Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 15,172 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
(*
  File: Rect_Intersect.thy
  Author: Bohua Zhan
*)

section \<open>Rectangle intersection\<close>

theory Rect_Intersect
  imports Interval_Tree
begin

text \<open>
  Functional version of algorithm for detecting rectangle intersection.
  See \cite[Exercise 14.3-7]{cormen2009introduction} for a reference.
\<close>

subsection \<open>Definition of rectangles\<close>

datatype 'a rectangle = Rectangle (xint: "'a interval") (yint: "'a interval")
setup \<open>add_simple_datatype "rectangle"\<close>

definition is_rect :: "('a::linorder) rectangle \<Rightarrow> bool" where [rewrite]:
  "is_rect rect \<longleftrightarrow> is_interval (xint rect) \<and> is_interval (yint rect)"

definition is_rect_list :: "('a::linorder) rectangle list \<Rightarrow> bool" where [rewrite]:
  "is_rect_list rects \<longleftrightarrow> (\<forall>i<length rects. is_rect (rects ! i))"

lemma is_rect_listD: "is_rect_list rects \<Longrightarrow> i < length rects \<Longrightarrow> is_rect (rects ! i)" by auto2
setup \<open>add_forward_prfstep_cond @{thm is_rect_listD} [with_term "?rects ! ?i"]\<close>

setup \<open>del_prfstep_thm_eqforward @{thm is_rect_list_def}\<close>

definition is_rect_overlap :: "('a::linorder) rectangle \<Rightarrow> ('a::linorder) rectangle \<Rightarrow> bool" where [rewrite]:
  "is_rect_overlap A B \<longleftrightarrow> (is_overlap (xint A) (xint B) \<and> is_overlap (yint A) (yint B))"

definition has_rect_overlap :: "('a::linorder) rectangle list \<Rightarrow> bool" where [rewrite]:
  "has_rect_overlap As \<longleftrightarrow> (\<exists>i<length As. \<exists>j<length As. i \<noteq> j \<and> is_rect_overlap (As ! i) (As ! j))"

subsection \<open>INS / DEL operations\<close>

datatype 'a operation =
  INS (pos: 'a) (op_idx: nat) (op_int: "'a interval")
| DEL (pos: 'a) (op_idx: nat) (op_int: "'a interval")
setup \<open>fold add_rewrite_rule_back @{thms operation.collapse}\<close>
setup \<open>fold add_rewrite_rule @{thms operation.sel}\<close>
setup \<open>fold add_rewrite_rule @{thms operation.case}\<close>
setup \<open>add_resolve_prfstep @{thm operation.distinct(1)}\<close>
setup \<open>add_forward_prfstep_cond @{thm operation.disc(1)} [with_term "INS ?x11.0 ?x12.0 ?x13.0"]\<close>
setup \<open>add_forward_prfstep_cond @{thm operation.disc(2)} [with_term "DEL ?x21.0 ?x22.0 ?x23.0"]\<close>

instantiation operation :: (linorder) linorder begin

definition less: "(a < b) = (if pos a \<noteq> pos b then pos a < pos b else
                             if is_INS a \<noteq> is_INS b then is_INS a \<and> \<not>is_INS b
                             else if op_idx a \<noteq> op_idx b then op_idx a < op_idx b else op_int a < op_int b)"
definition less_eq: "(a \<le> b) = (if pos a \<noteq> pos b then pos a < pos b else
                              if is_INS a \<noteq> is_INS b then is_INS a \<and> \<not>is_INS b
                              else if op_idx a \<noteq> op_idx b then op_idx a < op_idx b else op_int a \<le> op_int b)"

instance proof
  fix x y z :: "'a operation"
  show a: "(x < y) = (x \<le> y \<and> \<not> y \<le> x)"
    by (smt Rect_Intersect.less Rect_Intersect.less_eq leD le_cases3 not_less_iff_gr_or_eq)
  show b: "x \<le> x"
    by (simp add: local.less_eq)
  show c: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"
    by (smt Rect_Intersect.less Rect_Intersect.less_eq a dual_order.trans less_trans)
  show d: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"
    by (metis Rect_Intersect.less Rect_Intersect.less_eq a le_imp_less_or_eq operation.expand)
  show e: "x \<le> y \<or> y \<le> x"
    using local.less_eq by fastforce
qed end

setup \<open>fold add_rewrite_rule [@{thm less_eq}, @{thm less}]\<close>

lemma operation_leD [forward]:
  "(a::('a::linorder operation)) \<le> b \<Longrightarrow> pos a \<le> pos b" by auto2

