Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 9,231 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
(*
Title: Aristotle's Assertoric Syllogistic
Author: Angeliki Koutsoukou-Argyraki, University of Cambridge.
October 2019
We formalise with Isabelle/HOL some basic elements of Aristotle's assertoric syllogistic following
the article from the Stanford Encyclopedia of Philosophy by Robin Smith:
https://plato.stanford.edu/entries/aristotle-logic/.
To this end, we use a set theoretic formulation (covering both individual and general predication).
In particular, we formalise the deductions in the Figures and after that we present Aristotle's
metatheoretical observation that all deductions in the Figures can in fact be reduced to either
Barbara or Celarent. As the formal proofs prove to be straightforward, the interest of this entry
lies in illustrating the functionality of Isabelle and high efficiency of Sledgehammer for simple
exercises in philosophy.*)
section\<open>Aristotle's Assertoric Syllogistic\<close>
theory AristotlesAssertoric
imports Main
begin
subsection\<open>Aristotelean Categorical Sentences\<close>
text\<open> Aristotle's universal, particular and indefinite predications (affirmations and denials)
are expressed here using a set theoretic formulation.
Aristotle handles in the same way individual and general predications i.e.
he gives the same logical analysis to "Socrates is an animal" and "humans are animals".
Here we define the general predication i.e. predications are defined as relations between sets.
This has the benefit that individual predication can also be expressed as set membership (e.g. see
the lemma SocratesMortal). \<close>
definition universal_affirmation :: "'a set \<Rightarrow>'a set \<Rightarrow> bool" (infixr "Q" 80)
where "A Q B \<equiv> \<forall> b \<in> B . b \<in> A "
definition universal_denial :: "'a set \<Rightarrow>'a set \<Rightarrow> bool" (infixr "E" 80)
where "A E B \<equiv> \<forall> b \<in> B. ( b \<notin> A) "
definition particular_affirmation :: " 'a set \<Rightarrow>'a set \<Rightarrow> bool" (infixr "I" 80)
where "A I B \<equiv> \<exists> b \<in> B. ( b \<in> A) "
definition particular_denial :: "'a set \<Rightarrow>'a set \<Rightarrow> bool" (infixr "Z" 80)
where "A Z B \<equiv> \<exists> b \<in> B. ( b \<notin> A) "
text\<open> The above four definitions are known as the "square of opposition".\<close>
definition indefinite_affirmation :: " 'a set \<Rightarrow>'a set \<Rightarrow> bool" (infixr "QI" 80)
where "A QI B \<equiv>(( \<forall> b \<in> B. (b \<in> A)) \<or> (\<exists> b \<in> B. (b \<in> A))) "
definition indefinite_denial :: "'a set \<Rightarrow>'a set \<Rightarrow> bool" (infixr "EZ" 80)
where "A EZ B \<equiv> (( \<forall> b \<in> B. (b \<notin> A)) \<or> (\<exists> b \<in> B. (b \<notin> A))) "
lemma aristo_conversion1 :
assumes "A E B" shows "B E A"
using assms universal_denial_def by blast
lemma aristo_conversion2 :
assumes "A I B" shows "B I A"
using assms unfolding particular_affirmation_def
by blast
lemma aristo_conversion3 : assumes "A Q B" and "B \<noteq>{} " shows "B I A"
using assms
unfolding universal_affirmation_def particular_affirmation_def by blast
text\<open>Remark: Aristotle in general supposes that sets have to be nonempty. Indeed, we observe that
in many instances it is necessary to assume that the sets are nonempty,
otherwise Isabelle's automation finds counterexamples.\<close>
subsection\<open>The Deductions in the Figures ("Moods")\<close>
text\<open>The medieval mnemonic names are used.\<close>
subsubsection\<open>First Figure\<close>
lemma Barbara:
assumes "A Q B " and "B Q C" shows "A Q C"
by (meson assms universal_affirmation_def)
lemma Celarent:
assumes "A E B " and "B Q C" shows "A E C"
by (meson assms universal_affirmation_def universal_denial_def)
lemma Darii:
assumes "A Q B" and "B I C" shows "A I C"
by (meson assms particular_affirmation_def universal_affirmation_def)
lemma Ferio:
assumes "A E B" and "B I C" shows "A Z C"
by (meson assms particular_affirmation_def particular_denial_def universal_denial_def)
subsubsection\<open>Second Figure\<close>
lemma Cesare:
assumes "A E B " and "A Q C" shows "B E C"
using Celarent aristo_conversion1 assms by blast
lemma Camestres:
assumes "A Q B " and "A E C" shows "B E C "
using Cesare aristo_conversion1 assms by blast
lemma Festino:
assumes "A E B " and "A I C" shows "B Z C "
using Ferio aristo_conversion1 assms by blast
lemma Baroco:
assumes "A Q B " and "A Z C" shows "B Z C "
