Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 34,157 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 |
(* Author: Andreas Lochbihler, ETH Zurich
Author: Joshua Schneider, ETH Zurich *)
section \<open>Least and greatest fixpoints\<close>
theory Fixpoints imports
Axiomatised_BNF_CC
begin
subsection \<open>Least fixpoint\<close>
subsubsection \<open>\BNFCC{} structure\<close>
context notes [[typedef_overloaded, bnf_internals]]
begin
datatype (set_T: 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T =
C_T (D_T: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T, 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) G")
for
map: mapl_T
rel: rell_T
end
inductive rel_T :: "('l1 \<Rightarrow> 'l1' \<Rightarrow> bool) \<Rightarrow>
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow>
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow>
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<Rightarrow>
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) T \<Rightarrow> bool"
for L1 Co1 Co2 Contra1 Contra2 where
"rel_T L1 Co1 Co2 Contra1 Contra2 (C_T x) (C_T y)"
if "rel_G (rel_T L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 x y"
primrec map_T :: "('l1 \<Rightarrow> 'l1') \<Rightarrow> ('co1 \<Rightarrow> 'co1') \<Rightarrow> ('co2 \<Rightarrow> 'co2') \<Rightarrow>
('contra1' \<Rightarrow> 'contra1) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2) \<Rightarrow>
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<Rightarrow>
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) T" where
"map_T l1 co1 co2 contra1 contra2 (C_T x) =
C_T (map_G id id co1 co2 contra1 contra2 (mapl_G (map_T l1 co1 co2 contra1 contra2) l1 x))"
text \<open>
The mapper and relator generated by the datatype package coincide with our generalised definitions
restricted to live arguments.
\<close>
lemma rell_T_alt_def: "rell_T L1 = rel_T L1 (=) (=) (=) (=)"
apply (intro ext iffI)
apply (erule T.rel_induct)
apply (unfold rell_G_def)
apply (erule rel_T.intros)
apply (erule rel_T.induct)
apply (rule T.rel_intros)
apply (unfold rell_G_def)
apply (erule rel_G_mono')
apply (auto)
done
lemma mapl_T_alt_def: "mapl_T l1 = map_T l1 id id id id"
supply id_apply[simp del]
apply (rule ext)
subgoal for x
apply (induction x)
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified])
apply (fold mapl_G_def)
apply (erule mapl_G_cong)
apply (rule refl)
done
done
lemma rel_T_mono [mono]:
"\<lbrakk> L1 \<le> L1'; Co1 \<le> Co1'; Co2 \<le> Co2'; Contra1' \<le> Contra1; Contra2' \<le> Contra2 \<rbrakk> \<Longrightarrow>
rel_T L1 Co1 Co2 Contra1 Contra2 \<le> rel_T L1' Co1' Co2' Contra1' Contra2'"
apply (rule predicate2I)
apply (erule rel_T.induct)
apply (rule rel_T.intros)
apply (erule rel_G_mono')
apply (auto)
done
lemma rel_T_eq: "rel_T (=) (=) (=) (=) (=) = (=)"
unfolding rell_T_alt_def[symmetric] T.rel_eq ..
lemma rel_T_conversep:
"rel_T L1\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> = (rel_T L1 Co1 Co2 Contra1 Contra2)\<inverse>\<inverse>"
apply (intro ext iffI)
apply (simp)
apply (erule rel_T.induct)
apply (rule rel_T.intros)
apply (rewrite conversep_iff[symmetric])
apply (fold rel_G_conversep)
apply (erule rel_G_mono'; blast)
apply (simp)
apply (erule rel_T.induct)
apply (rule rel_T.intros)
apply (rewrite conversep_iff[symmetric])
apply (unfold rel_G_conversep[symmetric] conversep_conversep)
apply (erule rel_G_mono'; blast)
done
lemma map_T_id0: "map_T id id id id id = id"
unfolding mapl_T_alt_def[symmetric] T.map_id0 ..