lemma operation_lessI [backward]:
  "p1 \<le> p2 \<Longrightarrow> INS p1 n1 i1 < DEL p2 n2 i2"
@proof
  @have "is_INS (INS p1 n1 i1) = True"
  @have "is_INS (DEL p2 n2 i2) = False"
@qed

setup \<open>fold del_prfstep_thm [@{thm less_eq}, @{thm less}]\<close>

subsection \<open>Set of operations corresponding to a list of rectangles\<close>

fun ins_op :: "'a rectangle list \<Rightarrow> nat \<Rightarrow> ('a::linorder) operation" where
  "ins_op rects i = INS (low (yint (rects ! i))) i (xint (rects ! i))"
setup \<open>add_rewrite_rule @{thm ins_op.simps}\<close>

fun del_op :: "'a rectangle list \<Rightarrow> nat \<Rightarrow> ('a::linorder) operation" where
  "del_op rects i = DEL (high (yint (rects ! i))) i (xint (rects ! i))"
setup \<open>add_rewrite_rule @{thm del_op.simps}\<close>

definition ins_ops :: "'a rectangle list \<Rightarrow> ('a::linorder) operation list" where [rewrite]:
  "ins_ops rects = list (\<lambda>i. ins_op rects i) (length rects)"

definition del_ops :: "'a rectangle list \<Rightarrow> ('a::linorder) operation list" where [rewrite]:
  "del_ops rects = list (\<lambda>i. del_op rects i) (length rects)"

lemma ins_ops_distinct [forward]: "distinct (ins_ops rects)"
@proof
  @let "xs = ins_ops rects"
  @have "\<forall>i<length xs. \<forall>j<length xs. i \<noteq> j \<longrightarrow> xs ! i \<noteq> xs ! j"
@qed

lemma del_ops_distinct [forward]: "distinct (del_ops rects)"
@proof
  @let "xs = del_ops rects"
  @have "\<forall>i<length xs. \<forall>j<length xs. i \<noteq> j \<longrightarrow> xs ! i \<noteq> xs ! j"
@qed

lemma set_ins_ops [rewrite]:
  "oper \<in> set (ins_ops rects) \<longleftrightarrow> op_idx oper < length rects \<and> oper = ins_op rects (op_idx oper)"
@proof
  @case "oper \<in> set (ins_ops rects)" @with
    @obtain i where "i < length rects" "ins_ops rects ! i = oper" @end
  @case "op_idx oper < length rects \<and> oper = ins_op rects (op_idx oper)" @with
    @have "oper = (ins_ops rects) ! (op_idx oper)" @end
@qed

lemma set_del_ops [rewrite]:
  "oper \<in> set (del_ops rects) \<longleftrightarrow> op_idx oper < length rects \<and> oper = del_op rects (op_idx oper)"
@proof
  @case "oper \<in> set (del_ops rects)" @with
    @obtain i where "i < length rects" "del_ops rects ! i = oper" @end
  @case "op_idx oper < length rects \<and> oper = del_op rects (op_idx oper)" @with
    @have "oper = (del_ops rects) ! (op_idx oper)" @end
@qed

definition all_ops :: "'a rectangle list \<Rightarrow> ('a::linorder) operation list" where [rewrite]:
  "all_ops rects = sort (ins_ops rects @ del_ops rects)"

lemma all_ops_distinct [forward]: "distinct (all_ops rects)"
@proof @have "distinct (ins_ops rects @ del_ops rects)" @qed

lemma set_all_ops_idx [forward]:
  "oper \<in> set (all_ops rects) \<Longrightarrow> op_idx oper < length rects" by auto2

lemma set_all_ops_ins [forward]:
  "INS p n i \<in> set (all_ops rects) \<Longrightarrow> INS p n i = ins_op rects n" by auto2

lemma set_all_ops_del [forward]:
  "DEL p n i \<in> set (all_ops rects) \<Longrightarrow> DEL p n i = del_op rects n" by auto2

lemma ins_in_set_all_ops:
  "i < length rects \<Longrightarrow> ins_op rects i \<in> set (all_ops rects)" by auto2
setup \<open>add_forward_prfstep_cond @{thm ins_in_set_all_ops} [with_term "ins_op ?rects ?i"]\<close>

lemma del_in_set_all_ops:
  "i < length rects \<Longrightarrow> del_op rects i \<in> set (all_ops rects)" by auto2
setup \<open>add_forward_prfstep_cond @{thm del_in_set_all_ops} [with_term "del_op ?rects ?i"]\<close>

lemma all_ops_sorted [forward]: "sorted (all_ops rects)" by auto2

lemma all_ops_nonempty [backward]: "rects \<noteq> [] \<Longrightarrow> all_ops rects \<noteq> []"
@proof @have "length (all_ops rects) > 0" @qed

