Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 54,815 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
(* Title: IL_AF_Exec_Stream.thy
Date: Nov 2007
Author: David Trachtenherz
*)
section \<open>\textsc{AutoFocus} message stream processing and temporal logic on intervals\<close>
theory IL_AF_Stream_Exec
imports Main IL_AF_Stream AF_Stream_Exec
begin
subsection \<open>Correlation between Pre/Post-Conditions for \<open>f_Exec_Comp_Stream\<close> and \<open>f_Exec_Comp_Stream_Init\<close>\<close>
lemma i_Exec_Stream_Pre_Post1_iAll: "
\<lbrakk> result = i_Exec_Comp_Stream trans_fun input c;
\<forall>x_n c_n. P1 x_n \<and> P2 c_n \<longrightarrow> Q (trans_fun x_n c_n) \<rbrakk> \<Longrightarrow>
\<box> t I. (P1 (input t) \<and> P2 (result\<^bsup>\<leftarrow> c\<^esup> t) \<longrightarrow> Q (result t))"
by (simp add: i_Exec_Stream_Pre_Post1)
text \<open>Direct relation between input and result after transition\<close>
lemma i_Exec_Stream_Pre_Post2_iAll: "
\<lbrakk> result = i_Exec_Comp_Stream trans_fun input c;
\<forall>x_n c_n. P c_n \<longrightarrow> Q x_n (trans_fun x_n c_n) \<rbrakk> \<Longrightarrow>
\<box> t I. P (result\<^bsup>\<leftarrow> c\<^esup> t) \<longrightarrow> Q (input t) (result t)"
by (simp add: i_Exec_Stream_Pre_Post2)
lemma i_Exec_Stream_Pre_Post3_iAll_iNext: "
\<lbrakk> result = i_Exec_Comp_Stream trans_fun input c;
\<forall>x_n c_n. P c_n \<longrightarrow> Q x_n (trans_fun x_n c_n);
\<forall>t\<in>I. inext t I' = Suc t \<rbrakk> \<Longrightarrow>
\<box> t I. P (result t) \<longrightarrow> (\<circle> t1 t I'. Q (input t1) (result t1))"
by (rule iallI, simp add: iNext_def i_Exec_Stream_Pre_Post2_Suc)
lemma i_Exec_Stream_Init_Pre_Post1_iAll_iNext: "
\<lbrakk> result = i_Exec_Comp_Stream_Init trans_fun input c;
\<forall>x_n c_n. P1 x_n \<and> P2 c_n \<longrightarrow> Q (trans_fun x_n c_n);
\<forall>t\<in>I. inext t I' = Suc t \<rbrakk> \<Longrightarrow>
\<box> t I. (P1 (input t) \<and> P2 (result t) \<longrightarrow> (\<circle> t1 t I'. Q (result t1)))"
by (rule iallI, simp add: iNext_def i_Exec_Stream_Init_Pre_Post1)
text \<open>Direct relation between input and state before transition\<close>
lemma i_Exec_Stream_Init_Pre_Post2_iAll_iNext: "
\<lbrakk> result = i_Exec_Comp_Stream_Init trans_fun input c;
\<forall>x_n c_n. P x_n c_n \<longrightarrow> Q (trans_fun x_n c_n);
\<forall>t\<in>I. inext t I' = Suc t \<rbrakk> \<Longrightarrow>
\<box> t I. (P (input t) (result t) \<longrightarrow> (\<circle> t1 t I'. Q (result t1)))"
by (rule iallI, simp add: iNext_def i_Exec_Stream_Init_Pre_Post2)
text \<open>Relation between input and output\<close>
lemma i_Exec_Stream_Init_Pre_Post3_iAll_iNext: "
\<lbrakk> result = i_Exec_Comp_Stream_Init trans_fun input c;
\<forall>x_n c_n. P c_n \<longrightarrow> Q x_n (trans_fun x_n c_n);
\<forall>t\<in>I. inext t I' = Suc t \<rbrakk> \<Longrightarrow>
\<box> t I. (P (result t) \<longrightarrow> (\<circle> t1 t I'. Q (input\<^bsup>\<leftarrow> \<NoMsg>\<^esup> t1) (result t1)))"
apply (rule iallI, unfold iNext_def)
apply (simp add: ilist_Previous_Suc i_Exec_Stream_Init_nth_Suc_eq_i_Exec_Stream_nth i_Exec_Stream_Previous_i_Exec_Stream_Init)
apply (blast dest: i_Exec_Stream_Pre_Post2_iAll[OF refl])
done
subsection \<open>\<open>i_Exec_Comp_Stream_Acc_Output\<close> and temporal operators with bounded intervals.\<close>
text \<open>Temporal relation between uncompressed and compressed output of accelerated components.\<close>
lemma i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_iAll_conv: "
0 < k \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = \<NoMsg>) =
(\<box> t1 [t * k\<dots>,k - Suc 0]. (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) t1 = \<NoMsg>)"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_NoMsg_iAll_conv)
lemma i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_iAll_conv2: "
0 < k \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = \<NoMsg>) =
(\<box> t1 [\<dots>k - Suc 0] \<oplus> (t * k). (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) t1 = \<NoMsg>)"
by (simp add: iT_add i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_iAll_conv)
lemma i_Exec_Comp_Stream_Acc_Output__Init__eq_NoMsg_iAll_conv: "
0 < k \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = \<NoMsg>) =
(\<box> t1 [Suc (t * k)\<dots>,k - Suc 0]. (output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun (input \<odot>\<^sub>i k) c) t1 = \<NoMsg>)"
apply (unfold i_Exec_Comp_Stream_Acc_Output_def)
apply (simp add: i_shrink_eq_NoMsg_iAll_conv i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)
apply (rule_tac t="[Suc (t * k)\<dots>,k - Suc 0]" and s="[t * k\<dots>,k - Suc 0] \<oplus> 1" in subst)
apply (simp add: iIN_add)
apply (simp add: iT_Plus_iAll_conv)
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_iEx_iAll_cut_greater_conv: "
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
(\<diamond> t1 [t * k\<dots>,k - Suc 0]. (s t1 = m \<and>
(\<box> t2 [t * k\<dots>,k - Suc 0] \<down>> t1 . s t2 = \<NoMsg>)))"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_Msg_iEx_iAll_cut_greater_conv)
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_iEx_iAll_cut_greater_conv2: "
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
(\<diamond> t1 [\<dots>k - Suc 0] \<oplus> (t * k). (s t1 = m \<and>
(\<box> t2 ([\<dots>k - Suc 0] \<oplus> (t * k)) \<down>> t1 . s t2 = \<NoMsg>)))"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_Msg_iEx_iAll_cut_greater_conv2)
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_iSince_conv: "
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
(s t2 = \<NoMsg>. t2 \<S> t1 [t * k\<dots>,k - Suc 0]. s t1 = m)"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_Msg_iSince_conv)
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_iSince_conv2: "
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
