Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 16,397 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
(*
Authors: Jose Divasón
Sebastiaan Joosten
René Thiemann
Akihisa Yamada
*)
subsection \<open>The Mignotte Bound\<close>
theory Factor_Bound
imports
Mahler_Measure
Polynomial_Factorization.Gauss_Lemma
Subresultants.Coeff_Int
begin
lemma binomial_mono_left: "n \<le> N \<Longrightarrow> n choose k \<le> N choose k"
proof (induct n arbitrary: k N)
case (0 k N)
thus ?case by (cases k, auto)
next
case (Suc n k N) note IH = this
show ?case
proof (cases k)
case (Suc kk)
from IH obtain NN where N: "N = Suc NN" and le: "n \<le> NN" by (cases N, auto)
show ?thesis unfolding N Suc using IH(1)[OF le]
by (simp add: add_le_mono)
qed auto
qed
definition choose_int where "choose_int m n = (if n < 0 then 0 else m choose (nat n))"
lemma choose_int_suc[simp]:
"choose_int (Suc n) i = choose_int n (i-1) + choose_int n i"
proof(cases "nat i")
case 0 thus ?thesis by (simp add:choose_int_def) next
case (Suc v) hence "nat (i - 1) = v" "i\<noteq>0" by simp_all
thus ?thesis unfolding choose_int_def Suc by simp
qed
lemma sum_le_1_prod: assumes d: "1 \<le> d" and c: "1 \<le> c"
shows "c + d \<le> 1 + c * (d :: real)"
proof -
from d c have "(c - 1) * (d - 1) \<ge> 0" by auto
thus ?thesis by (auto simp: field_simps)
qed
lemma mignotte_helper_coeff_int: "cmod (coeff_int (\<Prod>a\<leftarrow>lst. [:- a, 1:]) i)
\<le> choose_int (length lst - 1) i * (\<Prod>a\<leftarrow>lst. (max 1 (cmod a)))
+ choose_int (length lst - 1) (i - 1)"
proof(induct lst arbitrary:i)
case Nil thus ?case by (auto simp:coeff_int_def choose_int_def)
case (Cons v xs i)
show ?case
proof (cases "xs = []")
case True
show ?thesis unfolding True
by (cases "nat i", cases "nat (i - 1)", auto simp: coeff_int_def choose_int_def)
next
case False
hence id: "length (v # xs) - 1 = Suc (length xs - 1)" by auto
have id': "choose_int (length xs) i = choose_int (Suc (length xs - 1)) i" for i
using False by (cases xs, auto)
let ?r = "(\<Prod>a\<leftarrow>xs. [:- a, 1:])"
let ?mv = "(\<Prod>a\<leftarrow>xs. (max 1 (cmod a)))"
let ?c1 = "real (choose_int (length xs - 1) (i - 1 - 1))"
let ?c2 = "real (choose_int (length (v # xs) - 1) i - choose_int (length xs - 1) i)"
let "?m xs n" = "choose_int (length xs - 1) n * (\<Prod>a\<leftarrow>xs. (max 1 (cmod a)))"
have le1:"1 \<le> max 1 (cmod v)" by auto
have le2:"cmod v \<le> max 1 (cmod v)" by auto
have mv_ge_1:"1 \<le> ?mv" by (rule prod_list_ge1, auto)
obtain a b c d where abcd :
"a = real (choose_int (length xs - 1) i)"
"b = real (choose_int (length xs - 1) (i - 1))"
"c = (\<Prod>a\<leftarrow>xs. max 1 (cmod a))"
"d = cmod v" by auto
{
have c1: "c \<ge> 1" unfolding abcd by (rule mv_ge_1)
have b: "b = 0 \<or> b \<ge> 1" unfolding abcd by auto
have a: "a = 0 \<or> a \<ge> 1" unfolding abcd by auto
hence a0: "a \<ge> 0" by auto
have acd: "a * (c * d) \<le> a * (c * max 1 d)" using a0 c1
by (simp add: mult_left_mono)
from b have "b * (c + d) \<le> b * (1 + (c * max 1 d))"
proof
assume "b \<ge> 1"
hence "?thesis = (c + d \<le> 1 + c * max 1 d)" by simp
also have \<dots>
proof (cases "d \<ge> 1")
case False
hence id: "max 1 d = 1" by simp
show ?thesis using False unfolding id by simp
next
case True
hence id: "max 1 d = d" by simp
show ?thesis using True c1 unfolding id by (rule sum_le_1_prod)
qed
finally show ?thesis .
