Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 17,933 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
(*
  File: Indexed_PQueue.thy
  Author: Bohua Zhan
*)

section \<open>Indexed priority queues\<close>

theory Indexed_PQueue
  imports Arrays_Ex Mapping_Str
begin

text \<open>
  Verification of indexed priority queue: functional part. The data
  structure is also verified by Lammich in
  \cite{Refine_Imperative_HOL-AFP}.
\<close>

subsection \<open>Successor functions, eq-pred predicate\<close>

fun s1 :: "nat \<Rightarrow> nat" where "s1 m = 2 * m + 1"
fun s2 :: "nat \<Rightarrow> nat" where "s2 m = 2 * m + 2"

lemma s_inj [forward]:
  "s1 m = s1 m' \<Longrightarrow> m = m'" "s2 m = s2 m' \<Longrightarrow> m = m'" by auto
lemma s_neq [resolve]:
  "s1 m \<noteq> s2 m'" "s1 m > m" "s2 m > m" "s2 m > s1 m" using s1.simps s2.simps by presburger+
setup \<open>add_forward_prfstep_cond @{thm s_neq(2)} [with_term "s1 ?m"]\<close>
setup \<open>add_forward_prfstep_cond @{thm s_neq(3)} [with_term "s2 ?m"]\<close>
setup \<open>add_forward_prfstep_cond @{thm s_neq(4)} [with_term "s2 ?m", with_term "s1 ?m"]\<close>

inductive eq_pred :: "nat \<Rightarrow> nat \<Rightarrow> bool" where
  "eq_pred n n"
| "eq_pred n m \<Longrightarrow> eq_pred n (s1 m)"
| "eq_pred n m \<Longrightarrow> eq_pred n (s2 m)"
setup \<open>add_case_induct_rule @{thm eq_pred.cases}\<close>
setup \<open>add_prop_induct_rule @{thm eq_pred.induct}\<close>
setup \<open>add_resolve_prfstep @{thm eq_pred.intros(1)}\<close>
setup \<open>fold add_backward_prfstep @{thms eq_pred.intros(2,3)}\<close>

lemma eq_pred_parent1 [forward]:
  "eq_pred i (s1 k) \<Longrightarrow> i \<noteq> s1 k \<Longrightarrow> eq_pred i k"
@proof @let "v = s1 k" @prop_induct "eq_pred i v" @qed

lemma eq_pred_parent2 [forward]:
  "eq_pred i (s2 k) \<Longrightarrow> i \<noteq> s2 k \<Longrightarrow> eq_pred i k"
@proof @let "v = s2 k" @prop_induct "eq_pred i v" @qed

lemma eq_pred_cases:
  "eq_pred i j \<Longrightarrow> eq_pred (s1 i) j \<or> eq_pred (s2 i) j \<or> j = i \<or> j = s1 i \<or> j = s2 i"
@proof @prop_induct "eq_pred i j" @qed
setup \<open>add_forward_prfstep_cond @{thm eq_pred_cases} [with_cond "?i \<noteq> s1 ?k", with_cond "?i \<noteq> s2 ?k"]\<close>

lemma eq_pred_le [forward]: "eq_pred i j \<Longrightarrow> i \<le> j"
@proof @prop_induct "eq_pred i j" @qed

subsection \<open>Heap property\<close>

text \<open>The corresponding tree is a heap\<close>
definition is_heap :: "('a \<times> 'b::linorder) list \<Rightarrow> bool" where [rewrite]:
  "is_heap xs = (\<forall>i j. eq_pred i j \<longrightarrow> j < length xs \<longrightarrow> snd (xs ! i) \<le> snd (xs ! j))"

lemma is_heapD:
  "is_heap xs \<Longrightarrow> j < length xs \<Longrightarrow> eq_pred i j \<Longrightarrow> snd (xs ! i) \<le> snd (xs ! j)" by auto2
setup \<open>add_forward_prfstep_cond @{thm is_heapD} [with_term "?xs ! ?j"]\<close>
setup \<open>del_prfstep_thm_eqforward @{thm is_heap_def}\<close>