(s t2 = \<NoMsg>. t2 \<S> t1 [\<dots>k - Suc 0] \<oplus> (t * k). s t1 = m)"
by (simp add: i_Exec_Comp_Stream_Acc_Output__eq_Msg_iSince_conv iT_add)
lemma i_Exec_Comp_Stream_Acc_Output__Init__eq_Msg_iSince_conv: "
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; s = (output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
(s t2 = \<NoMsg>. t2 \<S> t1 [Suc (t * k)\<dots>,k - Suc 0]. s t1 = m)"
apply (unfold i_Exec_Comp_Stream_Acc_Output_def)
apply (simp add: i_shrink_eq_Msg_iSince_conv i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)
apply (rule_tac t="[Suc (t * k)\<dots>,k - Suc 0]" and s="[t * k\<dots>,k - Suc 0] \<oplus> 1" in subst)
apply (simp add: iIN_add)
apply (simp add: iT_Plus_iSince_conv)
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_iAll_iSince_conv: "
\<lbrakk> 0 < k; s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
((m = \<NoMsg> \<longrightarrow> (\<box> t1 [t * k\<dots>,k - Suc 0]. s t1 = \<NoMsg>)) \<and>
((m \<noteq> \<NoMsg> \<longrightarrow> (s t2 = \<NoMsg>. t2 \<S> t1 [t * k\<dots>,k - Suc 0]. s t1 = m))))"
apply (case_tac "m = \<NoMsg>")
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_iAll_conv)
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_Msg_iSince_conv)
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_iAll_iSince_conv2: "
\<lbrakk> 0 < k; s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
((m = \<NoMsg> \<longrightarrow> (\<box> t1 [\<dots>k - Suc 0] \<oplus> (t * k). s t1 = \<NoMsg>)) \<and>
((m \<noteq> \<NoMsg> \<longrightarrow> (s t2 = \<NoMsg>. t2 \<S> t1 [\<dots>k - Suc 0] \<oplus> (t * k). s t1 = m))))"
by (simp add: i_Exec_Comp_Stream_Acc_Output__eq_iAll_iSince_conv iT_add)
subsection \<open>\<open>i_Exec_Comp_Stream_Acc_Output\<close> and temporal operators with unbounded intervals and start/finish events.\<close>
lemma i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_iAll_start_event_conv: "
\<lbrakk> 0 < k; \<And> t. event t = (t mod k = 0); t0 = t * k;
s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk>\<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = \<NoMsg>) =
(s t0 = \<NoMsg> \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 [0\<dots>] \<oplus> t'. event t2)))"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_NoMsg_iAll_start_event_conv)
lemma i_Exec_Comp_Stream_Acc_Output__Init__eq_NoMsg_iAll_start_event_conv: "
\<lbrakk> 0 < k; \<And> t. event t = ((t + k - Suc 0) mod k = 0); t0 = Suc (t * k);
s = (output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk>\<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = \<NoMsg>) =
(s t0 = \<NoMsg> \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 [0\<dots>] \<oplus> t'. event t2)))"
apply (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_NoMsg_iAll_start_event_conv)
apply (simp add: iT_add iNext_def iFROM_inext iT_iff)
apply (simp add: i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)
apply (rule_tac t="[Suc (Suc (t*k))\<dots>]" and s="[Suc (t*k)\<dots>] \<oplus> Suc 0" in subst)
apply (simp add: iFROM_add)
apply (simp add: iT_Plus_iUntil_conv)
done
lemma i_Exec_Comp_Stream_Acc_Output__Init__eq_NoMsg_iAll_start_event2_conv: "
\<lbrakk> Suc 0 < k; \<And> t. event t = (t mod k = Suc 0); t0 = Suc (t * k);
s = (output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk>\<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = \<NoMsg>) =
(s t0 = \<NoMsg> \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 [0\<dots>] \<oplus> t'. event t2)))"
by (simp add: i_Exec_Comp_Stream_Acc_Output__Init__eq_NoMsg_iAll_start_event_conv mod_eq_Suc_0_conv)
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_iUntil_start_event_conv: "
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; \<And>t. event t = (t mod k = 0); t0 = t * k;
s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) = (
(s t0 = m \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 ([0\<dots>] \<oplus> t'). event t2))) \<or>
(\<circle> t' t0 [0\<dots>]. (\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t'). (
s t2 = m \<and> \<not> event t2 \<and> (\<circle> t'' t2 [0\<dots>].
(s t3 = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t''). event t4))))))"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_Msg_iUntil_start_event_conv)
lemma i_Exec_Comp_Stream_Acc_Output__Init__eq_Msg_iUntil_start_event_conv: "
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; \<And>t. event t = ((t + k - Suc 0) mod k = 0); t0 = Suc (t * k);
s = (output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) = (
(s t0 = m \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 ([0\<dots>] \<oplus> t'). event t2))) \<or>
(\<circle> t' t0 [0\<dots>]. (\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t'). (
s t2 = m \<and> \<not> event t2 \<and> (\<circle> t'' t2 [0\<dots>].
(s t3 = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t''). event t4))))))"
apply (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_Msg_iUntil_start_event_conv)
apply (simp add: iNext_def iFROM_inext iFROM_iff iT_add)
apply (simp add: i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)
apply (simp only: Suc_eq_plus1 iFROM_add[symmetric])
apply (simp add: iT_Plus_iUntil_conv)
apply (simp only: Suc_eq_plus1 iFROM_add[symmetric])
apply (simp add: iT_Plus_iUntil_conv)
done
lemma i_Exec_Comp_Stream_Acc_Output__Init__eq_Msg_iUntil_start_event2_conv: "
\<lbrakk> Suc 0 < k; m \<noteq> \<NoMsg>; \<And>t. event t = (t mod k = Suc 0); t0 = Suc (t * k);
s = (output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk> \<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) = (
(s t0 = m \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 ([0\<dots>] \<oplus> t'). event t2))) \<or>
(\<circle> t' t0 [0\<dots>]. (\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t'). (
s t2 = m \<and> \<not> event t2 \<and> (\<circle> t'' t2 [0\<dots>].
