Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,005 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
(*
File: RBTree.thy
Author: Bohua Zhan
*)
section \<open>Red-black trees\<close>
theory RBTree
imports Lists_Ex
begin
text \<open>
Verification of functional red-black trees. For general technique,
see Lists\_Ex.thy.
\<close>
subsection \<open>Definition of RBT\<close>
datatype color = R | B
datatype ('a, 'b) rbt =
Leaf
| Node (lsub: "('a, 'b) rbt") (cl: color) (key: 'a) (val: 'b) (rsub: "('a, 'b) rbt")
where
"cl Leaf = B"
setup \<open>add_resolve_prfstep @{thm color.distinct(1)}\<close>
setup \<open>add_resolve_prfstep @{thm rbt.distinct(1)}\<close>
setup \<open>fold add_rewrite_rule @{thms rbt.sel}\<close>
setup \<open>add_forward_prfstep @{thm rbt.collapse}\<close>
setup \<open>add_var_induct_rule @{thm rbt.induct}\<close>
lemma not_R [forward]: "c \<noteq> R \<Longrightarrow> c = B" using color.exhaust by blast
lemma not_B [forward]: "c \<noteq> B \<Longrightarrow> c = R" using color.exhaust by blast
lemma red_not_leaf [forward]: "cl t = R \<Longrightarrow> t \<noteq> Leaf" by auto
subsection \<open>RBT invariants\<close>
fun black_depth :: "('a, 'b) rbt \<Rightarrow> nat" where
"black_depth Leaf = 0"
| "black_depth (Node l R k v r) = black_depth l"
| "black_depth (Node l B k v r) = black_depth l + 1"
setup \<open>fold add_rewrite_rule @{thms black_depth.simps}\<close>
fun cl_inv :: "('a, 'b) rbt \<Rightarrow> bool" where
"cl_inv Leaf = True"
| "cl_inv (Node l R k v r) = (cl_inv l \<and> cl_inv r \<and> cl l = B \<and> cl r = B)"
| "cl_inv (Node l B k v r) = (cl_inv l \<and> cl_inv r)"
setup \<open>fold add_rewrite_rule @{thms cl_inv.simps}\<close>
fun bd_inv :: "('a, 'b) rbt \<Rightarrow> bool" where
"bd_inv Leaf = True"
| "bd_inv (Node l c k v r) = (bd_inv l \<and> bd_inv r \<and> black_depth l = black_depth r)"
setup \<open>fold add_rewrite_rule @{thms bd_inv.simps}\<close>
definition is_rbt :: "('a, 'b) rbt \<Rightarrow> bool" where [rewrite]:
"is_rbt t = (cl_inv t \<and> bd_inv t)"
lemma cl_invI: "cl_inv l \<Longrightarrow> cl_inv r \<Longrightarrow> cl_inv (Node l B k v r)" by auto2
setup \<open>add_forward_prfstep_cond @{thm cl_invI} [with_term "Node ?l B ?k ?v ?r"]\<close>
lemma bd_invI: "bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> black_depth l = black_depth r \<Longrightarrow> bd_inv (Node l c k v r)" by auto2
setup \<open>add_forward_prfstep_cond @{thm bd_invI} [with_term "Node ?l ?c ?k ?v ?r"]\<close>
lemma is_rbt_rec [forward]: "is_rbt (Node l c k v r) \<Longrightarrow> is_rbt l \<and> is_rbt r"
@proof @case "c = R" @qed
subsection \<open>Balancedness of RBT\<close>
(* TODO: remove after having general normalization procedure for nats. *)
lemma two_distrib [rewrite]: "(2::nat) * (a + 1) = 2 * a + 2" by simp
fun min_depth :: "('a, 'b) rbt \<Rightarrow> nat" where
"min_depth Leaf = 0"
| "min_depth (Node l c k v r) = min (min_depth l) (min_depth r) + 1"
setup \<open>fold add_rewrite_rule @{thms min_depth.simps}\<close>
fun max_depth :: "('a, 'b) rbt \<Rightarrow> nat" where
"max_depth Leaf = 0"
| "max_depth (Node l c k v r) = max (max_depth l) (max_depth r) + 1"
setup \<open>fold add_rewrite_rule @{thms max_depth.simps}\<close>
text \<open>Balancedness of red-black trees.\<close>
theorem rbt_balanced: "is_rbt t \<Longrightarrow> max_depth t \<le> 2 * min_depth t + 1"
