Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 24,206 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 |
section "Relative Frequency LTL"
theory RF_LTL
imports Main "HOL-Library.Sublist" Auxiliary DynamicArchitectures.Dynamic_Architecture_Calculus
begin
type_synonym 's seq = "nat \<Rightarrow> 's"
abbreviation "ccard n n' p \<equiv> card {i. i>n \<and> i \<le> n' \<and> p i}"
lemma ccard_same:
assumes "\<not> p (Suc n')"
shows "ccard n n' p = ccard n (Suc n') p"
proof -
have "{i. i > n \<and> i \<le> Suc n' \<and> p i} = {i. i>n \<and> i \<le> n' \<and> p i}"
proof
show "{i. n < i \<and> i \<le> Suc n' \<and> p i} \<subseteq> {i. n < i \<and> i \<le> n' \<and> p i}"
proof
fix x assume "x \<in> {i. n < i \<and> i \<le> Suc n' \<and> p i}"
hence "n<x" and "x\<le>Suc n'" and "p x" by auto
with assms (1) have "x\<noteq>Suc n'" by auto
with \<open>x\<le>Suc n'\<close> have "x \<le> n'" by simp
with \<open>n<x\<close> \<open>p x\<close> show "x \<in> {i. n < i \<and> i \<le> n' \<and> p i}" by simp
qed
next
show "{i. n < i \<and> i \<le> n' \<and> p i} \<subseteq> {i. n < i \<and> i \<le> Suc n' \<and> p i}" by auto
qed
thus ?thesis by simp
qed
lemma ccard_zero[simp]:
fixes n::nat
shows "ccard n n p = 0"
by auto
lemma ccard_inc:
assumes "p (Suc n')"
and "n' \<ge> n"
shows "ccard n (Suc n') p = Suc (ccard n n' p)"
proof -
let ?A = "{i. i > n \<and> i \<le> n' \<and> p i}"
have "finite ?A" by simp
moreover have "Suc n' \<notin> ?A" by simp
ultimately have "card (insert (Suc n') ?A) = Suc (card ?A)" using card_insert_disjoint[of ?A] by simp
moreover have "insert (Suc n') ?A = {i. i>n \<and> i \<le> (Suc n') \<and> p i}"
proof
show "insert (Suc n') ?A \<subseteq> {i. n < i \<and> i \<le> Suc n' \<and> p i}"
proof
fix x assume "x \<in> insert (Suc n') {i. n < i \<and> i \<le> n' \<and> p i}"
hence "x=Suc n' \<or> n < x \<and> x \<le> n' \<and> p x" by simp
thus "x \<in> {i. n < i \<and> i \<le> Suc n' \<and> p i}"
proof
assume "x = Suc n'"
with assms (1) assms (2) show ?thesis by simp
next
assume "n < x \<and> x \<le> n' \<and> p x"
thus ?thesis by simp
qed
qed
next
show "{i. n < i \<and> i \<le> Suc n' \<and> p i} \<subseteq> insert (Suc n') ?A" by auto
qed
ultimately show ?thesis by simp
qed
lemma ccard_mono:
assumes "n'\<ge>n"
shows "n''\<ge>n' \<Longrightarrow> ccard n (n''::nat) p \<ge> ccard n n' p"
proof (induction n'' rule: dec_induct)
case base
then show ?case ..
next
case (step n'')
then show ?case
proof cases
assume "p (Suc n'')"
moreover from step.hyps assms have "n\<le>n''" by simp
ultimately have "ccard n (Suc n'') p = Suc (ccard n n'' p)" using ccard_inc[of p n'' n] by simp
also have "\<dots> \<ge> ccard n n' p" using step.IH by simp
finally show ?case .
