Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 46,188 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 |
(*
Authors: Jose Divasón
Sebastiaan Joosten
René Thiemann
Akihisa Yamada
*)
section \<open>Distinct Degree Factorization\<close>
theory Distinct_Degree_Factorization
imports
Finite_Field
Polynomial_Factorization.Square_Free_Factorization
Berlekamp_Type_Based
begin
definition factors_of_same_degree :: "nat \<Rightarrow> 'a :: field poly \<Rightarrow> bool" where
"factors_of_same_degree i f = (i \<noteq> 0 \<and> degree f \<noteq> 0 \<and> monic f \<and> (\<forall> g. irreducible g \<longrightarrow> g dvd f \<longrightarrow> degree g = i))"
lemma factors_of_same_degreeD: assumes "factors_of_same_degree i f"
shows "i \<noteq> 0" "degree f \<noteq> 0" "monic f" "g dvd f \<Longrightarrow> irreducible g = (degree g = i)"
proof -
note * = assms[unfolded factors_of_same_degree_def]
show i: "i \<noteq> 0" and f: "degree f \<noteq> 0" "monic f" using * by auto
assume gf: "g dvd f"
with * have "irreducible g \<Longrightarrow> degree g = i" by auto
moreover
{
assume **: "degree g = i" "\<not> irreducible g"
with irreducible\<^sub>d_factor[of g] i obtain h1 h2 where irr: "irreducible h1" and gh: "g = h1 * h2"
and deg_h2: "degree h2 < degree g" by auto
from ** i have g0: "g \<noteq> 0" by auto
from gf gh g0 have "h1 dvd f" using dvd_mult_left by blast
from * f this irr have deg_h: "degree h1 = i" by auto
from arg_cong[OF gh, of degree] g0 have "degree g = degree h1 + degree h2"
by (simp add: degree_mult_eq gh)
with **(1) deg_h have "degree h2 = 0" by auto
from degree0_coeffs[OF this] obtain c where h2: "h2 = [:c:]" by auto
with gh g0 have g: "g = smult c h1" "c \<noteq> 0" by auto
with irr **(2) irreducible_smult_field[of c h1] have False by auto
}
ultimately show "irreducible g = (degree g = i)" by auto
qed
(* Exercise 16 in Knuth, pages 457 and 682 *)
hide_const order
hide_const up_ring.monom
(*This theorem is field.finite_field_mult_group_has_gen but adding the order of the element.*)
theorem (in field) finite_field_mult_group_has_gen2:
assumes finite:"finite (carrier R)"
shows "\<exists>a \<in> carrier (mult_of R). group.ord (mult_of R) a = order (mult_of R)
\<and> carrier (mult_of R) = {a[^]i | i::nat . i \<in> UNIV}"
proof -
note mult_of_simps[simp]
have finite': "finite (carrier (mult_of R))" using finite by (rule finite_mult_of)
interpret G: group "mult_of R" rewrites
"([^]\<^bsub>mult_of R\<^esub>) = (([^]) :: _ \<Rightarrow> nat \<Rightarrow> _)" and "\<one>\<^bsub>mult_of R\<^esub> = \<one>"
by (rule field_mult_group) (simp_all add: fun_eq_iff nat_pow_def)
let ?N = "\<lambda> x . card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = x}"
have "0 < order R - 1" unfolding Coset.order_def using card_mono[OF finite, of "{\<zero>, \<one>}"] by simp
then have *: "0 < order (mult_of R)" using assms by (simp add: order_mult_of)
have fin: "finite {d. d dvd order (mult_of R) }" using dvd_nat_bounds[OF *] by force
have "(\<Sum>d | d dvd order (mult_of R). ?N d)
= card (UN d:{d . d dvd order (mult_of R) }. {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d})"
(is "_ = card ?U")
using fin finite by (subst card_UN_disjoint) auto
also have "?U = carrier (mult_of R)"
proof
{ fix x assume x:"x \<in> carrier (mult_of R)"
hence x':"x\<in>carrier (mult_of R)" by simp
then have "group.ord (mult_of R) x dvd order (mult_of R)"
using finite' G.ord_dvd_group_order[OF x'] by (simp add: order_mult_of)
hence "x \<in> ?U" using dvd_nat_bounds[of "order (mult_of R)" "group.ord (mult_of R) x"] x by blast
} thus "carrier (mult_of R) \<subseteq> ?U" by blast
qed auto
also have "card ... = Coset.order (mult_of R)"
using order_mult_of finite' by (simp add: Coset.order_def)
finally have sum_Ns_eq: "(\<Sum>d | d dvd order (mult_of R). ?N d) = order (mult_of R)" .
{ fix d assume d:"d dvd order (mult_of R)"
have "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} \<le> phi' d"
proof cases
assume "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} = 0" thus ?thesis by presburger
next
assume "card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = d} \<noteq> 0"
hence "\<exists>a \<in> carrier (mult_of R). group.ord (mult_of R) a = d" by (auto simp: card_eq_0_iff)
thus ?thesis using num_elems_of_ord_eq_phi'[OF finite d] by auto
qed
}
hence all_le:"\<And>i. i \<in> {d. d dvd order (mult_of R) }
\<Longrightarrow> (\<lambda>i. card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = i}) i \<le> (\<lambda>i. phi' i) i" by fast
hence le:"(\<Sum>i | i dvd order (mult_of R). ?N i)
\<le> (\<Sum>i | i dvd order (mult_of R). phi' i)"
using sum_mono[of "{d . d dvd order (mult_of R)}"
"\<lambda>i. card {a \<in> carrier (mult_of R). group.ord (mult_of R) a = i}"] by presburger
have "order (mult_of R) = (\<Sum>d | d dvd order (mult_of R). phi' d)" using *
by (simp add: sum_phi'_factors)
hence eq:"(\<Sum>i | i dvd order (mult_of R). ?N i)
= (\<Sum>i | i dvd order (mult_of R). phi' i)" using le sum_Ns_eq by presburger
have "\<And>i. i \<in> {d. d dvd order (mult_of R) } \<Longrightarrow> ?N i = (\<lambda>i. phi' i) i"
proof (rule ccontr)
fix i
assume i1:"i \<in> {d. d dvd order (mult_of R)}" and "?N i \<noteq> phi' i"
hence "?N i = 0"
using num_elems_of_ord_eq_phi'[OF finite, of i] by (auto simp: card_eq_0_iff)
moreover have "0 < i" using * i1 by (simp add: dvd_nat_bounds[of "order (mult_of R)" i])