(s t3 = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t''). event t4))))))"
by (simp add: i_Exec_Comp_Stream_Acc_Output__Init__eq_Msg_iUntil_start_event_conv mod_eq_Suc_0_conv)
lemma i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_iAll_finish_event_conv: "
\<lbrakk> Suc 0 < k; \<And> t. event t = (t mod k = k - Suc 0); t0 = t * k;
s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk>\<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = \<NoMsg>) =
(s t0 = \<NoMsg> \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 [0\<dots>] \<oplus> t'. event t2 \<and> s t2 = \<NoMsg>)))"
by (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_NoMsg_iAll_finish_event_conv)
lemma i_Exec_Comp_Stream_Acc_Output__Init__eq_NoMsg_iAll_finish_event_conv: "
\<lbrakk> Suc 0 < k; \<And> t. event t = (t mod k = 0); t0 = Suc (t * k);
s = (output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk>\<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = \<NoMsg>) =
(s t0 = \<NoMsg> \<and> (\<circle> t' t0 [0\<dots>]. (s t1 = \<NoMsg>. t1 \<U> t2 [0\<dots>] \<oplus> t'. event t2 \<and> s t2 = \<NoMsg>)))"
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_iAll_finish_event_conv)
apply (simp add: iNext_def iFROM_inext iFROM_iff iT_add)
apply (simp add: i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)
apply (rule_tac t="[Suc (Suc (t * k))\<dots>]" and s="[Suc (t * k)\<dots>] \<oplus> 1" in subst)
apply (simp add: iFROM_add)
apply (simp add: iT_Plus_iUntil_conv)
apply (simp add: mod_eq_divisor_minus_Suc_0_conv)
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_iUntil_finish_event_conv: "
\<lbrakk> 0 < k; m \<noteq> \<NoMsg>; \<And> t. event t = (t mod k = k - Suc 0); t0 = t * k;
s = (output_fun \<circ> i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk>\<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
((\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t0). event t2 \<and> s t2 = m) \<or>
(\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t0). (\<not> event t2 \<and> s t2 = m \<and> (
\<circle> t' t2 [0\<dots>]. (s t3 = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t'). event t4 \<and> s t4 = \<NoMsg>)))))"
apply (case_tac "k = Suc 0")
apply (simp add: iT_add iT_not_empty iFROM_Min)
apply (drule neq_le_trans[OF not_sym], simp)
apply (simp add: i_Exec_Comp_Stream_Acc_Output_def i_shrink_eq_Msg_iUntil_finish_event_conv)
done
lemma i_Exec_Comp_Stream_Acc_Output__Init__eq_Msg_iUntil_finish_event_conv: "
\<lbrakk> Suc 0 < k; m \<noteq> \<NoMsg>; \<And> t. event t = (t mod k = 0); t0 = Suc (t * k);
s = (output_fun \<circ> i_Exec_Comp_Stream_Init trans_fun (input \<odot>\<^sub>i k) c) \<rbrakk>\<Longrightarrow>
((i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c) t = m) =
((\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t0). event t2 \<and> s t2 = m) \<or>
(\<not> event t1. t1 \<U> t2 ([0\<dots>] \<oplus> t0). (\<not> event t2 \<and> s t2 = m \<and> (
\<circle> t' t2 [0\<dots>]. (s t3 = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t'). event t4 \<and> s t4 = \<NoMsg>)))))"
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_Msg_iUntil_finish_event_conv)
apply (simp add: iNext_def iFROM_inext iT_iff)
apply (simp add: i_Exec_Stream_Init_eq_i_Exec_Stream_Cons)
apply (simp add: iT_Plus_iUntil_conv)
apply (simp add: mod_eq_divisor_minus_Suc_0_conv add_Suc[symmetric] del: add_Suc)
done
subsection \<open>\<open>i_Exec_Comp_Stream_Acc_Output\<close> and temporal operators with idle states.\<close>
lemma i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_State_Idle_conv: "
\<lbrakk> 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = \<NoMsg>) =
(output_fun (s t1) = \<NoMsg>. t1 \<U> t2 ([0\<dots>] \<oplus> t0). (
output_fun (s t2) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t2))))"
apply (case_tac "k = Suc 0")
apply (simp add: iUntil_def)
apply (rule iffI)
apply (rule_tac t=t in iexI)
apply (simp add: iT_add iT_cut_less)
apply (simp add: iT_add iT_iff)
apply (clarify, rename_tac t1)
apply (simp add: iT_add iT_iff iT_cut_less)
apply (drule order_le_less[THEN iffD1])
apply (erule disjE)
apply (drule_tac t=t in ispec)
apply (simp add: iT_iff)+
apply (drule order_neq_le_trans[OF not_sym Suc_leI], assumption)
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_iAll_conv)
apply (simp add: iT_add i_Exec_Stream_nth i_Exec_Stream_Acc_LocalState_nth)
apply (simp add: i_take_Suc_conv_app_nth[of t])
apply (simp add: i_expand_i_take_mult[symmetric] f_Exec_append)
apply (subgoal_tac "\<forall>t1 \<in> [t * k\<dots>,k - Suc 0]. input \<odot>\<^sub>i k \<Down> Suc t1 \<up> (t * k) = input t # \<NoMsg>\<^bsup>t1 - t * k\<^esup>")
prefer 2
apply (simp add: i_expand_nth_interval_eq_nth_append_replicate_NoMsg iIN_iff)
apply (case_tac "output_fun (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> Suc (t * k)) c) \<noteq> \<NoMsg>")
apply (subgoal_tac "
\<not> (\<box> t1 [t * k\<dots>,k - Suc 0]. output_fun (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> Suc t1) c) = \<NoMsg>)")
prefer 2
apply simp
apply (rule_tac t="t * k" in iexI, assumption)
apply (simp add: iIN_iff)
apply (simp add: not_iUntil del: not_iAll)
apply (clarsimp simp: iT_iff, rename_tac t1 t2)
apply (case_tac "t1 = t * k", simp)
apply (drule order_le_neq_trans[OF _ not_sym], assumption)
apply (rule_tac t="t * k" in iexI, simp)
apply (simp add: iFROM_cut_less1 iIN_iff)
apply (case_tac "
State_Idle localState output_fun trans_fun
(localState ((trans_fun (input t) (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> (t * k)) c))))")
apply (subgoal_tac "
(\<box> t1 [t * k\<dots>,k - Suc 0]. output_fun (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> Suc t1) c) = NoMsg)")
prefer 2
apply (clarsimp simp: iIN_iff, rename_tac t1)
apply (rule_tac m="t * k" and n="Suc t1" in subst[OF i_take_drop_append, rule_format], simp)
apply (drule_tac x=t1 in bspec, simp add: iT_iff)