qed auto
with acd have "b * c + (b * d + a * (c * d)) \<le> b + (a * (c * max 1 d) + b * (c * max 1 d))"
by (auto simp: field_simps)
} note abcd_main = this
have "cmod (coeff_int ([:- v, 1:] * ?r) i) \<le> cmod (coeff_int ?r (i - 1)) + cmod (coeff_int (smult v ?r) i)"
using norm_triangle_ineq4 by auto
also have "\<dots> \<le> ?m xs (i - 1) + (choose_int (length xs - 1) (i - 1 - 1)) + cmod (coeff_int (smult v ?r) i)"
using Cons[of "i-1"] by auto
also have "choose_int (length xs - 1) (i - 1) = choose_int (length (v # xs) - 1) i - choose_int (length xs - 1) i"
unfolding id choose_int_suc by auto
also have "?c2 * (\<Prod>a\<leftarrow>xs. max 1 (cmod a)) + ?c1 +
cmod (coeff_int (smult v (\<Prod>a\<leftarrow>xs. [:- a, 1:])) i) \<le>
?c2 * (\<Prod>a\<leftarrow>xs. max 1 (cmod a)) + ?c1 + cmod v * (
real (choose_int (length xs - 1) i) * (\<Prod>a\<leftarrow>xs. max 1 (cmod a)) +
real (choose_int (length xs - 1) (i - 1)))"
using mult_mono'[OF order_refl Cons, of "cmod v" i, simplified] by (auto simp: norm_mult)
also have "\<dots> \<le> ?m (v # xs) i + (choose_int (length xs) (i - 1))" using abcd_main[unfolded abcd]
by (simp add: field_simps id')
finally show ?thesis by simp
qed
qed
lemma mignotte_helper_coeff_int': "cmod (coeff_int (\<Prod>a\<leftarrow>lst. [:- a, 1:]) i)
\<le> ((length lst - 1) choose i) * (\<Prod>a\<leftarrow>lst. (max 1 (cmod a)))
+ min i 1 * ((length lst - 1) choose (nat (i - 1)))"
by (rule order.trans[OF mignotte_helper_coeff_int], auto simp: choose_int_def min_def)
lemma mignotte_helper_coeff:
"cmod (coeff h i) \<le> (degree h - 1 choose i) * mahler_measure_poly h
+ min i 1 * (degree h - 1 choose (i - 1)) * cmod (lead_coeff h)"
proof -
let ?r = "complex_roots_complex h"
have "cmod (coeff h i) = cmod (coeff (smult (lead_coeff h) (\<Prod>a\<leftarrow>?r. [:- a, 1:])) i)"
unfolding complex_roots by auto
also have "\<dots> = cmod (lead_coeff h) * cmod (coeff (\<Prod>a\<leftarrow>?r. [:- a, 1:]) i)" by(simp add:norm_mult)
also have "\<dots> \<le> cmod (lead_coeff h) * ((degree h - 1 choose i) * mahler_measure_monic h +
(min i 1 * ((degree h - 1) choose nat (int i - 1))))"
unfolding mahler_measure_monic_def
by (rule mult_left_mono, insert mignotte_helper_coeff_int'[of ?r i], auto)
also have "\<dots> = (degree h - 1 choose i) * mahler_measure_poly h + cmod (lead_coeff h) * (
min i 1 * ((degree h - 1) choose nat (int i - 1)))"
unfolding mahler_measure_poly_via_monic by (simp add: field_simps)
also have "nat (int i - 1) = i - 1" by (cases i, auto)
finally show ?thesis by (simp add: ac_simps split: if_splits)
qed
lemma mignotte_coeff_helper:
"abs (coeff h i) \<le>
(degree h - 1 choose i) * mahler_measure h +
(min i 1 * (degree h - 1 choose (i - 1)) * abs (lead_coeff h))"
unfolding mahler_measure_def
using mignotte_helper_coeff[of "of_int_poly h" i]
by auto
lemma cmod_through_lead_coeff[simp]:
"cmod (lead_coeff (of_int_poly h)) = abs (lead_coeff h)"