ultimately have "?N i < phi' i" using phi'_nonzero by presburger
hence "(\<Sum>i | i dvd order (mult_of R). ?N i)
< (\<Sum>i | i dvd order (mult_of R). phi' i)"
using sum_strict_mono_ex1[OF fin, of "?N" "\<lambda> i . phi' i"]
i1 all_le by auto
thus False using eq by force
qed
hence "?N (order (mult_of R)) > 0" using * by (simp add: phi'_nonzero)
then obtain a where a:"a \<in> carrier (mult_of R)" and a_ord:"group.ord (mult_of R) a = order (mult_of R)"
by (auto simp add: card_gt_0_iff)
hence set_eq:"{a[^]i | i::nat. i \<in> UNIV} = (\<lambda>x. a[^]x) ` {0 .. group.ord (mult_of R) a - 1}"
using G.ord_elems[OF finite'] by auto
have card_eq:"card ((\<lambda>x. a[^]x) ` {0 .. group.ord (mult_of R) a - 1}) = card {0 .. group.ord (mult_of R) a - 1}"
by (intro card_image G.ord_inj finite' a)
hence "card ((\<lambda> x . a[^]x) ` {0 .. group.ord (mult_of R) a - 1}) = card {0 ..order (mult_of R) - 1}"
using assms by (simp add: card_eq a_ord)
hence card_R_minus_1:"card {a[^]i | i::nat. i \<in> UNIV} = order (mult_of R)"
using * by (subst set_eq) auto
have **:"{a[^]i | i::nat. i \<in> UNIV} \<subseteq> carrier (mult_of R)"
using G.nat_pow_closed[OF a] by auto
with _ have "carrier (mult_of R) = {a[^]i|i::nat. i \<in> UNIV}"
by (rule card_seteq[symmetric]) (simp_all add: card_R_minus_1 finite Coset.order_def del: UNIV_I)
thus ?thesis using a a_ord by blast
qed
(*This lemma is a generalization of the theorem add_power_poly_mod_ring
which appears in Belekamp_Type_Based.thy*)
lemma add_power_prime_poly_mod_ring[simp]:
fixes x :: "'a::{prime_card} mod_ring poly"
shows "(x + y) ^ CARD('a)^n = x ^ (CARD('a)^n) + y ^ CARD('a)^n"
proof (induct n arbitrary: x y)
case 0
then show ?case by auto
next
case (Suc n)
define p where p: "p = CARD('a)"
have "(x + y) ^ p ^ Suc n = (x + y) ^ (p * p^n)" by simp
also have "... = ((x + y) ^ p) ^ (p^n)"
by (simp add: power_mult)
also have "... = (x^p + y^p)^ (p^n)"
by (simp add: add_power_poly_mod_ring p)
also have "... = (x^p)^(p^n) + (y^p)^(p^n)" using Suc.hyps unfolding p by auto
also have "... = x^(p^(n+1)) + y^(p^(n+1))" by (simp add: power_mult)
finally show ?case by (simp add: p)
qed
(*This lemma is a generalization of the theorem fermat_theorem_mod_ring
which appears in Berlekamp_Type_Based.thy*)
lemma fermat_theorem_mod_ring2[simp]:
fixes a::"'a::{prime_card} mod_ring"
shows "a ^ (CARD('a)^n) = a"
proof (induct n arbitrary: a)
case (Suc n)
define p where "p = CARD('a)"
have "a ^ p ^ Suc n = a ^ (p * (p ^ n))" by simp
also have "... = (a ^ p) ^(p ^ n)" by (simp add: power_mult)
also have "... = a^(p ^ n)" using fermat_theorem_mod_ring[of "a^p"] unfolding p_def by auto
also have "... = a" using Suc.hyps p_def by auto
finally show ?case by (simp add: p_def)
qed auto
lemma fermat_theorem_power_poly[simp]:
fixes a::"'a::prime_card mod_ring"
shows "[:a:] ^ CARD('a::prime_card) ^ n = [:a:]"
by (auto simp add: Missing_Polynomial.poly_const_pow mod_poly_less)
(* Some previous facts *)
lemma degree_prod_monom: "degree (\<Prod>i = 0..<n. monom 1 1) = n"
by (metis degree_monom_eq prod_pow x_pow_n zero_neq_one)
lemma degree_monom0[simp]: "degree (monom a 0) = 0" using degree_monom_le by auto
lemma degree_monom0'[simp]: "degree (monom 0 b) = 0" by auto
lemma sum_monom_mod:
assumes "b < degree f"
shows "(\<Sum>i\<le>b. monom (g i) i) mod f = (\<Sum>i\<le>b. monom (g i) i)"
using assms
proof (induct b)
case 0
then show ?case by (auto simp add: mod_poly_less)
next
case (Suc b)
have hyp: "(\<Sum>i\<le>b. monom (g i) i) mod f = (\<Sum>i\<le>b. monom (g i) i)"
using Suc.prems Suc.hyps by simp
have rw_monom: "monom (g (Suc b)) (Suc b) mod f = monom (g (Suc b)) (Suc b)"
by (metis Suc.prems degree_monom_eq mod_0 mod_poly_less monom_hom.hom_0_iff)
have rw: "(\<Sum>i\<le>Suc b. monom (g i) i) = (monom (g (Suc b)) (Suc b) + (\<Sum>i\<le>b. monom (g i) i))"
by auto
have "(\<Sum>i\<le>Suc b. monom (g i) i) mod f
= (monom (g (Suc b)) (Suc b) + (\<Sum>i\<le>b. monom (g i) i)) mod f" using rw by presburger
also have "... =((monom (g (Suc b)) (Suc b)) mod f) + ((\<Sum>i\<le>b. monom (g i) i) mod f)"
using poly_mod_add_left by auto
also have "... = monom (g (Suc b)) (Suc b) + (\<Sum>i\<le>b. monom (g i) i)"
using hyp rw_monom by presburger
also have "... = (\<Sum>i\<le>Suc b. monom (g i) i)" using rw by auto
finally show ?case .
qed
lemma x_power_aq_minus_1_rw:
fixes x::nat
assumes x: "x > 1"
and a: "a > 0"
and b: "b > 0"
shows "x ^ (a * q) - 1 = ((x^a) - 1) * sum ((^) (x^a)) {..<q}"
proof -
have xa: "(x ^ a) > 0" using x by auto
have int_rw1: "int (x ^ a) - 1 = int ((x ^ a) - 1)"
using xa by linarith
have int_rw2: "sum ((^) (int (x ^ a))) {..<q} = int (sum ((^) ((x ^ a))) {..<q})"
unfolding int_sum by simp
have "int (x ^ a) ^ q = int (Suc ((x ^ a) ^ q - 1))" using xa by auto
hence "int ((x ^ a) ^ q - 1) = int (x ^ a) ^ q - 1" using xa by presburger
also have "... = (int (x ^ a) - 1) * sum ((^) (int (x ^ a))) {..<q}"
by (rule power_diff_1_eq)
also have "... = (int ((x ^ a) - 1)) * int (sum ((^) ( (x ^ a))) {..<q})"
unfolding int_rw1 int_rw2 by simp
also have "... = int (((x ^ a) - 1) * (sum ((^) ( (x ^ a))) {..<q}))" by auto
finally have aux: "int ((x ^ a) ^ q - 1) = int (((x ^ a) - 1) * sum ((^) (x ^ a)) {..<q})" .
have "x ^ (a * q) - 1 = (x^a)^q - 1"
by (simp add: power_mult)
also have "... = ((x^a) - 1) * sum ((^) (x^a)) {..<q}"
using aux unfolding int_int_eq .