by (meson assms particular_denial_def universal_affirmation_def)
subsubsection\<open>Third Figure\<close>
lemma Darapti:
assumes "A Q C " and "B Q C" and "C \<noteq>{}" shows "A I B "
using Darii assms unfolding universal_affirmation_def particular_affirmation_def
by blast
lemma Felapton:
assumes "A E C" and "B Q C" and "C \<noteq>{}" shows "A Z B"
using Festino aristo_conversion1 aristo_conversion3 assms by blast
lemma Disamis:
assumes "A I C" and "B Q C" shows "A I B"
using Darii aristo_conversion2 assms by blast
lemma Datisi:
assumes "A Q C" and "B I C" shows "A I B"
using Disamis aristo_conversion2 assms by blast
lemma Bocardo:
assumes "A Z C" and "B Q C" shows "A Z B"
by (meson assms particular_denial_def universal_affirmation_def)
lemma Ferison:
assumes "A E C " and "B I C" shows "A Z B "
using Ferio aristo_conversion2 assms by blast
subsubsection\<open>Examples\<close>
text\<open>Example of a deduction with general predication.\<close>
lemma GreekMortal :
assumes "Mortal Q Human" and "Human Q Greek "
shows " Mortal Q Greek "
using assms Barbara by auto
text\<open>Example of a deduction with individual predication.\<close>
lemma SocratesMortal:
assumes "Socrates \<in> Human " and "Mortal Q Human"
shows "Socrates \<in> Mortal "
using assms by (simp add: universal_affirmation_def)
subsection\<open>Metatheoretical comments\<close>
text\<open>The following are presented to demonstrate one of Aristotle's metatheoretical
explorations. Namely, Aristotle's metatheorem that:
"All deductions in all three Figures can eventually be reduced to either Barbara or Celarent"
is demonstrated by the proofs below and by considering the proofs from the previous subsection. \<close>
lemma Darii_reducedto_Camestres:
assumes "A Q B " and "B I C" and "A E C " (*assms, concl. of Darii and A E C *)
shows "A I C"
proof-
have "B E C" using Camestres \<open> A Q B \<close> \<open>A E C\<close> by blast
show ?thesis using \<open> B I C \<close> \<open>B E C\<close>
by (simp add: particular_affirmation_def universal_denial_def)
qed
text\<open>It is already evident from the proofs in the previous subsection that:
Camestres can be reduced to Cesare.
Cesare can be reduced to Celarent.
Festino can be reduced to Ferio.\<close>
lemma Ferio_reducedto_Cesare: assumes
"A E B " and "B I C" and "A Q C " (*assms, concl. of Ferio and A Q C *)
shows "A Z C"
proof-
have "B E C" using Cesare \<open>A E B \<close> \<open>A Q C\<close> by blast
show ?thesis using \<open>B I C \<close> \<open>B E C\<close>
by (simp add: particular_affirmation_def universal_denial_def)
qed
lemma Baroco_reducedto_Barbara :
assumes "A Q B " and " A Z C " and " B Q C "
shows "B Z C" (*assms , concl. of Baroco and B Q C *)
proof-
have "A Q C" using \<open>A Q B \<close> \<open> B Q C \<close> Barbara by blast
show ?thesis using \<open>A Q C\<close> \<open> A Z C \<close>
by (simp add: particular_denial_def universal_affirmation_def)
qed
lemma Bocardo_reducedto_Barbara :
assumes " A Z C" and "B Q C" and "A Q B"
shows "A Z B" (*assms, concl of Bocardo and A Q B *)
proof-
have "A Q C" using \<open>B Q C\<close> \<open> A Q B\<close> using Barbara by blast
show ?thesis using \<open>A Q C\<close> \<open> A Z C\<close>
by (simp add: particular_denial_def universal_affirmation_def)
qed
text\<open>Finally, it is already evident from the proofs in the previous subsection that :
Darapti can be reduced to Darii.
Felapton can be reduced to Festino.
Disamis can be reduced to Darii.
Datisi can be reduced to Disamis.
Ferison can be reduced to Ferio. \<close>
text\<open>In conclusion, the aforementioned deductions have thus been shown to be reduced to either
Barbara or Celarent as follows:
Baroco $\Rightarrow$ Barbara
Bocardo $\Rightarrow$ Barbara
Felapton $\Rightarrow$ Festino $\Rightarrow$ Ferio $\Rightarrow$ Cesare $\Rightarrow$ Celarent
Datisi $\Rightarrow$ Disamis $\Rightarrow$ Darii $\Rightarrow$ Camestres $\Rightarrow$ Cesare
Darapti $\Rightarrow$ Darii
Ferison $\Rightarrow$ Ferio
\<close>
subsection\<open>Acknowledgements\<close>
text\<open>A.K.-A. was supported by the ERC Advanced Grant ALEXANDRIA (Project 742178)
funded by the European Research Council and led by Professor Lawrence Paulson
at the University of Cambridge, UK. Thanks to Wenda Li.\<close>
subsection\<open>Bibliography\<close>
text\<open>Smith, Robin, "Aristotle's Logic",
The Stanford Encyclopedia of Philosophy (Summer 2019 Edition),
Edward N. Zalta (ed.), URL = @{url "https://plato.stanford.edu/archives/sum2019/entries/aristotle-logic/"}
\<close>
end
|