lemma map_T_id: "map_T id id id id id x = x"
by (simp add: map_T_id0)
lemma map_T_comp: "map_T l1 co1 co2 contra1 contra2 \<circ> map_T l1' co1' co2' contra1' contra2' =
map_T (l1 \<circ> l1') (co1 \<circ> co1') (co2 \<circ> co2') (contra1' \<circ> contra1) (contra2' \<circ> contra2)"
apply (rule ext)
subgoal for x
apply (induction x)
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified])
apply (fold comp_def)
apply (subst (1 2) map_G_mapl_G)
apply (rule arg_cong[where f="map_G _ _ _ _ _ _"])
apply (rule mapl_G_cong)
apply (simp_all)
done
done
lemma map_T_parametric: "rel_fun (rel_fun L1 L1')
(rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2')
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2)
(rel_fun (rel_T L1 Co1 Co2 Contra1 Contra2) (rel_T L1' Co1' Co2' Contra1' Contra2'))))))
map_T map_T"
apply (intro rel_funI)
apply (erule rel_T.induct)
apply (simp)
apply (rule rel_T.intros)
apply (fold map_G_mapl_G)
apply (erule map_G_rel_cong)
apply (blast elim: rel_funE)+
done
definition rel_T_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow>
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow>
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow>
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow>
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself \<Rightarrow> bool" where
"rel_T_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow>
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool).
(rel_T L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) T \<Rightarrow> _) OO
rel_T L1' Co1' Co2' Contra1' Contra2' \<le>
rel_T (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2'))"
definition rel_T_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow>
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow>
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow>
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow>
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself \<Rightarrow> bool" where
"rel_T_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow>
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool).
rel_T (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') \<le>
(rel_T L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) T \<Rightarrow> _) OO
rel_T L1' Co1' Co2' Contra1' Contra2')"
text \<open>
We inherit the conditions for subdistributivity over relation composition via
a composition witness, which is derived from a witness for the underlying functor @{type G}.
\<close>
primrec rel_T_witness :: "('l1 \<Rightarrow> 'l1'' \<Rightarrow> bool) \<Rightarrow>
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow>
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow>
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow>
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow>
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<Rightarrow>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \<Rightarrow>
('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T" where
"rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (C_T x) Cy = C_T
(mapl_G (\<lambda>((x, f), y). f y) id
(rel_G_witness (\<lambda>(x, f) y. rel_T (\<lambda>x (x', y). x' = x \<and> L1 x y) Co1 Co2 Contra1 Contra2 x (f y) \<and>
rel_T (\<lambda>(x, y') y. y' = y \<and> L1 x y) Co1' Co2' Contra1' Contra2' (f y) y)
L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2'
(mapl_G (\<lambda>x. (x, rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x)) id x,
D_T Cy)))"
lemma rel_T_pos_distr_imp:
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool"
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool"
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool"
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool"
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times>
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) T \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \<times> 'l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself"
and tytok_T :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself"
assumes "rel_G_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G"
shows "rel_T_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T"
unfolding rel_T_pos_distr_cond_def
apply (intro allI predicate2I)
apply (erule relcomppE)
subgoal premises prems for L1 L1' x z y
using prems apply (induction arbitrary: z)
apply (erule rel_T.cases)
apply (simp)
apply (rule rel_T.intros)
apply (drule (1) rel_G_pos_distr[THEN predicate2D, OF assms relcomppI])
apply (erule rel_G_mono'; blast)
done
done
lemma
fixes L1 :: "'l1 \<Rightarrow> 'l1'' \<Rightarrow> bool"
and Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool"
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool"
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool"
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool"
and tytok_G :: "((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times>
(('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T
\<Rightarrow> ('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \<times>
((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times>
(('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T
\<Rightarrow> ('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T) \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \<times>
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself"
and x :: "(_, _, _, _, _, 'f) T"
assumes cond: "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G"
and rel_OO: "rel_T L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y"
shows rel_T_witness1: "rel_T (\<lambda>x (x', y). x' = x \<and> L1 x y) Co1 Co2 Contra1 Contra2 x
(rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y)"
and rel_T_witness2: "rel_T (\<lambda>(x, y') y. y' = y \<and> L1 x y) Co1' Co2' Contra1' Contra2'
(rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y) y"
using rel_OO apply (induction)
subgoal premises prems for x y
proof-
have x_expansion: "x = mapl_G fst id (mapl_G (\<lambda>x.