subsection \<open>Bubble-down\<close>

text \<open>The corresponding tree is a heap, except k is not necessarily smaller than its descendents.\<close>
definition is_heap_partial1 :: "('a \<times> 'b::linorder) list \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]:
  "is_heap_partial1 xs k = (\<forall>i j. eq_pred i j \<longrightarrow> i \<noteq> k \<longrightarrow> j < length xs \<longrightarrow> snd (xs ! i) \<le> snd (xs ! j))"

text \<open>Two cases of switching with s1 k.\<close>
lemma bubble_down1:
  "s1 k < length xs \<Longrightarrow> is_heap_partial1 xs k \<Longrightarrow> snd (xs ! k) > snd (xs ! s1 k) \<Longrightarrow>
   snd (xs ! s1 k) \<le> snd (xs ! s2 k) \<Longrightarrow> is_heap_partial1 (list_swap xs k (s1 k)) (s1 k)" by auto2
setup \<open>add_forward_prfstep_cond @{thm bubble_down1} [with_term "list_swap ?xs ?k (s1 ?k)"]\<close>

lemma bubble_down2:
  "s1 k < length xs \<Longrightarrow> is_heap_partial1 xs k \<Longrightarrow> snd (xs ! k) > snd (xs ! s1 k) \<Longrightarrow>
   s2 k \<ge> length xs \<Longrightarrow> is_heap_partial1 (list_swap xs k (s1 k)) (s1 k)" by auto2
setup \<open>add_forward_prfstep_cond @{thm bubble_down2} [with_term "list_swap ?xs ?k (s1 ?k)"]\<close>

text \<open>One case of switching with s2 k.\<close>
lemma bubble_down3:
  "s2 k < length xs \<Longrightarrow> is_heap_partial1 xs k \<Longrightarrow> snd (xs ! s1 k) > snd (xs ! s2 k) \<Longrightarrow>
   snd (xs ! k) > snd (xs ! s2 k) \<Longrightarrow> xs' = list_swap xs k (s2 k) \<Longrightarrow> is_heap_partial1 xs' (s2 k)" by auto2
setup \<open>add_forward_prfstep_cond @{thm bubble_down3} [with_term "?xs'"]\<close>

subsection \<open>Bubble-up\<close>

fun par :: "nat \<Rightarrow> nat" where
  "par m = (m - 1) div 2"
setup \<open>register_wellform_data ("par m", ["m \<noteq> 0"])\<close>

lemma ps_inverse [rewrite]: "par (s1 k) = k" "par (s2 k) = k" by simp+

lemma p_basic: "m \<noteq> 0 \<Longrightarrow> par m < m" by auto
setup \<open>add_forward_prfstep_cond @{thm p_basic} [with_term "par ?m"]\<close>

lemma p_cases: "m \<noteq> 0 \<Longrightarrow> m = s1 (par m) \<or> m = s2 (par m)" by auto
setup \<open>add_forward_prfstep_cond @{thm p_cases} [with_term "par ?m"]\<close>

lemma eq_pred_p_next:
  "i \<noteq> 0 \<Longrightarrow> eq_pred i j \<Longrightarrow> eq_pred (par i) j"
@proof @prop_induct "eq_pred i j" @qed
setup \<open>add_forward_prfstep_cond @{thm eq_pred_p_next} [with_term "par ?i"]\<close>

lemma heap_implies_hd_min [resolve]:
  "is_heap xs \<Longrightarrow> i < length xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> snd (hd xs) \<le> snd (xs ! i)"
@proof
  @strong_induct i
  @case "i = 0" @apply_induct_hyp "par i"
  @have "eq_pred (par i) i"
@qed

