Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 44,570 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
theory Renegar_Decision
  imports "Renegar_Proofs"
    "BKR_Decision"
begin

(* Note that there is significant overlap between Renegar and BKR in general, so there is some
  similarity between this file and BKR_Decision.thy.  However, there are also notable differences
  as Renegar and BKR use different auxiliary polynomials in their decision procedures.

  In general, the _R's on definition and lemma names in this file are to emphasize that we are 
  working with Renegar style.

*)

section "Algorithm"

(* The set of all rational sign vectors for qs wrt the set S
  When S = UNIV, then this quantifies over all reals *)
definition consistent_sign_vectors_R::"real poly list \<Rightarrow> real set \<Rightarrow> rat list set"
  where "consistent_sign_vectors_R qs S = (consistent_sign_vec qs) ` S"

primrec prod_list_var:: "real poly list \<Rightarrow> real poly"
  where "prod_list_var  [] = 1"
  | "prod_list_var (h#T) = (if h = 0 then (prod_list_var T) else (h* prod_list_var T))"

primrec check_all_const_deg:: "real poly list \<Rightarrow> bool"
  where "check_all_const_deg  [] = True"
  | "check_all_const_deg (h#T) = (if degree h = 0 then (check_all_const_deg T) else False)"

definition poly_f :: "real poly list \<Rightarrow> real poly"
  where
    "poly_f ps = 
  (if (check_all_const_deg ps = True) then  [:0, 1:] else 
  (pderiv (prod_list_var ps)) * (prod_list_var ps)* ([:-(crb (prod_list_var ps)),1:]) * ([:(crb (prod_list_var ps)),1:]))"

definition find_consistent_signs_R :: "real poly list \<Rightarrow> rat list list"
  where
    "find_consistent_signs_R ps = find_consistent_signs_at_roots_R (poly_f ps) ps"

definition decide_universal_R :: "real poly fml \<Rightarrow> bool"
  where [code]:
    "decide_universal_R fml = (
    let (fml_struct,polys) = convert fml;
        conds = find_consistent_signs_R polys
    in
     list_all (lookup_sem fml_struct) conds
  )"

definition decide_existential_R :: "real poly fml \<Rightarrow> bool"
  where [code]:
    "decide_existential_R fml = (
    let (fml_struct,polys) = convert fml;
        conds = find_consistent_signs_R polys
    in
      find (lookup_sem fml_struct) conds \<noteq> None
  )"

subsection "Proofs"
definition roots_of_poly_f:: "real poly list \<Rightarrow> real set"
  where "roots_of_poly_f qs = {x. poly (poly_f qs) x = 0}"

lemma prod_list_var_nonzero:
  shows "prod_list_var qs \<noteq> 0"
proof (induct qs)
  case Nil
  then show ?case by auto
next
  case (Cons a qs)
  then show ?case by auto
qed

lemma q_dvd_prod_list_var_prop:
  assumes "q \<in> set qs"
  assumes "q \<noteq> 0"
  shows "q dvd prod_list_var qs" using assms
proof (induct qs)
  case Nil
  then show ?case by auto
next
  case (Cons a qs)
  then have eo: "q = a \<or>q \<in> set qs" by auto
  have c1: "q = a \<Longrightarrow> q dvd prod_list_var (a#qs)"
  proof - 
    assume "q = a"
    then have "prod_list_var (a#qs) = q*(prod_list_var qs)" using Cons.prems
      unfolding prod_list_var_def by auto
    then show ?thesis using prod_list_var_nonzero[of qs] by auto
  qed
  have c2: "q \<in> set qs \<longrightarrow> q dvd prod_list_var qs"
    using Cons.prems Cons.hyps unfolding prod_list_var_def by auto
  show ?case using eo c1 c2 by auto
qed


lemma check_all_const_deg_prop: 
  shows "check_all_const_deg l = True \<longleftrightarrow> (\<forall>p \<in> set(l). degree p = 0)"
proof (induct l)
  case Nil
  then show ?case by auto
next
  case (Cons a l)
  then show ?case by auto
qed

(* lemma prod_zero shows that the product of the polynomial list is 0 at x iff there is a polynomial 
  in the list that is 0 at x *)
lemma poly_f_nonzero:
  fixes qs :: "real poly list"
  shows "(poly_f qs) \<noteq> 0"
proof - 
  have eo: "(\<forall>p \<in> set qs. degree p = 0) \<or> (\<exists>p \<in> set qs. degree p > 0)"
    by auto
  have c1: "(\<forall>p \<in> set qs. degree p = 0) \<longrightarrow> (poly_f qs) \<noteq> 0"
    unfolding poly_f_def using check_all_const_deg_prop by auto
  have c2: "(\<exists>p \<in> set qs. degree p > 0) \<longrightarrow> (poly_f qs) \<noteq> 0"
  proof clarsimp 
    fix q
    assume q_in: "q \<in> set qs"
    assume deg_q: "0 < degree q"
    assume contrad: "poly_f qs = 0"
    have nonconst: "check_all_const_deg qs = False" using deg_q check_all_const_deg_prop
        q_in by auto
    have h1: "prod_list_var qs \<noteq> 0" using prod_list_var_nonzero by auto
    then have "degree (prod_list_var qs) > 0" using q_in deg_q h1
    proof (induct qs)
      case Nil
      then show ?case by auto
    next
      case (Cons a qs)
      have q_nonz: "q \<noteq> 0" using Cons.prems by auto
      have q_ins: "q \<in> set (a # qs) " using Cons.prems by auto
      then have "q = a \<or> q \<in> set qs" by auto
      then have eo: " q = a \<or> List.member qs q" using in_set_member[of q qs]
        by auto
      have degq: "degree q > 0" using Cons.prems by auto
      have h2: "(prod_list (a # qs)) = a* (prod_list qs)"
        by auto
      have isa: "q = a \<longrightarrow> 0 < degree (prod_list_var (a # qs))" 
        using h2 degree_mult_eq_0[where p = "q", where q = "prod_list_var qs"]
          Cons.prems by auto
      have inl: "List.member qs q \<longrightarrow> 0 < degree (prod_list_var (a # qs))"
      proof - 
        have nonzprod: "prod_list_var (a # qs) \<noteq> 0" using prod_list_var_nonzero by auto
        have "q dvd prod_list_var (a # qs)"
          using q_dvd_prod_list_var_prop[where q = "q", where qs = "(a#qs)"] q_nonz q_ins
          by auto
        then show ?thesis using divides_degree[where p = "q", where q = "prod_list_var (a # qs)"] nonzprod degq
          by auto
      qed
      then show ?case using eo isa by auto
    qed
    then have h2: "pderiv (prod_list_var qs) \<noteq> 0" using pderiv_eq_0_iff[where p = "prod_list_var qs"] 
      by auto
    then have "pderiv (prod_list_var qs) * prod_list_var qs \<noteq> 0" 
      using prod_list_var_nonzero h2 by auto
    then show "False" using contrad nonconst unfolding poly_f_def deg_q
      by (smt (z3) mult_eq_0_iff pCons_eq_0_iff) 
  qed
  show ?thesis using eo c1 c2 by auto
qed