@proof
@induct t for "is_rbt t \<longrightarrow> black_depth t \<le> min_depth t" @with
@subgoal "t = Node l c k v r" @case "c = R" @endgoal
@end
@induct t for "is_rbt t \<longrightarrow> (if cl t = R then max_depth t \<le> 2 * black_depth t + 1
else max_depth t \<le> 2 * black_depth t)" @with
@subgoal "t = Node l c k v r" @case "c = R" @endgoal
@end
@have "max_depth t \<le> 2 * black_depth t + 1"
@qed
subsection \<open>Definition and basic properties of cl\_inv'\<close>
fun cl_inv' :: "('a, 'b) rbt \<Rightarrow> bool" where
"cl_inv' Leaf = True"
| "cl_inv' (Node l c k v r) = (cl_inv l \<and> cl_inv r)"
setup \<open>fold add_rewrite_rule @{thms cl_inv'.simps}\<close>
lemma cl_inv'B [forward, backward1]:
"cl_inv' t \<Longrightarrow> cl t = B \<Longrightarrow> cl_inv t"
@proof @case "t = Leaf" @qed
lemma cl_inv'R [forward]:
"cl_inv' (Node l R k v r) \<Longrightarrow> cl l = B \<Longrightarrow> cl r = B \<Longrightarrow> cl_inv (Node l R k v r)" by auto2
lemma cl_inv_to_cl_inv' [forward]: "cl_inv t \<Longrightarrow> cl_inv' t"
@proof @case "t = Leaf" @case "cl t = R" @qed
lemma cl_inv'I [forward_arg]:
"cl_inv l \<Longrightarrow> cl_inv r \<Longrightarrow> cl_inv' (Node l c k v r)" by auto
subsection \<open>Set of keys, sortedness\<close>
fun rbt_in_traverse :: "('a, 'b) rbt \<Rightarrow> 'a list" where
"rbt_in_traverse Leaf = []"
| "rbt_in_traverse (Node l c k v r) = rbt_in_traverse l @ k # rbt_in_traverse r"
setup \<open>fold add_rewrite_rule @{thms rbt_in_traverse.simps}\<close>
fun rbt_set :: "('a, 'b) rbt \<Rightarrow> 'a set" where
"rbt_set Leaf = {}"
| "rbt_set (Node l c k v r) = {k} \<union> rbt_set l \<union> rbt_set r"
setup \<open>fold add_rewrite_rule @{thms rbt_set.simps}\<close>
fun rbt_in_traverse_pairs :: "('a, 'b) rbt \<Rightarrow> ('a \<times> 'b) list" where
"rbt_in_traverse_pairs Leaf = []"
| "rbt_in_traverse_pairs (Node l c k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r"
setup \<open>fold add_rewrite_rule @{thms rbt_in_traverse_pairs.simps}\<close>
lemma rbt_in_traverse_fst [rewrite]: "map fst (rbt_in_traverse_pairs t) = rbt_in_traverse t"
@proof @induct t @qed
definition rbt_map :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) map" where
"rbt_map t = map_of_alist (rbt_in_traverse_pairs t)"
setup \<open>add_rewrite_rule @{thm rbt_map_def}\<close>
fun rbt_sorted :: "('a::linorder, 'b) rbt \<Rightarrow> bool" where
"rbt_sorted Leaf = True"
| "rbt_sorted (Node l c k v r) = ((\<forall>x\<in>rbt_set l. x < k) \<and> (\<forall>x\<in>rbt_set r. k < x) \<and> rbt_sorted l \<and> rbt_sorted r)"
setup \<open>fold add_rewrite_rule @{thms rbt_sorted.simps}\<close>
lemma rbt_sorted_lr [forward]:
"rbt_sorted (Node l c k v r) \<Longrightarrow> rbt_sorted l \<and> rbt_sorted r" by auto2
lemma rbt_inorder_preserve_set [rewrite]:
"rbt_set t = set (rbt_in_traverse t)"
@proof @induct t @qed
lemma rbt_inorder_sorted [rewrite]:
"rbt_sorted t \<longleftrightarrow> strict_sorted (map fst (rbt_in_traverse_pairs t))"
@proof @induct t @qed
setup \<open>fold del_prfstep_thm (@{thms rbt_set.simps} @ @{thms rbt_sorted.simps})\<close>
subsection \<open>Balance function\<close>
definition balanceR :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"balanceR l k v r =
(if cl r = R then
let lr = lsub r; rr = rsub r in