next
assume "\<not> p (Suc n'')"
moreover from step.hyps assms have "n\<le>n''" by simp
ultimately have "ccard n (Suc n'') p = ccard n n'' p" using ccard_same[of p n'' n] by simp
also have "\<dots> \<ge> ccard n n' p" using step.IH by simp
finally show ?case by simp
qed
qed
lemma ccard_ub[simp]:
"ccard n n' p \<le> Suc n' - n"
proof -
have "{i. i>n \<and> i \<le> n' \<and> p i} \<subseteq> {i. i\<ge>n \<and> i \<le> n'}" by auto
hence "ccard n n' p \<le> card {i. i\<ge>n \<and> i \<le> n'}" by (simp add: card_mono)
moreover have "{i. i\<ge>n \<and> i \<le> n'} = {n..n'}" by auto
hence "card {i. i\<ge>n \<and> i \<le> n'} = Suc n' - n" by simp
ultimately show ?thesis by simp
qed
lemma ccard_sum:
fixes n::nat
assumes "n'\<ge>n''"
and "n''\<ge>n"
shows "ccard n n' P = ccard n n'' P + ccard n'' n' P"
proof -
have "ccard n n' P = card {i. i>n \<and> i \<le> n' \<and> P i}" by simp
moreover have "{i. i>n \<and> i \<le> n' \<and> P i} =
{i. i>n \<and> i \<le> n'' \<and> P i} \<union> {i. i>n'' \<and> i \<le> n' \<and> P i}" (is "?LHS = ?RHS")
proof
show "?LHS \<subseteq> ?RHS" by auto
next
show "?RHS \<subseteq> ?LHS"
proof
fix x
assume "x\<in>?RHS"
hence "x>n \<and> x \<le> n'' \<and> P x \<or> x>n'' \<and> x \<le> n' \<and> P x" by auto
thus "x\<in>?LHS"
proof
assume "n < x \<and> x \<le> n'' \<and> P x"
with assms show ?thesis by simp
next
assume "n'' < x \<and> x \<le> n' \<and> P x"
with assms show ?thesis by simp
qed
qed
qed
hence "card ?LHS = card ?RHS" by simp
ultimately have "ccard n n' P = card ?RHS" by simp
moreover have "card ?RHS = card {i. i>n \<and> i \<le> n'' \<and> P i} + card {i. i>n'' \<and> i \<le> n' \<and> P i}"
proof (rule card_Un_disjoint)
show "finite {i. n < i \<and> i \<le> n'' \<and> P i}" by simp
show "finite {i. n'' < i \<and> i \<le> n' \<and> P i}" by simp
show "{i. n < i \<and> i \<le> n'' \<and> P i} \<inter> {i. n'' < i \<and> i \<le> n' \<and> P i} = {}" by auto
qed
moreover have "ccard n n'' P = card {i. i>n \<and> i \<le> n'' \<and> P i}" by simp
moreover have "ccard n'' n' P= card {i. i>n'' \<and> i \<le> n' \<and> P i}" by simp
ultimately show ?thesis by simp
qed
lemma ccard_ex:
fixes n::nat
shows "c\<ge>1 \<Longrightarrow> c < ccard n n'' P \<Longrightarrow> \<exists>n'<n''. n'>n \<and> ccard n n' P = c"
proof (induction c rule: dec_induct)
let ?l = "LEAST i::nat. n < i \<and> i < n'' \<and> P i"
case base
moreover have "ccard n n'' P \<le> Suc (card {i. n < i \<and> i < n'' \<and> P i})"
proof -
from \<open>ccard n n'' P > 1\<close> have "n''>n" using less_le_trans by force
then obtain n' where "Suc n' = n''" and "Suc n' \<ge> n" by (metis lessE less_imp_le_nat)
moreover have "{i. n < i \<and> i < Suc n' \<and> P i} = {i. n < i \<and> i \<le> n' \<and> P i}" by auto