lemma poly_f_roots_prop_1: 
  fixes qs:: "real poly list"
  assumes non_const: "check_all_const_deg qs = False"
  shows "\<forall>x1. \<forall>x2. ((x1 < x2 \<and> (\<exists>q1 \<in> set (qs). q1 \<noteq> 0 \<and> (poly q1 x1) = 0) \<and> (\<exists>q2\<in> set(qs). q2 \<noteq> 0 \<and> (poly q2 x2) = 0)) \<longrightarrow> (\<exists>q. x1 < q \<and> q < x2 \<and> poly (poly_f qs) q = 0))"
proof clarsimp
  fix x1:: "real"
  fix x2:: "real"
  fix q1:: "real poly"
  fix q2:: "real poly"
  assume "x1 < x2"
  assume q1_in: "q1 \<in> set qs"
  assume q1_0: "poly q1 x1 = 0"
  assume q1_nonz: "q1 \<noteq> 0"
  assume q2_in: "q2 \<in> set qs"
  assume q2_0: "poly q2 x2 = 0"
  assume q2_nonz: "q2 \<noteq> 0"
  have prod_z_x1: "poly (prod_list_var qs) x1 = 0" using q1_in q1_0
    using q1_nonz q_dvd_prod_list_var_prop[of q1 qs] by auto
  have prod_z_x2: "poly (prod_list_var qs) x2 = 0" using q2_in q2_0 
    using q2_nonz q_dvd_prod_list_var_prop[of q2 qs] by auto 
  have "\<exists>w>x1. w < x2 \<and> poly (pderiv (prod_list_var qs)) w = 0" 
    using Rolle_pderiv[where q = "prod_list_var qs"] prod_z_x1 prod_z_x2
    using \<open>x1 < x2\<close> by blast
  then obtain w where w_def: "w > x1 \<and>w < x2 \<and> poly (pderiv (prod_list_var qs)) w = 0"
    by auto
  then have "poly (poly_f qs) w = 0"
    unfolding poly_f_def using non_const
    by simp
  then show "\<exists>q>x1. q < x2 \<and> poly (poly_f qs) q = 0"
    using w_def by blast 
qed 

lemma main_step_aux1_R:
  fixes qs:: "real poly list"
  assumes non_const: "check_all_const_deg qs = True"
  shows "set (find_consistent_signs_R qs) =  consistent_sign_vectors_R qs UNIV"
proof - 
  have poly_f_is: "poly_f qs = [:0, 1:]" unfolding poly_f_def using assms 

    by auto
  have same: "set (find_consistent_signs_at_roots_R [:0, 1:] qs) =
  set (characterize_consistent_signs_at_roots [:0, 1:] qs)" using find_consistent_signs_at_roots_R[of "[:0, 1:]" qs] 
    by auto 
  have rech: "(sorted_list_of_set {x. poly ([:0, 1:]::real poly) x = 0}) = [0]" by auto
  have alldeg0: "(\<forall>p \<in> set qs. degree p = 0)" using non_const check_all_const_deg_prop
    by auto
  then have allconst: "\<forall>p \<in> set qs. (\<exists>(k::real). p = [:k:])"
    apply (auto)
    by (meson degree_eq_zeroE) 
  then have allconstvar: "\<forall>p \<in> set qs. \<forall>(x::real). \<forall>(y::real). poly p x = poly p y"
    by fastforce
  have e1: "set (remdups (map (signs_at qs) [0])) \<subseteq>
    consistent_sign_vectors_R qs UNIV"
    unfolding signs_at_def squash_def consistent_sign_vectors_R_def consistent_sign_vec_def apply (simp)
    by (smt (verit, best) class_ring.ring_simprules(2) comp_def image_iff length_map map_nth_eq_conv)
  have e2: "consistent_sign_vectors_R qs UNIV \<subseteq> set (remdups (map (signs_at qs) [0])) "
    unfolding signs_at_def squash_def consistent_sign_vectors_R_def consistent_sign_vec_def apply (simp)
    using allconstvar
    by (smt (verit, best) comp_apply image_iff insert_iff map_eq_conv subsetI) 
  have "set (remdups (map (signs_at qs) [0])) =
    consistent_sign_vectors_R qs UNIV" 
    using e1 e2 by auto
  then have "set (characterize_consistent_signs_at_roots [:0, 1:] qs) = consistent_sign_vectors_R qs UNIV"
    unfolding characterize_consistent_signs_at_roots_def characterize_root_list_p_def 
    using rech by auto
  then show ?thesis using same poly_f_is unfolding find_consistent_signs_R_def 
    by auto
qed

