Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 16,397 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
(*
    Authors:      Jose Divasón
                  Sebastiaan Joosten
                  René Thiemann
                  Akihisa Yamada
*)
subsection \<open>The Mignotte Bound\<close>
theory Factor_Bound
imports 
  Mahler_Measure
  Polynomial_Factorization.Gauss_Lemma
  Subresultants.Coeff_Int 
begin

lemma binomial_mono_left: "n \<le> N \<Longrightarrow> n choose k \<le> N choose k" 
proof (induct n arbitrary: k N)
  case (0 k N)
  thus ?case by (cases k, auto)
next
  case (Suc n k N) note IH = this
  show ?case
  proof (cases k)
    case (Suc kk)
    from IH obtain NN where N: "N = Suc NN" and le: "n \<le> NN" by (cases N, auto)     
    show ?thesis unfolding N Suc using IH(1)[OF le] 
      by (simp add: add_le_mono)
  qed auto
qed

definition choose_int where "choose_int m n = (if n < 0 then 0 else m choose (nat n))"

lemma choose_int_suc[simp]:
  "choose_int (Suc n) i = choose_int n (i-1) + choose_int n i"
proof(cases "nat i")
  case 0 thus ?thesis by (simp add:choose_int_def) next
  case (Suc v) hence "nat (i - 1) = v" "i\<noteq>0" by simp_all
    thus ?thesis unfolding choose_int_def Suc by simp
qed

lemma sum_le_1_prod: assumes d: "1 \<le> d" and c: "1 \<le> c"
  shows "c + d \<le> 1 + c * (d :: real)"
proof -
  from d c have "(c - 1) * (d - 1) \<ge> 0" by auto
  thus ?thesis by (auto simp: field_simps)
qed

lemma mignotte_helper_coeff_int: "cmod (coeff_int (\<Prod>a\<leftarrow>lst. [:- a, 1:]) i)
    \<le> choose_int (length lst - 1) i * (\<Prod>a\<leftarrow>lst. (max 1 (cmod a))) 
    + choose_int (length lst - 1) (i - 1)"
proof(induct lst arbitrary:i)
  case Nil thus ?case by (auto simp:coeff_int_def choose_int_def)
  case (Cons v xs i)
  show ?case
  proof (cases "xs = []")
    case True
    show ?thesis unfolding True
      by (cases "nat i", cases "nat (i - 1)", auto simp: coeff_int_def choose_int_def)
  next
    case False
    hence id: "length (v # xs) - 1 = Suc (length xs - 1)" by auto
    have id': "choose_int (length xs) i = choose_int (Suc (length xs - 1)) i" for i
      using False by (cases xs, auto)
    let ?r = "(\<Prod>a\<leftarrow>xs. [:- a, 1:])"
    let ?mv = "(\<Prod>a\<leftarrow>xs. (max 1 (cmod a)))"
    let ?c1 = "real (choose_int (length xs - 1) (i - 1 - 1))" 
    let ?c2 = "real (choose_int (length (v # xs) - 1) i - choose_int (length xs - 1) i)" 
    let "?m xs n" = "choose_int (length xs - 1) n * (\<Prod>a\<leftarrow>xs. (max 1 (cmod a)))"
    have le1:"1 \<le> max 1 (cmod v)" by auto
    have le2:"cmod v \<le> max 1 (cmod v)" by auto
    have mv_ge_1:"1 \<le> ?mv" by (rule prod_list_ge1, auto)
    obtain a b c d where abcd : 
      "a = real (choose_int (length xs - 1) i)" 
      "b = real (choose_int (length xs - 1) (i - 1))" 
      "c = (\<Prod>a\<leftarrow>xs. max 1 (cmod a))" 
      "d = cmod v" by auto
    {
      have c1: "c \<ge> 1" unfolding abcd by (rule mv_ge_1)
      have b: "b = 0 \<or> b \<ge> 1" unfolding abcd by auto
      have a: "a = 0 \<or> a \<ge> 1" unfolding abcd by auto
      hence a0: "a \<ge> 0" by auto
      have acd: "a * (c * d) \<le> a * (c * max 1 d)" using a0 c1
        by (simp add: mult_left_mono)
      from b have "b * (c + d) \<le> b * (1  + (c * max 1 d))" 
      proof 
        assume "b \<ge> 1" 
        hence "?thesis = (c + d \<le> 1 + c * max 1 d)" by simp
        also have \<dots>
        proof (cases "d \<ge> 1")
          case False
          hence id: "max 1 d = 1" by simp
          show ?thesis using False unfolding id by simp
        next
          case True
          hence id: "max 1 d = d" by simp
          show ?thesis using True c1 unfolding id by (rule sum_le_1_prod)
        qed
        finally show ?thesis .
      qed auto
      with acd have "b * c + (b * d + a * (c * d)) \<le> b + (a * (c * max 1 d) + b * (c * max 1 d))" 
        by (auto simp: field_simps)
    } note abcd_main = this      
    have "cmod (coeff_int ([:- v, 1:] * ?r) i) \<le> cmod (coeff_int ?r (i - 1)) + cmod (coeff_int (smult v ?r) i)"
      using norm_triangle_ineq4 by auto
    also have "\<dots> \<le> ?m xs (i - 1) + (choose_int (length xs - 1) (i - 1 - 1)) + cmod (coeff_int (smult v ?r) i)" 
      using Cons[of "i-1"] by auto
    also have "choose_int (length xs - 1) (i - 1) = choose_int (length (v # xs) - 1) i - choose_int (length xs - 1) i" 
      unfolding id choose_int_suc by auto
    also have "?c2 * (\<Prod>a\<leftarrow>xs. max 1 (cmod a)) + ?c1 +
       cmod (coeff_int (smult v (\<Prod>a\<leftarrow>xs. [:- a, 1:])) i) \<le> 
       ?c2 * (\<Prod>a\<leftarrow>xs. max 1 (cmod a)) + ?c1 + cmod v * (
         real (choose_int (length xs - 1) i) * (\<Prod>a\<leftarrow>xs. max 1 (cmod a)) + 
         real (choose_int (length xs - 1) (i - 1)))"
      using mult_mono'[OF order_refl Cons, of "cmod v" i, simplified] by (auto simp: norm_mult)
    also have "\<dots> \<le> ?m (v # xs) i + (choose_int (length xs) (i - 1))" using abcd_main[unfolded abcd]
      by (simp add: field_simps id')
    finally show ?thesis by simp
  qed
qed