apply (simp add: f_Exec_append del: i_take_drop_append)
apply (simp add: i_take_Suc_conv_app_nth f_Exec_append i_expand_nth_mult)
apply (rule f_Exec_State_Idle_replicate_NoMsg_output, assumption+)
apply (simp add: iUntil_def)
apply (rule_tac t="t * k" in iexI)
apply (simp add: i_take_Suc_conv_app_nth f_Exec_append i_expand_nth_mult iFROM_cut_less)
apply (simp add: iFROM_iff)
apply (subgoal_tac "\<forall>i < k. input \<odot>\<^sub>i k \<Up> Suc (t * k) \<Down> i = NoMsg\<^bsup>i\<^esup>")
prefer 2
apply (simp add: list_eq_iff i_expand_nth_if)
apply (rule iffI)
apply (frule State_Idle_imp_exists_state_change2, assumption)
apply (elim exE conjE, rename_tac i)
apply (frule Suc_less_pred_conv[THEN iffD2])
apply (simp only: iUntil_def)
apply (rule_tac t="Suc (t * k + i)" in iexI)
apply (rule conjI)
apply (drule_tac t="Suc (t * k + i)" in ispec)
apply (simp add: iIN_iff)
apply (rule conjI, simp)
apply (rule_tac t="Suc (Suc (t * k + i))" and s="Suc (t * k) + Suc i" in subst, simp)
apply (subst i_take_add)
apply (drule_tac x="Suc i" in spec)+
apply (simp add: i_take_Suc_conv_app_nth f_Exec_append i_expand_nth_mult)
apply (rule iallI, rename_tac t1)
apply (drule_tac t=t1 in ispec)
apply (drule_tac m="Suc i" in less_imp_le_pred)
apply (clarsimp simp: iIN_iff iFROM_cut_less1)
apply (rule order_trans, assumption)
apply simp
apply assumption
apply (simp add: iFROM_iff)
apply (rule iallI)
apply (unfold iUntil_def, elim iexE conjE, rename_tac t2)
apply (case_tac "t1 < t2")
apply (drule_tac t=t1 in ispec)
apply (simp add: cut_less_mem_iff iT_iff)
apply simp
apply (simp add: linorder_not_less)
apply (case_tac "t1 = t2", simp)
apply (drule le_neq_trans[OF _ not_sym], assumption)
apply (drule_tac i=t2 in less_imp_add_positive, elim exE conjE, rename_tac i)
apply (drule_tac t=t1 in sym)
apply (simp del: add_Suc add: add_Suc[symmetric] i_take_add f_Exec_append iFROM_iff)
apply (rule_tac t="input \<odot>\<^sub>i k \<Up> Suc t2 \<Down> i" and s="\<NoMsg>\<^bsup>i\<^esup>" in subst)
apply (rule list_eq_iff[THEN iffD2])
apply simp
apply (intro allI impI, rename_tac i1)
apply (simp add: i_expand_nth_if)
apply (subst imp_conv_disj, rule disjI1)
apply simp
apply (subgoal_tac "t * k < Suc (t2 + i1) \<and> Suc (t2 + i1) < t * k + k", elim conjE)
prefer 2
apply (simp add: iIN_iff)
apply (simp only: mult.commute[of _ k])
apply (rule between_imp_mod_gr0, assumption+)
apply (rule f_Exec_State_Idle_replicate_NoMsg_gr0_output, assumption+)
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_imp: "
\<lbrakk> 0 < k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
t0 = t * k;
t1 \<in> [0\<dots>, k - Suc 0] \<oplus> t0;
State_Idle localState output_fun trans_fun (localState (s t1));
output_fun (s t1) \<noteq> \<NoMsg> \<rbrakk> \<Longrightarrow>
i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = output_fun (s t1)"
apply (case_tac "k = Suc 0")
apply (simp add: iIN_0 iT_Plus_singleton)
apply (drule order_neq_le_trans[OF not_sym], rule Suc_leI, assumption)
apply (simp add: iT_add iT_iff, erule conjE)
apply (simp only: i_Exec_Stream_Acc_Output_nth i_Exec_Stream_nth)
apply (rule_tac t="Suc t1" and s="t * k + (Suc t1 - t * k)" in subst, simp)
apply (simp only: i_take_add f_Exec_append i_expand_i_take_mult)
apply (subgoal_tac "input \<odot>\<^sub>i k \<Up> (t * k) \<Down> (Suc t1 - t * k) = input t # \<NoMsg>\<^bsup>t1 - t * k\<^esup>")
prefer 2
apply (simp add: i_take_i_drop)
apply (subst i_expand_nth_interval_eq_nth_append_replicate_NoMsg)
apply (simp del: f_Exec_Comp_Stream.simps)+
apply (subgoal_tac "\<exists>i. k - Suc 0 = t1 - t * k + i")
prefer 2
apply (rule le_iff_add[THEN iffD1])
apply (simp add: le_diff_conv)
apply (erule exE)
apply (simp only: replicate_add)
apply (subst append_Cons[symmetric])
apply (subst State_Idle_append_replicate_NoMsg_output_last_message)
apply (simp only: f_Exec_append[symmetric])
apply (rule_tac t="input \<Down> t \<odot>\<^sub>f k @ input t # NoMsg\<^bsup>t1 - t * k\<^esup>" and s="input \<odot>\<^sub>i k \<Down> Suc t1" in subst)
apply (subst i_expand_i_take_mult[symmetric])
apply (drule_tac t="input t # NoMsg\<^bsup>t1 - t * k\<^esup>" in sym)
apply (simp add: i_take_add[symmetric])
apply assumption
apply (subgoal_tac "
f_Exec_Comp_Stream trans_fun (input t # NoMsg\<^bsup>t1 - t * k\<^esup>)
(f_Exec_Comp trans_fun (input \<Down> t \<odot>\<^sub>f k) c) \<noteq> []")
prefer 2
apply (simp add: f_Exec_Stream_not_empty_conv)
apply (rule ssubst[OF last_message_Msg_eq_last])
apply simp
apply (subst map_last, simp)
apply (subst f_Exec_eq_f_Exec_Stream_last2[symmetric], simp)
apply (subst f_Exec_append[symmetric])
apply (rule_tac t="input \<Down> t \<odot>\<^sub>f k @ input t # NoMsg\<^bsup>t1 - t * k\<^esup>" and s="input \<odot>\<^sub>i k \<Down> Suc t1" in subst)
apply (subst i_expand_i_take_mult[symmetric])
apply (rule_tac t="Suc t1" and s="t * k + (Suc t1 - t * k)" in subst, simp)
apply (subst i_take_add, simp)
apply assumption
apply (subst map_last, simp)
apply (subst f_Exec_eq_f_Exec_Stream_last2[symmetric], simp+)
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_conv2: "
\<lbrakk> 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
t1 \<in> [0\<dots>, k - Suc 0] \<oplus> t0;
State_Idle localState output_fun trans_fun (localState (s t1));
output_fun (s t1) \<noteq> \<NoMsg> \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) =
(\<diamond> t1 [0\<dots>, k - Suc 0] \<oplus> t0. (
(output_fun (s t1) = m \<and> State_Idle localState output_fun trans_fun (localState (s t1)))))"
apply (case_tac "k = Suc 0")
apply (simp add: iIN_0 iT_Plus_singleton)
apply (drule order_neq_le_trans[OF not_sym], rule Suc_leI, assumption)
apply simp
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_imp)
apply (rule iffI)
apply blast
apply (clarify, rename_tac t1')
apply (subgoal_tac "t1' = t1")
prefer 2
apply (rule ccontr)
apply (simp add: i_Exec_Stream_nth)
apply (subgoal_tac "
\<And> n1 n2.