lemma sorted_list_lemma_var:
  fixes l:: "real list"
  fixes x:: "real"
  assumes "length l > 1"
  assumes strict_sort: "sorted_wrt (<) l"
  assumes x_not_in: "\<not> (List.member l x)"
  assumes lt_a: "x > (l ! 0)"
  assumes b_lt: "x < (l ! (length l - 1))"
  shows "(\<exists>n. n < length l - 1 \<and> x > l ! n \<and> x < l !(n+1))" using assms 
proof (induct l)
  case Nil
  then show ?case by auto
next
  case (Cons a l)
  have len_gteq: "length l \<ge> 1" using Cons.prems(1)
    by (metis One_nat_def Suc_eq_plus1 list.size(4) not_le not_less_eq) 
  have len_one: "length l = 1 \<Longrightarrow> (\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1))" 
  proof -
    assume len_is: "length l = 1"
    then have "x > (a#l) ! 0 \<and> x < (a#l) !1 " using Cons.prems(4) Cons.prems(5)
      by auto
    then show "(\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1))"  
      using len_is by auto
  qed
  have len_gt: "length l > 1 \<Longrightarrow> (\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1))"
  proof - 
    assume len_gt_one: "length l > 1"
    have eo: "x \<noteq> l ! 0" using Cons.prems(3) apply (auto)
      by (metis One_nat_def Suc_lessD in_set_member len_gt_one member_rec(1) nth_mem) 
    have c1: "x < l ! 0 \<Longrightarrow> (\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1)) "
    proof - 
      assume xlt: "x < l !0"
      then have "x < (a#l) ! 1 "
        by simp
      then show ?thesis  using  Cons.prems(4) len_gt_one apply (auto)
        using Cons.prems(4) Suc_lessD by blast 
    qed
    have c2: "x > l ! 0 \<Longrightarrow> (\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1)) "
    proof - 
      assume asm: "x > l ! 0"
      have xlt_1: " x < l ! (length l - 1)"
        using Cons.prems(5)
        by (metis Cons.prems(1) One_nat_def add_diff_cancel_right' list.size(4) nth_Cons_pos zero_less_diff) 
      have ssl: "sorted_wrt (<) l " using Cons.prems(2)
        using sorted_wrt.simps(2) by auto  
      have " \<not> List.member l x" using Cons.prems(3)
        by (meson member_rec(1)) 
      then have " \<exists>n<length l - 1. l ! n < x \<and> x < l ! (n + 1)"
        using asm xlt_1 len_gt_one ssl Cons.hyps 
        by auto
      then show ?thesis
        by (metis One_nat_def Suc_eq_plus1 diff_Suc_1 less_diff_conv list.size(4) nth_Cons_Suc) 
    qed
    show "(\<exists>n. n < length (a#l) - 1 \<and> x > (a#l) ! n \<and> x < (a#l) !(n+1))"
      using eo c1 c2
      by (meson linorder_neqE_linordered_idom) 
  qed
  then show ?case 
    using len_gteq len_one len_gt 
    apply (auto)
    by (metis One_nat_def less_numeral_extra(1) linorder_neqE_nat not_less nth_Cons_0) 
qed