(x, rel_T_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x)) id x)"
by (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified] map_G_id[unfolded id_def] comp_def)
show ?thesis
apply (simp)
apply (rule rel_T.intros)
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" x_expansion)
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" mapl_G_def)
apply (subst mapl_G_def)
apply (rule map_G_rel_cong)
apply (rule rel_G_witness1[OF cond])
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" mapl_G_def)
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" map_G_id[symmetric])
apply (rule map_G_rel_cong[OF prems])
apply (clarsimp)+
done
qed
subgoal for x y
apply (simp)
apply (rule rel_T.intros)
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" mapl_G_def)
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" map_G_id[symmetric])
apply (rule map_G_rel_cong)
apply (rule rel_G_witness2[OF cond[unfolded rel_T_neg_distr_cond_def]])
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" mapl_G_def)
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" map_G_id[symmetric])
apply (erule map_G_rel_cong)
apply (clarsimp)+
done
done
lemma rel_T_neg_distr_imp:
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool"
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool"
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool"
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool"
and tytok_G :: "((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times>
(('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T
\<Rightarrow> ('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \<times>
((('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) T \<times>
(('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T
\<Rightarrow> ('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) T)) \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T) \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) T \<times>
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself"
and tytok_T :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself"
assumes "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G"
shows "rel_T_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T"
unfolding rel_T_neg_distr_cond_def
proof (intro allI predicate2I relcomppI)
fix L1 :: "'l1 \<Rightarrow> 'l1' \<Rightarrow> bool" and L1' :: "'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool"
and x :: "(_, _, _, _, _, 'f) T" and y :: "(_, _, _, _, _, 'f) T"
assume *: "rel_T (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2')
(Contra1 OO Contra1') (Contra2 OO Contra2') x y"
let ?z = "map_T (relcompp_witness L1 L1') id id id id
(rel_T_witness (L1 OO L1') Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' x y)"
show "rel_T L1 Co1 Co2 Contra1 Contra2 x ?z"
apply(subst map_T_id[symmetric])
apply(rule map_T_parametric[unfolded rel_fun_def, rule_format, rotated -1])
apply(rule rel_T_witness1[OF assms *])
apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness)
done
show "rel_T L1' Co1' Co2' Contra1' Contra2' ?z y"
apply(rewrite in "rel_T _ _ _ _ _ _ \<hole>" map_T_id[symmetric])
apply(rule map_T_parametric[unfolded rel_fun_def, rule_format, rotated -1])
apply(rule rel_T_witness2[OF assms *])
apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness)
done
qed
lemma rel_T_pos_distr_cond_eq:
"\<And>tytok. rel_T_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok"
by (intro rel_T_pos_distr_imp rel_G_pos_distr_cond_eq)
lemma rel_T_neg_distr_cond_eq:
"\<And>tytok. rel_T_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok"