text \<open>The corresponding tree is a heap, except k is not necessarily greater than its ancestors.\<close>
definition is_heap_partial2 :: "('a \<times> 'b::linorder) list \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]:
  "is_heap_partial2 xs k = (\<forall>i j. eq_pred i j \<longrightarrow> j < length xs \<longrightarrow> j \<noteq> k \<longrightarrow> snd (xs ! i) \<le> snd (xs ! j))"

lemma bubble_up1 [forward]:
  "k < length xs \<Longrightarrow> is_heap_partial2 xs k \<Longrightarrow> snd (xs ! k) < snd (xs ! par k) \<Longrightarrow> k \<noteq> 0 \<Longrightarrow>
   is_heap_partial2 (list_swap xs k (par k)) (par k)" by auto2

lemma bubble_up2 [forward]:
  "k < length xs \<Longrightarrow> is_heap_partial2 xs k \<Longrightarrow> snd (xs ! k) \<ge> snd (xs ! par k) \<Longrightarrow> k \<noteq> 0 \<Longrightarrow>
   is_heap xs" by auto2
setup \<open>del_prfstep_thm @{thm p_cases}\<close>

subsection \<open>Indexed priority queue\<close>

type_synonym 'a idx_pqueue = "(nat \<times> 'a) list \<times> nat option list"

fun index_of_pqueue :: "'a idx_pqueue \<Rightarrow> bool" where
  "index_of_pqueue (xs, m) = (
    (\<forall>i<length xs. fst (xs ! i) < length m \<and> m ! (fst (xs ! i)) = Some i) \<and>
    (\<forall>i. \<forall>k<length m. m ! k = Some i \<longrightarrow> i < length xs \<and> fst (xs ! i) = k))"
setup \<open>add_rewrite_rule @{thm index_of_pqueue.simps}\<close>

lemma index_of_pqueueD1:
  "i < length xs \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow>
   fst (xs ! i) < length m \<and> m ! (fst (xs ! i)) = Some i" by auto2
setup \<open>add_forward_prfstep_cond @{thm index_of_pqueueD1} [with_term "?xs ! ?i"]\<close>

lemma index_of_pqueueD2 [forward]:
  "k < length m \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow>
   m ! k = Some i \<Longrightarrow> i < length xs \<and> fst (xs ! i) = k" by auto2

lemma index_of_pqueueD3 [forward]:
  "index_of_pqueue (xs, m) \<Longrightarrow> p \<in> set xs \<Longrightarrow> fst p < length m"
@proof @obtain i where "i < length xs" "xs ! i = p" @qed
setup \<open>del_prfstep_thm_eqforward @{thm index_of_pqueue.simps}\<close>

lemma has_index_unique_key [forward]:
  "index_of_pqueue (xs, m) \<Longrightarrow> unique_keys_set (set xs)"
@proof
  @have "\<forall>a x y. (a, x) \<in> set xs \<longrightarrow> (a, y) \<in> set xs \<longrightarrow> x = y" @with
    @obtain i where "i < length xs" "xs ! i = (a, x)"
    @obtain j where "j < length xs" "xs ! j = (a, y)"
  @end
@qed

lemma has_index_keys_of [rewrite]:
  "index_of_pqueue (xs, m) \<Longrightarrow> has_key_alist xs k \<longleftrightarrow> (k < length m \<and> m ! k \<noteq> None)"
@proof
  @case "has_key_alist xs k" @with
    @obtain v' where "(k, v') \<in> set xs"
    @obtain i where "i < length xs \<and> xs ! i = (k, v')"
  @end
@qed

lemma has_index_distinct [forward]:
  "index_of_pqueue (xs, m) \<Longrightarrow> distinct xs"
@proof
  @have "\<forall>i<length xs. \<forall>j<length xs. i \<noteq> j \<longrightarrow> xs ! i \<noteq> xs ! j"
@qed