finally show ?thesis .
qed
lemma dvd_power_minus_1_conv1:
fixes x::nat
assumes x: "x > 1"
and a: "a > 0"
and xa_dvd: "x ^ a - 1 dvd x^b - 1"
and b0: "b > 0"
shows "a dvd b"
proof -
define r where r[simp]: "r = b mod a"
define q where q[simp]: "q = b div a"
have b: "b = a * q + r" by auto
have ra: "r < a" by (simp add: a)
hence xr_less_xa: "x ^ r - 1 < x ^ a - 1"
using x power_strict_increasing_iff diff_less_mono x by simp
have dvd: "x ^ a - 1 dvd x ^ (a * q) - 1"
using x_power_aq_minus_1_rw[OF x a b0] unfolding dvd_def by auto
have "x^b - 1 = x^b - x^r + x^r - 1"
using assms(1) assms(4) by auto
also have "... = x^r * (x^(a*q) - 1) + x^r - 1"
by (metis (no_types, lifting) b diff_mult_distrib2 mult.commute nat_mult_1_right power_add)
finally have "x^b - 1 = x^r * (x^(a*q) - 1) + x^r - 1" .
hence "x ^ a - 1 dvd x ^ r * (x ^ (a * q) - 1) + x ^ r - 1" using xa_dvd by presburger
hence "x^a - 1 dvd x^r - 1"
by (metis (no_types) diff_add_inverse diff_commute dvd dvd_diff_nat dvd_trans dvd_triv_right)
hence "r = 0"
using xr_less_xa
by (meson nat_dvd_not_less neq0_conv one_less_power x zero_less_diff)
thus ?thesis by auto
qed
lemma dvd_power_minus_1_conv2:
fixes x::nat
assumes x: "x > 1"
and a: "a > 0"
and a_dvd_b: "a dvd b"
and b0: "b > 0"
shows "x ^ a - 1 dvd x^b - 1"
proof -
define q where q[simp]: "q = b div a"
have b: "b = a * q" using a_dvd_b by auto
have "x^b - 1 = ((x ^ a) - 1) * sum ((^) (x ^ a)) {..<q}"
unfolding b by (rule x_power_aq_minus_1_rw[OF x a b0])
thus ?thesis unfolding dvd_def by auto
qed
corollary dvd_power_minus_1_conv:
fixes x::nat
assumes x: "x > 1"
and a: "a > 0"
and b0: "b > 0"
shows "a dvd b = (x ^ a - 1 dvd x^b - 1)"
using assms dvd_power_minus_1_conv1 dvd_power_minus_1_conv2 by blast
(* Proof of part a) of exercise 16: given f(x) an irreducible polynomial modulo a prime p
of degree n, the p^n polynomials of degree less than n form a field under arithmetic
modulo f(x) and p.
*)
locale poly_mod_type_irr = poly_mod_type m "TYPE('a::prime_card)" for m +
fixes f::"'a::{prime_card} mod_ring poly"
assumes irr_f: "irreducible\<^sub>d f"
begin
definition plus_irr :: "'a mod_ring poly \<Rightarrow>'a mod_ring poly \<Rightarrow> 'a mod_ring poly"
where "plus_irr a b = (a + b) mod f"
definition minus_irr :: "'a mod_ring poly \<Rightarrow>'a mod_ring poly \<Rightarrow> 'a mod_ring poly"
where "minus_irr x y \<equiv> (x - y) mod f"
definition uminus_irr :: "'a mod_ring poly \<Rightarrow>'a mod_ring poly "
where "uminus_irr x = -x"
definition mult_irr :: "'a mod_ring poly \<Rightarrow>'a mod_ring poly \<Rightarrow> 'a mod_ring poly"
where "mult_irr x y = ((x*y) mod f)"
definition carrier_irr :: "'a mod_ring poly set"
where "carrier_irr = {x. degree x < degree f}"
definition power_irr :: "'a mod_ring poly \<Rightarrow> nat \<Rightarrow> 'a mod_ring poly"
where "power_irr p n = ((p^n) mod f)"
definition "R = \<lparr>carrier = carrier_irr, monoid.mult = mult_irr, one = 1, zero = 0, add = plus_irr\<rparr>"
lemma degree_f[simp]: "degree f > 0"
using irr_f irreducible\<^sub>dD(1) by blast
lemma element_in_carrier: "(a \<in> carrier R) = (degree a < degree f)"
unfolding R_def carrier_irr_def by auto
lemma f_dvd_ab:
"a = 0 \<or> b = 0" if "f dvd a * b"
and a: "degree a < degree f"
and b: "degree b < degree f"
proof (rule ccontr)
assume "\<not> (a = 0 \<or> b = 0)"
then have "a \<noteq> 0" and "b \<noteq> 0"
by simp_all
with a b have "\<not> f dvd a" and "\<not> f dvd b"
by (auto simp add: mod_poly_less dvd_eq_mod_eq_0)
moreover from \<open>f dvd a * b\<close> irr_f have "f dvd a \<or> f dvd b"
by auto
ultimately show False
by simp
qed
lemma ab_mod_f0:
"a = 0 \<or> b = 0" if "a * b mod f = 0"
and a: "degree a < degree f"
and b: "degree b < degree f"
using that f_dvd_ab by auto
lemma irreducible\<^sub>dD2:
fixes p q :: "'b::{comm_semiring_1,semiring_no_zero_divisors} poly"
assumes "irreducible\<^sub>d p"
and "degree q < degree p" and "degree q \<noteq> 0"
shows "\<not> q dvd p"
using assms irreducible\<^sub>d_dvd_smult by force
lemma times_mod_f_1_imp_0:
assumes x: "degree x < degree f"
and x2: "\<forall>xa. x * xa mod f = 1 \<longrightarrow> \<not> degree xa < degree f"
shows "x = 0"
proof (rule ccontr)
assume x3: "x \<noteq> 0"
let ?u = "fst (bezout_coefficients f x)"
let ?v = "snd (bezout_coefficients f x)"
have "?u * f + ?v * x = gcd f x" using bezout_coefficients_fst_snd by auto
also have "... = 1"
proof (rule ccontr)
assume g: "gcd f x \<noteq> 1"
have "degree (gcd f x) < degree f"
by (metis degree_0 dvd_eq_mod_eq_0 gcd_dvd1 gcd_dvd2 irr_f
irreducible\<^sub>dD(1) mod_poly_less nat_neq_iff x x3)
have "\<not> gcd f x dvd f"
proof (rule irreducible\<^sub>dD2[OF irr_f])
show "degree (gcd f x) < degree f"
by (metis degree_0 dvd_eq_mod_eq_0 gcd_dvd1 gcd_dvd2 irr_f
irreducible\<^sub>dD(1) mod_poly_less nat_neq_iff x x3)
show "degree (gcd f x) \<noteq> 0"
by (metis (no_types, opaque_lifting) g degree_mod_less' gcd.bottom_left_bottom gcd_eq_0_iff
gcd_left_idem gcd_mod_left gr_implies_not0 x)
qed
moreover have "gcd f x dvd f" by auto
ultimately show False by contradiction
qed
finally have "?v*x mod f = 1"
by (metis degree_1 degree_f mod_mult_self3 mod_poly_less)
hence "(x*(?v mod f)) mod f = 1"
by (simp add: mod_mult_right_eq mult.commute)
moreover have "degree (?v mod f) < degree f"
by (metis degree_0 degree_f degree_mod_less' not_gr_zero)
ultimately show False using x2 by auto
qed
sublocale field_R: field R
proof -
have *: "\<exists>y. degree y < degree f \<and> f dvd x + y" if "degree x < degree f"
for x :: "'a mod_ring poly"
proof -
from that have "degree (- x) < degree f"
by simp
moreover have "f dvd (x + - x)"
by simp
ultimately show ?thesis