hence "card {i. n < i \<and> i < Suc n' \<and> P i} = card {i. n < i \<and> i \<le> n' \<and> P i}" by simp
moreover have "card {i. n < i \<and> i \<le> Suc n' \<and> P i} \<le> Suc (card {i. n < i \<and> i \<le> n' \<and> P i})"
proof cases
assume "P (Suc n')"
moreover from \<open>n''>n\<close> \<open>Suc n'=n''\<close> have "n'\<ge>n" by simp
ultimately show ?thesis using ccard_inc[of P n' n] by simp
next
assume "\<not> P (Suc n')"
moreover from \<open>n''>n\<close> \<open>Suc n'=n''\<close> have "n'\<ge>n" by simp
ultimately show ?thesis using ccard_same[of P n' n] by simp
qed
ultimately show ?thesis by simp
qed
ultimately have "card {i. n < i \<and> i < n'' \<and> P i} \<ge> 1" by simp
hence "{i. n < i \<and> i < n'' \<and> P i} \<noteq> {}" by fastforce
hence "\<exists>i. n < i \<and> i < n'' \<and> P i" by auto
hence "?l>n" and "?l<n''" and "P ?l" using LeastI_ex[of "\<lambda>i::nat. n < i \<and> i < n'' \<and> P i"] by auto
moreover have "{i. n < i \<and> i \<le> ?l \<and> P i} = {?l}"
proof
show "{i. n < i \<and> i \<le> ?l \<and> P i} \<subseteq> {?l}"
proof
fix i
assume "i\<in>{i. n < i \<and> i \<le> ?l \<and> P i}"
hence "n < i" and "i \<le> ?l" and "P i" by auto
with \<open>\<exists>i. n < i \<and> i < n'' \<and> P i\<close> have "i=?l"
using Least_le[of "\<lambda>i. n < i \<and> i < n'' \<and> P i"] by (meson antisym le_less_trans)
thus "i\<in>{?l}" by simp
qed
next
show "{?l} \<subseteq> {i. n < i \<and> i \<le> ?l \<and> P i}"
proof
fix i
assume "i\<in>{?l}"
hence "i=?l" by simp
with \<open>?l>n\<close> \<open>?l<n''\<close> \<open>P ?l\<close> show "i\<in>{i. n < i \<and> i \<le> ?l \<and> P i}" by simp
qed
qed
hence "ccard n ?l P = 1" by simp
ultimately show ?case by auto
next
case (step c)
moreover from step.prems have "Suc c<ccard n n'' P" by simp
ultimately obtain n' where "n'<n''" and "n < n'" and "ccard n n' P = c" by auto
hence "ccard n n'' P = ccard n n' P + ccard n' n'' P" using ccard_sum[of n' n'' n] by simp
with \<open>Suc c<ccard n n'' P\<close> \<open>ccard n n' P = c\<close> have "ccard n' n'' P>1" by simp
moreover have "ccard n' n'' P \<le> Suc (card {i. n' < i \<and> i < n'' \<and> P i})"
proof -
from \<open>ccard n' n'' P > 1\<close> have "n''>n'" using less_le_trans by force
then obtain n''' where "Suc n''' = n''" and "Suc n''' \<ge> n'" by (metis lessE less_imp_le_nat)
moreover have "{i. n' < i \<and> i < Suc n''' \<and> P i} = {i. n' < i \<and> i \<le> n''' \<and> P i}" by auto
hence "card {i. n' < i \<and> i < Suc n''' \<and> P i} = card {i. n' < i \<and> i \<le> n''' \<and> P i}" by simp
moreover have "card {i. n' < i \<and> i \<le> Suc n''' \<and> P i} \<le> Suc (card {i. n' < i \<and> i \<le> n''' \<and> P i})"
proof cases
assume "P (Suc n''')"
moreover from \<open>n''>n'\<close> \<open>Suc n'''=n''\<close> have "n'''\<ge>n'" by simp