lemma mignotte_helper_coeff_int': "cmod (coeff_int (\<Prod>a\<leftarrow>lst. [:- a, 1:]) i)
    \<le> ((length lst - 1) choose i) * (\<Prod>a\<leftarrow>lst. (max 1 (cmod a))) 
    + min i 1 * ((length lst - 1) choose (nat (i - 1)))"
  by (rule order.trans[OF mignotte_helper_coeff_int], auto simp: choose_int_def min_def)

lemma mignotte_helper_coeff: 
  "cmod (coeff h i) \<le> (degree h - 1 choose i) * mahler_measure_poly h 
      + min i 1 * (degree h - 1 choose (i - 1)) * cmod (lead_coeff h)"
proof -
  let ?r = "complex_roots_complex h"
  have "cmod (coeff h i) = cmod (coeff (smult (lead_coeff h) (\<Prod>a\<leftarrow>?r. [:- a, 1:])) i)"
    unfolding complex_roots by auto
  also have "\<dots> = cmod (lead_coeff h) * cmod (coeff (\<Prod>a\<leftarrow>?r. [:- a, 1:]) i)" by(simp add:norm_mult)
  also have "\<dots> \<le> cmod (lead_coeff h) * ((degree h - 1 choose i) * mahler_measure_monic h + 
    (min i 1 * ((degree h - 1) choose nat (int i - 1))))"    
    unfolding mahler_measure_monic_def
    by (rule mult_left_mono, insert mignotte_helper_coeff_int'[of ?r i], auto)
  also have "\<dots> = (degree h - 1 choose i) * mahler_measure_poly h + cmod (lead_coeff h) * (
    min i 1 * ((degree h - 1) choose nat (int i - 1)))" 
    unfolding mahler_measure_poly_via_monic by (simp add: field_simps)
  also have "nat (int i - 1) = i - 1" by (cases i, auto)
  finally show ?thesis by (simp add: ac_simps split: if_splits)
qed

lemma mignotte_coeff_helper:
  "abs (coeff h i) \<le> 
   (degree h - 1 choose i) * mahler_measure h +
   (min i 1 * (degree h - 1 choose (i - 1)) * abs (lead_coeff h))"
  unfolding mahler_measure_def
  using mignotte_helper_coeff[of "of_int_poly h" i] 
  by auto