by simp
lemma choose_approx: "n \<le> N \<Longrightarrow> n choose k \<le> N choose (N div 2)"
by (rule order.trans[OF binomial_mono_left binomial_maximum])
text \<open>For Mignotte's factor bound, we currently do not support queries for individual coefficients,
as we do not have a combined factor bound algorithm.\<close>
definition mignotte_bound :: "int poly \<Rightarrow> nat \<Rightarrow> int" where
"mignotte_bound f d = (let d' = d - 1; d2 = d' div 2; binom = (d' choose d2) in
(mahler_approximation 2 binom f + binom * abs (lead_coeff f)))"
lemma mignotte_bound_main:
assumes "f \<noteq> 0" "g dvd f" "degree g \<le> n"
shows "\<bar>coeff g k\<bar> \<le> \<lfloor>real (n - 1 choose k) * mahler_measure f\<rfloor> +
int (min k 1 * (n - 1 choose (k - 1))) * \<bar>lead_coeff f\<bar>"
proof-
let ?bnd = 2
let ?n = "(n - 1) choose k"
let ?n' = "min k 1 * ((n - 1) choose (k - 1))"
let ?approx = "mahler_approximation ?bnd ?n f"
obtain h where gh:"g * h = f" using assms by (metis dvdE)
have nz:"g\<noteq>0" "h\<noteq>0" using gh assms(1) by auto
have g1:"(1::real) \<le> mahler_measure h" using mahler_measure_poly_ge_1 gh assms(1) by auto
note g0 = mahler_measure_ge_0
have to_n: "(degree g - 1 choose k) \<le> real ?n"
using binomial_mono_left[of "degree g - 1" "n - 1" k] assms(3) by auto
have to_n': "min k 1 * (degree g - 1 choose (k - 1)) \<le> real ?n'"
using binomial_mono_left[of "degree g - 1" "n - 1" "k - 1"] assms(3)
by (simp add: min_def)
have "\<bar>coeff g k\<bar> \<le> (degree g - 1 choose k) * mahler_measure g
+ (real (min k 1 * (degree g - 1 choose (k - 1))) * \<bar>lead_coeff g\<bar>)"
using mignotte_coeff_helper[of g k] by simp
also have "\<dots> \<le> ?n * mahler_measure f + real ?n' * \<bar>lead_coeff f\<bar>"
proof (rule add_mono[OF mult_mono[OF to_n] mult_mono[OF to_n']])
have "mahler_measure g \<le> mahler_measure g * mahler_measure h" using g1 g0[of g]
using mahler_measure_poly_ge_1 nz(1) by force
thus "mahler_measure g \<le> mahler_measure f"
using measure_eq_prod[of "of_int_poly g" "of_int_poly h"]
unfolding mahler_measure_def gh[symmetric] by (auto simp: hom_distribs)
have *: "lead_coeff f = lead_coeff g * lead_coeff h"
unfolding arg_cong[OF gh, of lead_coeff, symmetric] by (rule lead_coeff_mult)
have "\<bar>lead_coeff h\<bar> \<noteq> 0" using nz(2) by auto
hence lh: "\<bar>lead_coeff h\<bar> \<ge> 1" by linarith
have "\<bar>lead_coeff f\<bar> = \<bar>lead_coeff g\<bar> * \<bar>lead_coeff h\<bar>" unfolding * by (rule abs_mult)
also have "\<dots> \<ge> \<bar>lead_coeff g\<bar> * 1"
by (rule mult_mono, insert lh, auto)
finally have "\<bar>lead_coeff g\<bar> \<le> \<bar>lead_coeff f\<bar>" by simp
thus "real_of_int \<bar>lead_coeff g\<bar> \<le> real_of_int \<bar>lead_coeff f\<bar>" by simp
qed (auto simp: g0)
finally have "\<bar>coeff g k\<bar> \<le> ?n * mahler_measure f + real_of_int (?n' * \<bar>lead_coeff f\<bar>)" by simp
