Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 12,481 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
(*  Title:      ListSlice.thy
    Date:       Oct 2006
    Author:     David Trachtenherz
*)

section \<open>Additional definitions and results for lists\<close>

theory ListSlice
imports "List-Infinite.ListInf"
begin

subsection \<open>Slicing lists into lists of lists\<close>

definition ilist_slice  :: "'a ilist \<Rightarrow> nat \<Rightarrow> 'a list ilist"
  where "ilist_slice f k \<equiv> \<lambda>x. map f [x * k..<Suc x * k]"

primrec list_slice_aux :: "'a list \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a list list"
where
  "list_slice_aux xs k 0 = []"
| "list_slice_aux xs k (Suc n) = take k xs # list_slice_aux (xs \<up> k) k n"

definition list_slice :: "'a list \<Rightarrow> nat \<Rightarrow> 'a list list"
  where "list_slice xs k \<equiv> list_slice_aux xs k (length xs div k)"

definition list_slice2 :: "'a list \<Rightarrow> nat \<Rightarrow> 'a list list"
  where "list_slice2 xs k \<equiv>
    list_slice xs k @ (if length xs mod k = 0 then [] else [xs \<up> (length xs div k * k)])"

text \<open>
  No function \<open>list_unslice\<close> for finite lists is needed 
  because the corresponding functionality is already provided by \<open>concat\<close>. 
  Therefore, only a \<open>ilist_unslice\<close> function for infinite lists is defined.\<close>

definition ilist_unslice  :: "'a list ilist \<Rightarrow> 'a ilist"
  where "ilist_unslice f \<equiv> \<lambda>n. f (n div length (f 0)) ! (n mod length (f 0))"


lemma list_slice_aux_length: "\<And>xs. length (list_slice_aux xs k n) = n"
by (induct n, simp+)

lemma list_slice_aux_nth: "
 \<And>m xs. m < n \<Longrightarrow> (list_slice_aux xs k n) ! m = (xs \<up> (m * k) \<down> k)"
apply (induct n)
 apply simp
apply (simp add: nth_Cons' diff_mult_distrib)
done

lemma list_slice_length: "length (list_slice xs k) = length xs div k"
by (simp add: list_slice_def list_slice_aux_length)

lemma list_slice_0: "list_slice xs 0 = []"
by (simp add: list_slice_def)

lemma list_slice_1: "list_slice xs (Suc 0) = map (\<lambda>x. [x]) xs"
by (fastforce simp: list_eq_iff list_slice_def list_slice_aux_nth list_slice_aux_length)

lemma list_slice_less: "length xs < k \<Longrightarrow> list_slice xs k = []"
by (simp add: list_slice_def)

lemma list_slice_Nil: "list_slice [] k = []"
by (simp add: list_slice_def)

lemma list_slice_nth: "
  m < length xs div k \<Longrightarrow> list_slice xs k ! m = xs \<up> (m * k) \<down> k"
by (simp add: list_slice_def list_slice_aux_nth)

lemma list_slice_nth_length: "
  m < length xs div k \<Longrightarrow> length ((list_slice xs k) ! m) = k"
apply (case_tac "length xs < k")
 apply simp
apply (simp add: list_slice_nth)
thm less_div_imp_mult_add_divisor_le
apply (drule less_div_imp_mult_add_divisor_le)
apply simp
done

lemma list_slice_nth_eq_sublist_list: "
  m < length xs div k \<Longrightarrow> list_slice xs k ! m = sublist_list xs [m * k..<m * k + k]"
apply (simp add: list_slice_nth)
apply (rule take_drop_eq_sublist_list)
apply (rule less_div_imp_mult_add_divisor_le, assumption+)
done

lemma list_slice_nth_nth: "
  \<lbrakk> m < length xs div k; n < k \<rbrakk> \<Longrightarrow> 
  (list_slice xs k) ! m ! n = xs ! (m * k + n)"
apply (frule list_slice_nth_length[of m xs k])
apply (simp add: list_slice_nth)
done