by blast
qed
have **: "degree (x * y mod f) < degree f"
if "degree x < degree f" and "degree y < degree f"
for x y :: "'a mod_ring poly"
using that by (cases "x = 0 \<or> y = 0")
(auto intro: degree_mod_less' dest: f_dvd_ab)
show "field R"
by standard (auto simp add: R_def carrier_irr_def plus_irr_def mult_irr_def Units_def algebra_simps degree_add_less mod_poly_less mod_add_eq mult_poly_add_left mod_mult_left_eq mod_mult_right_eq mod_eq_0_iff_dvd ab_mod_f0 * ** dest: times_mod_f_1_imp_0)
qed
lemma zero_in_carrier[simp]: "0 \<in> carrier_irr" unfolding carrier_irr_def by auto
lemma card_carrier_irr[simp]: "card carrier_irr = CARD('a)^(degree f)"
proof -
let ?A = "(carrier_vec (degree f):: 'a mod_ring vec set)"
have bij_A_carrier: "bij_betw (Poly \<circ> list_of_vec) ?A carrier_irr"
proof (unfold bij_betw_def, rule conjI)
show "inj_on (Poly \<circ> list_of_vec) ?A" by (rule inj_Poly_list_of_vec)
show "(Poly \<circ> list_of_vec) ` ?A = carrier_irr"
proof (unfold image_def o_def carrier_irr_def, auto)
fix xa assume "xa \<in> ?A" thus "degree (Poly (list_of_vec xa)) < degree f"
using degree_Poly_list_of_vec irr_f by blast
next
fix x::"'a mod_ring poly"
assume deg_x: "degree x < degree f"
let ?xa = "vec_of_list (coeffs x @ replicate (degree f - length (coeffs x)) 0)"
show "\<exists>xa\<in>carrier_vec (degree f). x = Poly (list_of_vec xa)"
by (rule bexI[of _ "?xa"], unfold carrier_vec_def, insert deg_x)
(auto simp add: degree_eq_length_coeffs)
qed
qed
have "CARD('a)^(degree f) = card ?A"
by (simp add: card_carrier_vec)
also have "... = card carrier_irr" using bij_A_carrier bij_betw_same_card by blast
finally show ?thesis ..
qed
lemma finite_carrier_irr[simp]: "finite (carrier_irr)"
proof -
have "degree f > degree 0" using degree_0 by auto
hence "carrier_irr \<noteq> {}" using degree_0 unfolding carrier_irr_def
by blast
moreover have "card carrier_irr \<noteq> 0" by auto
ultimately show ?thesis using card_eq_0_iff by metis
qed
lemma finite_carrier_R[simp]: "finite (carrier R)" unfolding R_def by simp
lemma finite_carrier_mult_of[simp]: "finite (carrier (mult_of R))"
unfolding carrier_mult_of by auto
lemma constant_in_carrier[simp]: "[:a:] \<in> carrier R"
unfolding R_def carrier_irr_def by auto
lemma mod_in_carrier[simp]: "a mod f \<in> carrier R"
unfolding R_def carrier_irr_def
by (auto, metis degree_0 degree_f degree_mod_less' less_not_refl)
lemma order_irr: "Coset.order (mult_of R) = CARD('a)^degree f - 1"
by (simp add: card_Diff_singleton Coset.order_def carrier_mult_of R_def)
lemma element_power_order_eq_1:
assumes x: "x \<in> carrier (mult_of R)"
shows "x [^]\<^bsub>(mult_of R)\<^esub> Coset.order (mult_of R) = \<one>\<^bsub>(mult_of R)\<^esub>"
by (meson field_R.field_mult_group finite_carrier_mult_of group.pow_order_eq_1 x)
corollary element_power_order_eq_1':
assumes x: "x \<in> carrier (mult_of R)"
shows"x [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f = x"
proof -
have "x [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f
= x \<otimes>\<^bsub>(mult_of R)\<^esub> x [^]\<^bsub>(mult_of R)\<^esub> (CARD('a)^degree f - 1)"
by (metis Diff_iff One_nat_def Suc_pred field_R.m_comm field_R.nat_pow_Suc field_R.nat_pow_closed
mult_of_simps(1) mult_of_simps(2) nat_pow_mult_of neq0_conv power_eq_0_iff x zero_less_card_finite)
also have "x \<otimes>\<^bsub>(mult_of R)\<^esub> x [^]\<^bsub>(mult_of R)\<^esub> (CARD('a)^degree f - 1) = x"
by (metis carrier_mult_of element_power_order_eq_1 field_R.Units_closed field_R.field_Units
field_R.r_one monoid.simps(2) mult_mult_of mult_of_def order_irr x)
finally show ?thesis .
qed
lemma pow_irr[simp]: "x [^]\<^bsub>(R)\<^esub> n= x^n mod f"
by (induct n, auto simp add: mod_poly_less nat_pow_def R_def mult_of_def mult_irr_def
carrier_irr_def mod_mult_right_eq mult.commute)
lemma pow_irr_mult_of[simp]: "x [^]\<^bsub>(mult_of R)\<^esub> n= x^n mod f"
by (induct n, auto simp add: mod_poly_less nat_pow_def R_def mult_of_def mult_irr_def
carrier_irr_def mod_mult_right_eq mult.commute)
lemma fermat_theorem_power_poly_R[simp]: "[:a:] [^]\<^bsub>R\<^esub> CARD('a) ^ n = [:a:]"
by (auto simp add: Missing_Polynomial.poly_const_pow mod_poly_less)
lemma times_mod_expand:
"(a \<otimes>\<^bsub>(R)\<^esub> b) = ((a mod f) \<otimes>\<^bsub>(R)\<^esub> (b mod f))"
by (simp add: mod_mult_eq R_def mult_irr_def)
(*Elements that satisfy y^p^m = y in the field are closed under addition and multiplication.*)
lemma mult_closed_power:
assumes x: "x \<in> carrier R" and y: "y \<in> carrier R"
and "x [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = x"
and "y [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = y"
shows "(x \<otimes>\<^bsub>(R)\<^esub> y) [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = (x \<otimes>\<^bsub>(R)\<^esub> y)"
using assms assms field_R.nat_pow_distrib by auto
lemma add_closed_power:
assumes x1: "x [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = x"
and y1: "y [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = y"
shows "(x \<oplus>\<^bsub>(R)\<^esub> y) [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = (x \<oplus>\<^bsub>(R)\<^esub> y)"
proof -
have "(x + y) ^ CARD('a) ^ m' = x^(CARD('a) ^ m') + y ^ (CARD('a) ^ m')" by auto
hence "(x + y) ^ CARD('a) ^ m' mod f = (x^(CARD('a) ^ m') + y ^ (CARD('a) ^ m')) mod f" by auto
hence "(x \<oplus>\<^bsub>(R)\<^esub> y) [^]\<^bsub>(R)\<^esub> CARD('a) ^ m'
= (x [^]\<^bsub>(R)\<^esub> CARD('a)^m') \<oplus>\<^bsub>(R)\<^esub> (y [^]\<^bsub>(R)\<^esub> CARD('a)^m')"
by (auto, unfold R_def plus_irr_def, auto simp add: mod_add_eq power_mod)
also have "... = x \<oplus>\<^bsub>(R)\<^esub> y" unfolding x1 y1 by simp
finally show ?thesis .