from floor_mono[OF this, folded floor_add_int]
have "\<bar>coeff g k\<bar> \<le> floor (?n * mahler_measure f) + ?n' * \<bar>lead_coeff f\<bar>" by linarith
thus ?thesis unfolding mignotte_bound_def Let_def using mahler_approximation[of ?n f ?bnd] by auto
qed
lemma Mignotte_bound:
shows "of_int \<bar>coeff g k\<bar> \<le> (degree g choose k) * mahler_measure g"
proof (cases "k \<le> degree g \<and> g \<noteq> 0")
case False
hence "coeff g k = 0" using le_degree by (cases "g = 0", auto)
thus ?thesis using mahler_measure_ge_0[of g] by auto
next
case kg: True
hence g: "g \<noteq> 0" "g dvd g" by auto
from mignotte_bound_main[OF g le_refl, of k]
have "real_of_int \<bar>coeff g k\<bar>
\<le> of_int \<lfloor>real (degree g - 1 choose k) * mahler_measure g\<rfloor> +
of_int (int (min k 1 * (degree g - 1 choose (k - 1))) * \<bar>lead_coeff g\<bar>)" by linarith
also have "\<dots> \<le> real (degree g - 1 choose k) * mahler_measure g
+ real (min k 1 * (degree g - 1 choose (k - 1))) * (of_int \<bar>lead_coeff g\<bar> * 1)"
by (rule add_mono, force, auto)
also have "\<dots> \<le> real (degree g - 1 choose k) * mahler_measure g
+ real (min k 1 * (degree g - 1 choose (k - 1))) * mahler_measure g"
by (rule add_left_mono[OF mult_left_mono],
unfold mahler_measure_def mahler_measure_poly_def,
rule mult_mono, auto intro!: prod_list_ge1)
also have "\<dots> =
(real ((degree g - 1 choose k) + (min k 1 * (degree g - 1 choose (k - 1))))) * mahler_measure g"
by (auto simp: field_simps)
also have "(degree g - 1 choose k) + (min k 1 * (degree g - 1 choose (k - 1))) = degree g choose k"
proof (cases "k = 0")
case False
then obtain kk where k: "k = Suc kk" by (cases k, auto)
with kg obtain gg where g: "degree g = Suc gg" by (cases "degree g", auto)
show ?thesis unfolding k g by auto
qed auto
finally show ?thesis .
qed
lemma mignotte_bound:
assumes "f \<noteq> 0" "g dvd f" "degree g \<le> n"
shows "\<bar>coeff g k\<bar> \<le> mignotte_bound f n"
proof -
let ?bnd = 2
let ?n = "(n - 1) choose ((n - 1) div 2)"
have to_n: "(n - 1 choose k) \<le> real ?n" for k
using choose_approx[OF le_refl] by auto
from mignotte_bound_main[OF assms, of k]
have "\<bar>coeff g k\<bar> \<le>
\<lfloor>real (n - 1 choose k) * mahler_measure f\<rfloor> +
int (min k 1 * (n - 1 choose (k - 1))) * \<bar>lead_coeff f\<bar>" .
also have "\<dots> \<le> \<lfloor>real (n - 1 choose k) * mahler_measure f\<rfloor> +
int ((n - 1 choose (k - 1))) * \<bar>lead_coeff f\<bar>"
by (rule add_left_mono[OF mult_right_mono], cases k, auto)
also have "\<dots> \<le> mignotte_bound f n"
unfolding mignotte_bound_def Let_def
by (rule add_mono[OF order.trans[OF floor_mono[OF mult_right_mono]
mahler_approximation[of ?n f ?bnd]] mult_right_mono], insert to_n mahler_measure_ge_0, auto)
finally show ?thesis .
qed
text \<open>As indicated before, at the moment the only available factor bound is Mignotte's one.
