\<close>
proof (rule wf_induct[where r=sb])
\<comment> \<open>We first show that the subproblem relation is indeed well-founded ...\<close>
show "wf sb" by (simp add: sbWF)
next
\<comment> \<open>... then we show that a problem @{term p} is indeed solved\<close>
\<comment> \<open>if all its sub-problems @{term p'} are eventually solved\<close>
fix p assume indH: "\<forall>p'. (p', p) \<in> sb \<longrightarrow> (\<forall>n. (\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n)) \<and> p'\<in>P)
\<longrightarrow> (\<exists>m\<ge>n. (p',solve(p')) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m))))"
show "\<forall>n. (\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n)) \<and> p \<in> P)
\<longrightarrow> (\<exists>m\<ge>n. (p,solve(p)) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m)))"
proof
fix n\<^sub>0 show "(\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0)) \<and> p \<in> P) \<longrightarrow>
(\<exists>m\<ge>n\<^sub>0. (p,solve(p)) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m)))"
proof
assume "\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0)) \<and> p \<in> P"
moreover have "(\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0)) \<and> p \<in> P) \<longrightarrow> (\<exists>n'\<ge>n\<^sub>0. p=bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n')))"
proof
assume "\<exists>P. sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0)) \<and> p \<in> P"
then obtain P where "sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>0))" and "p \<in> P" by auto
hence "pb.eval the_bb t t' n\<^sub>0 [\<lambda>bb. sub P \<in> bbrp bb \<and> p \<in> P]\<^sub>b" using pb.baI by simp
moreover from pb.globE[OF bhvbb2] have
"pb.eval the_bb t t' n\<^sub>0 ([\<lambda>bb. sub P \<in> bbrp bb \<and> p \<in> P]\<^sub>b \<longrightarrow>\<^sup>b \<diamond>\<^sub>b [\<lambda>bb. p = bbop bb]\<^sub>b)"
using \<open>t\<in>arch\<close> by simp
ultimately have "pb.eval the_bb t t' n\<^sub>0 (\<diamond>\<^sub>b [\<lambda>bb. p = bbop bb]\<^sub>b)" using pb.impE by blast
then obtain n' where "n'\<ge>n\<^sub>0" and "pb.eval the_bb t t' n' [\<lambda>bb. p = bbop bb]\<^sub>b"
using pb.evtE by blast
hence "p=bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n'))" using pb.baE by auto
with \<open>n'\<ge>n\<^sub>0\<close> show "\<exists>n'\<ge>n\<^sub>0. p=bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n'))" by auto
qed
ultimately obtain n where "n\<ge>n\<^sub>0" and "p=bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n))" by auto
\<comment> \<open>Problem p is provided at the output of the blackboard until it is solved\<close>
\<comment> \<open>or forever...\<close>
from pb.globE[OF bhvbb3] have
"pb.eval the_bb t t' n ([\<lambda> bb. p = bbop(bb)]\<^sub>b \<longrightarrow>\<^sup>b
([\<lambda> bb. p=bbop(bb)]\<^sub>b \<WW>\<^sub>b [\<lambda>bb. (p,solve(p)) = bbcs(bb)]\<^sub>b))"
using \<open>t\<in>arch\<close> by auto
moreover from \<open>p = bbop (\<sigma>\<^bsub>the_bb\<^esub>(t n))\<close> have
"pb.eval the_bb t t' n [\<lambda> bb. p=bbop bb]\<^sub>b"
using \<open>t\<in>arch\<close> pb.baI by simp
ultimately have "pb.eval the_bb t t' n
([\<lambda> bb. p=bbop(bb)]\<^sub>b \<WW>\<^sub>b [\<lambda> bb. (p,solve(p)) = bbcs(bb)]\<^sub>b)"
using pb.impE by blast
hence "pb.eval the_bb t t' n (([\<lambda> bb. p=bbop bb]\<^sub>b \<UU>\<^sub>b
[\<lambda> bb. (p,solve(p)) = bbcs bb]\<^sub>b) \<or>\<^sup>b (\<box>\<^sub>b [\<lambda> bb. p=bbop bb]\<^sub>b))"
using pb.wuntil_def by simp
hence "pb.eval the_bb t t' n
([\<lambda>bb. p=bbop bb]\<^sub>b \<UU>\<^sub>b [\<lambda>bb. (p,solve(p)) = bbcs bb]\<^sub>b) \<or>
(pb.eval the_bb t t' n (\<box>\<^sub>b [\<lambda> bb. p=bbop bb]\<^sub>b))"
using pb.disjE by simp
thus "\<exists>m\<ge>n\<^sub>0. (p,solve p) = bbcs(\<sigma>\<^bsub>the_bb\<^esub>(t m))"
\<comment> \<open>We need to consider both cases, the case in which the problem is eventually\<close>
\<comment> \<open>solved and the case in which the problem is always provided as an output\<close>
proof
\<comment> \<open>First we consider the case in which the problem is eventually solved:\<close>
assume "pb.eval the_bb t t' n
([\<lambda>bb. p=bbop bb]\<^sub>b \<UU>\<^sub>b [\<lambda>bb. (p,solve(p)) = bbcs bb]\<^sub>b)"
hence "\<exists>i\<ge>n. (pb.eval the_bb t t' i
[\<lambda>bb. (p,solve(p)) = bbcs bb]\<^sub>b \<and>
(\<forall>k\<ge>n. k<i \<longrightarrow> pb.eval the_bb t t' k [\<lambda>bb. p = bbop bb]\<^sub>b))"