ultimately show ?thesis using ccard_inc[of P n''' n'] by simp
next
assume "\<not> P (Suc n''')"
moreover from \<open>n''>n'\<close> \<open>Suc n'''=n''\<close> have "n'''\<ge>n'" by simp
ultimately show ?thesis using ccard_same[of P n''' n'] by simp
qed
ultimately show ?thesis by simp
qed
ultimately have "card {i. n' < i \<and> i < n'' \<and> P i} \<ge> 1" by simp
hence "{i. n' < i \<and> i < n'' \<and> P i} \<noteq> {}" by fastforce
hence "\<exists>i. n' < i \<and> i < n'' \<and> P i" by auto
let ?l = "LEAST i::nat. n' < i \<and> i < n'' \<and> P i"
from \<open>\<exists>i. n' < i \<and> i < n'' \<and> P i\<close> have "n' < ?l"
using LeastI_ex[of "\<lambda>i::nat. n' < i \<and> i < n'' \<and> P i"] by auto
with \<open>n < n'\<close> have "ccard n ?l P = ccard n n' P + ccard n' ?l P" using ccard_sum[of n' ?l n] by simp
moreover have "{i. n' < i \<and> i \<le> ?l \<and> P i} = {?l}"
proof
show "{i. n' < i \<and> i \<le> ?l \<and> P i} \<subseteq> {?l}"
proof
fix i
assume "i\<in>{i. n' < i \<and> i \<le> ?l \<and> P i}"
hence "n' < i" and "i \<le> ?l" and "P i" by auto
with \<open>\<exists>i. n' < i \<and> i < n'' \<and> P i\<close> have "i=?l"
using Least_le[of "\<lambda>i. n' < i \<and> i < n'' \<and> P i"] by (meson antisym le_less_trans)
thus "i\<in>{?l}" by simp
qed
next
show "{?l} \<subseteq> {i. n' < i \<and> i \<le> ?l \<and> P i}"
proof
fix i
assume "i\<in>{?l}"
hence "i=?l" by simp
moreover from \<open>\<exists>i. n' < i \<and> i < n'' \<and> P i\<close> have "?l<n''" and "P ?l"
using LeastI_ex[of "\<lambda>i. n' < i \<and> i < n'' \<and> P i"] by auto
ultimately show "i\<in>{i. n' < i \<and> i \<le> ?l \<and> P i}" using \<open>?l>n'\<close> by simp
qed
qed
hence "ccard n' ?l P = 1" by simp
ultimately have "card {i. n < i \<and> i \<le> ?l \<and> P i} = Suc c" using \<open>ccard n n' P = c\<close> by simp
moreover from \<open>\<exists>i. n' < i \<and> i < n'' \<and> P i\<close> have "n' < ?l" and "?l < n''" and "P ?l"
using LeastI_ex[of "\<lambda>i::nat. n' < i \<and> i < n'' \<and> P i"] by auto
with \<open>n < n'\<close> have "n<?l" and "?l<n''" by auto
ultimately show ?case by auto
qed
lemma ccard_freq:
assumes "(n'::nat)\<ge>n"
and "ccard n n' P > ccard n n' Q + cnf"
shows "\<exists>n' n''. ccard n' n'' P > cnf \<and> ccard n' n'' Q \<le> cnf"
proof cases
assume "cnf = 0"
with assms(2) have "ccard n n' P > ccard n n' Q" by simp
hence "card {i. n < i \<and> i \<le> n' \<and> P i}>card {i. n < i \<and> i \<le> n' \<and> Q i}" (is "card ?LHS>card ?RHS")
by simp
then obtain i where "i\<in>?LHS" and "\<not> i \<in> ?RHS" and "i>0" using cardEx[of ?LHS ?RHS] by auto
hence "P i" and "\<not> Q i" by auto
with \<open>i>0\<close> obtain n'' where "P (Suc n'')" and "\<not>Q (Suc n'')" using gr0_implies_Suc by auto
hence "ccard n'' (Suc n'') P = 1" using ccard_inc by auto