lemma list_slice_nth_nth_rev: "
  n < length xs div k * k \<Longrightarrow>
  (list_slice xs k) ! (n div k) ! (n mod k) = xs ! n"
apply (case_tac "k = 0", simp)
apply (simp add: list_slice_nth_nth div_less_conv)
done

lemma list_slice_eq_list_slice_take: "
  list_slice (xs \<down> (length xs div k * k)) k = list_slice xs k"
apply (case_tac "k = 0")
 apply (simp add: list_slice_0)
apply (simp add: list_eq_iff list_slice_length)
apply (simp add: div_mult_le min_eqR list_slice_nth)
apply (clarify, rename_tac i)
apply (subgoal_tac "k \<le> length xs div k * k - i * k")
 prefer 2
 apply (drule_tac m=i in Suc_leI)
 apply (drule mult_le_mono1[of _ _ k])
 apply simp
apply (subgoal_tac "length xs div k * k - i * k \<le> length xs - i * k")
 prefer 2
 apply (simp add: div_mult_cancel)
apply (simp add: min_eqR)
by (simp add: less_diff_conv)

lemma list_slice_append_mult: "
  \<And>xs. length xs = m * k \<Longrightarrow>
  list_slice (xs @ ys) k = list_slice xs k @ list_slice ys k"
apply (case_tac "k = 0")
 apply (simp add: list_slice_0)
apply (induct m)
 apply (simp add: list_slice_Nil)
apply (simp add: list_slice_def)
apply (simp add: list_slice_def add.commute[of _ "length ys"] add.assoc[symmetric])
done

lemma list_slice_append_mod: "
  length xs mod k = 0 \<Longrightarrow>
  list_slice (xs @ ys) k = list_slice xs k @ list_slice ys k"
  by (auto intro: list_slice_append_mult elim!: dvdE)

lemma list_slice_div_eq_1[rule_format]: "
  length xs div k = Suc 0 \<Longrightarrow> list_slice xs k = [take k xs]"
by (simp add: list_slice_def)

lemma list_slice_div_eq_Suc[rule_format]: "
  length xs div k = Suc n \<Longrightarrow>
  list_slice xs k = list_slice (xs \<down> (n * k)) k @ [xs \<up> (n * k) \<down> k]"
apply (case_tac "k = 0", simp)
apply (subgoal_tac "n * k < length xs")
 prefer 2
 apply (case_tac "length xs = 0", simp)
 apply (drule_tac arg_cong[where f="\<lambda>x. x - Suc 0"], drule sym)
 apply (simp add: diff_mult_distrib div_mult_cancel)
apply (insert list_slice_append_mult[of "take (n * k) xs" n k "drop (n * k) xs"])
apply (simp add: min_eqR)
apply (rule list_slice_div_eq_1)
apply (simp add: div_diff_mult_self1)
done

lemma list_slice2_mod_0: "
  length xs mod k = 0 \<Longrightarrow> list_slice2 xs k = list_slice xs k"
by (simp add: list_slice2_def)

lemma list_slice2_mod_gr0: "
  0 < length xs mod k \<Longrightarrow> list_slice2 xs k = list_slice xs k @ [xs \<up> (length xs div k * k)]"
by (simp add: list_slice2_def)

lemma list_slice2_length: "
  length (list_slice2 xs k) = (
  if length xs mod k = 0 then length xs div k else Suc (length xs div k))"
by (simp add: list_slice2_def list_slice_length)

lemma list_slice2_0: "
  list_slice2 xs 0 = (if (length xs = 0) then [] else [xs])"
by (simp add: list_slice2_def list_slice_0)

lemma list_slice2_1: "list_slice2 xs (Suc 0) = map (\<lambda>x. [x]) xs"
by (simp add: list_slice2_def list_slice_1)

lemma list_slice2_le: "
  length xs \<le> k \<Longrightarrow> list_slice2 xs k = (if length xs = 0 then [] else [xs])"
apply (case_tac "k = 0")
 apply (simp add: list_slice2_0)
apply (drule order_le_less[THEN iffD1], erule disjE)
 apply (simp add: list_slice2_def list_slice_def)
apply (simp add: list_slice2_def list_slice_div_eq_1)
done