(* We want to show that our auxiliary polynomial has roots in all relevant intervals:
 so it captures all of the zeros, and also it captures all of the points in between! *)
lemma all_sample_points_prop:
  assumes is_not_const: "check_all_const_deg qs = False"
  assumes s_is: "S = (characterize_root_list_p (pderiv (prod_list_var qs) * (prod_list_var qs) * ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])))"(* properties about S*)
  shows "consistent_sign_vectors_R qs UNIV = consistent_sign_vectors_R qs (set S)"
proof - 
  let ?zer_list = "sorted_list_of_set {(x::real). (\<exists>q \<in> set(qs). (q \<noteq> 0 \<and> poly q x = 0))} :: real list"
  have strict_sorted_h: "sorted_wrt (<) ?zer_list" using sorted_sorted_list_of_set
      strict_sorted_iff by auto
  have poly_f_is: "poly_f qs  = (pderiv (prod_list_var qs) * prod_list_var qs)* ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])"
    unfolding poly_f_def using is_not_const by auto
  then have set_S_char: "set S = ({x. poly (poly_f qs) x = 0}::real set)"
    using poly_roots_finite[of "poly_f qs"] set_sorted_list_of_set poly_f_nonzero[of qs] 
    using s_is unfolding characterize_root_list_p_def by auto
  have difficult_direction: "consistent_sign_vectors_R qs UNIV \<subseteq> consistent_sign_vectors_R qs (set S)"
  proof clarsimp
    fix x
    assume "x \<in> consistent_sign_vectors_R qs UNIV "
    then have "\<exists>y. x  = (consistent_sign_vec qs y)" unfolding consistent_sign_vectors_R_def by auto
    then obtain y where y_prop: "x = consistent_sign_vec qs y" by auto
    then have "\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" 
    proof - 
      have c1: "(\<exists>q \<in> (set qs). q \<noteq> 0 \<and> poly q y = 0) \<Longrightarrow> (\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y)"
      proof - 
        assume "(\<exists>q \<in> (set qs). q \<noteq> 0 \<and> poly q y = 0)"
        then obtain q where "q \<in> (set qs) \<and> q \<noteq> 0 \<and> poly q y = 0" by auto
        then have "poly (prod_list_var qs) y = 0"
          using q_dvd_prod_list_var_prop[of q qs] by auto
        then have "poly (pderiv (prod_list_var qs) * (prod_list_var qs)*([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])) y = 0"
          by auto
        then have "y \<in> (set S)"
          using s_is unfolding characterize_root_list_p_def
        proof -
          have "y \<in> {r. poly (pderiv (prod_list_var qs) * (prod_list_var qs)*([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])) r = 0}"
            using \<open>poly (pderiv (prod_list_var qs) * (prod_list_var qs)*([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])) y = 0\<close> by force
          then show ?thesis 
            by (metis characterize_root_list_p_def is_not_const poly_f_def poly_f_nonzero poly_roots_finite s_is set_sorted_list_of_set)
        qed
        then show "\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y" 
          by auto
      qed
      have len_gtz_prop: "length ?zer_list > 0 \<longrightarrow>
            ((\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<or>
             (y < ?zer_list ! 0) \<or> 
             (y > ?zer_list ! (length ?zer_list - 1)) \<or> 
             (\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k  \<and> y < ?zer_list ! (k+1)))"
      proof - 
        let ?c = "(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<or>
             (y < ?zer_list ! 0) \<or> 
             (y > ?zer_list ! (length ?zer_list - 1)) \<or> 
             (\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k  \<and> y < ?zer_list ! (k+1))"
        have lis1: "length ?zer_list = 1 \<Longrightarrow> ?c"
          by auto
        have h1: "\<not>(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<Longrightarrow> \<not> (List.member ?zer_list y)"
          by (metis (no_types, lifting) in_set_conv_nth in_set_member)
        have h2: "(length ?zer_list > 0 \<and> \<not>(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<and> \<not> (y < ?zer_list ! 0)) \<Longrightarrow> y > ?zer_list ! 0"
          by auto
        have h3: "(length ?zer_list > 1 \<and> \<not>(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<and>  \<not> (y > ?zer_list ! (length ?zer_list - 1))) \<Longrightarrow>
          y < ?zer_list ! (length ?zer_list - 1)"
          apply (auto)
          by (smt (z3) diff_Suc_less gr_implies_not0 not_gr_zero) 
        have "length ?zer_list > 1 \<and> \<not>(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<and> \<not> (y < ?zer_list ! 0) \<and> \<not> (y > ?zer_list ! (length ?zer_list - 1))
              \<Longrightarrow>  (\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k  \<and> y < ?zer_list ! (k+1))"
          using h1 h2 h3 strict_sorted_h sorted_list_lemma_var[of ?zer_list y]
          using One_nat_def Suc_lessD by presburger
        then have lgt1: "length ?zer_list > 1 \<Longrightarrow> ?c" 
          by auto
        then show ?thesis using lis1 lgt1
          by (smt (z3) diff_is_0_eq' not_less) 
      qed
      have neg_crb_in: "(- crb (prod_list_var qs)) \<in> set S"
        using set_S_char poly_f_is by auto
      have pos_crb_in: "(crb (prod_list_var qs)) \<in> set S" 
        using set_S_char poly_f_is by auto
      have set_S_nonempty: "set S \<noteq> {}" using neg_crb_in by auto
      have finset: "finite  {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" 
      proof - 
        have "\<forall>q \<in> set qs.  q\<noteq> 0 \<longrightarrow> finite {x. poly q x = 0} "
          using poly_roots_finite by auto
        then show ?thesis by auto
      qed
      have c2: "\<not>(\<exists>q \<in> (set qs). q \<noteq> 0 \<and> poly q y = 0) \<Longrightarrow> \<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y"
      proof -  
        assume "\<not>(\<exists>q \<in> (set qs). q \<noteq> 0 \<and> poly q y = 0)"
        have c_c1: "length ?zer_list = 0 \<Longrightarrow>  \<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y"
        proof - 
          assume "length ?zer_list = 0"
          then have "\<forall>q \<in> set (qs). \<forall> (x:: real). \<forall>(y::real). squash (poly q x) = squash (poly q y)"          
          proof clarsimp
            fix q x y
            assume czer: "card {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0} = 0"
            assume qin: "q \<in> set qs"
            have fin_means_empty: "{x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0} = {}"
              using finset czer
              by auto
            have qzer: "q = 0 \<Longrightarrow> squash (poly q x) = squash (poly q y)" by auto
            have qnonz: "q \<noteq> 0 \<Longrightarrow> squash (poly q x) = squash (poly q y)"
            proof - 
              assume qnonz: "q \<noteq> 0"
              then have noroots: "{x. poly q x = 0} = {}" using qin finset
                using Collect_empty_eq fin_means_empty by auto 
              have nonzsq1: "squash (poly q x) \<noteq> 0" using fin_means_empty qnonz czer qin
                unfolding squash_def by auto
              then have  eo: "(poly q x) > 0 \<or> (poly q x) < 0" unfolding squash_def 
                apply (auto)
                by presburger 
              have eo1: "poly q x > 0 \<Longrightarrow> poly q y > 0" 
                using noroots poly_IVT_pos[of y x q] poly_IVT_neg[of x y q]
                apply (auto)
                by (metis linorder_neqE_linordered_idom) 
              have eo2: "poly q x < 0 \<Longrightarrow> poly q y < 0"
                using noroots poly_IVT_pos[of x y q] poly_IVT_neg[of y x q]
                apply (auto) by (metis linorder_neqE_linordered_idom) 
              then show "squash (poly q x) = squash (poly q y)" 
                using eo eo1 eo2 unfolding squash_def by auto
            qed
            show "squash (poly q x) = squash (poly q y)" 
              using qzer qnonz
              by blast 
          qed
          then have "\<forall>q \<in> set (qs). squash (poly q y) = squash (poly q (- crb (prod_list_var qs)))"
            by auto
          then show "\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y"
            using neg_crb_in unfolding consistent_sign_vec_def squash_def  
            apply (auto)
            by (metis (no_types, opaque_lifting) antisym_conv3 class_field.neg_1_not_0 equal_neg_zero less_irrefl of_int_minus) 
        qed
        have c_c2: "length ?zer_list > 0 \<Longrightarrow>  \<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y"
        proof - 
          assume lengt: "length ?zer_list > 0"
          let ?t = " \<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y"
          have sg1: "(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w) \<Longrightarrow> ?t"
          proof - 
            assume "(\<exists>w. w < length ?zer_list \<and> y = ?zer_list ! w)"
            then obtain w where w_prop: "w < length ?zer_list \<and> y = ?zer_list ! w" by auto
            then have " y \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}"