subsection \<open>Basic operations on indexed\_queue\<close>

fun idx_pqueue_swap_fun :: "(nat \<times> 'a) list \<times> nat option list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (nat \<times> 'a) list \<times> nat option list" where
  "idx_pqueue_swap_fun (xs, m) i j = (
    list_swap xs i j, ((m [fst (xs ! i) := Some j]) [fst (xs ! j) := Some i]))"

lemma index_of_pqueue_swap [forward_arg]:
  "i < length xs \<Longrightarrow> j < length xs \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow>
   index_of_pqueue (idx_pqueue_swap_fun (xs, m) i j)"
@proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed

lemma fst_idx_pqueue_swap [rewrite]:
  "fst (idx_pqueue_swap_fun (xs, m) i j) = list_swap xs i j"
@proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed

lemma snd_idx_pqueue_swap [rewrite]:
  "length (snd (idx_pqueue_swap_fun (xs, m) i j)) = length m"
@proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed

fun idx_pqueue_push_fun :: "nat \<Rightarrow> 'a \<Rightarrow> 'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where
  "idx_pqueue_push_fun k v (xs, m) = (xs @ [(k, v)], list_update m k (Some (length xs)))"

lemma idx_pqueue_push_correct [forward_arg]:
  "index_of_pqueue (xs, m) \<Longrightarrow> k < length m \<Longrightarrow> \<not>has_key_alist xs k \<Longrightarrow>
   r = idx_pqueue_push_fun k v (xs, m) \<Longrightarrow>
   index_of_pqueue r \<and> fst r = xs @ [(k, v)] \<and> length (snd r) = length m"
@proof @unfold "idx_pqueue_push_fun k v (xs, m)" @qed

fun idx_pqueue_pop_fun :: "'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where
  "idx_pqueue_pop_fun (xs, m) = (butlast xs, list_update m (fst (last xs)) None)"

lemma idx_pqueue_pop_correct [forward_arg]:
  "index_of_pqueue (xs, m) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> r = idx_pqueue_pop_fun (xs, m) \<Longrightarrow>
   index_of_pqueue r \<and> fst r = butlast xs \<and> length (snd r) = length m"
@proof
  @unfold "idx_pqueue_pop_fun (xs, m)"
  @have "length xs = length (butlast xs) + 1"
  @have "fst (xs ! length (butlast xs)) < length m"  (* TODO: remove? *)
@qed

subsection \<open>Bubble up and down\<close>

function idx_bubble_down_fun :: "'a::linorder idx_pqueue \<Rightarrow> nat \<Rightarrow> 'a idx_pqueue" where
  "idx_bubble_down_fun (xs, m) k = (
    if s2 k < length xs then
      if snd (xs ! s1 k) \<le> snd (xs ! s2 k) then
        if snd (xs ! k) > snd (xs ! s1 k) then
          idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s1 k)) (s1 k)
        else (xs, m)
      else
        if snd (xs ! k) > snd (xs ! s2 k) then
          idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s2 k)) (s2 k)
        else (xs, m)
    else if s1 k < length xs then
      if snd (xs ! k) > snd (xs ! s1 k) then
        idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s1 k)) (s1 k)
      else (xs, m)
    else (xs, m))"
  by pat_completeness auto
  termination by (relation "measure (\<lambda>((xs,_),k). (length xs - k))") (simp_all, auto2+)

lemma idx_bubble_down_fun_correct:
  "r = idx_bubble_down_fun x k \<Longrightarrow> is_heap_partial1 (fst x) k \<Longrightarrow>
   is_heap (fst r) \<and> mset (fst r) = mset (fst x) \<and> length (snd r) = length (snd x)"
@proof @fun_induct "idx_bubble_down_fun x k" @with
  @subgoal "(x = (xs, m), k = k)"
  @unfold "idx_bubble_down_fun (xs, m) k"
  @case "s2 k < length xs" @with
    @case "snd (xs ! s1 k) \<le> snd (xs ! s2 k)"
  @end
  @case "s1 k < length xs" @end
@qed
setup \<open>add_forward_prfstep_cond @{thm idx_bubble_down_fun_correct} [with_term "?r"]\<close>