lemma list_slice2_Nil: "list_slice2 [] k = []"
by (simp add: list_slice2_def list_slice_Nil)

lemma list_slice2_list_slice_nth: "
  m < length xs div k \<Longrightarrow> list_slice2 xs k ! m = list_slice xs k ! m"
by (simp add: list_slice2_def list_slice_length nth_append)

lemma list_slice2_last: "
  \<lbrakk> length xs mod k > 0; m = length xs div k \<rbrakk> \<Longrightarrow>
  list_slice2 xs k ! m = xs \<up> (length xs div k * k)"
by (simp add: list_slice2_def nth_append list_slice_length)

lemma list_slice2_nth: "
  \<lbrakk> m < length xs div k \<rbrakk> \<Longrightarrow> 
  list_slice2 xs k ! m = xs \<up> (m * k) \<down> k"
by (simp add: list_slice2_def list_slice_length nth_append list_slice_nth)

lemma list_slice2_nth_length_eq1: "
  m < length xs div k \<Longrightarrow> length (list_slice2 xs k ! m) = k"
by (simp add: list_slice2_def nth_append list_slice_length list_slice_nth_length)

lemma list_slice2_nth_length_eq2: "
  \<lbrakk> length xs mod k > 0; m = length xs div k \<rbrakk> \<Longrightarrow> 
  length (list_slice2 xs k ! m) = length xs mod k"
by (simp add: list_slice2_def list_slice_length nth_append minus_div_mult_eq_mod [symmetric])

lemma list_slice2_nth_nth_eq1: "
  \<lbrakk> m < length xs div k; n < k \<rbrakk> \<Longrightarrow> 
  (list_slice2 xs k) ! m ! n = xs ! (m * k + n)"
by (simp add: list_slice2_list_slice_nth list_slice_nth_nth)

lemma list_slice2_nth_nth_eq2: "
  \<lbrakk> m = length xs div k; n < length xs mod k \<rbrakk> \<Longrightarrow> 
  (list_slice2 xs k) ! m ! n = xs ! (m * k + n)"
by (simp add: mult.commute[of _ k] minus_mod_eq_mult_div [symmetric] list_slice2_last)

lemma list_slice2_nth_nth_rev: "
  n < length xs \<Longrightarrow> (list_slice2 xs k) ! (n div k) ! (n mod k) = xs ! n"
apply (case_tac "k = 0")
 apply (clarsimp simp: list_slice2_0)
apply (case_tac "n div k < length xs div k")
 apply (simp add: list_slice2_nth_nth_eq1)
apply (frule div_le_mono[OF less_imp_le, of _ _ k])
apply simp
apply (drule sym)
apply (subgoal_tac "n mod k < length xs mod k")
 prefer 2
 apply (rule ccontr)
 apply (simp add: linorder_not_less)
 apply (drule less_mod_ge_imp_div_less[of n "length xs" k], simp+)
apply (simp add: list_slice2_nth_nth_eq2)
done

lemma list_slice2_append_mult: "
  length xs = m * k \<Longrightarrow>
  list_slice2 (xs @ ys) k = list_slice2 xs k @ list_slice2 ys k"
apply (case_tac "k = 0")
 apply (simp add: list_slice2_0)
apply (clarsimp simp: list_slice2_def list_slice_append_mult)
apply (simp add: add.commute[of "m * k"] add_mult_distrib)
done

lemma list_slice2_append_mod: "
  length xs mod k = 0 \<Longrightarrow>
  list_slice2 (xs @ ys) k = list_slice2 xs k @ list_slice2 ys k"
  by (auto intro: list_slice2_append_mult elim!: dvdE)

lemma ilist_slice_nth: "
  (ilist_slice f k) m = map f [m * k..<Suc m * k]"
by (simp add: ilist_slice_def)

lemma ilist_slice_nth_length: "length ((ilist_slice f k) m) = k"
by (simp add: ilist_slice_def)