              using finset set_sorted_list_of_set[of "{x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}"]
              by (smt (verit, best) nth_mem)
            then have "y \<in> {x. poly (poly_f qs) x = 0}" using poly_f_is
              using \<open>\<not> (\<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q y = 0)\<close> by blast 
            then show ?thesis using set_S_char
              by blast  
          qed
          have sg2: "(y < ?zer_list ! 0) \<Longrightarrow> ?t" 
          proof - 
            assume ylt: "y < ?zer_list ! 0"
            have ynonzat_some_qs: "\<forall>q \<in> (set qs). q \<noteq> 0 \<longrightarrow> poly q y \<noteq> 0" 
            proof clarsimp 
              fix q
              assume q_in: "q \<in> set qs"
              assume qnonz: "q \<noteq> 0"
              assume "poly q y = 0"
              then have "y \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" 
                using q_in qnonz by auto
              then have "List.member ?zer_list y"
                by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) 
              then have "y \<ge> ?zer_list ! 0" using strict_sorted_h
                using \<open>\<not> (\<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q y = 0)\<close> \<open>poly q y = 0\<close> q_in qnonz by blast
              then show "False" using ylt 
                by auto
            qed
            let ?ncrb = "(- crb (prod_list_var qs))"
            have "\<forall>x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}. poly (prod_list_var qs) x = 0"
              using q_dvd_prod_list_var_prop
              by fastforce 
            then have "poly (prod_list_var qs) (sorted_list_of_set {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0} ! 0) = 0"
              using finset set_sorted_list_of_set
              by (metis (no_types, lifting) lengt nth_mem) 
            then have ncrblt: "?ncrb < ?zer_list ! 0" using prod_list_var_nonzero crb_lem_neg[of "prod_list_var qs" "?zer_list ! 0"] 
              by auto
            have qzerh: "\<forall>q \<in> (set qs). q = 0 \<longrightarrow> squash (poly q ?ncrb) = squash (poly q y)"
              by auto
            have "\<forall>q \<in> (set qs). q \<noteq> 0 \<longrightarrow> squash (poly q ?ncrb) = squash (poly q y)"
            proof clarsimp 
              fix q
              assume q_in: "q \<in> set qs"
              assume qnonz: "q \<noteq> 0"
              have nonzylt:"\<not>(\<exists>x \<le> y. poly q x = 0)" 
              proof clarsimp 
                fix x
                assume xlt: "x \<le> y" 
                assume "poly q x = 0"
                then have "x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" 
                  using q_in qnonz by auto
                then have "List.member ?zer_list x"
                  by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) 
                then have "x \<ge> ?zer_list ! 0" using strict_sorted_h
                  by (metis (no_types, lifting) gr_implies_not0 in_set_conv_nth in_set_member not_less sorted_iff_nth_mono sorted_list_of_set(2))     
                then show "False" using xlt ylt
                  by auto
              qed
              have nonzncrb:"\<not>(\<exists>x \<le> (real_of_int ?ncrb). poly q x = 0)" 
              proof clarsimp 
                fix x
                assume xlt: "x \<le> - real_of_int (crb (prod_list_var qs))" 
                assume "poly q x = 0"
                then have "x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" 
                  using q_in qnonz by auto
                then have "List.member ?zer_list x"
                  by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) 
                then have "x \<ge> ?zer_list ! 0" using strict_sorted_h
                  by (metis (no_types, lifting) gr_implies_not0 in_set_conv_nth in_set_member not_less sorted_iff_nth_mono sorted_list_of_set(2))
                then show "False" using xlt ncrblt 
                  by auto
              qed
              have c1: " (poly q ?ncrb) > 0 \<Longrightarrow> (poly q y) > 0"
              proof - 
                assume qncrbgt: "(poly q ?ncrb) > 0"
                then have eq: "?ncrb = y \<Longrightarrow> poly q y > 0 " by auto
                have gt: " ?ncrb > y \<Longrightarrow> poly q y > 0" using qncrbgt qnonz poly_IVT_pos[of y ?ncrb q] poly_IVT_neg[of ?ncrb y q] nonzncrb nonzylt
                  apply (auto)
                  by (meson less_eq_real_def linorder_neqE_linordered_idom) 
                have lt: "?ncrb < y \<Longrightarrow> poly q y > 0" using qncrbgt
                  using qnonz poly_IVT_pos[of y ?ncrb q] poly_IVT_neg[of ?ncrb y q] nonzncrb nonzylt
                  apply (auto)
                  by (meson less_eq_real_def linorder_neqE_linordered_idom) 
                then show ?thesis using eq gt lt apply (auto)
                  by (meson linorder_neqE_linordered_idom) 
              qed
              have c2: "(poly q ?ncrb) < 0 \<Longrightarrow>  (poly q y) < 0"
                using poly_IVT_pos[of ?ncrb y q] poly_IVT_neg[of y ?ncrb q] nonzncrb nonzylt
                apply (auto)
                by (metis less_eq_real_def linorder_neqE_linordered_idom) 
              have eo: "(poly q ?ncrb) > 0 \<or>  (poly q ?ncrb) < 0"
                using nonzncrb
                by auto 
              then  show "squash (poly q (- real_of_int (crb (prod_list_var qs)))) = squash (poly q y)"
                using   c1 c2
                by (smt (verit, ccfv_SIG) of_int_minus squash_def)  
            qed
            then have "\<forall>q \<in> (set qs). squash (poly q ?ncrb) = squash (poly q y)"
              using qzerh by auto 
            then have "consistent_sign_vec qs ?ncrb = consistent_sign_vec qs y"
              unfolding consistent_sign_vec_def squash_def
              by (smt (z3) map_eq_conv) 
            then show ?thesis using neg_crb_in by auto
          qed
          have sg3: " (y > ?zer_list ! (length ?zer_list - 1)) \<Longrightarrow> ?t" 
          proof - 
            assume ygt: "y  > ?zer_list ! (length ?zer_list - 1)"
            have ynonzat_some_qs: "\<forall>q \<in> (set qs). q \<noteq> 0 \<longrightarrow> poly q y \<noteq> 0" 
            proof clarsimp 
              fix q
              assume q_in: "q \<in> set qs"
              assume qnonz: "q \<noteq> 0"
              assume "poly q y = 0"
              then have "y \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" 
                using q_in qnonz by auto
              then have "List.member ?zer_list y"
                by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) 
              then have "y \<le> ?zer_list ! (length ?zer_list - 1)" using strict_sorted_h
                using \<open>\<not> (\<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q y = 0)\<close> \<open>poly q y = 0\<close> q_in qnonz by blast
              then show "False" using ygt 
                by auto
            qed
            let ?crb = "crb (prod_list_var qs)"
            have "\<forall>x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}. poly (prod_list_var qs) x = 0"
              using q_dvd_prod_list_var_prop
              by fastforce 
            then have "poly (prod_list_var qs) (sorted_list_of_set {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0} ! 0) = 0"
              using finset set_sorted_list_of_set
              by (metis (no_types, lifting) lengt nth_mem) 
            then have crbgt: "?crb > ?zer_list ! (length ?zer_list - 1)" using prod_list_var_nonzero crb_lem_pos[of "prod_list_var qs" "?zer_list ! (length ?zer_list - 1)"]
              by (metis (no_types, lifting) \<open>\<forall>x\<in>{x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}. poly (prod_list_var qs) x = 0\<close> diff_less finset lengt less_numeral_extra(1) nth_mem set_sorted_list_of_set) 
            have qzerh: "\<forall>q \<in> (set qs). q = 0 \<longrightarrow> squash (poly q ?crb) = squash (poly q y)"
              by auto
            have "\<forall>q \<in> (set qs). q \<noteq> 0 \<longrightarrow> squash (poly q ?crb) = squash (poly q y)"
            proof clarsimp 
              fix q
              assume q_in: "q \<in> set qs"
              assume qnonz: "q \<noteq> 0"
              have nonzylt:"\<not>(\<exists>x \<ge> y. poly q x = 0)" 
              proof clarsimp 
                fix x
                assume xgt: "x \<ge> y" 
                assume "poly q x = 0"
                then have "x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" 
                  using q_in qnonz by auto
                then have "List.member ?zer_list x"
                  by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) 
                then have "x \<le> ?zer_list ! (length ?zer_list - 1)" using strict_sorted_h
                  by (metis (no_types, lifting) One_nat_def Suc_leI Suc_pred diff_Suc_less in_set_conv_nth in_set_member lengt not_less sorted_iff_nth_mono sorted_list_of_set(2))      