if cl lr = R then Node (Node l B k v (lsub lr)) R (key lr) (val lr) (Node (rsub lr) B (key r) (val r) rr)
else if cl rr = R then Node (Node l B k v lr) R (key r) (val r) (Node (lsub rr) B (key rr) (val rr) (rsub rr))
else Node l B k v r
else Node l B k v r)"
definition balance :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"balance l k v r =
(if cl l = R then
let ll = lsub l; rl = rsub l in
if cl ll = R then Node (Node (lsub ll) B (key ll) (val ll) (rsub ll)) R (key l) (val l) (Node (rsub l) B k v r)
else if cl rl = R then Node (Node (lsub l) B (key l) (val l) (lsub rl)) R (key rl) (val rl) (Node (rsub rl) B k v r)
else balanceR l k v r
else balanceR l k v r)"
setup \<open>register_wellform_data ("balance l k v r", ["black_depth l = black_depth r"])\<close>
setup \<open>add_prfstep_check_req ("balance l k v r", "black_depth l = black_depth r")\<close>
lemma balance_non_Leaf [resolve]: "balance l k v r \<noteq> Leaf" by auto2
lemma balance_bdinv [forward_arg]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> black_depth l = black_depth r \<Longrightarrow> bd_inv (balance l k v r)"
@proof @have "bd_inv (balanceR l k v r)" @qed
lemma balance_bd [rewrite]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> black_depth l = black_depth r \<Longrightarrow>
black_depth (balance l k v r) = black_depth l + 1"
@proof @have "black_depth (balanceR l k v r) = black_depth l + 1" @qed
lemma balance_cl1 [forward]:
"cl_inv' l \<Longrightarrow> cl_inv r \<Longrightarrow> cl_inv (balance l k v r)" by auto2
lemma balance_cl2 [forward]:
"cl_inv l \<Longrightarrow> cl_inv' r \<Longrightarrow> cl_inv (balance l k v r)" by auto2
lemma balanceR_inorder_pairs [rewrite]:
"rbt_in_traverse_pairs (balanceR l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2
lemma balance_inorder_pairs [rewrite]:
"rbt_in_traverse_pairs (balance l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2
setup \<open>fold del_prfstep_thm [@{thm balanceR_def}, @{thm balance_def}]\<close>
subsection \<open>ins function\<close>
fun ins :: "'a::order \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
"ins x v Leaf = Node Leaf R x v Leaf"
| "ins x v (Node l c y w r) =
(if c = B then
(if x = y then Node l B x v r
else if x < y then balance (ins x v l) y w r
else balance l y w (ins x v r))
else
(if x = y then Node l R x v r
else if x < y then Node (ins x v l) R y w r
else Node l R y w (ins x v r)))"
setup \<open>fold add_rewrite_rule @{thms ins.simps}\<close>
lemma ins_non_Leaf [resolve]: "ins x v t \<noteq> Leaf"
@proof @case "t = Leaf" @qed
lemma cl_inv_ins [forward]:
"cl_inv t \<Longrightarrow> cl_inv' (ins x v t)"
@proof
@induct t for "cl_inv t \<longrightarrow> (if cl t = B then cl_inv (ins x v t) else cl_inv' (ins x v t))"
@qed
lemma bd_inv_ins:
"bd_inv t \<Longrightarrow> bd_inv (ins x v t) \<and> black_depth t = black_depth (ins x v t)"
@proof @induct t @qed
setup \<open>add_forward_prfstep_cond (conj_left_th @{thm bd_inv_ins}) [with_term "ins ?x ?v ?t"]\<close>
lemma ins_inorder_pairs [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_in_traverse_pairs (ins x v t) = ordered_insert_pairs x v (rbt_in_traverse_pairs t)"
@proof @induct t @qed
subsection \<open>Paint function\<close>
fun paint :: "color \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
"paint c Leaf = Leaf"