As future work one might use a combined bound.\<close>
definition factor_bound :: "int poly \<Rightarrow> nat \<Rightarrow> int" where
"factor_bound = mignotte_bound"
lemma factor_bound: assumes "f \<noteq> 0" "g dvd f" "degree g \<le> n"
shows "\<bar>coeff g k\<bar> \<le> factor_bound f n"
unfolding factor_bound_def by (rule mignotte_bound[OF assms])
text \<open>We further prove a result for factor bounds and scalar multiplication.\<close>
lemma factor_bound_ge_0: "f \<noteq> 0 \<Longrightarrow> factor_bound f n \<ge> 0"
using factor_bound[of f 1 n 0] by auto
lemma factor_bound_smult: assumes f: "f \<noteq> 0" and d: "d \<noteq> 0"
and dvd: "g dvd smult d f" and deg: "degree g \<le> n"
shows "\<bar>coeff g k\<bar> \<le> \<bar>d\<bar> * factor_bound f n"
proof -
let ?nf = "primitive_part f" let ?cf = "content f"
let ?ng = "primitive_part g" let ?cg = "content g"
from content_dvd_contentI[OF dvd] have "?cg dvd abs d * ?cf"
unfolding content_smult_int .
hence dvd_c: "?cg dvd d * ?cf" using d
by (metis abs_content_int abs_mult dvd_abs_iff)
from primitive_part_dvd_primitive_partI[OF dvd] have "?ng dvd smult (sgn d) ?nf" unfolding primitive_part_smult_int .
hence dvd_n: "?ng dvd ?nf" using d
by (metis content_eq_zero_iff dvd dvd_smult_int f mult_eq_0_iff content_times_primitive_part smult_smult)
define gc where "gc = gcd ?cf ?cg"
define cg where "cg = ?cg div gc"
from dvd d f have g: "g \<noteq> 0" by auto
from f have cf: "?cf \<noteq> 0" by auto
from g have cg: "?cg \<noteq> 0" by auto
hence gc: "gc \<noteq> 0" unfolding gc_def by auto
have cg_dvd: "cg dvd ?cg" unfolding cg_def gc_def using g by (simp add: div_dvd_iff_mult)
have cg_id: "?cg = cg * gc" unfolding gc_def cg_def using g cf by simp
from dvd_smult_int[OF d dvd] have ngf: "?ng dvd f" .
have gcf: "\<bar>gc\<bar> dvd content f" unfolding gc_def by auto
have dvd_f: "smult gc ?ng dvd f"
proof (rule dvd_content_dvd,
unfold content_smult_int content_primitive_part[OF g]
primitive_part_smult_int primitive_part_idemp)
show "\<bar>gc\<bar> * 1 dvd content f" using gcf by auto
show "smult (sgn gc) (primitive_part g) dvd primitive_part f"
using dvd_n cf gc using zsgn_def by force
qed
have "cg dvd d" using dvd_c unfolding gc_def cg_def using cf cg d
by (simp add: div_dvd_iff_mult dvd_gcd_mult)
then obtain h where dcg: "d = cg * h" unfolding dvd_def by auto
with d have "h \<noteq> 0" by auto
hence h1: "\<bar>h\<bar> \<ge> 1" by simp
have "degree (smult gc (primitive_part g)) = degree g"
using gc by auto
from factor_bound[OF f dvd_f, unfolded this, OF deg, of k, unfolded coeff_smult]
have le: "\<bar>gc * coeff ?ng k\<bar> \<le> factor_bound f n" .
note f0 = factor_bound_ge_0[OF f, of n]
from mult_left_mono[OF le, of "abs cg"]
have "\<bar>cg * gc * coeff ?ng k\<bar> \<le> \<bar>cg\<bar> * factor_bound f n"
unfolding abs_mult[symmetric] by simp
also have "cg * gc * coeff ?ng k = coeff (smult ?cg ?ng) k" unfolding cg_id by simp
also have "\<dots> = coeff g k" unfolding content_times_primitive_part by simp
finally have "\<bar>coeff g k\<bar> \<le> 1 * (\<bar>cg\<bar> * factor_bound f n)" by simp
also have "\<dots> \<le> \<bar>h\<bar> * (\<bar>cg\<bar> * factor_bound f n)"
by (rule mult_right_mono[OF h1], insert f0, auto)
also have "\<dots> = (\<bar>cg * h\<bar>) * factor_bound f n" by (simp add: abs_mult)
finally show ?thesis unfolding dcg .
qed
end
|