using \<open>t\<in>arch\<close> pb.untilE by simp
then obtain i where "i\<ge>n" and
"pb.eval the_bb t t' i [\<lambda>bb. (p,solve(p)) = bbcs bb]\<^sub>b" by auto
hence "(p,solve(p)) = bbcs(\<sigma>\<^bsub>the_bb\<^esub>(t i))"
using \<open>t\<in>arch\<close> pb.baEA by auto
moreover from \<open>i\<ge>n\<close> \<open>n\<ge>n\<^sub>0\<close> have "i\<ge>n\<^sub>0" by simp
ultimately show ?thesis by auto
next
\<comment> \<open>Now we consider the case in which p is always provided at the output\<close>
\<comment> \<open>of the blackboard:\<close>
assume "pb.eval the_bb t t' n
(\<box>\<^sub>b [\<lambda>bb. p=bbop bb]\<^sub>b)"
hence "\<forall>n'\<ge>n. (pb.eval the_bb t t' n' [\<lambda>bb. p = bbop bb]\<^sub>b)"
using \<open>t\<in>arch\<close> pb.globE by auto
hence outp: "\<forall>n'\<ge>n. (p = bbop (\<sigma>\<^bsub>the_bb\<^esub>(t n')))"
using \<open>t\<in>arch\<close> pb.baE by blast
\<comment> \<open>thus, by assumption there exists a KS which is able to solve p and which\<close>
\<comment> \<open>is active at @{text n'}...\<close>
with assms(2) have "\<exists>n'\<ge>n. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub>" by auto
then obtain n\<^sub>k where "n\<^sub>k\<ge>n" and "\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>" by auto
\<comment> \<open>... and get the problem as its input.\<close>
moreover from \<open>n\<^sub>k\<ge>n\<close> have "p = bbop (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>k))"
using outp by simp
ultimately have "p\<in>ksop(\<sigma>\<^bsub>sKs p\<^esub>(t n\<^sub>k))" using conn2_bb[of "sKs p" "t n\<^sub>k"] by simp
\<comment> \<open>thus the ks will either solve the problem or not solve it and\<close>
\<comment> \<open>be activated forever\<close>
hence "(\<exists>n'\<ge>n\<^sub>k. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub> \<and>
(p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>(t n')) \<and>
(\<forall>n''\<ge>n\<^sub>k. n''<n' \<longrightarrow> \<parallel>sKs p\<parallel>\<^bsub>t n''\<^esub>)) \<or>
(\<forall>n'\<ge>n\<^sub>k. (\<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub> \<and>
(\<not>(p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>(t n')))))"
using \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> actks[of t "sKs p"] \<open>t\<in>arch\<close> sks_prob by simp
thus ?thesis
proof
\<comment> \<open>if the ks solves it\<close>
assume "\<exists>n'\<ge>n\<^sub>k. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub> \<and> (p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>t n')
\<and> (\<forall>n''\<ge>n\<^sub>k. n'' < n' \<longrightarrow> \<parallel>sKs p\<parallel>\<^bsub>t n''\<^esub>)"
\<comment> \<open>it is forwarded to the blackboard\<close>
then obtain n\<^sub>s where "n\<^sub>s\<ge>n\<^sub>k" and "\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>s\<^esub>"
and "(p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>t n\<^sub>s)" by auto
moreover have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub> = n\<^sub>s"
by (simp add: \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>s\<^esub>\<close> sb.nxtAct_active)
ultimately have
"(p,solve(p)) \<in> bbns (\<sigma>\<^bsub>the_bb\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)))"
using conn1[OF pb.ts_prop(2)] \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>s\<^esub>\<close> by auto
\<comment> \<open>finally, the blackboard will forward the solution which finishes the proof.\<close>
with bhvbb1 have "pb.eval the_bb t t' (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)
(\<diamond>\<^sub>b [\<lambda>bb. (p, solve p) = bbcs bb]\<^sub>b)"
using \<open>t\<in>arch\<close> pb.globE pb.impE[of the_bb t t'] by blast
then obtain n\<^sub>f where "n\<^sub>f\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>" and
"pb.eval the_bb t t' n\<^sub>f [\<lambda>bb. (p, solve p) = bbcs bb]\<^sub>b"
using \<open>t\<in>arch\<close> pb.evtE[of t t' "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>"] by auto
hence "(p, solve p) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>f))"
using \<open>t \<in> arch\<close> pb.baEA by auto
moreover have "n\<^sub>f\<ge>n\<^sub>0"
proof -
from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<ge>n\<^sub>k"
using sb.nxtActI by blast
with \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub> = n\<^sub>s\<close> show ?thesis