with \<open>cnf = 0\<close> have "ccard n'' (Suc n'') P > cnf" by simp
moreover from \<open>\<not>Q (Suc n'')\<close> have "ccard n'' (Suc n'') Q = 0" using ccard_same[of Q n'' n''] by auto
with \<open>cnf = 0\<close> have "ccard n'' (Suc n'') Q \<le> cnf" by simp
ultimately show ?thesis by auto
next
assume "\<not> cnf = 0"
show ?thesis
proof (rule ccontr)
assume "\<not> (\<exists>n' n''. ccard n' n'' P > cnf \<and> ccard n' n'' Q \<le> cnf)"
hence hyp: "\<forall>n' n''. ccard n' n'' Q \<le> cnf \<longrightarrow> ccard n' n'' P \<le> cnf"
using leI less_imp_le_nat by blast
show False
proof cases
assume "ccard n n' Q \<le> cnf"
with hyp have "ccard n n' P \<le> cnf" by simp
with assms show False by simp
next
let ?gcond="\<lambda>n''. n''\<ge>n \<and> n''\<le>n' \<and> (\<exists>x\<ge>1. ccard n n'' Q = x * cnf)"
let ?g= "GREATEST n''. ?gcond n''"
assume "\<not> ccard n n' Q \<le> cnf"
hence "ccard n n' Q > cnf" by simp
hence "\<exists>n''. ?gcond n''"
proof -
from \<open>ccard n n' Q > cnf\<close> \<open>\<not>cnf=0\<close> obtain n'' where "n''>n" and "n''\<le>n'" and "ccard n n'' Q = cnf"
using ccard_ex[of cnf n n' Q ] by auto
moreover from \<open>ccard n n'' Q = cnf\<close> have "\<exists>x\<ge>1. ccard n n'' Q = x * cnf" by auto
ultimately show ?thesis using less_imp_le_nat by blast
qed
moreover have "\<forall>n''>n'. \<not> ?gcond n''" by simp
ultimately have gex: "\<exists>n''. ?gcond n'' \<and> (\<forall>n'''. ?gcond n''' \<longrightarrow> n'''\<le>n'')"
using boundedGreatest[of ?gcond _ n'] by blast
hence "\<exists>x\<ge>1. ccard n ?g Q = x * cnf" and "?g \<ge> n" using GreatestI_ex_nat[of ?gcond] by auto
moreover {fix n''
have "n''\<ge>n \<Longrightarrow> \<exists>x\<ge>1. ccard n n'' Q = x * cnf \<Longrightarrow> ccard n n'' P \<le> ccard n n'' Q"
proof (induction n'' rule: ge_induct)
case (step n')
from step.prems obtain x where "x\<ge>1" and cas: "ccard n n' Q = x * cnf" by auto
then show ?case
proof cases
assume "x=1"
with cas have "ccard n n' Q = cnf" by simp
with hyp have "ccard n n' P \<le> cnf" by simp
with \<open>ccard n n' Q = cnf\<close> show ?thesis by simp
next
assume "\<not>x=1"
with \<open>x\<ge>1\<close> have "x>1" by simp
hence "x-1 \<ge> 1" by simp
moreover from \<open>cnf\<noteq>0\<close> \<open>x-1 \<ge> 1\<close> have "(x-1) * cnf < x * cnf \<and> (x - 1) * cnf \<noteq> 0" by auto
with \<open>x-1 \<ge> 1\<close> \<open>cnf\<noteq>0\<close>\<open>ccard n n' Q = x * cnf\<close> obtain n''
where "n''>n" and "n''<n'" and "ccard n n'' Q = (x-1) * cnf"
using ccard_ex[of "(x-1)*cnf" n n' Q ] by auto
ultimately have "\<exists>x\<ge>1. ccard n n'' Q = x * cnf" and "n''\<ge>n" by auto
with \<open>n''\<ge>n\<close> \<open>n''<n'\<close> have "ccard n n'' P \<le> ccard n n'' Q" using step.IH by simp
