Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 15,172 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
(*
File: Rect_Intersect.thy
Author: Bohua Zhan
*)
section \<open>Rectangle intersection\<close>
theory Rect_Intersect
imports Interval_Tree
begin
text \<open>
Functional version of algorithm for detecting rectangle intersection.
See \cite[Exercise 14.3-7]{cormen2009introduction} for a reference.
\<close>
subsection \<open>Definition of rectangles\<close>
datatype 'a rectangle = Rectangle (xint: "'a interval") (yint: "'a interval")
setup \<open>add_simple_datatype "rectangle"\<close>
definition is_rect :: "('a::linorder) rectangle \<Rightarrow> bool" where [rewrite]:
"is_rect rect \<longleftrightarrow> is_interval (xint rect) \<and> is_interval (yint rect)"
definition is_rect_list :: "('a::linorder) rectangle list \<Rightarrow> bool" where [rewrite]:
"is_rect_list rects \<longleftrightarrow> (\<forall>i<length rects. is_rect (rects ! i))"
lemma is_rect_listD: "is_rect_list rects \<Longrightarrow> i < length rects \<Longrightarrow> is_rect (rects ! i)" by auto2
setup \<open>add_forward_prfstep_cond @{thm is_rect_listD} [with_term "?rects ! ?i"]\<close>
setup \<open>del_prfstep_thm_eqforward @{thm is_rect_list_def}\<close>
definition is_rect_overlap :: "('a::linorder) rectangle \<Rightarrow> ('a::linorder) rectangle \<Rightarrow> bool" where [rewrite]:
"is_rect_overlap A B \<longleftrightarrow> (is_overlap (xint A) (xint B) \<and> is_overlap (yint A) (yint B))"
definition has_rect_overlap :: "('a::linorder) rectangle list \<Rightarrow> bool" where [rewrite]:
"has_rect_overlap As \<longleftrightarrow> (\<exists>i<length As. \<exists>j<length As. i \<noteq> j \<and> is_rect_overlap (As ! i) (As ! j))"
subsection \<open>INS / DEL operations\<close>
datatype 'a operation =
INS (pos: 'a) (op_idx: nat) (op_int: "'a interval")
| DEL (pos: 'a) (op_idx: nat) (op_int: "'a interval")
setup \<open>fold add_rewrite_rule_back @{thms operation.collapse}\<close>
setup \<open>fold add_rewrite_rule @{thms operation.sel}\<close>
setup \<open>fold add_rewrite_rule @{thms operation.case}\<close>
setup \<open>add_resolve_prfstep @{thm operation.distinct(1)}\<close>
setup \<open>add_forward_prfstep_cond @{thm operation.disc(1)} [with_term "INS ?x11.0 ?x12.0 ?x13.0"]\<close>
setup \<open>add_forward_prfstep_cond @{thm operation.disc(2)} [with_term "DEL ?x21.0 ?x22.0 ?x23.0"]\<close>
instantiation operation :: (linorder) linorder begin
definition less: "(a < b) = (if pos a \<noteq> pos b then pos a < pos b else
if is_INS a \<noteq> is_INS b then is_INS a \<and> \<not>is_INS b
else if op_idx a \<noteq> op_idx b then op_idx a < op_idx b else op_int a < op_int b)"
definition less_eq: "(a \<le> b) = (if pos a \<noteq> pos b then pos a < pos b else
if is_INS a \<noteq> is_INS b then is_INS a \<and> \<not>is_INS b
else if op_idx a \<noteq> op_idx b then op_idx a < op_idx b else op_int a \<le> op_int b)"
instance proof
fix x y z :: "'a operation"
show a: "(x < y) = (x \<le> y \<and> \<not> y \<le> x)"
by (smt Rect_Intersect.less Rect_Intersect.less_eq leD le_cases3 not_less_iff_gr_or_eq)
show b: "x \<le> x"
by (simp add: local.less_eq)
show c: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"
by (smt Rect_Intersect.less Rect_Intersect.less_eq a dual_order.trans less_trans)
show d: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"
by (metis Rect_Intersect.less Rect_Intersect.less_eq a le_imp_less_or_eq operation.expand)
show e: "x \<le> y \<or> y \<le> x"
using local.less_eq by fastforce
qed end
setup \<open>fold add_rewrite_rule [@{thm less_eq}, @{thm less}]\<close>