                then show "False" using xgt ygt
                  by auto
              qed
              have nonzcrb:"\<not>(\<exists>x \<ge> (real_of_int ?crb). poly q x = 0)" 
              proof clarsimp 
                fix x
                assume xgt: "x \<ge> real_of_int (crb (prod_list_var qs))" 
                assume "poly q x = 0"
                then have "x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}" 
                  using q_in qnonz by auto
                then have "List.member ?zer_list x"
                  by (smt (verit, best) finset in_set_member mem_Collect_eq set_sorted_list_of_set) 
                then have "x \<le> ?zer_list ! (length ?zer_list - 1)" using strict_sorted_h
                  by (meson \<open>\<forall>x\<in>{x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}. poly (prod_list_var qs) x = 0\<close> \<open>x \<in> {x. \<exists>q\<in>set qs. q \<noteq> 0 \<and> poly q x = 0}\<close> crb_lem_pos not_less prod_list_var_nonzero xgt)           
                then show "False" using xgt crbgt 
                  by auto
              qed
              have c1: " (poly q ?crb) > 0 \<Longrightarrow> (poly q y) > 0"
              proof - 
                assume qcrbgt: "(poly q ?crb) > 0"
                then have eq: "?crb = y \<Longrightarrow> poly q y > 0 " by auto
                have gt: " ?crb > y \<Longrightarrow> poly q y > 0" using qcrbgt qnonz poly_IVT_pos[of y ?crb q] poly_IVT_neg[of ?crb y q] nonzcrb nonzylt
                  apply (auto)
                  by (meson less_eq_real_def linorder_neqE_linordered_idom) 
                have lt: "?crb < y \<Longrightarrow> poly q y > 0" using qcrbgt
                  using qnonz poly_IVT_pos[of y ?crb q] poly_IVT_neg[of ?crb y q] nonzcrb nonzylt
                  apply (auto)
                  by (meson less_eq_real_def linorder_neqE_linordered_idom) 
                then show ?thesis using eq gt lt apply (auto)
                  by (meson linorder_neqE_linordered_idom) 
              qed
              have c2: "(poly q ?crb) < 0 \<Longrightarrow>  (poly q y) < 0"
                using poly_IVT_pos[of ?crb y q] poly_IVT_neg[of y ?crb q] nonzcrb nonzylt
                apply (auto)
                by (metis less_eq_real_def linorder_neqE_linordered_idom) 
              have eo: "(poly q ?crb) > 0 \<or>  (poly q ?crb) < 0"
                using nonzcrb
                by auto 
              then show "squash (poly q (real_of_int (crb (prod_list_var qs)))) = squash (poly q y)"
                using   c1 c2
                by (smt (verit, ccfv_SIG) of_int_minus squash_def)  
            qed
            then have "\<forall>q \<in> (set qs). squash (poly q ?crb) = squash (poly q y)"
              using qzerh by auto 
            then have "consistent_sign_vec qs ?crb = consistent_sign_vec qs y"
              unfolding consistent_sign_vec_def squash_def
              by (smt (z3) map_eq_conv) 
            then show ?thesis using pos_crb_in by auto
          qed
          have sg4: " (\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k  \<and> y < ?zer_list ! (k+1)) \<Longrightarrow> ?t"
          proof - 
            assume " (\<exists>k < (length ?zer_list - 1). y > ?zer_list ! k  \<and> y < ?zer_list ! (k+1))"
            then obtain k where k_prop: "k < (length ?zer_list - 1) \<and> y > ?zer_list ! k  \<and> y < ?zer_list ! (k+1)" 
              by auto
            have ltk: "(?zer_list ! k) < (?zer_list ! (k+1)) "
              using strict_sorted_h
              using k_prop by linarith 
            have q1e: "(\<exists>q1\<in>set qs. q1 \<noteq> 0 \<and> poly q1 (?zer_list ! k) = 0)"
              by (smt (z3) One_nat_def Suc_lessD add.right_neutral add_Suc_right finset k_prop less_diff_conv mem_Collect_eq nth_mem set_sorted_list_of_set) 
            have q2e: "(\<exists>q2\<in>set qs. q2 \<noteq> 0 \<and> poly q2 (?zer_list ! (k + 1)) = 0)"
              by (smt (verit, del_insts) finset k_prop less_diff_conv mem_Collect_eq nth_mem set_sorted_list_of_set) 
            then have "(\<exists>q>(?zer_list ! k). q < (?zer_list ! (k + 1)) \<and> poly (poly_f qs) q = 0)"
              using poly_f_roots_prop_1[of qs] q1e q2e ltk is_not_const 
              by auto
            then have "\<exists>s \<in> set S. s > ?zer_list ! k  \<and> s < ?zer_list ! (k+1)"
              using poly_f_is
              by (smt (z3) k_prop mem_Collect_eq set_S_char) 
            then obtain s where s_prop: "s \<in> set S \<and> s > ?zer_list ! k  \<and> s < ?zer_list ! (k+1)" by auto
            have qnon: "\<forall>q \<in> set qs. q\<noteq> 0 \<longrightarrow> squash (poly q s) = squash (poly q y)" 
            proof clarsimp 
              fix q
              assume q_in: "q \<in> set qs"
              assume qnonz: "q \<noteq> 0"
              have sgt: "s > y \<Longrightarrow> squash (poly q s) = squash (poly q y)" 
              proof - 
                assume "s > y"
                then have "\<nexists>x. List.member ?zer_list x \<and> y \<le> x \<and> x \<le> s"   
                  using sorted_list_lemma[of y s k ?zer_list] k_prop strict_sorted_h s_prop y_prop
                  using less_diff_conv by blast
                then have nox: "\<nexists>x. poly q x = 0 \<and> y \<le> x \<and> x \<le> s" using q_in qnonz
                  by (metis (mono_tags, lifting) finset in_set_member mem_Collect_eq set_sorted_list_of_set) 
                then  have c1: "poly q s \<noteq> 0" using s_prop q_in qnonz
                  by (metis (mono_tags, lifting) \<open>y < s\<close> less_eq_real_def )
                have c2: "poly q s > 0 \<Longrightarrow> poly q y > 0"
                  using poly_IVT_pos poly_IVT_neg nox
                  by (meson \<open>y < s\<close> less_eq_real_def linorder_neqE_linordered_idom) 
                have c3: "poly q s < 0 \<Longrightarrow> poly q y < 0"  using poly_IVT_pos poly_IVT_neg nox
                  by (meson \<open>y < s\<close> less_eq_real_def linorder_neqE_linordered_idom) 
                show ?thesis using c1 c2 c3 unfolding squash_def
                  by auto 
              qed
              have slt: "s < y \<Longrightarrow> squash (poly q s) = squash (poly q y)"              
              proof - 
                assume slt: "s < y"
                then have "\<nexists>x. List.member ?zer_list x \<and> s \<le> x \<and> x \<le> y"   
                  using sorted_list_lemma[of s y k ?zer_list] k_prop strict_sorted_h s_prop y_prop
                  using less_diff_conv by blast
                then have nox: "\<nexists>x. poly q x = 0 \<and> s \<le> x \<and> x \<le> y" using q_in qnonz
                  by (metis (mono_tags, lifting) finset in_set_member mem_Collect_eq set_sorted_list_of_set) 
                then  have c1: "poly q s \<noteq> 0" using s_prop q_in qnonz
                  by (metis (mono_tags, lifting) \<open>s < y\<close> less_eq_real_def )
                have c2: "poly q s > 0 \<Longrightarrow> poly q y > 0"
                  using poly_IVT_pos poly_IVT_neg nox
                  by (meson \<open>s < y\<close> less_eq_real_def linorder_neqE_linordered_idom) 
                have c3: "poly q s < 0 \<Longrightarrow> poly q y < 0"  using poly_IVT_pos poly_IVT_neg nox
                  by (meson \<open>s < y\<close> less_eq_real_def linorder_neqE_linordered_idom) 
                show ?thesis using c1 c2 c3 unfolding squash_def
                  by auto 
              qed
              have "s = y \<Longrightarrow> squash (poly q s) = squash (poly q y)" 
                by auto
              then show "squash (poly q s) = squash (poly q y)"
                using sgt slt
                by (meson linorder_neqE_linordered_idom) 
            qed
            have "\<forall>q \<in> set qs. q= 0 \<longrightarrow> squash (poly q s) = squash (poly q y)" by auto
            then have "\<forall>q \<in> set qs. squash (poly q s) = squash (poly q y)" 
              using qnon
              by fastforce 
            then show ?thesis 
              using s_prop unfolding squash_def consistent_sign_vec_def apply (auto)
              by (metis (no_types, opaque_lifting) class_field.neg_1_not_0 equal_neg_zero less_irrefl linorder_neqE_linordered_idom) 
          qed
          show ?thesis
            using lengt sg1 sg2 sg3 sg4 len_gtz_prop is_not_const
            by fastforce 
        qed
        show "\<exists> k \<in> (set S). consistent_sign_vec qs k = consistent_sign_vec qs y"
          using c_c1 c_c2 by auto
      qed
      show ?thesis
        using c1 c2 by auto
    qed
    then show "x \<in> consistent_sign_vectors_R qs (set S)"
      using y_prop unfolding consistent_sign_vectors_R_def
      by (metis imageI) 
  qed
  have easy_direction: "consistent_sign_vectors_R qs (set S) \<subseteq> consistent_sign_vectors_R qs UNIV "
    using consistent_sign_vectors_R_def by auto
  then show ?thesis using difficult_direction easy_direction by auto
qed