lemma cmod_through_lead_coeff[simp]:
  "cmod (lead_coeff (of_int_poly h)) = abs (lead_coeff h)"
  by simp

lemma choose_approx: "n \<le> N \<Longrightarrow> n choose k \<le> N choose (N div 2)" 
  by (rule order.trans[OF binomial_mono_left binomial_maximum])

text \<open>For Mignotte's factor bound, we currently do not support queries for individual coefficients,
  as we do not have a combined factor bound algorithm.\<close>

definition mignotte_bound :: "int poly \<Rightarrow> nat \<Rightarrow> int" where
  "mignotte_bound f d = (let d' = d - 1; d2 = d' div 2; binom = (d' choose d2) in
     (mahler_approximation 2 binom f + binom * abs (lead_coeff f)))" 

lemma mignotte_bound_main:  
  assumes "f \<noteq> 0" "g dvd f" "degree g \<le> n"
  shows "\<bar>coeff g k\<bar> \<le> \<lfloor>real (n - 1 choose k) * mahler_measure f\<rfloor> +
       int (min k 1 * (n - 1 choose (k - 1))) * \<bar>lead_coeff f\<bar>"   
proof-
  let ?bnd = 2
  let ?n = "(n - 1) choose k" 
  let ?n' = "min k 1 * ((n - 1) choose (k - 1))" 
  let ?approx = "mahler_approximation ?bnd ?n f" 
  obtain h where gh:"g * h = f" using assms by (metis dvdE)
  have nz:"g\<noteq>0" "h\<noteq>0" using gh assms(1) by auto
  have g1:"(1::real) \<le> mahler_measure h" using mahler_measure_poly_ge_1 gh assms(1) by auto
  note g0 = mahler_measure_ge_0
  have to_n: "(degree g - 1 choose k) \<le> real ?n"
    using binomial_mono_left[of "degree g - 1" "n - 1" k] assms(3) by auto
  have to_n': "min k 1 * (degree g - 1 choose (k - 1)) \<le> real ?n'"
    using binomial_mono_left[of "degree g - 1" "n - 1" "k - 1"] assms(3)
    by (simp add: min_def)
  have "\<bar>coeff g k\<bar> \<le> (degree g - 1 choose k) * mahler_measure g
    + (real (min k 1 * (degree g - 1 choose (k - 1))) * \<bar>lead_coeff g\<bar>)" 
    using mignotte_coeff_helper[of g k] by simp
  also have "\<dots> \<le> ?n * mahler_measure f + real ?n' * \<bar>lead_coeff f\<bar>"
  proof (rule add_mono[OF mult_mono[OF to_n] mult_mono[OF to_n']])
    have "mahler_measure g  \<le> mahler_measure g * mahler_measure h" using g1 g0[of g]
      using mahler_measure_poly_ge_1 nz(1) by force
    thus "mahler_measure g \<le> mahler_measure f"
      using measure_eq_prod[of "of_int_poly g" "of_int_poly h"]
      unfolding mahler_measure_def gh[symmetric] by (auto simp: hom_distribs)
    have *: "lead_coeff f = lead_coeff g * lead_coeff h" 
      unfolding arg_cong[OF gh, of lead_coeff, symmetric] by (rule lead_coeff_mult)
    have "\<bar>lead_coeff h\<bar> \<noteq> 0" using nz(2) by auto
    hence lh: "\<bar>lead_coeff h\<bar> \<ge> 1" by linarith
    have "\<bar>lead_coeff f\<bar> = \<bar>lead_coeff g\<bar> * \<bar>lead_coeff h\<bar>" unfolding * by (rule abs_mult)
    also have "\<dots> \<ge> \<bar>lead_coeff g\<bar> * 1" 
      by (rule mult_mono, insert lh, auto)
    finally have "\<bar>lead_coeff g\<bar> \<le> \<bar>lead_coeff f\<bar>" by simp
    thus "real_of_int \<bar>lead_coeff g\<bar> \<le> real_of_int \<bar>lead_coeff f\<bar>" by simp
  qed (auto simp: g0)
  finally have "\<bar>coeff g k\<bar> \<le> ?n * mahler_measure f + real_of_int (?n' * \<bar>lead_coeff f\<bar>)" by simp
  from floor_mono[OF this, folded floor_add_int]
  have "\<bar>coeff g k\<bar> \<le> floor (?n * mahler_measure f) + ?n' * \<bar>lead_coeff f\<bar>" by linarith
  thus ?thesis unfolding mignotte_bound_def Let_def using mahler_approximation[of ?n f ?bnd] by auto
qed

