Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 17,933 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
(*
File: Indexed_PQueue.thy
Author: Bohua Zhan
*)
section \<open>Indexed priority queues\<close>
theory Indexed_PQueue
imports Arrays_Ex Mapping_Str
begin
text \<open>
Verification of indexed priority queue: functional part. The data
structure is also verified by Lammich in
\cite{Refine_Imperative_HOL-AFP}.
\<close>
subsection \<open>Successor functions, eq-pred predicate\<close>
fun s1 :: "nat \<Rightarrow> nat" where "s1 m = 2 * m + 1"
fun s2 :: "nat \<Rightarrow> nat" where "s2 m = 2 * m + 2"
lemma s_inj [forward]:
"s1 m = s1 m' \<Longrightarrow> m = m'" "s2 m = s2 m' \<Longrightarrow> m = m'" by auto
lemma s_neq [resolve]:
"s1 m \<noteq> s2 m'" "s1 m > m" "s2 m > m" "s2 m > s1 m" using s1.simps s2.simps by presburger+
setup \<open>add_forward_prfstep_cond @{thm s_neq(2)} [with_term "s1 ?m"]\<close>
setup \<open>add_forward_prfstep_cond @{thm s_neq(3)} [with_term "s2 ?m"]\<close>
setup \<open>add_forward_prfstep_cond @{thm s_neq(4)} [with_term "s2 ?m", with_term "s1 ?m"]\<close>
inductive eq_pred :: "nat \<Rightarrow> nat \<Rightarrow> bool" where
"eq_pred n n"
| "eq_pred n m \<Longrightarrow> eq_pred n (s1 m)"
| "eq_pred n m \<Longrightarrow> eq_pred n (s2 m)"
setup \<open>add_case_induct_rule @{thm eq_pred.cases}\<close>
setup \<open>add_prop_induct_rule @{thm eq_pred.induct}\<close>
setup \<open>add_resolve_prfstep @{thm eq_pred.intros(1)}\<close>
setup \<open>fold add_backward_prfstep @{thms eq_pred.intros(2,3)}\<close>
lemma eq_pred_parent1 [forward]:
"eq_pred i (s1 k) \<Longrightarrow> i \<noteq> s1 k \<Longrightarrow> eq_pred i k"
@proof @let "v = s1 k" @prop_induct "eq_pred i v" @qed
lemma eq_pred_parent2 [forward]:
"eq_pred i (s2 k) \<Longrightarrow> i \<noteq> s2 k \<Longrightarrow> eq_pred i k"
@proof @let "v = s2 k" @prop_induct "eq_pred i v" @qed
lemma eq_pred_cases:
"eq_pred i j \<Longrightarrow> eq_pred (s1 i) j \<or> eq_pred (s2 i) j \<or> j = i \<or> j = s1 i \<or> j = s2 i"
@proof @prop_induct "eq_pred i j" @qed
setup \<open>add_forward_prfstep_cond @{thm eq_pred_cases} [with_cond "?i \<noteq> s1 ?k", with_cond "?i \<noteq> s2 ?k"]\<close>
lemma eq_pred_le [forward]: "eq_pred i j \<Longrightarrow> i \<le> j"
@proof @prop_induct "eq_pred i j" @qed
subsection \<open>Heap property\<close>
text \<open>The corresponding tree is a heap\<close>
definition is_heap :: "('a \<times> 'b::linorder) list \<Rightarrow> bool" where [rewrite]:
"is_heap xs = (\<forall>i j. eq_pred i j \<longrightarrow> j < length xs \<longrightarrow> snd (xs ! i) \<le> snd (xs ! j))"
lemma is_heapD:
"is_heap xs \<Longrightarrow> j < length xs \<Longrightarrow> eq_pred i j \<Longrightarrow> snd (xs ! i) \<le> snd (xs ! j)" by auto2
setup \<open>add_forward_prfstep_cond @{thm is_heapD} [with_term "?xs ! ?j"]\<close>
setup \<open>del_prfstep_thm_eqforward @{thm is_heap_def}\<close>