qed
lemma x_power_pm_minus_1:
assumes x: "x \<in> carrier (mult_of R)"
and "x [^]\<^bsub>(R)\<^esub> CARD('a) ^ m' = x"
shows "x [^]\<^bsub>(R)\<^esub> (CARD('a) ^ m' - 1) = \<one>\<^bsub>(R)\<^esub>"
by (metis (no_types, lifting) One_nat_def Suc_pred assms(2) carrier_mult_of field_R.Units_closed
field_R.Units_l_cancel field_R.field_Units field_R.l_one field_R.m_rcancel field_R.nat_pow_Suc
field_R.nat_pow_closed field_R.one_closed field_R.r_null field_R.r_one x zero_less_card_finite
zero_less_power)
context
begin
private lemma monom_a_1_P:
assumes m: "monom 1 1 \<in> carrier R"
and eq: "monom 1 1 [^]\<^bsub>(R)\<^esub> (CARD('a) ^ m') = monom 1 1"
shows "monom a 1 [^]\<^bsub>(R)\<^esub> (CARD('a) ^ m') = monom a 1"
proof -
have "monom a 1 = [:a:] * (monom 1 1)"
by (metis One_nat_def monom_0 monom_Suc mult.commute pCons_0_as_mult)
also have "... = [:a:] \<otimes>\<^bsub>(R)\<^esub> (monom 1 1)"
by (auto simp add: R_def mult_irr_def)
(metis One_nat_def assms(2) mod_mod_trivial mod_smult_left pow_irr)
finally have eq2: "monom a 1 = [:a:] \<otimes>\<^bsub>R\<^esub> monom 1 1" .
show ?thesis unfolding eq2
by (rule mult_closed_power[OF _ m _ eq], insert fermat_theorem_power_poly_R, auto)
qed
private lemma prod_monom_1_1:
defines "P == (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and eq: "P (monom 1 1) n"
shows "P ((\<Prod>i = 0..<b::nat. monom 1 1) mod f) n"
proof (induct b)
case 0
then show ?case unfolding P_def
by (simp add: power_mod)
next
case (Suc b)
let ?N = "(\<Prod>i = 0..<b. monom 1 1)"
have eq2: "(\<Prod>i = 0..<Suc b. monom 1 1) mod f = monom 1 1 \<otimes>\<^bsub>(R)\<^esub> (\<Prod>i = 0..<b. monom 1 1)"
by (metis field_R.m_comm field_R.nat_pow_Suc mod_in_carrier mod_mod_trivial
pow_irr prod_pow times_mod_expand)
also have "... = (monom 1 1 mod f) \<otimes>\<^bsub>(R)\<^esub> ((\<Prod>i = 0..<b. monom 1 1) mod f)"
by (rule times_mod_expand)
finally have eq2: "(\<Prod>i = 0..<Suc b. monom 1 1) mod f
= (monom 1 1 mod f) \<otimes>\<^bsub>(R)\<^esub> ((\<Prod>i = 0..<b. monom 1 1) mod f)" .
show ?case
unfolding eq2 P_def
proof (rule mult_closed_power)
show "(monom 1 1 mod f) [^]\<^bsub>R\<^esub> CARD('a) ^ n = monom 1 1 mod f"
using P_def element_in_carrier eq m mod_poly_less by force
show "((\<Prod>i = 0..<b. monom 1 1) mod f) [^]\<^bsub>R\<^esub> CARD('a) ^ n = (\<Prod>i = 0..<b. monom 1 1) mod f"
using P_def Suc.hyps by blast
qed (auto)
qed
private lemma monom_1_b:
defines "P == (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and monom_1_1: "P (monom 1 1) m'"
and b: "b < degree f"
shows "P (monom 1 b) m'"
proof -
have "monom 1 b = (\<Prod>i = 0..<b. monom 1 1)"
by (metis prod_pow x_pow_n)
also have "... = (\<Prod>i = 0..<b. monom 1 1) mod f"
by (rule mod_poly_less[symmetric], auto)
(metis One_nat_def b degree_linear_power x_as_monom)
finally have eq2: "monom 1 b = (\<Prod>i = 0..<b. monom 1 1) mod f" .
show ?thesis unfolding eq2 P_def
by (rule prod_monom_1_1[OF m monom_1_1[unfolded P_def]])
qed
private lemma monom_a_b:
defines "P == (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and m1: "P (monom 1 1) m'"
and b: "b < degree f"
shows "P (monom a b) m'"
proof -
have "monom a b = smult a (monom 1 b)"
by (simp add: smult_monom)
also have "... = [:a:] * (monom 1 b)" by auto
also have "... = [:a:] \<otimes>\<^bsub>(R)\<^esub> (monom 1 b)"
unfolding R_def mult_irr_def
by (simp add: b degree_monom_eq mod_poly_less)
finally have eq: "monom a b = [:a:] \<otimes>\<^bsub>(R)\<^esub> (monom 1 b)" .