\<lbrakk> n1 < n2; n1 \<in> [0\<dots>,k - Suc 0] \<oplus> t * k; n2 \<in> [0\<dots>,k - Suc 0] \<oplus> t * k;
State_Idle localState output_fun trans_fun (localState (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> Suc n1) c));
output_fun (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> Suc n2) c) \<noteq> NoMsg \<rbrakk> \<Longrightarrow>
False")
prefer 2
apply (drule_tac i=n1 in less_imp_add_positive, elim exE conjE, rename_tac i)
apply (drule_tac t=n2 in sym, simp)
apply (simp only: add_Suc[symmetric] i_take_add f_Exec_append)
apply (subgoal_tac "input \<odot>\<^sub>i k \<Up> Suc n1 \<Down> i = \<NoMsg>\<^bsup>i\<^esup>")
prefer 2
apply (subst i_take_i_drop)
apply (rule_tac t="\<NoMsg>\<^bsup>i\<^esup>" and s="\<NoMsg>\<^bsup>i + Suc n1 - Suc n1\<^esup>" in subst, simp)
apply (rule_tac t=t in i_expand_nth_interval_eq_replicate_NoMsg)
apply (simp add: iT_add iT_iff)+
apply (frule_tac c="f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> Suc n1) c" and n=i
in f_Exec_State_Idle_replicate_NoMsg_gr0_output)
apply (fastforce dest: linorder_neq_iff[THEN iffD1])+
done
text \<open>Here the property to be checked uses only unbounded intervals suitable for LTL.\<close>
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_conv: "
\<lbrakk> 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
t1 \<in> [0\<dots>, k - Suc 0] \<oplus> t0;
State_Idle localState output_fun trans_fun (localState (s t1));
output_fun (s t1) \<noteq> \<NoMsg> \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) =
((\<not> State_Idle localState output_fun trans_fun (localState (s t2))). t2 \<U> t1 [0\<dots>] \<oplus> t0. (
(output_fun (s t1) = m \<and> State_Idle localState output_fun trans_fun (localState (s t1)))))"
apply (subst i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_conv2, assumption+)
apply (unfold iUntil_def)
apply (rule iffI)
apply (elim iexE conjE, rename_tac t2)
apply (rule_tac t=t2 in iexI)
prefer 2
apply (simp add: iT_add iT_iff)
apply simp
apply (rule iallI, rename_tac t2')
apply (rule ccontr)
apply (simp add: cut_less_mem_iff iT_iff iT_add, elim conjE)
apply (frule_tac n=t2' in le_imp_less_Suc)
apply (frule_tac i=t2' in less_imp_add_positive, elim exE conjE, rename_tac i)
apply (drule_tac t=t2 in sym)
apply (simp only: i_Exec_Stream_nth add_Suc[symmetric] i_take_add f_Exec_append)
apply (simp only: i_take_i_drop)
apply (subgoal_tac "input \<odot>\<^sub>i k \<Down> (i + Suc t2') \<up> Suc t2' = \<NoMsg>\<^bsup>i\<^esup>")
prefer 2
apply (rule_tac t="\<NoMsg>\<^bsup>i\<^esup>" and s="\<NoMsg>\<^bsup>i + Suc t2' - Suc t2'\<^esup>" in subst, simp)
apply (rule_tac t=t in i_expand_nth_interval_eq_replicate_NoMsg)
apply simp+
apply (drule_tac c="(f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> Suc t2') c)" and n=i
in f_Exec_State_Idle_replicate_NoMsg_gr0_output, assumption)
apply simp
apply (fastforce simp: iT_add iT_iff i_Exec_Stream_Acc_LocalState_nth i_Exec_Stream_nth)
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_imp2: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
t1 \<in> [0\<dots>, k - Suc 0] \<oplus> t0;
output_fun (s t1) = m;
\<circle> t2 t1 [0\<dots>].
((output_fun (s t3) = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t2).
(output_fun (s t4) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t4))))) \<rbrakk> \<Longrightarrow>
i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m"
apply (clarsimp simp: iUntil_def iNext_def iT_inext iT_iff, rename_tac t2)
apply (simp only: i_Exec_Stream_Acc_Output_nth i_Exec_Stream_Acc_LocalState_nth i_Exec_Stream_nth)
apply (rule last_message_conv[THEN iffD2], assumption)
apply (clarsimp simp: iT_add iT_iff simp del: f_Exec_Comp_Stream.simps)
apply (subgoal_tac "t1 - t * k < k")
prefer 2
apply simp
apply (rule_tac x="t1 - t * k" in exI)
apply (rule conjI, simp)
apply (rule conjI)
apply (simp add: f_Exec_Stream_nth min_eqL del: f_Exec_Comp.simps f_Exec_Comp_Stream.simps)
apply (simp only: f_Exec_append[symmetric])
apply (subst i_expand_i_take_mult_Suc[symmetric], assumption)
apply simp
apply (intro allI impI)
apply (simp only: f_Exec_Stream_length length_Cons length_replicate Suc_pred
nth_map f_Exec_Stream_nth take_Suc_Cons take_replicate min_eqL[OF less_imp_le_pred])
apply (subst f_Exec_append[symmetric])
apply (subst i_expand_i_take_mult_Suc[symmetric], assumption)
apply (case_tac "t2 \<le> t * k + j")
prefer 2
apply fastforce
apply (drule_tac x=t2 in order_le_less[THEN iffD1, rule_format])
apply (erule disjE)
prefer 2
apply simp
apply (subgoal_tac "
State_Idle localState output_fun trans_fun
(localState (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> (t * k + Suc j)) c))")
prefer 2
apply (rule_tac t="t * k + Suc j" and s="Suc t2 + (t * k + j - t2)" in subst, simp)
apply (simp only: i_take_add f_Exec_append)
apply (simp only: i_take_i_drop)
apply simp
apply (rule_tac t=t in ssubst[OF i_expand_nth_interval_eq_replicate_NoMsg, rule_format], simp+)
apply (simp add: f_Exec_State_Idle_replicate_NoMsg_state)
apply (subgoal_tac "t1 div k = t \<and> t2 div k = t", elim conjE)
prefer 2
apply (simp add: le_less_imp_div)
apply (simp only: i_expand_i_take_Suc i_expand_i_take_mult_Suc f_Exec_append)
apply (simp add: f_Exec_append)
apply (rule_tac m="t2 mod k" in f_Exec_State_Idle_replicate_NoMsg_gr_output, assumption)
apply (simp add: minus_div_mult_eq_mod [symmetric])
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_conv2: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
\<box> t1 [0\<dots>, k - Suc 0] \<oplus> t0. \<not> (
State_Idle localState output_fun trans_fun (localState (s t1)) \<and>
output_fun (s t1) \<noteq> \<NoMsg>) \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) =
(\<diamond> t1 [0\<dots>, k - Suc 0] \<oplus> t0. (
(output_fun (s t1) = m) \<and>
(\<circle> t2 t1 [0\<dots>].