by (intro rel_T_neg_distr_imp rel_G_neg_distr_cond_eq)
text \<open>The BNF axioms are proved by the datatype package.\<close>
thm T.set_map T.bd_card_order T.bd_cinfinite T.set_bd T.map_cong[OF refl]
T.rel_mono_strong T.wit
subsubsection \<open>Parametricity laws\<close>
context includes lifting_syntax begin
lemma C_T_parametric: "(rel_G (rel_T L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 ===>
rel_T L1 Co1 Co2 Contra1 Contra2) C_T C_T"
by (fast elim: rel_T.intros)
lemma D_T_parametric: "(rel_T L1 Co1 Co2 Contra1 Contra2 ===>
rel_G (rel_T L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2) D_T D_T"
by (fastforce elim: rel_T.cases)
lemma rec_T_parametric:
"((rel_G (rel_prod (rel_T L1 Co1 Co2 Contra1 Contra2) A) L1 Co1 Co2 Contra1 Contra2 ===> A) ===>
rel_T L1 Co1 Co2 Contra1 Contra2 ===> A) rec_T rec_T"
apply (intro rel_funI)
subgoal premises prems for f g x y
using prems(2) apply (induction)
apply (simp)
apply (rule prems(1)[THEN rel_funD])
apply (unfold mapl_G_def)
apply (erule map_G_rel_cong)
apply (auto)
done
done
end
subsection \<open>Greatest fixpoints\<close>
subsubsection \<open>\BNFCC{} structure\<close>
context notes [[typedef_overloaded, bnf_internals]]
begin
codatatype (set_U: 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U =
C_U (D_U: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U, 'l1, 'co1, 'co2, 'contra1, 'contra2, 'f) G")
for
map: mapl_U
rel: rell_U
end
coinductive rel_U :: "('l1 \<Rightarrow> 'l1' \<Rightarrow> bool) \<Rightarrow>
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow>
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow>
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<Rightarrow>
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) U \<Rightarrow> bool"
for L1 Co1 Co2 Contra1 Contra2 where
"rel_U L1 Co1 Co2 Contra1 Contra2 x y"
if "rel_G (rel_U L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 (D_U x) (D_U y)"
primcorec map_U :: "('l1 \<Rightarrow> 'l1') \<Rightarrow> ('co1 \<Rightarrow> 'co1') \<Rightarrow> ('co2 \<Rightarrow> 'co2') \<Rightarrow>
('contra1' \<Rightarrow> 'contra1) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2) \<Rightarrow>
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<Rightarrow>
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) U" where
"D_U (map_U l1 co1 co2 contra1 contra2 x) =
mapl_G (map_U l1 co1 co2 contra1 contra2) l1 (map_G id id co1 co2 contra1 contra2 (D_U x))"
lemma rell_U_alt_def: "rell_U L1 = rel_U L1 (=) (=) (=) (=)"
apply (intro ext iffI)
apply (erule rel_U.coinduct)
apply (erule U.rel_cases)
apply (simp add: rell_G_def)
apply (erule rel_G_mono'; blast)
apply (erule U.rel_coinduct)
apply (erule rel_U.cases)
apply (simp add: rell_G_def)
done
lemma mapl_U_alt_def: "mapl_U l1 = map_U l1 id id id id"
supply id_apply[simp del]
apply (rule ext)
subgoal for x
apply (coinduction arbitrary: x)
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified] U.map_sel)
apply (unfold rell_G_def)
apply (rule map_G_rel_cong[OF rel_G_eq_refl])
apply (auto)
done
done
lemma rel_U_mono [mono]:
"\<lbrakk> L1 \<le> L1'; Co1 \<le> Co1'; Co2 \<le> Co2'; Contra1' \<le> Contra1; Contra2' \<le> Contra2 \<rbrakk> \<Longrightarrow>
rel_U L1 Co1 Co2 Contra1 Contra2 \<le> rel_U L1' Co1' Co2' Contra1' Contra2'"
apply (rule predicate2I)
apply (erule rel_U.coinduct[of "rel_U L1 Co1 Co2 Contra1 Contra2"])
apply (erule rel_U.cases)
apply (simp)
apply (erule rel_G_mono')
apply (blast)+
done
lemma rel_U_eq: "rel_U (=) (=) (=) (=) (=) = (=)"
unfolding rell_U_alt_def[symmetric] U.rel_eq ..