show ?thesis unfolding eq P_def
proof (rule mult_closed_power)
show "[:a:] [^]\<^bsub>R\<^esub> CARD('a) ^ m' = [:a:]" by (rule fermat_theorem_power_poly_R)
show "monom 1 b [^]\<^bsub>R\<^esub> CARD('a) ^ m' = monom 1 b"
unfolding P_def by (rule monom_1_b[OF m m1[unfolded P_def] b])
show "monom 1 b \<in> carrier R" unfolding element_in_carrier using b
by (simp add: degree_monom_eq)
qed (auto)
qed
private lemma sum_monoms_P:
defines "P == (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and monom_1_1: "P (monom 1 1) n"
and b: "b < degree f"
shows "P ((\<Sum>i\<le>b. monom (g i) i)) n"
using b
proof (induct b)
case 0
then show ?case unfolding P_def
by (simp add: poly_const_pow mod_poly_less monom_0)
next
case (Suc b)
have b: "b < degree f" using Suc.prems by auto
have rw: "(\<Sum>i\<le>b. monom (g i) i) mod f = (\<Sum>i\<le>b. monom (g i) i)" by (rule sum_monom_mod[OF b])
have rw2: "(monom (g (Suc b)) (Suc b) mod f) = monom (g (Suc b)) (Suc b)"
by (metis Suc.prems field_R.nat_pow_eone m monom_a_b pow_irr power_0 power_one_right)
have hyp: "P (\<Sum>i\<le>b. monom (g i) i) n" using Suc.prems Suc.hyps by auto
have "(\<Sum>i\<le>Suc b. monom (g i) i) = monom (g (Suc b)) (Suc b) + (\<Sum>i\<le>b. monom (g i) i)"
by simp
also have "... = (monom (g (Suc b)) (Suc b) mod f) + ((\<Sum>i\<le>b. monom (g i) i) mod f)"
using rw rw2 by argo
also have "... = monom (g (Suc b)) (Suc b) \<oplus>\<^bsub>R\<^esub> (\<Sum>i\<le>b. monom (g i) i)"
unfolding R_def plus_irr_def
by (simp add: poly_mod_add_left)
finally have eq: "(\<Sum>i\<le>Suc b. monom (g i) i)
= monom (g (Suc b)) (Suc b) \<oplus>\<^bsub>R\<^esub> (\<Sum>i\<le>b. monom (g i) i)" .
show ?case unfolding eq P_def
proof (rule add_closed_power)
show "monom (g (Suc b)) (Suc b) [^]\<^bsub>R\<^esub> CARD('a) ^ n = monom (g (Suc b)) (Suc b)"
by (rule monom_a_b[OF m monom_1_1[unfolded P_def] Suc.prems])
show "(\<Sum>i\<le>b. monom (g i) i) [^]\<^bsub>R\<^esub> CARD('a) ^ n = (\<Sum>i\<le>b. monom (g i) i)"
using hyp unfolding P_def by simp
qed
qed
lemma element_carrier_P:
defines "P \<equiv> (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))"
assumes m: "monom 1 1 \<in> carrier R"
and monom_1_1: "P (monom 1 1) m'"
and a: "a \<in> carrier R"
shows "P a m'"
proof -
have degree_a: "degree a < degree f" using a element_in_carrier by simp
have "P (\<Sum>i\<le>degree a. monom (poly.coeff a i) i) m'"
unfolding P_def
by (rule sum_monoms_P[OF m monom_1_1[unfolded P_def] degree_a])
thus ?thesis unfolding poly_as_sum_of_monoms by simp
qed
end
end
(* First part of the result that we need *)
lemma degree_divisor1:
assumes f: "irreducible (f :: 'a :: prime_card mod_ring poly)"
and d: "degree f = d"
shows "f dvd (monom 1 1)^(CARD('a)^d) - monom 1 1"
proof -
interpret poly_mod_type_irr "CARD('a)" f by (unfold_locales, auto simp add: f)
show ?thesis
proof (cases "d = 1")
case True
show ?thesis
proof (cases "monom 1 1 mod f = 0")
case True
then show ?thesis
by (metis Suc_pred dvd_diff dvd_mult2 mod_eq_0_iff_dvd power.simps(2)
zero_less_card_finite zero_less_power)
next
case False note mod_f_not0 = False
have "monom 1 (CARD('a)) mod f = monom 1 1 mod f"
proof -
let ?g1 = "(monom 1 (CARD('a))) mod f"
let ?g2 = "(monom 1 1) mod f"
have deg_g1: "degree ?g1 < degree f" and deg_g2: "degree ?g2 < degree f"
by (metis True card_UNIV_unit d degree_0 degree_mod_less' zero_less_card_finite zero_neq_one)+
have g2: "?g2 [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f = ?g2 ^ (CARD('a)^degree f) mod f"
by (rule pow_irr_mult_of)
have "?g2 [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f = ?g2"
by (rule element_power_order_eq_1', insert mod_f_not0 deg_g2,
auto simp add: carrier_mult_of R_def carrier_irr_def )
hence "?g2 ^ CARD('a) mod f = ?g2 mod f" using True d by auto
hence "?g1 mod f = ?g2 mod f" by (metis mod_mod_trivial power_mod x_pow_n)
thus ?thesis by simp
qed
thus ?thesis by (metis True mod_eq_dvd_iff_poly power_one_right x_pow_n)
qed
next
case False
have deg_f1: "1 < degree f"
using False d degree_f by linarith
have "monom 1 1 [^]\<^bsub>(mult_of R)\<^esub> CARD('a)^degree f = monom 1 1"
by (rule element_power_order_eq_1', insert deg_f1)
(auto simp add: carrier_mult_of R_def carrier_irr_def degree_monom_eq)
hence "monom 1 1^CARD('a)^degree f mod f = monom 1 1 mod f"
using deg_f1 by (auto, metis mod_mod_trivial)
thus ?thesis using d mod_eq_dvd_iff_poly by blast
qed
qed
(* Second part *)
lemma degree_divisor2:
assumes f: "irreducible (f :: 'a :: prime_card mod_ring poly)"
and d: "degree f = d"
and c_ge_1: "1 \<le> c" and cd: "c < d"
shows "\<not> f dvd monom 1 1 ^ CARD('a) ^ c - monom 1 1"
proof (rule ccontr)
interpret poly_mod_type_irr "CARD('a)" f by (unfold_locales, auto simp add: f)
have field_R: "field R"
by (simp add: field_R.field_axioms)
assume "\<not> \<not> f dvd monom 1 1 ^ CARD('a) ^ c - monom 1 1"
hence f_dvd: "f dvd monom 1 1 ^ CARD('a) ^ c - monom 1 1" by simp
obtain a where a_R: "a \<in> carrier (mult_of R)"
and ord_a: "group.ord (mult_of R) a = order (mult_of R)"
and gen: "carrier (mult_of R) = {a [^]\<^bsub>R\<^esub> i |i. i \<in> (UNIV::nat set)}"
using field.finite_field_mult_group_has_gen2[OF field_R] by auto
have d_not1: "d>1" using c_ge_1 cd by auto
have monom_in_carrier: "monom 1 1 \<in> carrier (mult_of R)"
using d_not1 unfolding carrier_mult_of R_def carrier_irr_def
by (simp add: d degree_monom_eq)
then have "monom 1 1 \<notin> {\<zero>\<^bsub>R\<^esub>}"