subsection \<open>Bubble-down\<close>
text \<open>The corresponding tree is a heap, except k is not necessarily smaller than its descendents.\<close>
definition is_heap_partial1 :: "('a \<times> 'b::linorder) list \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]:
"is_heap_partial1 xs k = (\<forall>i j. eq_pred i j \<longrightarrow> i \<noteq> k \<longrightarrow> j < length xs \<longrightarrow> snd (xs ! i) \<le> snd (xs ! j))"
text \<open>Two cases of switching with s1 k.\<close>
lemma bubble_down1:
"s1 k < length xs \<Longrightarrow> is_heap_partial1 xs k \<Longrightarrow> snd (xs ! k) > snd (xs ! s1 k) \<Longrightarrow>
snd (xs ! s1 k) \<le> snd (xs ! s2 k) \<Longrightarrow> is_heap_partial1 (list_swap xs k (s1 k)) (s1 k)" by auto2
setup \<open>add_forward_prfstep_cond @{thm bubble_down1} [with_term "list_swap ?xs ?k (s1 ?k)"]\<close>
lemma bubble_down2:
"s1 k < length xs \<Longrightarrow> is_heap_partial1 xs k \<Longrightarrow> snd (xs ! k) > snd (xs ! s1 k) \<Longrightarrow>
s2 k \<ge> length xs \<Longrightarrow> is_heap_partial1 (list_swap xs k (s1 k)) (s1 k)" by auto2
setup \<open>add_forward_prfstep_cond @{thm bubble_down2} [with_term "list_swap ?xs ?k (s1 ?k)"]\<close>
text \<open>One case of switching with s2 k.\<close>
lemma bubble_down3:
"s2 k < length xs \<Longrightarrow> is_heap_partial1 xs k \<Longrightarrow> snd (xs ! s1 k) > snd (xs ! s2 k) \<Longrightarrow>
snd (xs ! k) > snd (xs ! s2 k) \<Longrightarrow> xs' = list_swap xs k (s2 k) \<Longrightarrow> is_heap_partial1 xs' (s2 k)" by auto2
setup \<open>add_forward_prfstep_cond @{thm bubble_down3} [with_term "?xs'"]\<close>
subsection \<open>Bubble-up\<close>
fun par :: "nat \<Rightarrow> nat" where
"par m = (m - 1) div 2"
setup \<open>register_wellform_data ("par m", ["m \<noteq> 0"])\<close>
lemma ps_inverse [rewrite]: "par (s1 k) = k" "par (s2 k) = k" by simp+
lemma p_basic: "m \<noteq> 0 \<Longrightarrow> par m < m" by auto
setup \<open>add_forward_prfstep_cond @{thm p_basic} [with_term "par ?m"]\<close>
lemma p_cases: "m \<noteq> 0 \<Longrightarrow> m = s1 (par m) \<or> m = s2 (par m)" by auto
setup \<open>add_forward_prfstep_cond @{thm p_cases} [with_term "par ?m"]\<close>
lemma eq_pred_p_next:
"i \<noteq> 0 \<Longrightarrow> eq_pred i j \<Longrightarrow> eq_pred (par i) j"
@proof @prop_induct "eq_pred i j" @qed
setup \<open>add_forward_prfstep_cond @{thm eq_pred_p_next} [with_term "par ?i"]\<close>
lemma heap_implies_hd_min [resolve]:
"is_heap xs \<Longrightarrow> i < length xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> snd (hd xs) \<le> snd (xs ! i)"
@proof
@strong_induct i
@case "i = 0" @apply_induct_hyp "par i"
@have "eq_pred (par i) i"
@qed
text \<open>The corresponding tree is a heap, except k is not necessarily greater than its ancestors.\<close>
definition is_heap_partial2 :: "('a \<times> 'b::linorder) list \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]:
"is_heap_partial2 xs k = (\<forall>i j. eq_pred i j \<longrightarrow> j < length xs \<longrightarrow> j \<noteq> k \<longrightarrow> snd (xs ! i) \<le> snd (xs ! j))"
lemma bubble_up1 [forward]:
"k < length xs \<Longrightarrow> is_heap_partial2 xs k \<Longrightarrow> snd (xs ! k) < snd (xs ! par k) \<Longrightarrow> k \<noteq> 0 \<Longrightarrow>
is_heap_partial2 (list_swap xs k (par k)) (par k)" by auto2
lemma bubble_up2 [forward]:
"k < length xs \<Longrightarrow> is_heap_partial2 xs k \<Longrightarrow> snd (xs ! k) \<ge> snd (xs ! par k) \<Longrightarrow> k \<noteq> 0 \<Longrightarrow>
is_heap xs" by auto2
setup \<open>del_prfstep_thm @{thm p_cases}\<close>
subsection \<open>Indexed priority queue\<close>
type_synonym 'a idx_pqueue = "(nat \<times> 'a) list \<times> nat option list"
fun index_of_pqueue :: "'a idx_pqueue \<Rightarrow> bool" where
"index_of_pqueue (xs, m) = (
(\<forall>i<length xs. fst (xs ! i) < length m \<and> m ! (fst (xs ! i)) = Some i) \<and>
(\<forall>i. \<forall>k<length m. m ! k = Some i \<longrightarrow> i < length xs \<and> fst (xs ! i) = k))"
setup \<open>add_rewrite_rule @{thm index_of_pqueue.simps}\<close>
lemma index_of_pqueueD1:
"i < length xs \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow>
fst (xs ! i) < length m \<and> m ! (fst (xs ! i)) = Some i" by auto2
setup \<open>add_forward_prfstep_cond @{thm index_of_pqueueD1} [with_term "?xs ! ?i"]\<close>
lemma index_of_pqueueD2 [forward]:
"k < length m \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow>
m ! k = Some i \<Longrightarrow> i < length xs \<and> fst (xs ! i) = k" by auto2
lemma index_of_pqueueD3 [forward]:
"index_of_pqueue (xs, m) \<Longrightarrow> p \<in> set xs \<Longrightarrow> fst p < length m"
@proof @obtain i where "i < length xs" "xs ! i = p" @qed
setup \<open>del_prfstep_thm_eqforward @{thm index_of_pqueue.simps}\<close>
lemma has_index_unique_key [forward]:
"index_of_pqueue (xs, m) \<Longrightarrow> unique_keys_set (set xs)"
@proof
@have "\<forall>a x y. (a, x) \<in> set xs \<longrightarrow> (a, y) \<in> set xs \<longrightarrow> x = y" @with
@obtain i where "i < length xs" "xs ! i = (a, x)"
@obtain j where "j < length xs" "xs ! j = (a, y)"
@end
@qed
lemma has_index_keys_of [rewrite]:
"index_of_pqueue (xs, m) \<Longrightarrow> has_key_alist xs k \<longleftrightarrow> (k < length m \<and> m ! k \<noteq> None)"
@proof
@case "has_key_alist xs k" @with
@obtain v' where "(k, v') \<in> set xs"
@obtain i where "i < length xs \<and> xs ! i = (k, v')"
@end
@qed
lemma has_index_distinct [forward]:
"index_of_pqueue (xs, m) \<Longrightarrow> distinct xs"
@proof
@have "\<forall>i<length xs. \<forall>j<length xs. i \<noteq> j \<longrightarrow> xs ! i \<noteq> xs ! j"
@qed
subsection \<open>Basic operations on indexed\_queue\<close>
fun idx_pqueue_swap_fun :: "(nat \<times> 'a) list \<times> nat option list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> (nat \<times> 'a) list \<times> nat option list" where