lemma rel_U_conversep:
"rel_U L1\<inverse>\<inverse> Co1\<inverse>\<inverse> Co2\<inverse>\<inverse> Contra1\<inverse>\<inverse> Contra2\<inverse>\<inverse> = (rel_U L1 Co1 Co2 Contra1 Contra2)\<inverse>\<inverse>"
apply (intro ext iffI)
apply (simp)
apply (erule rel_U.coinduct)
apply (erule rel_U.cases)
apply (simp del: conversep_iff)
apply (rewrite conversep_iff[symmetric])
apply (fold rel_G_conversep)
apply (erule rel_G_mono'; blast)
apply (erule rel_U.coinduct)
apply (subst (asm) conversep_iff)
apply (erule rel_U.cases)
apply (simp del: conversep_iff)
apply (rewrite conversep_iff[symmetric])
apply (unfold rel_G_conversep[symmetric] conversep_conversep)
apply (erule rel_G_mono'; blast)
done
lemma map_U_id0: "map_U id id id id id = id"
unfolding mapl_U_alt_def[symmetric] U.map_id0 ..
lemma map_U_id: "map_U id id id id id x = x"
by (simp add: map_U_id0)
lemma map_U_comp: "map_U l1 co1 co2 contra1 contra2 \<circ> map_U l1' co1' co2' contra1' contra2' =
map_U (l1 \<circ> l1') (co1 \<circ> co1') (co2 \<circ> co2') (contra1' \<circ> contra1) (contra2' \<circ> contra2)"
apply (rule ext)
subgoal for x
apply (coinduction arbitrary: x)
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified])
apply (unfold rell_G_def)
apply (rule map_G_rel_cong[OF rel_G_eq_refl])
apply (auto)
done
done
lemma map_U_parametric: "rel_fun (rel_fun L1 L1')
(rel_fun (rel_fun Co1 Co1') (rel_fun (rel_fun Co2 Co2')
(rel_fun (rel_fun Contra1' Contra1) (rel_fun (rel_fun Contra2' Contra2)
(rel_fun (rel_U L1 Co1 Co2 Contra1 Contra2) (rel_U L1' Co1' Co2' Contra1' Contra2'))))))
map_U map_U"
apply (intro rel_funI)
apply (coinduction)
apply (simp add: mapl_G_def map_G_comp[THEN fun_cong, simplified])
apply (erule rel_U.cases)
apply (hypsubst)
apply (erule map_G_rel_cong)
apply (blast elim: rel_funE)+
done
definition rel_U_pos_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow>
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow>
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow>
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow>
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself \<Rightarrow> bool" where
"rel_U_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow>
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool).
(rel_U L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) U \<Rightarrow> _) OO
rel_U L1' Co1' Co2' Contra1' Contra2' \<le>
rel_U (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2'))"
definition rel_U_neg_distr_cond :: "('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow>
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow>
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow>
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow>
('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself \<Rightarrow> bool" where
"rel_U_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' _ \<longleftrightarrow>
(\<forall>(L1 :: 'l1 \<Rightarrow> 'l1' \<Rightarrow> bool) (L1' :: 'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool).