((output_fun (s t3) = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t2).
(output_fun (s t4) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t4))))))))"
apply (rule iffI)
apply (simp only: i_Exec_Stream_Acc_Output_nth i_Exec_Stream_nth)
apply (simp only: iNext_def iFROM_iff iFROM_inext)
apply (frule last_message_conv[THEN iffD1], assumption)
apply (elim exE conjE, rename_tac i)
apply (simp add: f_Exec_Stream_nth min_eqL del: f_Exec_Comp.simps f_Exec_Comp_Stream.simps de_Morgan_conj)
apply (subgoal_tac "
\<box> t' ([0\<dots>] \<oplus> (Suc (t * k + i))) \<down>< (t * k + k).
output_fun (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> Suc t') c) = \<NoMsg>")
prefer 2
apply (rule iallI, rename_tac t')
apply (simp only: iT_add iT_iff cut_less_mem_iff, erule conjE)
apply (drule_tac x="t' - t * k" in spec)
apply (subgoal_tac "t' - t * k < k")
prefer 2
apply simp
apply (simp add: f_Exec_Stream_nth min_eqL del: f_Exec_Comp_Stream.simps de_Morgan_conj)
apply (subgoal_tac "t * k \<le> t'")
prefer 2
apply simp
apply (rule_tac t="Suc t'" and s="t * k + (Suc t' - t * k)" in subst, simp)
apply (simp only: i_take_add f_Exec_append i_expand_i_take_mult)
apply (simp add: i_take_i_drop)
apply (rule ssubst[OF i_expand_nth_interval_eq_nth_append_replicate_NoMsg])
apply (simp del: f_Exec_Comp_Stream.simps de_Morgan_conj)+
apply (rule_tac t="t * k + i" in iexI)
prefer 2
apply (simp add: iT_add iT_iff)
apply (rule conjI)
apply (simp add: add_Suc_right[symmetric] i_expand_i_take_mult_Suc f_Exec_append del: add_Suc_right)
apply (simp only: i_Exec_Stream_Acc_LocalState_nth i_expand_i_take_mult[symmetric] mult_Suc add.commute[of k])
apply (subgoal_tac "
\<not> State_Idle localState output_fun trans_fun
(localState (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> (t * k + Suc i)) c))")
prefer 2
apply (drule_tac t="t * k + i" in ispec)
apply (simp add: iT_add iT_iff)
apply (simp add: add_Suc_right[symmetric] i_expand_i_take_mult_Suc f_Exec_append i_expand_i_take_mult del: add_Suc_right)
apply (thin_tac "last_message x = m" for x)
apply (drule_tac
a="t * k + k" and b="t * k + Suc (k - Suc 0)" and
P="\<lambda>x. State_Idle localState output_fun trans_fun
(localState (f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> x) c))" in back_subst, simp)
apply (simp only: i_expand_i_take_mult_Suc f_Exec_append)
apply (frule_tac n="k - Suc 0 - i" in State_Idle_imp_exists_state_change)
apply (simp add: f_Exec_append[symmetric] replicate_add[symmetric])
apply (elim exE conjE, rename_tac i1)
apply (frule_tac i=i1 in less_diff_conv[THEN iffD1, rule_format])
apply (drule_tac a=i1 and P="\<lambda>x. (x < k - Suc 0)" in subst[OF add.commute, rule_format])
apply (frule Suc_less_pred_conv[THEN iffD2])
apply (simp only: iUntil_def)
apply (rule_tac t="t * k + Suc (i + i1)" in iexI)
prefer 2
apply (simp add: iT_add iT_iff)
apply (rule conjI)
apply (drule_tac t="t * k + Suc (i + i1)" in ispec)
apply (simp add: iT_add iT_iff cut_less_mem_iff)
apply (subgoal_tac "Suc (t * k + Suc (i + i1)) = t * k + Suc (Suc (i + i1))")
prefer 2
apply simp
apply (simp only: i_expand_i_take_mult_Suc f_Exec_append)
apply (simp add: add_Suc_right[symmetric] replicate_add f_Exec_append del: add_Suc_right replicate.simps)
apply (clarsimp simp: cut_less_mem_iff iT_add iT_iff simp del: f_Exec_Comp_Stream.simps, rename_tac t')
apply (subgoal_tac "\<exists>i'>i. t' = t * k + i'")
prefer 2
apply (rule_tac x="t' - t * k" in exI)
apply simp
apply (thin_tac "iAll I P" for I P)+
apply (elim exE conjE)
apply (subgoal_tac "i' < k")
prefer 2
apply simp
apply (simp add: add_Suc_right[symmetric] i_expand_i_take_mult_Suc f_Exec_append f_Exec_Stream_nth min_eqL i_expand_i_take_mult del: add_Suc_right f_Exec_Comp_Stream.simps)
apply (elim iexE conjE, rename_tac t1)
apply (rule i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_imp2, assumption+)
done
text \<open>Here the property to be checked uses only unbounded intervals suitable for LTL.\<close>
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_imp: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
(\<not> State_Idle localState output_fun trans_fun (localState (s t1))). t1 \<U> t2 [0\<dots>] \<oplus> t0. (
(output_fun (s t2) = m) \<and>
(\<circle> t3 t2 [0\<dots>].
((output_fun (s t4) = \<NoMsg>. t4 \<U> t5 ([0\<dots>] \<oplus> t3).