setup \<open>del_prfstep_thm @{thm all_ops_def}\<close>

subsection \<open>Applying a set of operations\<close>

definition apply_ops_k :: "('a::linorder) rectangle list \<Rightarrow> nat \<Rightarrow> nat set" where [rewrite]:
  "apply_ops_k rects k = (let ops = all_ops rects in
     {i. i < length rects \<and> (\<exists>j<k. ins_op rects i = ops ! j) \<and> \<not>(\<exists>j<k. del_op rects i = ops ! j)})"
setup \<open>register_wellform_data ("apply_ops_k rects k", ["k < length (all_ops rects)"])\<close>

lemma apply_ops_set_mem [rewrite]:
  "ops = all_ops rects \<Longrightarrow>
   i \<in> apply_ops_k rects k \<longleftrightarrow> (i < length rects \<and> (\<exists>j<k. ins_op rects i = ops ! j) \<and> \<not>(\<exists>j<k. del_op rects i = ops ! j))"
  by auto2
setup \<open>del_prfstep_thm @{thm apply_ops_k_def}\<close>

definition xints_of :: "'a rectangle list \<Rightarrow> nat set \<Rightarrow> (('a::linorder) idx_interval) set" where [rewrite]:
  "xints_of rect is = (\<lambda>i. IdxInterval (xint (rect ! i)) i) ` is"

lemma xints_of_mem [rewrite]:
  "IdxInterval it i \<in> xints_of rect is \<longleftrightarrow> (i \<in> is \<and> xint (rect ! i) = it)" using xints_of_def by auto

lemma xints_diff [rewrite]:
  "xints_of rects (A - B) = xints_of rects A - xints_of rects B"
@proof @have "inj (\<lambda>i. IdxInterval (xint (rects ! i)) i)" @qed

definition has_overlap_at_k :: "('a::linorder) rectangle list \<Rightarrow> nat \<Rightarrow> bool" where [rewrite]:
  "has_overlap_at_k rects k \<longleftrightarrow> (
    let S = apply_ops_k rects k; ops = all_ops rects in
      is_INS (ops ! k) \<and> has_overlap (xints_of rects S) (op_int (ops ! k)))"
setup \<open>register_wellform_data ("has_overlap_at_k rects k", ["k < length (all_ops rects)"])\<close>

lemma has_overlap_at_k_equiv [forward]:
  "is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> k < length ops \<Longrightarrow>
   has_overlap_at_k rects k \<Longrightarrow> has_rect_overlap rects"
@proof
  @let "S = apply_ops_k rects k"
  @have "has_overlap (xints_of rects S) (op_int (ops ! k))"
  @obtain "xs' \<in> xints_of rects S" where "is_overlap (int xs') (op_int (ops ! k))"
  @let "xs = int xs'" "i = idx xs'"
  @let "j = op_idx (ops ! k)"
  @have "ops ! k = ins_op rects j"
  @have "i \<noteq> j" @with @contradiction
    @obtain k' where "k' < k" "ops ! k' = ins_op rects i"
    @have "ops ! k = ops ! k'"
  @end
  @have "low (yint (rects ! i)) \<le> pos (ops ! k)" @with
    @obtain k' where "k' < k" "ops ! k' = ins_op rects i"
    @have "ops ! k' \<le> ops ! k"
  @end
  @have "high (yint (rects ! i)) \<ge> pos (ops ! k)" @with
    @obtain k' where "k' < length ops" "ops ! k' = del_op rects i"
    @have "ops ! k' \<ge> ops ! k"
  @end
  @have "is_rect_overlap (rects ! i) (rects ! j)"
@qed

lemma has_overlap_at_k_equiv2 [resolve]:
  "is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> has_rect_overlap rects \<Longrightarrow>
   \<exists>k<length ops. has_overlap_at_k rects k"
@proof
  @obtain i j where "i < length rects" "j < length rects" "i \<noteq> j"
                    "is_rect_overlap (rects ! i) (rects ! j)"
  @have "is_rect_overlap (rects ! j) (rects ! i)"
  @obtain i1 where "i1 < length ops" "ops ! i1 = ins_op rects i"
  @obtain j1 where "j1 < length ops" "ops ! j1 = ins_op rects j"
  @obtain i2 where "i2 < length ops" "ops ! i2 = del_op rects i"
  @obtain j2 where "j2 < length ops" "ops ! j2 = del_op rects j"
  @case "ins_op rects i < ins_op rects j" @with
    @have "i1 < j1"
    @have "j1 < i2" @with @have "ops ! j1 < ops ! i2" @end
    @have "is_overlap (int (IdxInterval (xint (rects ! i)) i)) (xint (rects ! j))"
    @have "has_overlap_at_k rects j1"
  @end
  @case "ins_op rects j < ins_op rects i" @with
    @have "j1 < i1"
    @have "i1 < j2" @with @have "ops ! i1 < ops ! j2" @end
    @have "is_overlap (int (IdxInterval (xint (rects ! j)) j)) (xint (rects ! i))"
    @have "has_overlap_at_k rects i1"
  @end
@qed