lemma ilist_slice_nth_nth: "
  n < k \<Longrightarrow> (ilist_slice f k) m ! n = f (m * k + n)"
by (simp add: ilist_slice_def)

lemma ilist_slice_nth_nth_rev: "
  0 < k \<Longrightarrow> (ilist_slice f k) (n div k) ! (n mod k) = f n"
by (simp add: ilist_slice_nth_nth)

lemma list_slice_concat: "
  concat (list_slice xs k) = xs \<down> (length xs div k * k)"
  (is "?P xs k")
apply (case_tac "k = 0")
 apply (simp add: list_slice_0)
apply simp
apply (subgoal_tac "\<And>m. \<forall>xs. length xs div k = m \<longrightarrow> ?P xs k", simp)
apply (induct_tac m)
 apply (intro allI impI)
 apply (simp add: in_set_conv_nth div_eq_0_conv' list_slice_less)
apply clarify
apply (simp add: add.commute[of k])
apply (subgoal_tac "n * k + k \<le> length xs")
 prefer 2
 apply (simp add: le_less_div_conv[symmetric])
apply (simp add: list_slice_div_eq_Suc)
apply (drule_tac x="xs \<down> (n * k)" in spec)
apply (simp add: min_eqR)
apply (simp add: take_add)
done

lemma list_slice_unslice_mult: "
  length xs = m * k \<Longrightarrow> concat (list_slice xs k) = xs"
apply (case_tac "k = 0")
 apply (simp add: list_slice_Nil)
apply (simp add: list_slice_concat)
done

lemma ilist_slice_unslice: "0 < k \<Longrightarrow> ilist_unslice (ilist_slice f k) = f"
by (simp add: ilist_unslice_def ilist_slice_nth_length ilist_slice_nth_nth)

lemma i_take_ilist_slice_eq_list_slice: "
  0 < k \<Longrightarrow> ilist_slice f k \<Down> n = list_slice (f \<Down> (n * k)) k"
apply (simp add: list_eq_iff list_slice_length ilist_slice_nth list_slice_nth)
apply (clarify, rename_tac i)
apply (subgoal_tac "k \<le> n * k - i * k")
 prefer 2
 apply (drule_tac m=i in Suc_leI)
 apply (drule mult_le_mono1[of _ _ k])
 apply simp
apply simp
done

lemma list_slice_i_take_eq_i_take_ilist_slice: "
  list_slice (f \<Down> n) k = ilist_slice f k \<Down> (n div k)"
apply (case_tac "k = 0")
 apply (simp add: list_slice_0)
apply (simp add: i_take_ilist_slice_eq_list_slice)
apply (subst list_slice_eq_list_slice_take[of "f \<Down> n", symmetric])
apply (simp add: div_mult_le min_eqR)
done


lemma ilist_slice_i_append_mod: "
  length xs mod k = 0 \<Longrightarrow> 
  ilist_slice (xs \<frown> f) k = list_slice xs k \<frown> ilist_slice f k"
apply (simp add: ilist_eq_iff ilist_slice_nth i_append_nth list_slice_length)
apply (clarsimp simp: mult.commute[of k] elim!: dvdE, rename_tac n i)
apply (intro conjI impI)
 apply (simp add: list_slice_nth)
 apply (subgoal_tac "k \<le> n * k - i * k")
  prefer 2
  apply (drule_tac m=i in Suc_leI)
  apply (drule mult_le_mono1[of _ _ k])
  apply simp
 apply (fastforce simp: list_eq_iff i_append_nth min_eqR)
apply (simp add: ilist_eq_iff list_eq_iff i_append_nth linorder_not_less)
apply (clarify, rename_tac j)
apply (subgoal_tac "n * k \<le> i * k + j")
 prefer 2
 apply (simp add: trans_le_add1) 
apply (simp add: diff_mult_distrib)
done

corollary ilist_slice_append_mult: "
  length xs = m * k \<Longrightarrow> 
  ilist_slice (xs \<frown> f) k = list_slice xs k \<frown> ilist_slice f k"
by (simp add: ilist_slice_i_append_mod)

end