(output_fun (s t5) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t5))))))) \<rbrakk> \<Longrightarrow>
i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m"
apply (case_tac "
\<diamond> t1 [0\<dots>, k - Suc 0] \<oplus> t0. (
State_Idle localState output_fun trans_fun (localState (s t1)) \<and>
output_fun (s t1) \<noteq> \<NoMsg>)")
apply (clarsimp, rename_tac t1)
apply (frule i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_imp[OF Suc_lessD refl refl], assumption+)
apply (simp only: iNext_def iT_inext iT_iff iUntil_def)
apply (elim iexE conjE, rename_tac t2 t3)
apply (subgoal_tac "t2 \<le> t1")
prefer 2
apply (rule ccontr)
apply (drule_tac t=t1 in ispec)
apply (simp add: cut_less_mem_iff iT_add iT_iff)
apply simp
apply (thin_tac "iAll I P" for I P)
apply (subgoal_tac "t1 \<le> t2")
prefer 2
apply (rule ccontr)
apply (subgoal_tac "t3 < t1 \<longrightarrow> output_fun (i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c t1) = \<NoMsg>")
prefer 2
apply (rule impI)
apply (subgoal_tac "t * k \<le> t3")
prefer 2
apply (simp add: iT_add iT_iff)
apply (subgoal_tac "t1 div k = t \<and> t3 div k = t", elim conjE)
prefer 2
apply (simp add: iT_add iT_iff le_less_imp_div)
apply (simp (no_asm_simp) add: i_Exec_Stream_nth i_expand_i_take_Suc f_Exec_append)
apply (rule_tac m="t3 mod k" in f_Exec_State_Idle_replicate_NoMsg_gr_output[of localState output_fun trans_fun])
apply (simp add: i_Exec_Stream_nth i_expand_i_take_Suc f_Exec_append)
apply (simp add: minus_div_mult_eq_mod [symmetric])
apply (case_tac "t1 < t3")
apply (drule_tac t=t1 in ispec)
apply (simp add: cut_less_mem_iff iT_add iT_iff)
apply simp+
apply (rule ssubst[OF i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_conv2], simp+)
apply (simp only: iNext_def iT_inext iT_iff iUntil_def)
apply (elim iexE conjE, rename_tac t1 t2)
apply (subgoal_tac "t1 \<le> t * k + (k - Suc 0)")
prefer 2
apply (rule ccontr)
apply (simp add: i_Exec_Stream_Acc_LocalState_nth i_expand_i_take_mult[symmetric] add.commute[of k])
apply (thin_tac "iAll I P" for I P)
apply (drule_tac t="t * k + (k - Suc 0)" in ispec)
apply (simp add: cut_less_mem_iff iT_add iT_iff)
apply (simp add: i_Exec_Stream_nth)
apply (rule_tac t=t1 in iexI)
prefer 2
apply (simp add: iT_add iT_iff)
apply simp
apply (rule_tac t=t2 in iexI)
apply simp+
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_conv: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
\<box> t1 [0\<dots>, k - Suc 0] \<oplus> t0. \<not> (
State_Idle localState output_fun trans_fun (localState (s t1)) \<and>
output_fun (s t1) \<noteq> \<NoMsg>) \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) =
((\<not> State_Idle localState output_fun trans_fun (localState (s t1))). t1 \<U> t2 [0\<dots>] \<oplus> t0. (
(output_fun (s t2) = m) \<and>
(\<circle> t3 t2 [0\<dots>].
((output_fun (s t4) = \<NoMsg>. t4 \<U> t5 ([0\<dots>] \<oplus> t3).
(output_fun (s t5) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t5))))))))"
apply (rule iffI)
apply (frule subst[OF i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_conv2, where P="\<lambda>x. x"], assumption+)
apply (simp only: iNext_def iT_inext iT_iff iUntil_def)
apply (elim iexE conjE, rename_tac t1 t2)
apply (rule_tac t=t1 in iexI)
prefer 2
apply (simp add: iT_add iT_iff)
apply (intro conjI)
apply simp
apply (rule_tac t=t2 in iexI)
prefer 2
apply (simp add: iT_add iT_iff)
apply simp
apply (rule iallI, rename_tac t')
apply (rule ccontr)
apply (clarsimp simp: cut_less_mem_iff)
apply (drule_tac i=t' in less_imp_add_positive)
apply (elim exE conjE, rename_tac i)
apply (drule_tac t=t1 in sym)
apply (simp only: i_Exec_Stream_nth)
apply (simp only: add_Suc[symmetric] i_take_add f_Exec_append)
apply (simp only: i_take_i_drop)
apply (subgoal_tac "i + Suc t' \<le> t * k + k")
prefer 2
apply (simp add: iT_add iT_iff)
apply (simp only: iT_add iT_iff)
apply (simp only: i_expand_nth_interval_eq_replicate_NoMsg[of k t, OF _ le_imp_less_Suc le_add2])
apply (drule_tac c="f_Exec_Comp trans_fun (input \<odot>\<^sub>i k \<Down> Suc t') c" and n=i in f_Exec_State_Idle_replicate_NoMsg_gr0_output)
apply simp+
apply (rule i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_imp, simp+)
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv2: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) =
(\<diamond> t1 [0\<dots>, k - Suc 0] \<oplus> t0. (
output_fun (s t1) = m \<and>
(State_Idle localState output_fun trans_fun (localState (s t1)) \<or>
(\<circle> t2 t1 [0\<dots>].
((output_fun (s t3) = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t2).
(output_fun (s t4) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t4)))))))))"
apply (subst conj_disj_distribL)
apply (case_tac "
\<diamond> t1 [0\<dots>,k - Suc 0] \<oplus> t0.
(State_Idle localState output_fun trans_fun (localState (s t1)) \<and> output_fun (s t1) \<noteq> \<NoMsg>)")
apply (elim iexE conjE, rename_tac t1)
apply (rule iffI)
apply (frule i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_conv2[THEN iffD1, OF Suc_lessD], assumption+)
apply fastforce
apply (elim iexE conjI, rename_tac t2)
apply (erule disjE)
apply (rule i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_conv2[THEN iffD2], simp+)
apply (rule_tac t=t2 in iexI, simp+)
apply (rule_tac ?t1.0=t2 in i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_imp2, simp+)
apply (rule ssubst[OF i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_conv2[OF _ _ _ refl refl]], simp+)
apply fastforce
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv2': "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) =
((\<diamond> t1 [0\<dots>, k - Suc 0] \<oplus> t0. (
output_fun (s t1) = m \<and> State_Idle localState output_fun trans_fun (localState (s t1)))) \<or>
(\<diamond> t1 [0\<dots>, k - Suc 0] \<oplus> t0. (
((output_fun (s t1) = m) \<and>
(\<circle> t2 t1 [0\<dots>].
((output_fun (s t3) = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t2).
(output_fun (s t4) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t4))))))))))"
apply (subst i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv2, assumption+)
apply blast
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_iAll_iUntil_State_Idle_conv2: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) = (
(m = \<NoMsg> \<longrightarrow>
(output_fun (s t1) = \<NoMsg>. t1 \<U> t2 ([0\<dots>] \<oplus> t0). (
output_fun (s t2) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t2))))) \<and>
(m \<noteq> \<NoMsg> \<longrightarrow>
(\<diamond> t1 [0\<dots>, k - Suc 0] \<oplus> t0. (
output_fun (s t1) = m \<and>
(State_Idle localState output_fun trans_fun (localState (s t1)) \<or>
(\<circle> t2 t1 [0\<dots>].
((output_fun (s t3) = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t2).
(output_fun (s t4) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t4)))))))))))"
apply (case_tac "m = \<NoMsg>")
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_State_Idle_conv)
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv2)
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv': "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) =
(((\<not> State_Idle localState output_fun trans_fun (localState (s t2))). t2 \<U> t1 [0\<dots>] \<oplus> t0.