lemma Mignotte_bound: 
  shows "of_int \<bar>coeff g k\<bar> \<le> (degree g choose k) * mahler_measure g"
proof (cases "k \<le> degree g \<and> g \<noteq> 0")
  case False
  hence "coeff g k = 0" using le_degree by (cases "g = 0", auto)
  thus ?thesis using mahler_measure_ge_0[of g] by auto
next
  case kg: True
  hence g: "g \<noteq> 0" "g dvd g" by auto
  from mignotte_bound_main[OF g le_refl, of k]
  have "real_of_int \<bar>coeff g k\<bar>
    \<le> of_int \<lfloor>real (degree g - 1 choose k) * mahler_measure g\<rfloor> +
      of_int (int (min k 1 * (degree g - 1 choose (k - 1))) * \<bar>lead_coeff g\<bar>)" by linarith
  also have "\<dots> \<le> real (degree g - 1 choose k) * mahler_measure g 
     + real (min k 1 * (degree g - 1 choose (k - 1))) * (of_int \<bar>lead_coeff g\<bar> * 1)"
    by (rule add_mono, force, auto)
  also have "\<dots> \<le> real (degree g - 1 choose k) * mahler_measure g 
     + real (min k 1 * (degree g - 1 choose (k - 1))) * mahler_measure g"
    by (rule add_left_mono[OF mult_left_mono], 
    unfold mahler_measure_def mahler_measure_poly_def,
    rule mult_mono, auto intro!: prod_list_ge1)  
  also have "\<dots> = 
    (real ((degree g - 1 choose k) + (min k 1 * (degree g - 1 choose (k - 1))))) * mahler_measure g" 
    by (auto simp: field_simps)
  also have "(degree g - 1 choose k) + (min k 1 * (degree g - 1 choose (k - 1))) = degree g choose k"
  proof (cases "k = 0")
    case False
    then obtain kk where k: "k = Suc kk" by (cases k, auto)
    with kg obtain gg where g: "degree g = Suc gg" by (cases "degree g", auto)
    show ?thesis unfolding k g by auto
  qed auto
  finally show ?thesis .
qed

lemma mignotte_bound:  
  assumes "f \<noteq> 0" "g dvd f" "degree g \<le> n"
  shows "\<bar>coeff g k\<bar> \<le> mignotte_bound f n"  
proof -
  let ?bnd = 2
  let ?n = "(n - 1) choose ((n - 1) div 2)" 
  have to_n: "(n - 1 choose k) \<le> real ?n" for k
    using choose_approx[OF le_refl] by auto
  from mignotte_bound_main[OF assms, of k]
  have "\<bar>coeff g k\<bar> \<le> 
    \<lfloor>real (n - 1 choose k) * mahler_measure f\<rfloor> + 
    int (min k 1 * (n - 1 choose (k - 1))) * \<bar>lead_coeff f\<bar>" .
  also have "\<dots> \<le> \<lfloor>real (n - 1 choose k) * mahler_measure f\<rfloor> + 
    int ((n - 1 choose (k - 1))) * \<bar>lead_coeff f\<bar>"
    by (rule add_left_mono[OF mult_right_mono], cases k, auto)
  also have "\<dots> \<le> mignotte_bound f n" 
    unfolding mignotte_bound_def Let_def
    by (rule add_mono[OF order.trans[OF floor_mono[OF mult_right_mono] 
    mahler_approximation[of ?n f ?bnd]] mult_right_mono], insert to_n mahler_measure_ge_0, auto)
  finally show ?thesis .
qed

text \<open>As indicated before, at the moment the only available factor bound is Mignotte's one.
  As future work one might use a combined bound.\<close>

definition factor_bound :: "int poly \<Rightarrow> nat \<Rightarrow> int" where
  "factor_bound = mignotte_bound"

lemma factor_bound: assumes "f \<noteq> 0" "g dvd f" "degree g \<le> n"
  shows "\<bar>coeff g k\<bar> \<le> factor_bound f n"
  unfolding factor_bound_def by (rule mignotte_bound[OF assms])