lemma idx_bubble_down_fun_correct2 [forward]:
  "index_of_pqueue x \<Longrightarrow> index_of_pqueue (idx_bubble_down_fun x k)"
@proof @fun_induct "idx_bubble_down_fun x k" @with
  @subgoal "(x = (xs, m), k = k)"
  @unfold "idx_bubble_down_fun (xs, m) k"
  @case "s2 k < length xs" @with
    @case "snd (xs ! s1 k) \<le> snd (xs ! s2 k)"
  @end
  @case "s1 k < length xs" @end
@qed

fun idx_bubble_up_fun :: "'a::linorder idx_pqueue \<Rightarrow> nat \<Rightarrow> 'a idx_pqueue" where
  "idx_bubble_up_fun (xs, m) k = (
    if k = 0 then (xs, m)
    else if k < length xs then
      if snd (xs ! k) < snd (xs ! par k) then
        idx_bubble_up_fun (idx_pqueue_swap_fun (xs, m) k (par k)) (par k)
      else (xs, m)
    else (xs, m))"

lemma idx_bubble_up_fun_correct:
  "r = idx_bubble_up_fun x k \<Longrightarrow> is_heap_partial2 (fst x) k \<Longrightarrow>
   is_heap (fst r) \<and> mset (fst r) = mset (fst x) \<and> length (snd r) = length (snd x)"
@proof @fun_induct "idx_bubble_up_fun x k" @with
  @subgoal "(x = (xs, m), k = k)"
  @unfold "idx_bubble_up_fun (xs, m) k" @end
@qed
setup \<open>add_forward_prfstep_cond @{thm idx_bubble_up_fun_correct} [with_term "?r"]\<close>

lemma idx_bubble_up_fun_correct2 [forward]:
  "index_of_pqueue x \<Longrightarrow> index_of_pqueue (idx_bubble_up_fun x k)"
@proof @fun_induct "idx_bubble_up_fun x k" @with
  @subgoal "(x = (xs, m), k = k)"
  @unfold "idx_bubble_up_fun (xs, m) k" @end
@qed

subsection \<open>Main operations\<close>

fun delete_min_idx_pqueue_fun :: "'a::linorder idx_pqueue \<Rightarrow> (nat \<times> 'a) \<times> 'a idx_pqueue" where
  "delete_min_idx_pqueue_fun (xs, m) = (
    let (xs', m') = idx_pqueue_swap_fun (xs, m) 0 (length xs - 1);
        a'' = idx_pqueue_pop_fun (xs', m')
     in (last xs', idx_bubble_down_fun a'' 0))"

lemma delete_min_idx_pqueue_correct:
  "index_of_pqueue (xs, m) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> res = delete_min_idx_pqueue_fun (xs, m) \<Longrightarrow>
   index_of_pqueue (snd res)"
@proof @unfold "delete_min_idx_pqueue_fun (xs, m)" @qed
setup \<open>add_forward_prfstep_cond @{thm delete_min_idx_pqueue_correct} [with_term "?res"]\<close>

lemma hd_last_swap_eval_last [rewrite]:
  "xs \<noteq> [] \<Longrightarrow> last (list_swap xs 0 (length xs - 1)) = hd xs"
@proof
  @let "xs' = list_swap xs 0 (length xs - 1)"
  @have "last xs' = xs' ! (length xs - 1)"
@qed

text \<open>Correctness of delete-min.\<close>
theorem delete_min_idx_pqueue_correct2:
  "is_heap xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> res = delete_min_idx_pqueue_fun (xs, m) \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow>
   is_heap (fst (snd res)) \<and> fst res = hd xs \<and> length (snd (snd res)) = length m \<and>
   map_of_alist (fst (snd res)) = delete_map (fst (fst res)) (map_of_alist xs)"
@proof @unfold "delete_min_idx_pqueue_fun (xs, m)"
  @let "xs' = list_swap xs 0 (length xs - 1)"
  @have "is_heap_partial1 (butlast xs') 0"
@qed
setup \<open>add_forward_prfstep_cond @{thm delete_min_idx_pqueue_correct2} [with_term "?res"]\<close>