moreover have "ccard n'' n' Q = cnf"
proof -
from \<open>x-1 \<ge> 1\<close> have "x*cnf = ((x-1) * cnf) + cnf"
using semiring_normalization_rules(2)[of "(x - 1)" cnf] by simp
with \<open>ccard n n'' Q = (x-1) * cnf\<close> \<open>ccard n n' Q = x * cnf\<close>
have "ccard n n' Q = ccard n n'' Q + cnf" by simp
moreover from \<open>n''\<ge>n\<close> \<open>n''<n'\<close> have "ccard n n' Q = ccard n n'' Q + ccard n'' n' Q"
using ccard_sum[of n'' n' n] by simp
ultimately show ?thesis by simp
qed
moreover from \<open>ccard n'' n' Q = cnf\<close> have "ccard n'' n' P \<le> cnf" using hyp by simp
ultimately show ?thesis using \<open>n''\<ge>n\<close> \<open>n''<n'\<close> ccard_sum[of n'' n' n] by simp
qed
qed } note geq = this
ultimately have "ccard n ?g P \<le> ccard n ?g Q" by simp
moreover have "ccard ?g n' P \<le> cnf"
proof (rule ccontr)
assume "\<not> ccard ?g n' P \<le> cnf"
hence "ccard ?g n' P > cnf" by simp
have "ccard ?g n' Q > cnf"
proof (rule ccontr)
assume "\<not>ccard ?g n' Q > cnf"
hence "ccard ?g n' Q \<le> cnf" by simp
with \<open>ccard ?g n' P > cnf\<close> show False
using \<open>\<not> (\<exists>n' n''. ccard n' n'' P > cnf \<and> ccard n' n'' Q \<le> cnf)\<close> by simp
qed
with \<open>\<not> cnf=0\<close> obtain n'' where "n''>?g" and "n''<n'" and "ccard ?g n'' Q = cnf"
using ccard_ex[of cnf ?g n' Q] by auto
moreover have "\<exists>x\<ge>1. ccard n n'' Q = x * cnf"
proof -
from \<open>\<exists>x\<ge>1. ccard n ?g Q = x * cnf\<close> obtain x where "x\<ge>1" and "ccard n ?g Q = x * cnf" by auto
from \<open>n''>?g\<close> \<open>?g\<ge>n\<close> have "ccard n n'' Q = ccard n ?g Q + ccard ?g n'' Q"
using ccard_sum[of ?g n'' n Q] by simp
with \<open>ccard n ?g Q = x * cnf\<close> have "ccard n n'' Q = x * cnf + ccard ?g n'' Q" by simp
with \<open>ccard ?g n'' Q = cnf\<close> have "ccard n n'' Q = Suc x * cnf" by simp
thus ?thesis by auto
qed
moreover from \<open>n''>?g\<close> \<open>?g\<ge>n\<close> have "n''\<ge>n" by simp
ultimately have "\<exists>n''>?g. ?gcond n''" by auto
moreover from gex have "\<forall>n'''. ?gcond n''' \<longrightarrow> n'''\<le>?g" using Greatest_le_nat[of ?gcond] by auto
ultimately show False by auto
qed
moreover from gex have "n'\<ge>?g" using GreatestI_ex_nat[of ?gcond] by auto
ultimately have "ccard n n' P\<le>ccard n n' Q + cnf" using ccard_sum[of ?g n' n] using \<open>?g \<ge> n\<close> by simp
with assms show False by simp
qed
qed
qed
locale honest =
fixes bc:: "('a list) seq"
and n::nat
assumes growth: "n'\<noteq>0 \<Longrightarrow> n'\<le>n \<Longrightarrow> bc n' = bc (n'-1) \<or> (\<exists>b. bc n' = bc (n' - 1) @ b)"
begin
end
locale dishonest =
fixes bc:: "('a list) seq"
and mining::"bool seq"
assumes growth: "\<And>n::nat. prefix (bc (Suc n)) (bc n) \<or> (\<exists>b::'a. bc (Suc n) = bc n @ [b]) \<and> mining (Suc n)"