lemma main_step_aux2_R:
  fixes qs:: "real poly list"
  assumes is_not_const: "check_all_const_deg qs = False"
  shows "set (find_consistent_signs_R qs) =  consistent_sign_vectors_R qs UNIV"
proof - 
  have poly_f_is: "poly_f qs = (pderiv (prod_list_var qs)) * (prod_list_var qs)* ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])"
    using is_not_const unfolding poly_f_def by auto
  let ?p = "(pderiv (prod_list_var qs)) * (prod_list_var qs)*  ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:])"
  let ?S = "characterize_root_list_p (pderiv (prod_list_var qs) * (prod_list_var qs) *  ([:-(crb (prod_list_var qs)),1:]) * ([:(crb (prod_list_var qs)),1:]))"
  have "set (remdups
          (map (signs_at qs) ?S)) 
      = consistent_sign_vectors_R qs (set ?S)"
    unfolding signs_at_def squash_def consistent_sign_vectors_R_def consistent_sign_vec_def
    by (smt (verit, best) comp_apply map_eq_conv set_map set_remdups)
  then have "set (characterize_consistent_signs_at_roots ?p qs) = consistent_sign_vectors_R qs UNIV"
    unfolding characterize_consistent_signs_at_roots_def using assms all_sample_points_prop[of qs]
    by auto
  then show ?thesis
    unfolding find_consistent_signs_R_def using find_consistent_signs_at_roots_R poly_f_is poly_f_nonzero[of qs] 
    by auto
qed