by auto
then obtain k where "monom 1 1 = a ^ k mod f"
using gen monom_in_carrier by auto
then have k: "a [^]\<^bsub>R\<^esub> k = monom 1 1"
by simp
have a_m_1: "a [^]\<^bsub>R\<^esub> (CARD('a)^c - 1) = \<one>\<^bsub>R\<^esub>"
proof (rule x_power_pm_minus_1[OF a_R])
let ?x = "monom 1 1::'a mod_ring poly"
show "a [^]\<^bsub>R\<^esub> CARD('a) ^ c = a"
proof (rule element_carrier_P)
show "?x \<in> carrier R"
by (metis k mod_in_carrier pow_irr)
have "?x ^ CARD('a)^ c mod f = ?x mod f" using f_dvd
using mod_eq_dvd_iff_poly by blast
thus "?x [^]\<^bsub>R\<^esub> CARD('a)^ c = ?x"
by (metis d d_not1 degree_monom_eq mod_poly_less one_neq_zero pow_irr)
show "a \<in> carrier R" using a_R unfolding carrier_mult_of by auto
qed
qed
have "Group.group (mult_of R)"
by (simp add: field_R.field_mult_group)
moreover have "finite (carrier (mult_of R))" by auto
moreover have "a \<in> carrier (mult_of R)" by (rule a_R )
moreover have "a [^]\<^bsub>mult_of R\<^esub> (CARD('a) ^ c - 1) = \<one>\<^bsub>mult_of R\<^esub>"
using a_m_1 unfolding mult_of_def
by (auto, metis mult_of_def pow_irr_mult_of nat_pow_mult_of)
ultimately have ord_dvd: "group.ord (mult_of R) a dvd (CARD('a)^c - 1)"
by (meson group.pow_eq_id)
have "d dvd c"
proof (rule dvd_power_minus_1_conv1[OF nontriv])
show "0 < d" using cd by auto
show "CARD('a) ^ d - 1 dvd CARD('a) ^ c - 1"
using ord_dvd by (simp add: d ord_a order_irr)
show "0 < c" using c_ge_1 by auto
qed
thus False using c_ge_1 cd
using nat_dvd_not_less by auto
qed
lemma degree_divisor: assumes "irreducible (f :: 'a :: prime_card mod_ring poly)" "degree f = d"
shows "f dvd (monom 1 1)^(CARD('a)^d) - monom 1 1"
and "1 \<le> c \<Longrightarrow> c < d \<Longrightarrow> \<not> f dvd (monom 1 1)^(CARD('a)^c) - monom 1 1"
using assms degree_divisor1 degree_divisor2 by blast+
context
assumes "SORT_CONSTRAINT('a :: prime_card)"
begin
function dist_degree_factorize_main ::
"'a mod_ring poly \<Rightarrow> 'a mod_ring poly \<Rightarrow> nat \<Rightarrow> (nat \<times> 'a mod_ring poly) list
\<Rightarrow> (nat \<times> 'a mod_ring poly) list" where
"dist_degree_factorize_main v w d res = (if v = 1 then res else if d + d > degree v
then (degree v, v) # res else let
w = w^(CARD('a)) mod v;
d = Suc d;
gd = gcd (w - monom 1 1) v
in if gd = 1 then dist_degree_factorize_main v w d res else
let v' = v div gd in
dist_degree_factorize_main v' (w mod v') d ((d,gd) # res))"
by pat_completeness auto
termination
proof (relation "measure (\<lambda> (v,w,d,res). Suc (degree v) - d)", goal_cases)
case (3 v w d res x xa xb xc)
have "xb dvd v" unfolding 3 by auto
hence "xc dvd v" unfolding 3 by (metis dvd_def dvd_div_mult_self)
from divides_degree[OF this] 3
show ?case by auto
qed auto
declare dist_degree_factorize_main.simps[simp del]
lemma dist_degree_factorize_main: assumes
dist: "dist_degree_factorize_main v w d res = facts" and
w: "w = (monom 1 1)^(CARD('a)^d) mod v" and
sf: "square_free u" and
mon: "monic u" and
prod: "u = v * prod_list (map snd res)" and
deg: "\<And> f. irreducible f \<Longrightarrow> f dvd v \<Longrightarrow> degree f > d" and
res: "\<And> i f. (i,f) \<in> set res \<Longrightarrow> i \<noteq> 0 \<and> degree f \<noteq> 0 \<and> monic f \<and> (\<forall> g. irreducible g \<longrightarrow> g dvd f \<longrightarrow> degree g = i)"
shows "u = prod_list (map snd facts) \<and> (\<forall> i f. (i,f) \<in> set facts \<longrightarrow> factors_of_same_degree i f)"
using dist w prod res deg unfolding factors_of_same_degree_def
proof (induct v w d res rule: dist_degree_factorize_main.induct)
case (1 v w d res)
note IH = 1(1-2)
note result = 1(3)
note w = 1(4)
note u = 1(5)
note res = 1(6)
note fact = 1(7)
note [simp] = dist_degree_factorize_main.simps[of _ _ d]
let ?x = "monom 1 1 :: 'a mod_ring poly"
show ?case
proof (cases "v = 1")
case True
thus ?thesis using result u mon res by auto
next
case False note v = this
note IH = IH[OF this]
have mon_prod: "monic (prod_list (map snd res))" by (rule monic_prod_list, insert res, auto)
with mon[unfolded u] have mon_v: "monic v" by (simp add: coeff_degree_mult)
with False have deg_v: "degree v \<noteq> 0" by (simp add: monic_degree_0)
show ?thesis
proof (cases "degree v < d + d")
case True
with result False have facts: "facts = (degree v, v) # res" by simp
show ?thesis
proof (intro allI conjI impI)
fix i f g
assume *: "(i,f) \<in> set facts" "irreducible g" "g dvd f"
show "degree g = i"
proof (cases "(i,f) \<in> set res")
case True
from res[OF this] * show ?thesis by auto
next
case False
with * facts have id: "i = degree v" "f = v" by auto
note * = *(2-3)[unfolded id]
from fact[OF *] have dg: "d < degree g" by auto
from divides_degree[OF *(2)] mon_v have deg_gv: "degree g \<le> degree v" by auto
from *(2) obtain h where vgh: "v = g * h" unfolding dvd_def by auto
from arg_cong[OF this, of degree] mon_v have dvgh: "degree v = degree g + degree h"
by (metis deg_v degree_mult_eq degree_mult_eq_0)
with dg deg_gv dg True have deg_h: "degree h < d" by auto
{
assume "degree h = 0"
with dvgh have "degree g = degree v" by simp
}
moreover
{
assume deg_h0: "degree h \<noteq> 0"
hence "\<exists> k. irreducible\<^sub>d k \<and> k dvd h"
using dvd_triv_left irreducible\<^sub>d_factor by blast
then obtain k where irr: "irreducible k" and "k dvd h" by auto
from dvd_trans[OF this(2), of v] vgh have "k dvd v" by auto
from fact[OF irr this] have dk: "d < degree k" .