lemma operation_leD [forward]:
"(a::('a::linorder operation)) \<le> b \<Longrightarrow> pos a \<le> pos b" by auto2
lemma operation_lessI [backward]:
"p1 \<le> p2 \<Longrightarrow> INS p1 n1 i1 < DEL p2 n2 i2"
@proof
@have "is_INS (INS p1 n1 i1) = True"
@have "is_INS (DEL p2 n2 i2) = False"
@qed
setup \<open>fold del_prfstep_thm [@{thm less_eq}, @{thm less}]\<close>
subsection \<open>Set of operations corresponding to a list of rectangles\<close>
fun ins_op :: "'a rectangle list \<Rightarrow> nat \<Rightarrow> ('a::linorder) operation" where
"ins_op rects i = INS (low (yint (rects ! i))) i (xint (rects ! i))"
setup \<open>add_rewrite_rule @{thm ins_op.simps}\<close>
fun del_op :: "'a rectangle list \<Rightarrow> nat \<Rightarrow> ('a::linorder) operation" where
"del_op rects i = DEL (high (yint (rects ! i))) i (xint (rects ! i))"
setup \<open>add_rewrite_rule @{thm del_op.simps}\<close>
definition ins_ops :: "'a rectangle list \<Rightarrow> ('a::linorder) operation list" where [rewrite]:
"ins_ops rects = list (\<lambda>i. ins_op rects i) (length rects)"
definition del_ops :: "'a rectangle list \<Rightarrow> ('a::linorder) operation list" where [rewrite]:
"del_ops rects = list (\<lambda>i. del_op rects i) (length rects)"
lemma ins_ops_distinct [forward]: "distinct (ins_ops rects)"
@proof
@let "xs = ins_ops rects"
@have "\<forall>i<length xs. \<forall>j<length xs. i \<noteq> j \<longrightarrow> xs ! i \<noteq> xs ! j"
@qed
lemma del_ops_distinct [forward]: "distinct (del_ops rects)"
@proof
@let "xs = del_ops rects"
@have "\<forall>i<length xs. \<forall>j<length xs. i \<noteq> j \<longrightarrow> xs ! i \<noteq> xs ! j"
@qed
lemma set_ins_ops [rewrite]:
"oper \<in> set (ins_ops rects) \<longleftrightarrow> op_idx oper < length rects \<and> oper = ins_op rects (op_idx oper)"
@proof
@case "oper \<in> set (ins_ops rects)" @with
@obtain i where "i < length rects" "ins_ops rects ! i = oper" @end
@case "op_idx oper < length rects \<and> oper = ins_op rects (op_idx oper)" @with
@have "oper = (ins_ops rects) ! (op_idx oper)" @end
@qed
lemma set_del_ops [rewrite]:
"oper \<in> set (del_ops rects) \<longleftrightarrow> op_idx oper < length rects \<and> oper = del_op rects (op_idx oper)"
@proof
@case "oper \<in> set (del_ops rects)" @with
@obtain i where "i < length rects" "del_ops rects ! i = oper" @end
@case "op_idx oper < length rects \<and> oper = del_op rects (op_idx oper)" @with
@have "oper = (del_ops rects) ! (op_idx oper)" @end
@qed
definition all_ops :: "'a rectangle list \<Rightarrow> ('a::linorder) operation list" where [rewrite]:
"all_ops rects = sort (ins_ops rects @ del_ops rects)"
lemma all_ops_distinct [forward]: "distinct (all_ops rects)"
@proof @have "distinct (ins_ops rects @ del_ops rects)" @qed
lemma set_all_ops_idx [forward]:
"oper \<in> set (all_ops rects) \<Longrightarrow> op_idx oper < length rects" by auto2
lemma set_all_ops_ins [forward]:
"INS p n i \<in> set (all_ops rects) \<Longrightarrow> INS p n i = ins_op rects n" by auto2
lemma set_all_ops_del [forward]:
"DEL p n i \<in> set (all_ops rects) \<Longrightarrow> DEL p n i = del_op rects n" by auto2
lemma ins_in_set_all_ops:
"i < length rects \<Longrightarrow> ins_op rects i \<in> set (all_ops rects)" by auto2
setup \<open>add_forward_prfstep_cond @{thm ins_in_set_all_ops} [with_term "ins_op ?rects ?i"]\<close>
lemma del_in_set_all_ops:
"i < length rects \<Longrightarrow> del_op rects i \<in> set (all_ops rects)" by auto2
setup \<open>add_forward_prfstep_cond @{thm del_in_set_all_ops} [with_term "del_op ?rects ?i"]\<close>
lemma all_ops_sorted [forward]: "sorted (all_ops rects)" by auto2