| "paint c (Node l c' x v r) = Node l c x v r"
setup \<open>fold add_rewrite_rule @{thms paint.simps}\<close>
setup \<open>register_wellform_data ("paint c t", ["t \<noteq> Leaf"])\<close>
setup \<open>add_prfstep_check_req ("paint c t", "t \<noteq> Leaf")\<close>
lemma paint_cl_inv' [forward]: "cl_inv' t \<Longrightarrow> cl_inv' (paint c t)" by auto2
lemma paint_bd_inv [forward]: "bd_inv t \<Longrightarrow> bd_inv (paint c t)" by auto2
lemma paint_bd [rewrite]:
"bd_inv t \<Longrightarrow> t \<noteq> Leaf \<Longrightarrow> cl t = B \<Longrightarrow> black_depth (paint R t) = black_depth t - 1" by auto2
lemma paint_in_traverse_pairs [rewrite]:
"rbt_in_traverse_pairs (paint c t) = rbt_in_traverse_pairs t" by auto2
subsection \<open>Insert function\<close>
definition rbt_insert :: "'a::order \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"rbt_insert x v t = paint B (ins x v t)"
text \<open>Correctness results for insertion.\<close>
theorem insert_is_rbt [forward]:
"is_rbt t \<Longrightarrow> is_rbt (rbt_insert x v t)" by auto2
theorem insert_sorted [forward]:
"rbt_sorted t \<Longrightarrow> rbt_sorted (rbt_insert x v t)" by auto2
theorem insert_rbt_map [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_map (rbt_insert x v t) = (rbt_map t) {x \<rightarrow> v}" by auto2
subsection \<open>Search on sorted trees and its correctness\<close>
fun rbt_search :: "('a::ord, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b option" where
"rbt_search Leaf x = None"
| "rbt_search (Node l c y w r) x =
(if x = y then Some w
else if x < y then rbt_search l x
else rbt_search r x)"
setup \<open>fold add_rewrite_rule @{thms rbt_search.simps}\<close>
text \<open>Correctness of search\<close>
theorem rbt_search_correct [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_search t x = (rbt_map t)\<langle>x\<rangle>"
@proof @induct t @qed
subsection \<open>balL and balR\<close>
definition balL :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"balL l k v r = (let lr = lsub r in
if cl l = R then Node (Node (lsub l) B (key l) (val l) (rsub l)) R k v r
else if r = Leaf then Node l R k v r
else if cl r = B then balance l k v (Node (lsub r) R (key r) (val r) (rsub r))
else if lr = Leaf then Node l R k v r
else if cl lr = B then
Node (Node l B k v (lsub lr)) R (key lr) (val lr) (balance (rsub lr) (key r) (val r) (paint R (rsub r)))
else Node l R k v r)"
setup \<open>register_wellform_data ("balL l k v r", ["black_depth l + 1 = black_depth r"])\<close>
setup \<open>add_prfstep_check_req ("balL l k v r", "black_depth l + 1 = black_depth r")\<close>
definition balR :: "('a, 'b) rbt \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"balR l k v r = (let rl = rsub l in
if cl r = R then Node l R k v (Node (lsub r) B (key r) (val r) (rsub r))
else if l = Leaf then Node l R k v r
else if cl l = B then balance (Node (lsub l) R (key l) (val l) (rsub l)) k v r
else if rl = Leaf then Node l R k v r
else if cl rl = B then
Node (balance (paint R (lsub l)) (key l) (val l) (lsub rl)) R (key rl) (val rl) (Node (rsub rl) B k v r)
else Node l R k v r)"
setup \<open>register_wellform_data ("balR l k v r", ["black_depth l = black_depth r + 1"])\<close>
setup \<open>add_prfstep_check_req ("balR l k v r", "black_depth l = black_depth r + 1")\<close>