begin
lemma prefix_save:
assumes "prefix sbc (bc n')"
and "\<forall>n'''>n'. n'''\<le>n'' \<longrightarrow> length (bc n''') \<ge> length sbc"
shows "n''\<ge>n' \<Longrightarrow> prefix sbc (bc n'')"
proof (induction n'' rule: dec_induct)
case base
with assms(1) show ?case by simp
next
case (step n)
from growth[of n] show ?case
proof
assume "prefix (bc (Suc n)) (bc n)"
moreover from step.hyps have "length (bc (Suc n)) \<ge> length sbc" using assms(2) by simp
ultimately show ?thesis using step.IH using prefix_length_prefix by auto
next
assume "(\<exists>b. bc (Suc n) = bc n @ [b]) \<and> mining (Suc n)"
with step.IH show ?thesis by auto
qed
qed
theorem prefix_length:
assumes "prefix sbc (bc n')" and "\<not> prefix sbc (bc n'')" and "n'\<le>n''"
shows "\<exists>n'''>n'. n'''\<le>n'' \<and> length (bc n''') < length sbc"
proof (rule ccontr)
assume "\<not> (\<exists>n'''>n'. n'''\<le>n'' \<and> length (bc n''') < length sbc)"
hence "\<forall>n'''>n'. n'''\<le>n'' \<longrightarrow> length (bc n''') \<ge> length sbc" by auto
with assms have "prefix sbc (bc n'')" using prefix_save[of sbc n' n''] by simp
with assms (2) show False by simp
qed
theorem grow_mining:
assumes "length (bc n) < length (bc (Suc n))"
shows "mining (Suc n)"
using assms growth leD prefix_length_le by blast
lemma length_suc_length:
"length (bc (Suc n)) \<le> Suc (length (bc n))"
by (metis eq_iff growth le_SucI length_append_singleton prefix_length_le)
end
locale dishonest_growth =
fixes bc:: "nat seq"
and mining:: "nat \<Rightarrow> bool"
assumes as1: "\<And>n::nat. bc (Suc n) \<le> Suc (bc n)"
and as2: "\<And>n::nat. bc (Suc n) > bc n \<Longrightarrow> mining (Suc n)"
begin
end
sublocale dishonest \<subseteq> dishonest_growth "\<lambda>n. length (bc n)" using grow_mining length_suc_length by unfold_locales auto
context dishonest_growth
begin
theorem ccard_diff_lgth:
"n'\<ge>n \<Longrightarrow> ccard n n' (\<lambda>n. mining n) \<ge> (bc n' - bc n)"
proof (induction n' rule: dec_induct)
case base
then show ?case by simp
next
case (step n')
from as1 have "bc (Suc n') < Suc (bc n') \<or> bc (Suc n') = Suc (bc n')"
using le_neq_implies_less by blast
then show ?case
proof
assume "bc (Suc n') < Suc (bc n')"
hence "bc (Suc n') - bc n \<le> bc n' - bc n" by simp
moreover from step.hyps have "ccard n (Suc n') (\<lambda>n. mining n) \<ge> ccard n n' (\<lambda>n. mining n)"
using ccard_mono[of n n' "Suc n'"] by simp
ultimately show ?thesis using step.IH by simp
next
assume "bc (Suc n') = Suc (bc n')"
hence "bc (Suc n') - bc n \<le> Suc (bc n' - bc n)" by simp
moreover from \<open>bc (Suc n') = Suc (bc n')\<close> have "mining (Suc n')" using as2 by simp
with step.hyps have "ccard n (Suc n') (\<lambda>n. mining n) \<ge> Suc (ccard n n' (\<lambda>n. mining n))"