"idx_pqueue_swap_fun (xs, m) i j = (
list_swap xs i j, ((m [fst (xs ! i) := Some j]) [fst (xs ! j) := Some i]))"
lemma index_of_pqueue_swap [forward_arg]:
"i < length xs \<Longrightarrow> j < length xs \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow>
index_of_pqueue (idx_pqueue_swap_fun (xs, m) i j)"
@proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed
lemma fst_idx_pqueue_swap [rewrite]:
"fst (idx_pqueue_swap_fun (xs, m) i j) = list_swap xs i j"
@proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed
lemma snd_idx_pqueue_swap [rewrite]:
"length (snd (idx_pqueue_swap_fun (xs, m) i j)) = length m"
@proof @unfold "idx_pqueue_swap_fun (xs, m) i j" @qed
fun idx_pqueue_push_fun :: "nat \<Rightarrow> 'a \<Rightarrow> 'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where
"idx_pqueue_push_fun k v (xs, m) = (xs @ [(k, v)], list_update m k (Some (length xs)))"
lemma idx_pqueue_push_correct [forward_arg]:
"index_of_pqueue (xs, m) \<Longrightarrow> k < length m \<Longrightarrow> \<not>has_key_alist xs k \<Longrightarrow>
r = idx_pqueue_push_fun k v (xs, m) \<Longrightarrow>
index_of_pqueue r \<and> fst r = xs @ [(k, v)] \<and> length (snd r) = length m"
@proof @unfold "idx_pqueue_push_fun k v (xs, m)" @qed
fun idx_pqueue_pop_fun :: "'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where
"idx_pqueue_pop_fun (xs, m) = (butlast xs, list_update m (fst (last xs)) None)"
lemma idx_pqueue_pop_correct [forward_arg]:
"index_of_pqueue (xs, m) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> r = idx_pqueue_pop_fun (xs, m) \<Longrightarrow>
index_of_pqueue r \<and> fst r = butlast xs \<and> length (snd r) = length m"
@proof
@unfold "idx_pqueue_pop_fun (xs, m)"
@have "length xs = length (butlast xs) + 1"
@have "fst (xs ! length (butlast xs)) < length m" (* TODO: remove? *)
@qed
subsection \<open>Bubble up and down\<close>
function idx_bubble_down_fun :: "'a::linorder idx_pqueue \<Rightarrow> nat \<Rightarrow> 'a idx_pqueue" where
"idx_bubble_down_fun (xs, m) k = (
if s2 k < length xs then
if snd (xs ! s1 k) \<le> snd (xs ! s2 k) then
if snd (xs ! k) > snd (xs ! s1 k) then
idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s1 k)) (s1 k)
else (xs, m)
else
if snd (xs ! k) > snd (xs ! s2 k) then
idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s2 k)) (s2 k)
else (xs, m)
else if s1 k < length xs then
if snd (xs ! k) > snd (xs ! s1 k) then
idx_bubble_down_fun (idx_pqueue_swap_fun (xs, m) k (s1 k)) (s1 k)
else (xs, m)
else (xs, m))"
by pat_completeness auto
termination by (relation "measure (\<lambda>((xs,_),k). (length xs - k))") (simp_all, auto2+)
lemma idx_bubble_down_fun_correct:
"r = idx_bubble_down_fun x k \<Longrightarrow> is_heap_partial1 (fst x) k \<Longrightarrow>
is_heap (fst r) \<and> mset (fst r) = mset (fst x) \<and> length (snd r) = length (snd x)"
@proof @fun_induct "idx_bubble_down_fun x k" @with