(output_fun (s t1) = m \<and> State_Idle localState output_fun trans_fun (localState (s t1)))) \<or>
((\<not> State_Idle localState output_fun trans_fun (localState (s t2))). t2 \<U> t1 [0\<dots>] \<oplus> t0.
(output_fun (s t1) = m \<and>
(\<circle> t3 t1 [0\<dots>].
((output_fun (s t4) = \<NoMsg>. t4 \<U> t5 ([0\<dots>] \<oplus> t3).
(output_fun (s t5) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t5)))))))))"
apply (case_tac "
\<diamond> t1 [0\<dots>,k - Suc 0] \<oplus> t0.
(State_Idle localState output_fun trans_fun (localState (s t1)) \<and> output_fun (s t1) \<noteq> \<NoMsg>)")
apply (elim iexE conjE, rename_tac t1)
apply (rule iffI)
apply (frule i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_conv[THEN iffD1, OF Suc_lessD], simp+)
apply (erule disjE)
apply (rule i_Exec_Comp_Stream_Acc_Output__eq_Msg_with_State_Idle_conv[THEN iffD2], simp+)
apply (rule_tac i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_imp, simp+)
apply (subst i_Exec_Comp_Stream_Acc_Output__eq_Msg_before_State_Idle_conv[OF _ _ _ refl refl], simp+)
apply (rule iffI)
apply simp
apply (unfold iUntil_def, erule disjE)
apply (elim iexE conjE, rename_tac t1)
apply (case_tac "t1 \<le> t * k + (k - Suc 0)")
prefer 2
apply (simp add: i_Exec_Stream_Acc_LocalState_nth i_Exec_Stream_nth i_expand_i_take_mult[symmetric])
apply (thin_tac "iAll I P" for I P)
apply (drule_tac t="t * k + (k - Suc 0)" in ispec)
apply (simp add: cut_less_mem_iff iT_add iT_iff)
apply (simp add: add.commute[of k])
apply (fastforce simp: iT_add iT_iff)+
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) =
(((\<not> State_Idle localState output_fun trans_fun (localState (s t2))). t2 \<U> t1 [0\<dots>] \<oplus> t0.
(output_fun (s t1) = m \<and>
(State_Idle localState output_fun trans_fun (localState (s t1)) \<or>
(\<circle> t3 t1 [0\<dots>].
((output_fun (s t4) = \<NoMsg>. t4 \<U> t5 ([0\<dots>] \<oplus> t3).
(output_fun (s t5) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t5))))))))))"
apply (subst i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv', assumption+)
apply (subst iUntil_disj_distrib[symmetric])
apply (rule iUntil_cong2)
apply blast
done
lemma i_Exec_Comp_Stream_Acc_Output__eq_iUntil_State_Idle_conv: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c \<rbrakk> \<Longrightarrow>
(i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m) = (
(m = \<NoMsg> \<longrightarrow>
(output_fun (s t1) = \<NoMsg>. t1 \<U> t2 ([0\<dots>] \<oplus> t0). (
output_fun (s t2) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t2))))) \<and>
(m \<noteq> \<NoMsg> \<longrightarrow>
(((\<not> State_Idle localState output_fun trans_fun (localState (s t2))). t2 \<U> t1 [0\<dots>] \<oplus> t0.
(output_fun (s t1) = m \<and>
(State_Idle localState output_fun trans_fun (localState (s t1)) \<or>
(\<circle> t3 t1 [0\<dots>].
((output_fun (s t4) = \<NoMsg>. t4 \<U> t5 ([0\<dots>] \<oplus> t3).
(output_fun (s t5) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t5))))))))))))"
apply (case_tac "m = \<NoMsg>")
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_State_Idle_conv)
apply (simp add: i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv)
done
text \<open>Sufficient conditions for output messages.\<close>
corollary i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_iEx_imp1: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
(\<diamond> t1 [0\<dots>, k - Suc 0] \<oplus> t0. (
output_fun (s t1) = m \<and> State_Idle localState output_fun trans_fun (localState (s t1)))) \<rbrakk> \<Longrightarrow>
i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m"
by (blast intro: i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv2'[THEN iffD2])
corollary i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_iEx_imp2: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
\<diamond> t1 [0\<dots>, k - Suc 0] \<oplus> t0. (
((output_fun (s t1) = m) \<and>
(\<circle> t2 t1 [0\<dots>].
((output_fun (s t3) = \<NoMsg>. t3 \<U> t4 ([0\<dots>] \<oplus> t2).
(output_fun (s t4) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t4)))))))) \<rbrakk> \<Longrightarrow>
i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m"
by (blast intro: i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv2'[THEN iffD2])
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_iUntil_imp1: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
(\<not> State_Idle localState output_fun trans_fun (localState (s t2))). t2 \<U> t1 [0\<dots>] \<oplus> t0.
(output_fun (s t1) = m \<and> State_Idle localState output_fun trans_fun (localState (s t1))) \<rbrakk> \<Longrightarrow>
i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m"
by (blast intro: i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv'[THEN iffD2])
lemma i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_iUntil_imp2: "
\<lbrakk> Suc 0 < k;
State_Idle localState output_fun trans_fun (
i_Exec_Comp_Stream_Acc_LocalState k localState trans_fun input c t);
m \<noteq> \<NoMsg>;
t0 = t * k;
s = i_Exec_Comp_Stream trans_fun (input \<odot>\<^sub>i k) c;
(\<not> State_Idle localState output_fun trans_fun (localState (s t2))). t2 \<U> t1 [0\<dots>] \<oplus> t0.
(output_fun (s t1) = m \<and>
(\<circle> t3 t1 [0\<dots>].
((output_fun (s t4) = \<NoMsg>. t4 \<U> t5 ([0\<dots>] \<oplus> t3).
(output_fun (s t5) = \<NoMsg> \<and> State_Idle localState output_fun trans_fun (localState (s t5))))))) \<rbrakk> \<Longrightarrow>
i_Exec_Comp_Stream_Acc_Output k output_fun trans_fun input c t = m"
by (blast intro: i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv'[THEN iffD2])
text \<open>List of selected lemmas about output of accelerated components.\<close>
thm i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_iAll_conv
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_iEx_iAll_cut_greater_conv
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_iSince_conv
thm i_Exec_Comp_Stream_Acc_Output__eq_iAll_iSince_conv
thm i_Exec_Comp_Stream_Acc_Output__eq_NoMsg_State_Idle_conv
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv2
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv2'
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_conv'
thm i_Exec_Comp_Stream_Acc_Output__eq_iAll_iUntil_State_Idle_conv2
thm i_Exec_Comp_Stream_Acc_Output__eq_iUntil_State_Idle_conv
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_iEx_imp1
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_iEx_imp2
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_iUntil_imp1
thm i_Exec_Comp_Stream_Acc_Output__eq_Msg_State_Idle_iUntil_imp2
end
|