using ccard_inc by simp
ultimately show ?thesis using step.IH by simp
qed
qed
end
locale honest_growth =
fixes bc:: "nat seq"
and mining:: "nat \<Rightarrow> bool"
and init:: nat
assumes as1: "\<And>n::nat. bc (Suc n) \<ge> bc n"
and as2: "\<And>n::nat. mining (Suc n) \<Longrightarrow> bc (Suc n) > bc n"
begin
lemma grow_mono: "n'\<ge>n\<Longrightarrow>bc n'\<ge>bc n"
proof (induction n' rule: dec_induct)
case base
then show ?case by simp
next
case (step n')
then show ?case using as1[of n'] by simp
qed
theorem ccard_diff_lgth:
shows "n'\<ge>n \<Longrightarrow> bc n' - bc n \<ge> ccard n n' (\<lambda>n. mining n)"
proof (induction n' rule: dec_induct)
case base
then show ?case by simp
next
case (step n')
then show ?case
proof cases
assume "mining (Suc n')"
with as2 have "bc (Suc n') > bc n'" by simp
moreover from step.hyps have "bc n'\<ge>bc n" using grow_mono by simp
ultimately have "bc (Suc n') - bc n > bc n' - bc n" by simp
moreover from as1 have "bc (Suc n') - bc n \<ge> bc n' - bc n" by (simp add: diff_le_mono)
moreover from \<open>mining (Suc n')\<close> step.hyps
have "ccard n (Suc n') (\<lambda>n. mining n) \<le> Suc (ccard n n' (\<lambda>n. mining n))"
using ccard_inc by simp
ultimately show ?thesis using step.IH by simp
next
assume "\<not> mining (Suc n')"
hence "ccard n (Suc n') (\<lambda>n. mining n) \<le> (ccard n n' (\<lambda>n. mining n))" using ccard_same by simp
moreover from as1 have "bc (Suc n') - bc n \<ge> bc n' - bc n" by (simp add: diff_le_mono)
ultimately show ?thesis using step.IH by simp
qed
qed
end
locale bounded_growth = hg: honest_growth hbc hmining + dg: dishonest_growth dbc dmining
for hbc:: "nat seq"
and dbc:: "nat seq"
and hmining:: "nat \<Rightarrow> bool"
and dmining:: "nat \<Rightarrow> bool"
and sbc::nat
and cnf::nat +
assumes fair: "\<And>n n'. ccard n n' (\<lambda>n. dmining n) > cnf \<Longrightarrow> ccard n n' (\<lambda>n. hmining n) > cnf"
and a2: "hbc 0 \<ge> sbc+cnf"
and a3: "dbc 0 < sbc"
begin
theorem hn_upper_bound: shows "dbc n < hbc n"
proof (rule ccontr)
assume "\<not> dbc n < hbc n"
hence "dbc n \<ge> hbc n" by simp
moreover from a2 a3 have "hbc 0 > dbc 0 + cnf" by simp
moreover have "hbc n\<ge>hbc 0" using hg.grow_mono by simp
ultimately have "dbc n - dbc 0 > hbc n - hbc 0 + cnf" by simp
moreover have "ccard 0 n (\<lambda>n. hmining n) \<le> hbc n - hbc 0" using hg.ccard_diff_lgth by simp
moreover have "dbc n - dbc 0 \<le> ccard 0 n (\<lambda>n. dmining n)" using dg.ccard_diff_lgth by simp
ultimately have "ccard 0 n (\<lambda>n. dmining n) > ccard 0 n (\<lambda>n. hmining n) + cnf" by simp
hence "\<exists>n' n''. ccard n' n'' (\<lambda>n. dmining n) > cnf \<and> ccard n' n'' (\<lambda>n. hmining n) \<le> cnf"
using ccard_freq by blast
with fair show False using leD by blast
qed
end
end |