from divides_degree[OF \<open>k dvd h\<close>] deg_h0 have "degree k \<le> degree h" by auto
with deg_h have "degree k < d" by auto
with dk have False by auto
}
ultimately have "degree g = degree v" by auto
thus ?thesis unfolding id by auto
qed
qed (insert v mon_v deg_v u facts res, force+)
next
case False
note IH = IH[OF this refl refl refl]
let ?p = "CARD('a)"
let ?w = "w ^ ?p mod v"
let ?g = "gcd (?w - ?x) v"
let ?v = "v div ?g"
let ?d = "Suc d"
from result[simplified] v False
have result: "(if ?g = 1 then dist_degree_factorize_main v ?w ?d res
else dist_degree_factorize_main ?v (?w mod ?v) ?d ((?d, ?g) # res)) = facts"
by (auto simp: Let_def)
from mon_v have mon_g: "monic ?g" by (metis deg_v degree_0 poly_gcd_monic)
have ww: "?w = ?x ^ ?p ^ ?d mod v" unfolding w
by simp (metis (mono_tags, opaque_lifting) One_nat_def mult.commute power_Suc power_mod power_mult x_pow_n)
have gv: "?g dvd v" by auto
hence gv': "v div ?g dvd v"
by (metis dvd_def dvd_div_mult_self)
{
fix f
assume irr: "irreducible f" and fv: "f dvd v" and "degree f = ?d"
from degree_divisor(1)[OF this(1,3)]
have "f dvd ?x ^ ?p ^ ?d - ?x" by auto
hence "f dvd (?x ^ ?p ^ ?d - ?x) mod v" using fv by (rule dvd_mod)
also have "(?x ^ ?p ^ ?d - ?x) mod v = ?x ^ ?p ^ ?d mod v - ?x mod v" by (rule poly_mod_diff_left)
also have "?x ^ ?p ^ ?d mod v = ?w mod v" unfolding ww by auto
also have "\<dots> - ?x mod v = (w ^ ?p mod v - ?x) mod v" by (metis poly_mod_diff_left)
finally have "f dvd (w^?p mod v - ?x)" using fv by (rule dvd_mod_imp_dvd)
with fv have "f dvd ?g" by auto
} note deg_d_dvd_g = this
show ?thesis
proof (cases "?g = 1")
case True
with result have dist: "dist_degree_factorize_main v ?w ?d res = facts" by auto
show ?thesis
proof (rule IH(1)[OF True dist ww u res])
fix f
assume irr: "irreducible f" and fv: "f dvd v"
from fact[OF this] have "d < degree f" .
moreover have "degree f \<noteq> ?d"
proof
assume "degree f = ?d"
from divides_degree[OF deg_d_dvd_g[OF irr fv this]] mon_v
have "degree f \<le> degree ?g" by auto
with irr have "degree ?g \<noteq> 0" unfolding irreducible\<^sub>d_def by auto
with True show False by auto
qed
ultimately show "?d < degree f" by auto
qed
next
case False
with result
have result: "dist_degree_factorize_main ?v (?w mod ?v) ?d ((?d, ?g) # res) = facts"
by auto
from False mon_g have deg_g: "degree ?g \<noteq> 0" by (simp add: monic_degree_0)
have www: "?w mod ?v = monom 1 1 ^ ?p ^ ?d mod ?v" using gv'
by (simp add: mod_mod_cancel ww)
from square_free_factor[OF _ sf, of v] u have sfv: "square_free v" by auto
have u: "u = ?v * prod_list (map snd ((?d, ?g) # res))"
unfolding u by simp
show ?thesis
proof (rule IH(2)[OF False refl result www u], goal_cases)
case (1 i f)
show ?case
proof (cases "(i,f) \<in> set res")
case True
from res[OF this] show ?thesis by auto
next
case False
with 1 have id: "i = ?d" "f = ?g" by auto
show ?thesis unfolding id
proof (intro conjI impI allI)
fix g
assume *: "irreducible g" "g dvd ?g"
hence gv: "g dvd v" using dvd_trans[of g ?g v] by simp
from fact[OF *(1) this] have dg: "d < degree g" .
{
assume "degree g > ?d"
from degree_divisor(2)[OF *(1) refl _ this]
have ndvd: "\<not> g dvd ?x ^ ?p ^ ?d - ?x" by auto
from *(2) have "g dvd ?w - ?x" by simp
from this[unfolded ww]
have "g dvd ?x ^ ?p ^ ?d mod v - ?x" .
with gv have "g dvd (?x ^ ?p ^ ?d mod v - ?x) mod v" by (metis dvd_mod)
also have "(?x ^ ?p ^ ?d mod v - ?x) mod v = (?x ^ ?p ^ ?d - ?x) mod v"
by (metis mod_diff_left_eq)
finally have "g dvd ?x ^ ?p ^ ?d - ?x" using gv by (rule dvd_mod_imp_dvd)
with ndvd have False by auto
}
with dg show "degree g = ?d" by presburger
qed (insert mon_g deg_g, auto)
qed
next
case (2 f)
note irr = 2(1)
from dvd_trans[OF 2(2) gv'] have fv: "f dvd v" .
from fact[OF irr fv] have df: "d < degree f" "degree f \<noteq> 0" by auto
{
assume "degree f = ?d"
from deg_d_dvd_g[OF irr fv this] have fg: "f dvd ?g" .
from gv have id: "v = (v div ?g) * ?g" by simp
from sfv id have "square_free (v div ?g * ?g)" by simp
from square_free_multD(1)[OF this 2(2) fg] have "degree f = 0" .
with df have False by auto
}
with df show "?d < degree f" by presburger
qed
qed
qed
qed
qed
definition distinct_degree_factorization
:: "'a mod_ring poly \<Rightarrow> (nat \<times> 'a mod_ring poly) list" where
"distinct_degree_factorization f =
(if degree f = 1 then [(1,f)] else dist_degree_factorize_main f (monom 1 1) 0 [])"
lemma distinct_degree_factorization: assumes
dist: "distinct_degree_factorization f = facts" and
u: "square_free f" and
mon: "monic f"
shows "f = prod_list (map snd facts) \<and> (\<forall> i f. (i,f) \<in> set facts \<longrightarrow> factors_of_same_degree i f)"
proof -
note dist = dist[unfolded distinct_degree_factorization_def]
show ?thesis
proof (cases "degree f \<le> 1")
case False
hence "degree f > 1" and dist: "dist_degree_factorize_main f (monom 1 1) 0 [] = facts"
using dist by auto
hence *: "monom 1 (Suc 0) = monom 1 (Suc 0) mod f"
by (simp add: degree_monom_eq mod_poly_less)
show ?thesis
by (rule dist_degree_factorize_main[OF dist _ u mon], insert *, auto simp: irreducible\<^sub>d_def)
next
case True
hence "degree f = 0 \<or> degree f = 1" by auto
thus ?thesis
proof
assume "degree f = 0"
with mon have f: "f = 1" using monic_degree_0 by blast
hence "facts = []" using dist unfolding dist_degree_factorize_main.simps[of _ _ 0]
by auto
thus ?thesis using f by auto
next
assume deg: "degree f = 1"
hence facts: "facts = [(1,f)]" using dist by auto
show ?thesis unfolding facts factors_of_same_degree_def
proof (intro conjI allI impI; clarsimp)
fix g
assume "irreducible g" "g dvd f"
thus "degree g = Suc 0" using deg divides_degree[of g f] by (auto simp: irreducible\<^sub>d_def)
qed (insert mon deg, auto)
qed
qed
qed
end
end
|