using \<open>n\<^sub>f\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>\<close> \<open>n\<^sub>s\<ge>n\<^sub>k\<close> \<open>n\<^sub>k\<ge>n\<close> \<open>n\<ge>n\<^sub>0\<close> by arith
qed
ultimately show ?thesis by auto
next
\<comment> \<open>otherwise, we derive a contradiction\<close>
assume case_ass: "\<forall>n'\<ge>n\<^sub>k. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub> \<and> \<not>(p, solve p) = ksns (\<sigma>\<^bsub>sKs p\<^esub>t n')"
\<comment> \<open>first, the KS will eventually register for the subproblems P it requires to solve p...\<close>
from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" by auto
moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>0\<^esub> \<le> n\<^sub>k" by simp
ultimately have "sb.eval (sKs p) t t'' n\<^sub>k
([\<lambda>ks. p\<in>ksop ks]\<^sub>b \<longrightarrow>\<^sup>b (\<diamond>\<^sub>b [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b))"
using sb.globEA[OF _ bhvks3[of t p "sKs p" t'']] \<open>t\<in>arch\<close> sks_prob by simp
moreover have "sb.eval (sKs p) t t'' n\<^sub>k [\<lambda>ks. p \<in> ksop ks]\<^sub>b"
proof -
from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<exists>n'\<ge>n\<^sub>k. \<parallel>sKs p\<parallel>\<^bsub>t n'\<^esub>" by auto
moreover have "p \<in> ksop (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>)))"
proof -
from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>=n\<^sub>k"
using sb.nxtAct_active by blast
with \<open>p\<in>ksop(\<sigma>\<^bsub>sKs p\<^esub>(t n\<^sub>k))\<close> show ?thesis by simp
qed
ultimately show ?thesis using sb.baIA[of n\<^sub>k "sKs p" t] by blast
qed
ultimately have "sb.eval (sKs p) t t'' n\<^sub>k (\<diamond>\<^sub>b [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b)"
using sb.impE by blast
then obtain n\<^sub>r where "n\<^sub>r\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>" and
"\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub> \<and>
(\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>. n'' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>
\<longrightarrow> sb.eval (sKs p) t t'' n'' [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b) \<or>
\<not> (\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>) \<and>
sb.eval (sKs p) t t'' n\<^sub>r [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b"
using \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> sb.evtEA[of n\<^sub>k "sKs p" t] by blast
moreover from case_ass have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<ge>n\<^sub>k" using sb.nxtActI by blast
with \<open>n\<^sub>r\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<close> have "n\<^sub>r\<ge>n\<^sub>k" by arith
hence "\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" using case_ass by auto
hence "n\<^sub>r \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" using sb.nxtActLe by simp
moreover have "n\<^sub>r \<ge> \<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" by simp
ultimately have
"sb.eval (sKs p) t t'' n\<^sub>r [\<lambda>ks. \<exists>P. sub P = ksrp ks]\<^sub>b" by blast
with \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> obtain P where
"sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))"
using sb.baEA by blast
hence "sb.eval (sKs p) t t'' n\<^sub>r [\<lambda>ks. sub P = ksrp ks]\<^sub>b"
using \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> sb.baIA sks_prob by blast
\<comment> \<open>the knowledgesource will eventually get a solution for each required subproblem:\<close>
moreover have "sb.eval (sKs p) t t'' n\<^sub>r (\<forall>\<^sub>b p'. (sb.pred (p'\<in>P) \<longrightarrow>\<^sup>b
(\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b)))"
proof -
have "\<forall>p'. sb.eval (sKs p) t t'' n\<^sub>r (sb.pred (p'\<in>P) \<longrightarrow>\<^sup>b
(\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
proof
\<comment> \<open>by induction hypothesis, the blackboard will eventually provide solutions for subproblems\<close>
fix p'
have "sb.eval (sKs p) t t'' n\<^sub>r (sb.pred (p'\<in>P)) \<longrightarrow>
(sb.eval (sKs p) t t'' n\<^sub>r
(\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
proof
assume "sb.eval (sKs p) t t'' n\<^sub>r (sb.pred (p'\<in>P))"
hence "p' \<in> P" using sb.predE by blast
thus "(sb.eval (sKs p) t t'' n\<^sub>r (\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
proof -
have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>0\<^esub> \<le> n\<^sub>r" by simp