rel_U (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') \<le>
(rel_U L1 Co1 Co2 Contra1 Contra2 :: (_, _, _, _, _, 'f) U \<Rightarrow> _) OO
rel_U L1' Co1' Co2' Contra1' Contra2')"
primcorec rel_U_witness :: "('l1 \<Rightarrow> 'l1'' \<Rightarrow> bool) \<Rightarrow>
('co1 \<Rightarrow> 'co1' \<Rightarrow> bool) \<Rightarrow> ('co1' \<Rightarrow> 'co1'' \<Rightarrow> bool) \<Rightarrow>
('co2 \<Rightarrow> 'co2' \<Rightarrow> bool) \<Rightarrow> ('co2' \<Rightarrow> 'co2'' \<Rightarrow> bool) \<Rightarrow>
('contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool) \<Rightarrow> ('contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool) \<Rightarrow>
('contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool) \<Rightarrow> ('contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool) \<Rightarrow>
('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<Rightarrow>
('l1 \<times> 'l1'', 'co1', 'co2', 'contra1', 'contra2', 'f) U" where
"D_U (rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' xy) =
mapl_G (rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2') id
(rel_G_witness (rel_U L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2'))
L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (D_U (fst xy), D_U (snd xy)))"
lemma rel_U_pos_distr_imp:
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool"
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool"
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool"
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool"
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times>
('l1', 'co1', 'co2', 'contra1', 'contra2', 'f) U \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<times> 'l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself"
and tytok_T :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself"
assumes "rel_G_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G"
shows "rel_U_pos_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T"
unfolding rel_U_pos_distr_cond_def
apply (intro allI predicate2I)
apply (erule relcomppE)
subgoal premises prems for L1 L1' x z y
using prems apply (coinduction arbitrary: x y z)
apply (simp)
apply (rule rel_G_pos_distr[THEN predicate2D,
OF assms relcomppI, THEN rel_G_mono'])
apply (auto elim: rel_U.cases)
done
done
lemma rel_U_witness1:
fixes L1 :: "'l1 \<Rightarrow> 'l1'' \<Rightarrow> bool"
and Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool"
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool"
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool"
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool"
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times>
(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U) \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<times>
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself"
and x :: "(_, _, _, _, _, 'f) U"
assumes cond: "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G"
and rel_OO: "rel_U L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y"
shows "rel_U (\<lambda>x (x', y). x' = x \<and> L1 x y) Co1 Co2 Contra1 Contra2 x
(rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y))"
using rel_OO apply (coinduction arbitrary: x y)
apply (erule rel_U.cases)
apply (clarsimp)
apply (rewrite in "rel_G _ _ _ _ _ _ \<hole> _" map_G_id[symmetric])
apply (subst mapl_G_def)
apply (rule map_G_rel_cong)
apply (erule rel_G_witness1[OF cond])
apply (auto)
done
lemma rel_U_witness2:
fixes L1 :: "'l1 \<Rightarrow> 'l1'' \<Rightarrow> bool"
and Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool"
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool"
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool"
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool"
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times>
(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U) \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<times>
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself"
and x :: "(_, _, _, _, _, 'f) U"
assumes cond: "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G"