lemma balL_bd [forward_arg]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> cl r = B \<Longrightarrow> black_depth l + 1 = black_depth r \<Longrightarrow>
bd_inv (balL l k v r) \<and> black_depth (balL l k v r) = black_depth l + 1" by auto2
lemma balL_bd' [forward_arg]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> cl_inv r \<Longrightarrow> black_depth l + 1 = black_depth r \<Longrightarrow>
bd_inv (balL l k v r) \<and> black_depth (balL l k v r) = black_depth l + 1" by auto2
lemma balL_cl [forward_arg]:
"cl_inv' l \<Longrightarrow> cl_inv r \<Longrightarrow> cl r = B \<Longrightarrow> cl_inv (balL l k v r)" by auto2
lemma balL_cl' [forward]:
"cl_inv' l \<Longrightarrow> cl_inv r \<Longrightarrow> cl_inv' (balL l k v r)" by auto2
lemma balR_bd [forward_arg]:
"bd_inv l \<Longrightarrow> bd_inv r \<Longrightarrow> cl_inv l \<Longrightarrow> black_depth l = black_depth r + 1 \<Longrightarrow>
bd_inv (balR l k v r) \<and> black_depth (balR l k v r) = black_depth l" by auto2
lemma balR_cl [forward_arg]:
"cl_inv l \<Longrightarrow> cl_inv' r \<Longrightarrow> cl l = B \<Longrightarrow> cl_inv (balR l k v r)" by auto2
lemma balR_cl' [forward]:
"cl_inv l \<Longrightarrow> cl_inv' r \<Longrightarrow> cl_inv' (balR l k v r)" by auto2
lemma balL_in_traverse_pairs [rewrite]:
"rbt_in_traverse_pairs (balL l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2
lemma balR_in_traverse_pairs [rewrite]:
"rbt_in_traverse_pairs (balR l k v r) = rbt_in_traverse_pairs l @ (k, v) # rbt_in_traverse_pairs r" by auto2
setup \<open>fold del_prfstep_thm [@{thm balL_def}, @{thm balR_def}]\<close>
subsection \<open>Combine\<close>
fun combine :: "('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
"combine Leaf t = t"
| "combine t Leaf = t"
| "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2) = (
if c1 = R then
if c2 = R then
let tm = combine r1 l2 in
if cl tm = R then
Node (Node l1 R k1 v1 (lsub tm)) R (key tm) (val tm) (Node (rsub tm) R k2 v2 r2)
else
Node l1 R k1 v1 (Node tm R k2 v2 r2)
else
Node l1 R k1 v1 (combine r1 (Node l2 c2 k2 v2 r2))
else
if c2 = B then
let tm = combine r1 l2 in
if cl tm = R then
Node (Node l1 B k1 v1 (lsub tm)) R (key tm) (val tm) (Node (rsub tm) B k2 v2 r2)
else
balL l1 k1 v1 (Node tm B k2 v2 r2)
else
Node (combine (Node l1 c1 k1 v1 r1) l2) R k2 v2 r2)"
setup \<open>fold add_rewrite_rule @{thms combine.simps(1,2)}\<close>
lemma combine_bd [forward_arg]:
"bd_inv lt \<Longrightarrow> bd_inv rt \<Longrightarrow> black_depth lt = black_depth rt \<Longrightarrow>
bd_inv (combine lt rt) \<and> black_depth (combine lt rt) = black_depth lt"
@proof @fun_induct "combine lt rt" @with
@subgoal "(lt = Node l1 c1 k1 v1 r1, rt = Node l2 c2 k2 v2 r2)"
@unfold "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)"
@case "c1 = B" @with @case "c2 = B" @with @case "cl (combine r1 l2) = B" @with
@have "cl (Node (combine r1 l2) B k2 v2 r2) = B" @end @end @end
@endgoal @end
@qed
lemma combine_cl:
"cl_inv lt \<Longrightarrow> cl_inv rt \<Longrightarrow>
(cl lt = B \<longrightarrow> cl rt = B \<longrightarrow> cl_inv (combine lt rt)) \<and> cl_inv' (combine lt rt)"
@proof @fun_induct "combine lt rt" @with
@subgoal "(lt = Node l1 c1 k1 v1 r1, rt = Node l2 c2 k2 v2 r2)"
@unfold "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)"
@case "c1 = B" @with @case "c2 = B" @with @case "cl (combine r1 l2) = B" @with