@subgoal "(x = (xs, m), k = k)"
@unfold "idx_bubble_down_fun (xs, m) k"
@case "s2 k < length xs" @with
@case "snd (xs ! s1 k) \<le> snd (xs ! s2 k)"
@end
@case "s1 k < length xs" @end
@qed
setup \<open>add_forward_prfstep_cond @{thm idx_bubble_down_fun_correct} [with_term "?r"]\<close>
lemma idx_bubble_down_fun_correct2 [forward]:
"index_of_pqueue x \<Longrightarrow> index_of_pqueue (idx_bubble_down_fun x k)"
@proof @fun_induct "idx_bubble_down_fun x k" @with
@subgoal "(x = (xs, m), k = k)"
@unfold "idx_bubble_down_fun (xs, m) k"
@case "s2 k < length xs" @with
@case "snd (xs ! s1 k) \<le> snd (xs ! s2 k)"
@end
@case "s1 k < length xs" @end
@qed
fun idx_bubble_up_fun :: "'a::linorder idx_pqueue \<Rightarrow> nat \<Rightarrow> 'a idx_pqueue" where
"idx_bubble_up_fun (xs, m) k = (
if k = 0 then (xs, m)
else if k < length xs then
if snd (xs ! k) < snd (xs ! par k) then
idx_bubble_up_fun (idx_pqueue_swap_fun (xs, m) k (par k)) (par k)
else (xs, m)
else (xs, m))"
lemma idx_bubble_up_fun_correct:
"r = idx_bubble_up_fun x k \<Longrightarrow> is_heap_partial2 (fst x) k \<Longrightarrow>
is_heap (fst r) \<and> mset (fst r) = mset (fst x) \<and> length (snd r) = length (snd x)"
@proof @fun_induct "idx_bubble_up_fun x k" @with
@subgoal "(x = (xs, m), k = k)"
@unfold "idx_bubble_up_fun (xs, m) k" @end
@qed
setup \<open>add_forward_prfstep_cond @{thm idx_bubble_up_fun_correct} [with_term "?r"]\<close>
lemma idx_bubble_up_fun_correct2 [forward]:
"index_of_pqueue x \<Longrightarrow> index_of_pqueue (idx_bubble_up_fun x k)"
@proof @fun_induct "idx_bubble_up_fun x k" @with
@subgoal "(x = (xs, m), k = k)"
@unfold "idx_bubble_up_fun (xs, m) k" @end
@qed
subsection \<open>Main operations\<close>
fun delete_min_idx_pqueue_fun :: "'a::linorder idx_pqueue \<Rightarrow> (nat \<times> 'a) \<times> 'a idx_pqueue" where
"delete_min_idx_pqueue_fun (xs, m) = (
let (xs', m') = idx_pqueue_swap_fun (xs, m) 0 (length xs - 1);
a'' = idx_pqueue_pop_fun (xs', m')
in (last xs', idx_bubble_down_fun a'' 0))"
lemma delete_min_idx_pqueue_correct:
"index_of_pqueue (xs, m) \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> res = delete_min_idx_pqueue_fun (xs, m) \<Longrightarrow>
index_of_pqueue (snd res)"
@proof @unfold "delete_min_idx_pqueue_fun (xs, m)" @qed
setup \<open>add_forward_prfstep_cond @{thm delete_min_idx_pqueue_correct} [with_term "?res"]\<close>
lemma hd_last_swap_eval_last [rewrite]:
"xs \<noteq> [] \<Longrightarrow> last (list_swap xs 0 (length xs - 1)) = hd xs"
@proof
@let "xs' = list_swap xs 0 (length xs - 1)"
@have "last xs' = xs' ! (length xs - 1)"
@qed
text \<open>Correctness of delete-min.\<close>
theorem delete_min_idx_pqueue_correct2:
"is_heap xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> res = delete_min_idx_pqueue_fun (xs, m) \<Longrightarrow> index_of_pqueue (xs, m) \<Longrightarrow>
is_heap (fst (snd res)) \<and> fst res = hd xs \<and> length (snd (snd res)) = length m \<and>