and rel_OO: "rel_U L1 (Co1 OO Co1') (Co2 OO Co2') (Contra1 OO Contra1') (Contra2 OO Contra2') x y"
shows "rel_U (\<lambda>(x, y') y. y' = y \<and> L1 x y) Co1' Co2' Contra1' Contra2'
(rel_U_witness L1 Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y)) y"
using rel_OO apply (coinduction arbitrary: x y)
apply (erule rel_U.cases)
apply (clarsimp)
apply (rewrite in "rel_G _ _ _ _ _ _ _ \<hole>" map_G_id[symmetric])
apply (subst mapl_G_def)
apply (rule map_G_rel_cong)
apply (erule rel_G_witness2[OF cond])
apply (auto)
done
lemma rel_U_neg_distr_imp:
fixes Co1 :: "'co1 \<Rightarrow> 'co1' \<Rightarrow> bool" and Co1' :: "'co1' \<Rightarrow> 'co1'' \<Rightarrow> bool"
and Co2 :: "'co2 \<Rightarrow> 'co2' \<Rightarrow> bool" and Co2' :: "'co2' \<Rightarrow> 'co2'' \<Rightarrow> bool"
and Contra1 :: "'contra1 \<Rightarrow> 'contra1' \<Rightarrow> bool" and Contra1' :: "'contra1' \<Rightarrow> 'contra1'' \<Rightarrow> bool"
and Contra2 :: "'contra2 \<Rightarrow> 'contra2' \<Rightarrow> bool" and Contra2' :: "'contra2' \<Rightarrow> 'contra2'' \<Rightarrow> bool"
and tytok_G :: "(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times>
(('l1, 'co1, 'co2, 'contra1, 'contra2, 'f) U \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U) \<times>
('l1'', 'co1'', 'co2'', 'contra1'', 'contra2'', 'f) U \<times>
'l1 \<times> ('l1 \<times> 'l1'') \<times> 'l1'' \<times> 'f) itself"
and tytok_T :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f) itself"
assumes "rel_G_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_G"
shows "rel_U_neg_distr_cond Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' tytok_T"
unfolding rel_U_neg_distr_cond_def
proof (intro allI predicate2I relcomppI)
fix L1 :: "'l1 \<Rightarrow> 'l1' \<Rightarrow> bool" and L1' :: "'l1' \<Rightarrow> 'l1'' \<Rightarrow> bool"
and x :: "(_, _, _, _, _, 'f) U" and y :: "(_, _, _, _, _, 'f) U"
assume *: "rel_U (L1 OO L1') (Co1 OO Co1') (Co2 OO Co2')
(Contra1 OO Contra1') (Contra2 OO Contra2') x y"
let ?z = "map_U (relcompp_witness L1 L1') id id id id
(rel_U_witness (L1 OO L1') Co1 Co1' Co2 Co2' Contra1 Contra1' Contra2 Contra2' (x, y))"
show "rel_U L1 Co1 Co2 Contra1 Contra2 x ?z"
apply(subst map_U_id[symmetric])
apply(rule map_U_parametric[unfolded rel_fun_def, rule_format, rotated -1])
apply(rule rel_U_witness1[OF assms *])
apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness)
done
show "rel_U L1' Co1' Co2' Contra1' Contra2' ?z y"
apply(rewrite in "rel_U _ _ _ _ _ _ \<hole>" map_U_id[symmetric])
apply(rule map_U_parametric[unfolded rel_fun_def, rule_format, rotated -1])
apply(rule rel_U_witness2[OF assms *])
apply(auto simp add: vimage2p_def del: relcomppE elim!: relcompp_witness)
done
qed
lemma rel_U_pos_distr_cond_eq:
"\<And>tytok. rel_U_pos_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok"
by (intro rel_U_pos_distr_imp rel_G_pos_distr_cond_eq)
lemma rel_U_neg_distr_cond_eq:
"\<And>tytok. rel_U_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) tytok"
by (intro rel_U_neg_distr_imp rel_G_neg_distr_cond_eq)
text \<open>The BNF axioms are proved by the datatype package.\<close>
thm U.set_map U.bd_card_order U.bd_cinfinite U.set_bd U.map_cong[OF refl]
U.rel_mono_strong U.wit
subsubsection \<open>Parametricity laws\<close>
context includes lifting_syntax begin
lemma C_U_parametric: "(rel_G (rel_U L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2 ===>
rel_U L1 Co1 Co2 Contra1 Contra2) C_U C_U"
by (fastforce intro: rel_U.intros)
lemma D_U_parametric: "(rel_U L1 Co1 Co2 Contra1 Contra2 ===>
rel_G (rel_U L1 Co1 Co2 Contra1 Contra2) L1 Co1 Co2 Contra1 Contra2) D_U D_U"
by (fast elim: rel_U.cases)
lemma corec_U_parametric:
"((A ===> rel_G (rel_sum (rel_U L1 Co1 Co2 Contra1 Contra2) A) L1 Co1 Co2 Contra1 Contra2) ===>
A ===> rel_U L1 Co1 Co2 Contra1 Contra2) corec_U corec_U"
apply (intro rel_funI)
subgoal premises prems for f g x y
using prems(2) apply (coinduction arbitrary: x y)
apply (simp)
apply (unfold mapl_G_def)
apply (rule map_G_rel_cong)
apply (erule prems(1)[THEN rel_funD])
apply (fastforce elim: rel_sum.cases)
apply (simp_all)
done
done
end
end
|