lemma all_ops_nonempty [backward]: "rects \<noteq> [] \<Longrightarrow> all_ops rects \<noteq> []"
@proof @have "length (all_ops rects) > 0" @qed
setup \<open>del_prfstep_thm @{thm all_ops_def}\<close>
subsection \<open>Applying a set of operations\<close>
definition apply_ops_k :: "('a::linorder) rectangle list \<Rightarrow> nat \<Rightarrow> nat set" where [rewrite]:
"apply_ops_k rects k = (let ops = all_ops rects in
{i. i < length rects \<and> (\<exists>j<k. ins_op rects i = ops ! j) \<and> \<not>(\<exists>j<k. del_op rects i = ops ! j)})"
setup \<open>register_wellform_data ("apply_ops_k rects k", ["k < length (all_ops rects)"])\<close>
lemma apply_ops_set_mem [rewrite]:
"ops = all_ops rects \<Longrightarrow>
i \<in> apply_ops_k rects k \<longleftrightarrow> (i < length rects \<and> (\<exists>j<k. ins_op rects i = ops ! j) \<and> \<not>(\<exists>j<k. del_op rects i = ops ! j))"
by auto2
setup \<open>del_prfstep_thm @{thm apply_ops_k_def}\<close>
definition xints_of :: "'a rectangle list \<Rightarrow> nat set \<Rightarrow> (('a::linorder) idx_interval) set" where [rewrite]:
"xints_of rect is = (\<lambda>i. IdxInterval (xint (rect ! i)) i) ` is"
lemma xints_of_mem [rewrite]:
"IdxInterval it i \<in> xints_of rect is \<longleftrightarrow> (i \<in> is \<and> xint (rect ! i) = it)" using xints_of_def by auto
lemma xints_diff [rewrite]:
"xints_of rects (A - B) = xints_of rects A - xints_of rects B"
@proof @have "inj (\<lambda>i. IdxInterval (xint (rects ! i)) i)" @qed
definition has_overlap_at_k :: "('a::linorder) rectangle list \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]:
"has_overlap_at_k rects k \<longleftrightarrow> (
let S = apply_ops_k rects k; ops = all_ops rects in
is_INS (ops ! k) \<and> has_overlap (xints_of rects S) (op_int (ops ! k)))"
setup \<open>register_wellform_data ("has_overlap_at_k rects k", ["k < length (all_ops rects)"])\<close>
lemma has_overlap_at_k_equiv [forward]:
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> k < length ops \<Longrightarrow>
has_overlap_at_k rects k \<Longrightarrow> has_rect_overlap rects"
@proof
@let "S = apply_ops_k rects k"
@have "has_overlap (xints_of rects S) (op_int (ops ! k))"
@obtain "xs' \<in> xints_of rects S" where "is_overlap (int xs') (op_int (ops ! k))"
@let "xs = int xs'" "i = idx xs'"
@let "j = op_idx (ops ! k)"
@have "ops ! k = ins_op rects j"
@have "i \<noteq> j" @with @contradiction
@obtain k' where "k' < k" "ops ! k' = ins_op rects i"
@have "ops ! k = ops ! k'"
@end
@have "low (yint (rects ! i)) \<le> pos (ops ! k)" @with
@obtain k' where "k' < k" "ops ! k' = ins_op rects i"
@have "ops ! k' \<le> ops ! k"
@end
@have "high (yint (rects ! i)) \<ge> pos (ops ! k)" @with
@obtain k' where "k' < length ops" "ops ! k' = del_op rects i"
@have "ops ! k' \<ge> ops ! k"
@end
@have "is_rect_overlap (rects ! i) (rects ! j)"
@qed
lemma has_overlap_at_k_equiv2 [resolve]:
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> has_rect_overlap rects \<Longrightarrow>
\<exists>k<length ops. has_overlap_at_k rects k"
@proof
@obtain i j where "i < length rects" "j < length rects" "i \<noteq> j"
"is_rect_overlap (rects ! i) (rects ! j)"
@have "is_rect_overlap (rects ! j) (rects ! i)"
@obtain i1 where "i1 < length ops" "ops ! i1 = ins_op rects i"
@obtain j1 where "j1 < length ops" "ops ! j1 = ins_op rects j"
@obtain i2 where "i2 < length ops" "ops ! i2 = del_op rects i"
@obtain j2 where "j2 < length ops" "ops ! j2 = del_op rects j"
@case "ins_op rects i < ins_op rects j" @with
@have "i1 < j1"
@have "j1 < i2" @with @have "ops ! j1 < ops ! i2" @end