moreover from \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" by auto
ultimately have "sb.eval (sKs p) t t'' n\<^sub>r ([\<lambda>ks. sub P = ksrp ks]\<^sub>b
\<longrightarrow>\<^sup>b ((\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))) \<WW>\<^sub>b
[\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
using sb.globEA[OF _ bhvks4[of t p' P "sKs p" t'']]
\<open>t\<in>arch\<close> \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> \<open>p'\<in>P\<close> by simp
with \<open>sb.eval (sKs p) t t'' n\<^sub>r [\<lambda>ks. sub P = ksrp ks]\<^sub>b\<close> have
"sb.eval (sKs p) t t'' n\<^sub>r ((\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b
[\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))) \<WW>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b)"
using sb.impE[of "(sKs p)" t t'' n\<^sub>r "[\<lambda>ks. sub P = ksrp ks]\<^sub>b"] by blast
hence "sb.eval (sKs p) t t'' n\<^sub>r ((\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b
[\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))) \<UU>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b) \<or>
sb.eval (sKs p) t t'' n\<^sub>r (\<box>\<^sub>b (\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b
[\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))))" using sb.wuntil_def by auto
thus "(sb.eval (sKs p) t t'' n\<^sub>r (\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
proof
let ?\<gamma>'="\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b ([\<lambda>ks. unsub P' = ksrp ks]\<^sub>b)))"
let ?\<gamma>="[\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b"
assume "sb.eval (sKs p) t t'' n\<^sub>r (?\<gamma>' \<UU>\<^sub>b ?\<gamma>)"
with \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> obtain n' where "n'\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" and
lass: "(\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>) \<and> (\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>
\<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>) \<and>
(\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>. n'' < \<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>
\<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>') \<or>
\<not> (\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>) \<and> sb.eval (sKs p) t t'' n' ?\<gamma> \<and>
(\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>. n'' < n' \<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>')"
using sb.untilEA[of n\<^sub>r "sKs p" t t''] \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by blast
thus "?thesis"
proof cases
assume "\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>"
with lass have "\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>. n'' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>
\<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>" by auto
moreover have "n'\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>" by simp
moreover have "n' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>"
using \<open>\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> sb.nxtActLe by simp
ultimately have "sb.eval (sKs p) t t'' n' ?\<gamma>" by simp
moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n'" using \<open>n\<^sub>r \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close>
\<open>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n\<^sub>r\<close> \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n'\<close> by linarith
ultimately show ?thesis using \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> \<open>\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close>
\<open>n'\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n'\<^esub>\<close> \<open>n' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n'\<^esub>\<close>
sb.evtIA[of n\<^sub>r "sKs p" t n' t'' ?\<gamma>] by blast
next
assume "\<not> (\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>)"
with lass have "sb.eval (sKs p) t t'' n' ?\<gamma> \<and>
(\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>. n'' < n' \<longrightarrow> sb.eval (sKs p) t t'' n'' ?\<gamma>')" by auto
moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n'"
using \<open>n\<^sub>r \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close> \<open>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n\<^sub>r\<close>
\<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n'\<close> by linarith