map_of_alist (fst (snd res)) = delete_map (fst (fst res)) (map_of_alist xs)"
@proof @unfold "delete_min_idx_pqueue_fun (xs, m)"
@let "xs' = list_swap xs 0 (length xs - 1)"
@have "is_heap_partial1 (butlast xs') 0"
@qed
setup \<open>add_forward_prfstep_cond @{thm delete_min_idx_pqueue_correct2} [with_term "?res"]\<close>
fun insert_idx_pqueue_fun :: "nat \<Rightarrow> 'a::linorder \<Rightarrow> 'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where
"insert_idx_pqueue_fun k v x = (
let x' = idx_pqueue_push_fun k v x in
idx_bubble_up_fun x' (length (fst x') - 1))"
lemma insert_idx_pqueue_correct [forward_arg]:
"index_of_pqueue (xs, m) \<Longrightarrow> k < length m \<Longrightarrow> \<not>has_key_alist xs k \<Longrightarrow>
index_of_pqueue (insert_idx_pqueue_fun k v (xs, m))"
@proof @unfold "insert_idx_pqueue_fun k v (xs, m)" @qed
text \<open>Correctness of insertion.\<close>
theorem insert_idx_pqueue_correct2:
"index_of_pqueue (xs, m) \<Longrightarrow> is_heap xs \<Longrightarrow> k < length m \<Longrightarrow> \<not>has_key_alist xs k \<Longrightarrow>
r = insert_idx_pqueue_fun k v (xs, m) \<Longrightarrow>
is_heap (fst r) \<and> length (snd r) = length m \<and>
map_of_alist (fst r) = map_of_alist xs { k \<rightarrow> v }"
@proof @unfold "insert_idx_pqueue_fun k v (xs, m)"
@have "is_heap_partial2 (xs @ [(k, v)]) (length xs)"
@qed
setup \<open>add_forward_prfstep_cond @{thm insert_idx_pqueue_correct2} [with_term "?r"]\<close>
fun update_idx_pqueue_fun :: "nat \<Rightarrow> 'a::linorder \<Rightarrow> 'a idx_pqueue \<Rightarrow> 'a idx_pqueue" where
"update_idx_pqueue_fun k v (xs, m) = (
if m ! k = None then
insert_idx_pqueue_fun k v (xs, m)
else let
i = the (m ! k);
xs' = list_update xs i (k, v)
in
if snd (xs ! i) \<le> v then idx_bubble_down_fun (xs', m) i
else idx_bubble_up_fun (xs', m) i)"
lemma update_idx_pqueue_correct [forward_arg]:
"index_of_pqueue (xs, m) \<Longrightarrow> k < length m \<Longrightarrow>
index_of_pqueue (update_idx_pqueue_fun k v (xs, m))"
@proof @unfold "update_idx_pqueue_fun k v (xs, m)"
@let "i' = the (m ! k)"
@let "xs' = list_update xs i' (k, v)"
@case "m ! k = None"
@have "index_of_pqueue (xs', m)"
@qed
text \<open>Correctness of update.\<close>
theorem update_idx_pqueue_correct2:
"index_of_pqueue (xs, m) \<Longrightarrow> is_heap xs \<Longrightarrow> k < length m \<Longrightarrow>
r = update_idx_pqueue_fun k v (xs, m) \<Longrightarrow>
is_heap (fst r) \<and> length (snd r) = length m \<and>
map_of_alist (fst r) = map_of_alist xs { k \<rightarrow> v }"
@proof @unfold "update_idx_pqueue_fun k v (xs, m)"
@let "i = the (m ! k)"
@let "xs' = list_update xs i (k, v)"
@have "xs' = fst (xs', m)" (* TODO: remove *)
@case "m ! k = None"
@case "snd (xs ! the (m ! k)) \<le> v" @with
@have "is_heap_partial1 xs' i"
@end
@have "is_heap_partial2 xs' i"
@qed
setup \<open>add_forward_prfstep_cond @{thm update_idx_pqueue_correct2} [with_term "?r"]\<close>
end
|