text \<open>We further prove a result for factor bounds and scalar multiplication.\<close>

lemma factor_bound_ge_0: "f \<noteq> 0 \<Longrightarrow> factor_bound f n \<ge> 0" 
  using factor_bound[of f 1 n 0] by auto

lemma factor_bound_smult: assumes f: "f \<noteq> 0" and d: "d \<noteq> 0" 
  and dvd: "g dvd smult d f" and deg: "degree g \<le> n" 
  shows "\<bar>coeff g k\<bar> \<le> \<bar>d\<bar> * factor_bound f n" 
proof -
  let ?nf = "primitive_part f" let ?cf = "content f" 
  let ?ng = "primitive_part g" let ?cg = "content g" 
  from content_dvd_contentI[OF dvd] have "?cg dvd abs d * ?cf" 
    unfolding content_smult_int .  
  hence dvd_c: "?cg dvd d * ?cf" using d
    by (metis abs_content_int abs_mult dvd_abs_iff)
  from primitive_part_dvd_primitive_partI[OF dvd] have "?ng dvd smult (sgn d) ?nf" unfolding primitive_part_smult_int .
  hence dvd_n: "?ng dvd ?nf" using d 
    by (metis content_eq_zero_iff dvd dvd_smult_int f mult_eq_0_iff content_times_primitive_part smult_smult)
  define gc where "gc = gcd ?cf ?cg" 
  define cg where "cg = ?cg div gc"   
  from dvd d f have g: "g \<noteq> 0" by auto  
  from f have cf: "?cf \<noteq> 0" by auto
  from g have cg: "?cg \<noteq> 0" by auto
  hence gc: "gc \<noteq> 0" unfolding gc_def by auto
  have cg_dvd: "cg dvd ?cg" unfolding cg_def gc_def using g by (simp add: div_dvd_iff_mult)
  have cg_id: "?cg = cg * gc" unfolding gc_def cg_def using g cf by simp
  from dvd_smult_int[OF d dvd] have ngf: "?ng dvd f" .
  have gcf: "\<bar>gc\<bar> dvd content f" unfolding gc_def by auto
  have dvd_f: "smult gc ?ng dvd f" 
  proof (rule dvd_content_dvd, 
      unfold content_smult_int content_primitive_part[OF g] 
      primitive_part_smult_int primitive_part_idemp)
    show "\<bar>gc\<bar> * 1 dvd content f" using gcf by auto
    show "smult (sgn gc) (primitive_part g) dvd primitive_part f" 
      using dvd_n cf gc using zsgn_def by force
  qed    
  have "cg dvd d" using dvd_c unfolding gc_def cg_def using cf cg d
    by (simp add: div_dvd_iff_mult dvd_gcd_mult)
  then obtain h where dcg: "d = cg * h" unfolding dvd_def by auto
  with d have "h \<noteq> 0" by auto
  hence h1: "\<bar>h\<bar> \<ge> 1" by simp
  have "degree (smult gc (primitive_part g)) = degree g" 
    using gc by auto
  from factor_bound[OF f dvd_f, unfolded this, OF deg, of k, unfolded coeff_smult]
  have le: "\<bar>gc * coeff ?ng k\<bar> \<le> factor_bound f n" .
  note f0 = factor_bound_ge_0[OF f, of n]
  from mult_left_mono[OF le, of "abs cg"]
  have "\<bar>cg * gc * coeff ?ng k\<bar> \<le> \<bar>cg\<bar> * factor_bound f n" 
    unfolding abs_mult[symmetric] by simp
  also have "cg * gc * coeff ?ng k = coeff (smult ?cg ?ng) k" unfolding cg_id by simp
  also have "\<dots> = coeff g k" unfolding content_times_primitive_part by simp
  finally have "\<bar>coeff g k\<bar> \<le> 1 * (\<bar>cg\<bar> * factor_bound f n)" by simp
  also have "\<dots> \<le> \<bar>h\<bar> * (\<bar>cg\<bar> * factor_bound f n)" 
    by (rule mult_right_mono[OF h1], insert f0, auto)
  also have "\<dots> = (\<bar>cg * h\<bar>) * factor_bound f n" by (simp add: abs_mult)
  finally show ?thesis unfolding dcg .
qed

end