ultimately show ?thesis using \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> \<open>\<not> (\<exists>i\<ge>n'. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>)\<close>
sb.evtIA[of n\<^sub>r "sKs p" t n' t'' ?\<gamma>] by blast
qed
next
assume cass: "sb.eval (sKs p) t t'' n\<^sub>r
(\<box>\<^sub>b (\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P') \<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b))))"
have "sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>))) \<and>
p' \<in> P \<longrightarrow> (p', p) \<in> sb"
proof -
have "\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" using \<open>\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by auto
moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>0\<^esub> \<le> (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)" by simp
ultimately have "sb.eval (sKs p) t t'' (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)
[\<lambda>ks. sub P = ksrp ks \<and> p' \<in> P \<longrightarrow> (p', p) \<in> sb]\<^sub>b"
using sb.globEA[OF _ bhvks2[of t p "sKs p" t'' P]] \<open>t \<in> arch\<close> sks_prob by blast
moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have
"\<parallel>sKs p\<parallel>\<^bsub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)\<^esub>" using sb.nxtActI by blast
ultimately show ?thesis
using sb.baEANow[of "sKs p" t t'' "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>"] by simp
qed
with \<open>p' \<in> P\<close> have "(p', p) \<in> sb"
using \<open>sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))\<close>
sks_prob by simp
moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have "\<parallel>sKs p\<parallel>\<^bsub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)\<^esub>"
using sb.nxtActI by blast
with \<open>sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))\<close>
have "sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))"
using conn1A by auto
with \<open> p' \<in> P\<close> have "sub P \<in> bbrp (\<sigma>\<^bsub>the_bb\<^esub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)) \<and> p' \<in> P" by auto
ultimately obtain m where "m\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" and "(p', solve p') = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m))"
using indH by auto
\<comment> \<open>and due to the publisher subscriber property,\<close>
\<comment> \<open>the knowledge source will receive them\<close>
moreover have
"\<nexists>n P. \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n \<and> n \<le> m \<and> \<parallel>sKs p\<parallel>\<^bsub>t n\<^esub> \<and>
unsub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t n)) \<and> p' \<in> P"
proof
assume "\<exists>n P'. \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n \<and> n \<le> m \<and> \<parallel>sKs p\<parallel>\<^bsub>t n\<^esub> \<and>
unsub P' = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t n)) \<and> p' \<in> P'"
then obtain n P' where
"\<parallel>sKs p\<parallel>\<^bsub>t n\<^esub>" and "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n" and "n \<le> m" and
"unsub P' = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t n))" and "p' \<in> P'" by auto
hence "sb.eval (sKs p) t t'' n (\<exists>\<^sub>b P'. sb.pred (p'\<in>P') \<and>\<^sup>b
[\<lambda>ks. unsub P' = ksrp ks]\<^sub>b)" by blast
moreover have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n"
using \<open>n\<^sub>r \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close> \<open>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n\<^sub>r\<close>
\<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> n\<close> by linarith
with cass have "sb.eval (sKs p) t t'' n (\<not>\<^sup>b (\<exists>\<^sub>b P'. (sb.pred (p'\<in>P')
\<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b)))"
using sb.globEA[of n\<^sub>r "sKs p" t t''
"\<not>\<^sup>b (\<exists>\<^sub>bP'. sb.pred (p' \<in> P') \<and>\<^sup>b [\<lambda>ks. unsub P' = ksrp ks]\<^sub>b)" n]
\<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by auto
ultimately show False using sb.negE by auto
qed
moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have
"\<parallel>sKs p\<parallel>\<^bsub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)\<^esub>" using sb.nxtActI by blast
moreover have "sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))"
using \<open>sub P = ksrp (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>)))\<close> .