lemma main_step_R:
  fixes qs:: "real poly list"
  shows "set (find_consistent_signs_R qs) =  consistent_sign_vectors_R qs UNIV"
  using main_step_aux1_R main_step_aux2_R by auto

(* The universal and existential decision procedure for real polys are easy 
   if we know the consistent sign vectors *)
lemma consistent_sign_vec_semantics_R:
  assumes "\<And>i. i \<in> set_fml fml \<Longrightarrow> i < length ls"
  shows "lookup_sem fml (map (\<lambda>p. poly p x) ls) = lookup_sem fml (consistent_sign_vec ls x)"
  using assms apply (induction)
  by (auto simp add: consistent_sign_vec_def)

lemma universal_lookup_sem_R:
  assumes "\<And>i. i \<in> set_fml fml \<Longrightarrow> i < length qs"
  assumes "set signs = consistent_sign_vectors_R qs UNIV"
  shows "(\<forall>x::real. lookup_sem fml (map (\<lambda>p. poly p x) qs)) \<longleftrightarrow>
    list_all (lookup_sem fml) signs"
  using assms(2) unfolding consistent_sign_vectors_R_def list_all_iff
  by (simp add: assms(1) consistent_sign_vec_semantics_R)

lemma existential_lookup_sem_R:
  assumes "\<And>i. i \<in> set_fml fml \<Longrightarrow> i < length qs"
  assumes "set signs = consistent_sign_vectors_R qs UNIV"
  shows "(\<exists>x::real. lookup_sem fml (map (\<lambda>p. poly p x) qs)) \<longleftrightarrow>
    find (lookup_sem fml) signs \<noteq> None"
  using assms(2) unfolding consistent_sign_vectors_R_def find_None_iff
  by (simp add: assms(1) consistent_sign_vec_semantics_R)

lemma decide_univ_lem_helper_R:
  fixes fml:: "real poly fml"
  assumes "(fml_struct,polys) = convert fml"
  shows "(\<forall>x::real. lookup_sem fml_struct (map (\<lambda>p. poly p x) polys)) \<longleftrightarrow> (decide_universal_R fml)"
  using assms universal_lookup_sem_R main_step_R unfolding decide_universal_R_def apply (auto)
  apply (metis assms convert_closed fst_conv snd_conv)
  by (metis (full_types) assms convert_closed fst_conv snd_conv)

lemma decide_exis_lem_helper_R:
  fixes fml:: "real poly fml"
  assumes "(fml_struct,polys) = convert fml"
  shows "(\<exists>x::real. lookup_sem fml_struct (map (\<lambda>p. poly p x) polys)) \<longleftrightarrow> (decide_existential_R fml)"
  using assms existential_lookup_sem_R main_step_R unfolding decide_existential_R_def apply (auto)
  apply (metis assms convert_closed fst_conv snd_conv)
  by (metis (full_types) assms convert_closed fst_conv snd_conv)

lemma convert_semantics_lem_R:
  assumes "\<And>p. p \<in> set (poly_list fml) \<Longrightarrow>
    ls ! (index_of ps p) = poly p x"
  shows "real_sem fml x = lookup_sem (map_fml (index_of ps) fml) ls"
  using assms apply (induct fml)
  by auto

lemma convert_semantics_R:
  shows "real_sem fml x = lookup_sem (fst (convert fml)) (map (\<lambda>p. poly p x) (snd (convert fml)))"
  unfolding convert_def Let_def apply simp
  apply (intro convert_semantics_lem_R)
  by (simp add: index_of_lookup(1) index_of_lookup(2))

(* Main result *)
theorem decision_procedure_R:
  shows "(\<forall>x::real. real_sem fml x) \<longleftrightarrow> (decide_universal_R fml)"
    "\<exists>x::real. real_sem fml x \<longleftrightarrow> (decide_existential_R fml)" 
  using  convert_semantics_lem_R decide_univ_lem_helper_R apply (auto)
  apply (simp add: convert_semantics_R)   
  apply (metis convert_def convert_semantics_R fst_conv snd_conv)  
  using convert_semantics_lem_R
  by (metis convert_def convert_semantics_R decide_exis_lem_helper_R fst_conv snd_conv)

end