fun insert_idx_pqueue_fun :: "nat \<Rightarrow> 'a::linorder \<Rightarrow> 'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where
  "insert_idx_pqueue_fun k v x = (
    let x' = idx_pqueue_push_fun k v x in
      idx_bubble_up_fun x' (length (fst x') - 1))"

lemma insert_idx_pqueue_correct [forward_arg]:
  "index_of_pqueue (xs, m) \<Longrightarrow> k < length m \<Longrightarrow> \<not>has_key_alist xs k \<Longrightarrow>
   index_of_pqueue (insert_idx_pqueue_fun k v (xs, m))"
@proof @unfold "insert_idx_pqueue_fun k v (xs, m)" @qed

text \<open>Correctness of insertion.\<close>
theorem insert_idx_pqueue_correct2:
  "index_of_pqueue (xs, m) \<Longrightarrow> is_heap xs \<Longrightarrow> k < length m \<Longrightarrow> \<not>has_key_alist xs k \<Longrightarrow>
   r = insert_idx_pqueue_fun k v (xs, m) \<Longrightarrow>
   is_heap (fst r) \<and> length (snd r) = length m \<and>
   map_of_alist (fst r) = map_of_alist xs { k \<rightarrow> v }"
@proof @unfold "insert_idx_pqueue_fun k v (xs, m)"
  @have "is_heap_partial2 (xs @ [(k, v)]) (length xs)"
@qed
setup \<open>add_forward_prfstep_cond @{thm insert_idx_pqueue_correct2} [with_term "?r"]\<close>

fun update_idx_pqueue_fun :: "nat \<Rightarrow> 'a::linorder \<Rightarrow> 'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where
  "update_idx_pqueue_fun k v (xs, m) = (
    if m ! k = None then
      insert_idx_pqueue_fun k v (xs, m)
    else let
      i = the (m ! k);
      xs' = list_update xs i (k, v)
    in
      if snd (xs ! i) \<le> v then idx_bubble_down_fun (xs', m) i
      else idx_bubble_up_fun (xs', m) i)"

lemma update_idx_pqueue_correct [forward_arg]:
  "index_of_pqueue (xs, m) \<Longrightarrow> k < length m \<Longrightarrow>
   index_of_pqueue (update_idx_pqueue_fun k v (xs, m))"
@proof @unfold "update_idx_pqueue_fun k v (xs, m)"
  @let "i' = the (m ! k)"
  @let "xs' = list_update xs i' (k, v)"
  @case "m ! k = None"
  @have "index_of_pqueue (xs', m)"
@qed

text \<open>Correctness of update.\<close>
theorem update_idx_pqueue_correct2:
  "index_of_pqueue (xs, m) \<Longrightarrow> is_heap xs \<Longrightarrow> k < length m \<Longrightarrow>
   r = update_idx_pqueue_fun k v (xs, m) \<Longrightarrow>
   is_heap (fst r) \<and> length (snd r) = length m \<and>
   map_of_alist (fst r) = map_of_alist xs { k \<rightarrow> v }"
@proof @unfold "update_idx_pqueue_fun k v (xs, m)"
  @let "i = the (m ! k)"
  @let "xs' = list_update xs i (k, v)"
  @have "xs' = fst (xs', m)" (* TODO: remove *)
  @case "m ! k = None"
  @case "snd (xs ! the (m ! k)) \<le> v" @with
    @have "is_heap_partial1 xs' i"
  @end
  @have "is_heap_partial2 xs' i"
@qed
setup \<open>add_forward_prfstep_cond @{thm update_idx_pqueue_correct2} [with_term "?r"]\<close>

end