moreover from \<open>m\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> m" by simp
moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close>
have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<ge>n\<^sub>r" using sb.nxtActI by blast
hence "m\<ge>n\<^sub>k" using \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> m\<close> \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub> \<le> n\<^sub>r\<close>
\<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub> \<ge> n\<^sub>k\<close> by simp
with case_ass have "\<parallel>sKs p\<parallel>\<^bsub>t m\<^esub>" by simp
ultimately have "(p', solve p') \<in> kscs (\<sigma>\<^bsub>sKs p\<^esub>(t m))"
and "\<parallel>sKs p\<parallel>\<^bsub>t m\<^esub>"
using \<open>t \<in> arch\<close> msgDelivery[of t "sKs p" "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" P m p' "solve p'"]
\<open>p' \<in> P\<close> by auto
hence "sb.eval (sKs p) t t'' m [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b"
using sb.baIANow by simp
moreover have "m \<ge> \<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>m\<^esub>" by simp
moreover from \<open>\<parallel>sKs p\<parallel>\<^bsub>t m\<^esub>\<close> have "m \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>m\<^esub>"
using sb.nxtActLe by auto
moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have
"\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" by simp
with \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> m\<close> have "\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<le> m" by arith
ultimately show "sb.eval (sKs p) t t'' n\<^sub>r
(\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b)"
using \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> sb.evtIA by blast
qed
qed
qed
thus "sb.eval (sKs p) t t'' n\<^sub>r (sb.pred (p'\<in>P) \<longrightarrow>\<^sup>b
(\<diamond>\<^sub>b [\<lambda>ks. (p',solve p') \<in> kscs ks]\<^sub>b))"
using sb.impI by auto
qed
thus ?thesis using sb.allI by blast
qed
\<comment> \<open>Thus, the knowlege source will eventually solve the problem at hand...\<close>
ultimately have "sb.eval (sKs p) t t'' n\<^sub>r
([\<lambda>ks. sub P = ksrp ks]\<^sub>b \<and>\<^sup>b
(\<forall>\<^sub>b q. (sb.pred (q \<in> P) \<longrightarrow>\<^sup>b \<diamond>\<^sub>b [\<lambda>ks. (q, solve q) \<in> kscs ks]\<^sub>b)))"
using sb.conjI by simp
moreover from \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have "\<exists>i\<ge>0. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" by blast
hence "sb.eval (sKs p) t t'' n\<^sub>r
(([\<lambda>ks. sub P = ksrp ks]\<^sub>b \<and>\<^sup>b
(\<forall>\<^sub>b q. (sb.pred (q \<in> P) \<longrightarrow>\<^sup>b
\<diamond>\<^sub>b [\<lambda>ks. (q, solve q) \<in> kscs ks]\<^sub>b))) \<longrightarrow>\<^sup>b
(\<diamond>\<^sub>b [\<lambda>ks. (p, solve p) = ksns ks]\<^sub>b))" using \<open>t \<in> arch\<close>
sb.globEA[OF _ bhvks1[of t p "sKs p" t'' P]] sks_prob by simp
ultimately have "sb.eval (sKs p) t t'' n\<^sub>r
(\<diamond>\<^sub>b [\<lambda>ks. (p,solve(p))=ksns(ks)]\<^sub>b)"
using sb.impE[of "sKs p" t t'' n\<^sub>r] by blast
\<comment> \<open>and forward it to the blackboard\<close>
then obtain n\<^sub>s where "n\<^sub>s\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>" and
"(\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub> \<and>
(\<forall>n''\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>. n'' \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub> \<longrightarrow>
sb.eval (sKs p) t t'' n'' [\<lambda>ks. (p,solve(p))=ksns(ks)]\<^sub>b)) \<or>
\<not> (\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>) \<and>
sb.eval (sKs p) t t'' n\<^sub>s [\<lambda>ks. (p,solve(p))=ksns(ks)]\<^sub>b"
using sb.evtEA[of n\<^sub>r "sKs p" t] \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by blast