definition has_overlap_lst :: "('a::linorder) rectangle list \<Rightarrow> bool" where [rewrite]:
  "has_overlap_lst rects = (let ops = all_ops rects in (\<exists>k<length ops. has_overlap_at_k rects k))"

lemma has_overlap_equiv [rewrite]:
  "is_rect_list rects \<Longrightarrow> has_overlap_lst rects \<longleftrightarrow> has_rect_overlap rects" by auto2

subsection \<open>Implementation of apply\_ops\_k\<close>

lemma apply_ops_k_next1 [rewrite]:
  "is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow> is_INS (ops ! n) \<Longrightarrow>
   apply_ops_k rects (n + 1) = apply_ops_k rects n \<union> {op_idx (ops ! n)}"
@proof
  @have "\<forall>i. i\<in>apply_ops_k rects (n + 1) \<longleftrightarrow> i\<in>apply_ops_k rects n \<union> {op_idx (ops ! n)}" @with
    @case "i \<in> apply_ops_k rects n \<union> {op_idx (ops ! n)}" @with
      @case "i = op_idx (ops ! n)" @with
        @have "ins_op rects i < del_op rects i"
      @end
    @end
  @end
@qed

lemma apply_ops_k_next2 [rewrite]:
  "is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow> \<not>is_INS (ops ! n) \<Longrightarrow>
   apply_ops_k rects (n + 1) = apply_ops_k rects n - {op_idx (ops ! n)}" by auto2

definition apply_ops_k_next :: "('a::linorder) rectangle list \<Rightarrow> 'a idx_interval set \<Rightarrow> nat \<Rightarrow> 'a idx_interval set" where
  "apply_ops_k_next rects S k = (let ops = all_ops rects in
   (case ops ! k of
      INS p n i \<Rightarrow> S \<union> {IdxInterval i n}
    | DEL p n i \<Rightarrow> S - {IdxInterval i n}))"
setup \<open>add_rewrite_rule @{thm apply_ops_k_next_def}\<close>

lemma apply_ops_k_next_is_correct [rewrite]:
  "is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow>
   S = xints_of rects (apply_ops_k rects n) \<Longrightarrow>
   xints_of rects (apply_ops_k rects (n + 1)) = apply_ops_k_next rects S n"
@proof @case "is_INS (ops ! n)" @qed

function rect_inter :: "nat rectangle list \<Rightarrow> nat idx_interval set \<Rightarrow> nat \<Rightarrow> bool" where
  "rect_inter rects S k = (let ops = all_ops rects in
    if k \<ge> length ops then False
    else if is_INS (ops ! k) then
      if has_overlap S (op_int (ops ! k)) then True
      else if k = length ops - 1 then False
      else rect_inter rects (apply_ops_k_next rects S k) (k + 1)
    else if k = length ops - 1 then False
      else rect_inter rects (apply_ops_k_next rects S k) (k + 1))"
  by auto
  termination by (relation "measure (\<lambda>(rects,S,k). length (all_ops rects) - k)") auto

lemma rect_inter_correct_ind [rewrite]:
  "is_rect_list rects \<Longrightarrow> ops = all_ops rects \<Longrightarrow> n < length ops \<Longrightarrow>
   rect_inter rects (xints_of rects (apply_ops_k rects n)) n \<longleftrightarrow>
   (\<exists>k<length ops. k \<ge> n \<and> has_overlap_at_k rects k)"
@proof
  @let "ints = xints_of rects (apply_ops_k rects n)"
  @fun_induct "rect_inter rects ints n"
  @unfold "rect_inter rects ints n"
  @case "n \<ge> length ops"
  @case "is_INS (ops ! n) \<and> has_overlap ints (op_int (ops ! n))"
  @case "n = length ops - 1"
@qed

text \<open>Correctness of functional algorithm.\<close>
theorem rect_inter_correct [rewrite]:
  "is_rect_list rects \<Longrightarrow> rect_inter rects {} 0 \<longleftrightarrow> has_rect_overlap rects"
@proof
  @have "{} = xints_of rects (apply_ops_k rects 0)"
  @have "rect_inter rects {} 0 = has_overlap_lst rects" @with
    @unfold "rect_inter rects {} 0"
  @end
@qed

end