@have "cl (Node (combine r1 l2) B k2 v2 r2) = B" @end @end @end
@endgoal @end
@qed
setup \<open>add_forward_prfstep_cond @{thm combine_cl} [with_term "combine ?lt ?rt"]\<close>
lemma combine_in_traverse_pairs [rewrite]:
"rbt_in_traverse_pairs (combine lt rt) = rbt_in_traverse_pairs lt @ rbt_in_traverse_pairs rt"
@proof @fun_induct "combine lt rt" @with
@subgoal "(lt = Node l1 c1 k1 v1 r1, rt = Node l2 c2 k2 v2 r2)"
@unfold "combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)"
@case "c1 = R" @with @case "c2 = R" @with @case "cl (combine r1 l2) = R" @with
@have "rbt_in_traverse_pairs (combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)) =
rbt_in_traverse_pairs l1 @ (k1, v1) # rbt_in_traverse_pairs (combine r1 l2) @ (k2, v2) # rbt_in_traverse_pairs r2"
@end @end @end
@case "c1 = B" @with @case "c2 = B" @with @case "cl (combine r1 l2) = R" @with
@have "rbt_in_traverse_pairs (combine (Node l1 c1 k1 v1 r1) (Node l2 c2 k2 v2 r2)) =
rbt_in_traverse_pairs l1 @ (k1, v1) # rbt_in_traverse_pairs (combine r1 l2) @ (k2, v2) # rbt_in_traverse_pairs r2"
@end @end @end
@endgoal @end
@qed
subsection \<open>Deletion\<close>
fun del :: "'a::linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
"del x Leaf = Leaf"
| "del x (Node l _ k v r) =
(if x = k then combine l r
else if x < k then
if l = Leaf then Node Leaf R k v r
else if cl l = B then balL (del x l) k v r
else Node (del x l) R k v r
else
if r = Leaf then Node l R k v Leaf
else if cl r = B then balR l k v (del x r)
else Node l R k v (del x r))"
setup \<open>add_rewrite_rule @{thm del.simps(1)}\<close>
lemma del_bd [forward_arg]:
"bd_inv t \<Longrightarrow> cl_inv t \<Longrightarrow> bd_inv (del x t) \<and> (
if cl t = R then black_depth (del x t) = black_depth t
else black_depth (del x t) = black_depth t - 1)"
@proof @induct t @with
@subgoal "t = Node l c k v r"
@unfold "del x (Node l c k v r)"
@case "x = k" @case "x < k" @with
@case "l = Leaf" @case "cl l = B" @end
@case "x > k" @with
@case "r = Leaf" @case "cl r = B" @end
@endgoal @end
@qed
lemma del_cl:
"cl_inv t \<Longrightarrow> if cl t = R then cl_inv (del x t) else cl_inv' (del x t)"
@proof @induct t @with
@subgoal "t = Node l c k v r"
@unfold "del x (Node l c k v r)"
@case "x = k" @case "x < k"
@endgoal @end
@qed
setup \<open>add_forward_prfstep_cond @{thm del_cl} [with_term "del ?x ?t"]\<close>
lemma del_in_traverse_pairs [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_in_traverse_pairs (del x t) = remove_elt_pairs x (rbt_in_traverse_pairs t)"
@proof @induct t @with
@subgoal "t = Node l c k v r"
@unfold "del x (Node l c k v r)"
@endgoal @end
@qed
definition delete :: "'a::linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where [rewrite]:
"delete x t = paint B (del x t)"
text \<open>Correctness results for deletion.\<close>
theorem delete_is_rbt [forward]:
"is_rbt t \<Longrightarrow> is_rbt (delete x t)" by auto2
theorem delete_sorted [forward]:
"rbt_sorted t \<Longrightarrow> rbt_sorted (delete x t)" by auto2
theorem delete_rbt_map [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_map (delete x t) = delete_map x (rbt_map t)" by auto2
setup \<open>del_prfstep "RBTree.balance_case"\<close>
setup \<open>del_prfstep "RBTree.balL_case"\<close>
setup \<open>del_prfstep "RBTree.balR_case"\<close>
setup \<open>del_prfstep "RBTree.paint_case"\<close>
end
|