@have "is_overlap (int (IdxInterval (xint (rects ! i)) i)) (xint (rects ! j))"
@have "has_overlap_at_k rects j1"
@end
@case "ins_op rects j < ins_op rects i" @with
@have "j1 < i1"
@have "i1 < j2" @with @have "ops ! i1 < ops ! j2" @end
@have "is_overlap (int (IdxInterval (xint (rects ! j)) j)) (xint (rects ! i))"
@have "has_overlap_at_k rects i1"
@end
@qed
definition has_overlap_lst :: "('a::linorder) rectangle list \<Rightarrow> bool" where [rewrite]:
"has_overlap_lst rects = (let ops = all_ops rects in (\<exists>k<length ops. has_overlap_at_k rects k))"
lemma has_overlap_equiv [rewrite]:
"is_rect_list rects \<Longrightarrow> has_overlap_lst rects \<longleftrightarrow> has_rect_overlap rects" by auto2
subsection \<open>Implementation of apply\_ops\_k\<close>
lemma apply_ops_k_next1 [rewrite]:
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow> is_INS (ops ! n) \<Longrightarrow>
apply_ops_k rects (n + 1) = apply_ops_k rects n \<union> {op_idx (ops ! n)}"
@proof
@have "\<forall>i. i\<in>apply_ops_k rects (n + 1) \<longleftrightarrow> i\<in>apply_ops_k rects n \<union> {op_idx (ops ! n)}" @with
@case "i \<in> apply_ops_k rects n \<union> {op_idx (ops ! n)}" @with
@case "i = op_idx (ops ! n)" @with
@have "ins_op rects i < del_op rects i"
@end
@end
@end
@qed
lemma apply_ops_k_next2 [rewrite]:
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow> \<not>is_INS (ops ! n) \<Longrightarrow>
apply_ops_k rects (n + 1) = apply_ops_k rects n - {op_idx (ops ! n)}" by auto2
definition apply_ops_k_next :: "('a::linorder) rectangle list \<Rightarrow> 'a idx_interval set \<Rightarrow> nat \<Rightarrow> 'a idx_interval set" where
"apply_ops_k_next rects S k = (let ops = all_ops rects in
(case ops ! k of
INS p n i \<Rightarrow> S \<union> {IdxInterval i n}
| DEL p n i \<Rightarrow> S - {IdxInterval i n}))"
setup \<open>add_rewrite_rule @{thm apply_ops_k_next_def}\<close>
lemma apply_ops_k_next_is_correct [rewrite]:
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow>
S = xints_of rects (apply_ops_k rects n) \<Longrightarrow>
xints_of rects (apply_ops_k rects (n + 1)) = apply_ops_k_next rects S n"
@proof @case "is_INS (ops ! n)" @qed
function rect_inter :: "nat rectangle list \<Rightarrow> nat idx_interval set \<Rightarrow> nat \<Rightarrow> bool" where
"rect_inter rects S k = (let ops = all_ops rects in
if k \<ge> length ops then False
else if is_INS (ops ! k) then
if has_overlap S (op_int (ops ! k)) then True
else if k = length ops - 1 then False
else rect_inter rects (apply_ops_k_next rects S k) (k + 1)
else if k = length ops - 1 then False
else rect_inter rects (apply_ops_k_next rects S k) (k + 1))"
by auto
termination by (relation "measure (\<lambda>(rects,S,k). length (all_ops rects) - k)") auto
lemma rect_inter_correct_ind [rewrite]:
"is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow>
rect_inter rects (xints_of rects (apply_ops_k rects n)) n \<longleftrightarrow>
(\<exists>k<length ops. k \<ge> n \<and> has_overlap_at_k rects k)"
@proof
@let "ints = xints_of rects (apply_ops_k rects n)"
@fun_induct "rect_inter rects ints n"
@unfold "rect_inter rects ints n"
@case "n \<ge> length ops"
@case "is_INS (ops ! n) \<and> has_overlap ints (op_int (ops ! n))"
@case "n = length ops - 1"
@qed
text \<open>Correctness of functional algorithm.\<close>
theorem rect_inter_correct [rewrite]:
"is_rect_list rects \<Longrightarrow> rect_inter rects {} 0 \<longleftrightarrow> has_rect_overlap rects"
@proof
@have "{} = xints_of rects (apply_ops_k rects 0)"
@have "rect_inter rects {} 0 = has_overlap_lst rects" @with
@unfold "rect_inter rects {} 0"
@end
@qed
end
|