moreover from \<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub> \<ge> n\<^sub>r\<close> \<open>n\<^sub>r\<ge>n\<^sub>k\<close> \<open>n\<^sub>s\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close>
have "n\<^sub>s\<ge>n\<^sub>k" by arith
with case_ass have "\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>" by auto
moreover have "n\<^sub>s\<ge>\<langle>sKs p \<Leftarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>" by simp
moreover from \<open>\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have "n\<^sub>s \<le> \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>"
using sb.nxtActLe by simp
ultimately have "sb.eval (sKs p) t t'' n\<^sub>s [\<lambda>ks. (p,solve(p))=ksns(ks)]\<^sub>b"
using sb.evtEA[of n\<^sub>r "sKs p" t] \<open>\<exists>i\<ge>n\<^sub>r. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> by blast
with \<open>\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close> have
"(p,solve(p)) = ksns (\<sigma>\<^bsub>sKs p\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)))"
using sb.baEA[of n\<^sub>s "sKs p" t t'' "\<lambda>ks. (p, solve p) = ksns ks"] by auto
moreover from \<open>\<exists>i\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t i\<^esub>\<close>
have "\<parallel>sKs p\<parallel>\<^bsub>t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)\<^esub>" using sb.nxtActI by simp
ultimately have "(p,solve(p)) \<in> bbns (\<sigma>\<^bsub>the_bb\<^esub>(t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)))"
using conn1[OF pb.ts_prop(2)[of "t (\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>)"]] by auto
hence "pb.eval the_bb t t' \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub> [\<lambda>bb. (p,solve(p)) \<in> bbns bb]\<^sub>b"
using \<open>t\<in>arch\<close> pb.baI by simp
\<comment> \<open>finally, the blackboard will forward the solution which finishes the proof.\<close>
with bhvbb1 have "pb.eval the_bb t t' \<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>
(\<diamond>\<^sub>b [\<lambda>bb. (p, solve p) = bbcs bb]\<^sub>b)"
using \<open>t\<in>arch\<close> pb.globE pb.impE[of the_bb t t'] by blast
then obtain n\<^sub>f where "n\<^sub>f\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>" and
"pb.eval the_bb t t' n\<^sub>f [\<lambda>bb. (p, solve p) = bbcs bb]\<^sub>b"
using \<open>t\<in>arch\<close> pb.evtE[of t t' "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>"] by auto
hence "(p, solve p) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t n\<^sub>f))"
using \<open>t \<in> arch\<close> pb.baEA by auto
moreover have "n\<^sub>f\<ge>n\<^sub>0"
proof -
from \<open>\<exists>n'''\<ge>n\<^sub>s. \<parallel>sKs p\<parallel>\<^bsub>t n'''\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>\<ge>n\<^sub>s"
using sb.nxtActLe by simp
moreover from \<open>n\<^sub>k\<ge>n\<close> and \<open>\<parallel>sKs p\<parallel>\<^bsub>t n\<^sub>k\<^esub>\<close> have "\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<ge>n\<^sub>k"
using sb.nxtActI by blast
ultimately show ?thesis
using \<open>n\<^sub>f\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>s\<^esub>\<close> \<open>n\<^sub>s\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<close>
\<open>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>r\<^esub>\<ge>n\<^sub>r\<close> \<open>n\<^sub>r\<ge>\<langle>sKs p \<rightarrow> t\<rangle>\<^bsub>n\<^sub>k\<^esub>\<close> \<open>n\<^sub>k\<ge>n\<close> \<open>n\<ge>n\<^sub>0\<close> by arith
qed
ultimately show ?thesis by auto
qed
qed
qed
qed
qed
theorem pSolved:
fixes t and t'::"nat \<Rightarrow>'BB" and t''::"nat \<Rightarrow>'KS"
assumes "t\<in>arch" and
"\<forall>n. (\<exists>n'\<ge>n. \<parallel>sKs (bbop(\<sigma>\<^bsub>the_bb\<^esub>(t n)))\<parallel>\<^bsub>t n'\<^esub>)"
shows
"\<forall>n. (\<forall>P. (sub P \<in> bbrp(\<sigma>\<^bsub>the_bb\<^esub>(t n))
\<longrightarrow> (\<forall>p \<in> P. (\<exists>m\<ge>n. (p,solve(p)) = bbcs (\<sigma>\<^bsub>the_bb\<^esub>(t m))))))"
using assms pSolved_Ind by blast
end
end |