Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 83,283 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 |
(*
Authors: Jose Divasón
Sebastiaan Joosten
René Thiemann
Akihisa Yamada
*)
section \<open>Hensel Lifting\<close>
subsection \<open>Properties about Factors\<close>
text \<open>We define and prove properties of Hensel-lifting. Here, we show the result that
Hensel-lifting can lift a factorization mod $p$ to a factorization mod $p^n$.
For the lifting we have proofs for both versions, the original linear Hensel-lifting or
the quadratic approach from Zassenhaus.
Via the linear version, we also show a uniqueness result, however only in the
binary case, i.e., where $f = g \cdot h$. Uniqueness of the general case will later be shown
in theory Berlekamp-Hensel by incorporating the factorization algorithm for finite fields algorithm.\<close>
theory Hensel_Lifting
imports
"HOL-Computational_Algebra.Euclidean_Algorithm"
Poly_Mod_Finite_Field_Record_Based
Polynomial_Factorization.Square_Free_Factorization
begin
lemma uniqueness_poly_equality:
fixes f g :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"
assumes cop: "coprime f g"
and deg: "B = 0 \<or> degree B < degree f" "B' = 0 \<or> degree B' < degree f"
and f: "f \<noteq> 0" and eq: "A * f + B * g = A' * f + B' * g"
shows "A = A'" "B = B'"
proof -
from eq have *: "(A - A') * f = (B' - B) * g" by (simp add: field_simps)
hence "f dvd (B' - B) * g" unfolding dvd_def by (intro exI[of _ "A - A'"], auto simp: field_simps)
with cop[simplified] have dvd: "f dvd (B' - B)"
by (simp add: coprime_dvd_mult_right_iff ac_simps)
from divides_degree[OF this] have "degree f \<le> degree (B' - B) \<or> B = B'" by auto
with degree_diff_le_max[of B' B] deg
show "B = B'" by auto
with * f show "A = A'" by auto
qed
lemmas (in poly_mod_prime_type) uniqueness_poly_equality =
uniqueness_poly_equality[where 'a="'a mod_ring", untransferred]
lemmas (in poly_mod_prime) uniqueness_poly_equality = poly_mod_prime_type.uniqueness_poly_equality
[unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty]
lemma pseudo_divmod_main_list_1_is_divmod_poly_one_main_list:
"pseudo_divmod_main_list (1 :: 'a :: comm_ring_1) q f g n = divmod_poly_one_main_list q f g n"
by (induct n arbitrary: q f g, auto simp: Let_def)
lemma pdivmod_monic_pseudo_divmod: assumes g: "monic g" shows "pdivmod_monic f g = pseudo_divmod f g"
proof -
from g have id: "(coeffs g = []) = False" by auto
from g have mon: "hd (rev (coeffs g)) = 1" by (metis coeffs_eq_Nil hd_rev id last_coeffs_eq_coeff_degree)
show ?thesis
unfolding pseudo_divmod_impl pseudo_divmod_list_def id if_False pdivmod_monic_def Let_def mon
pseudo_divmod_main_list_1_is_divmod_poly_one_main_list by (auto split: prod.splits)
qed
lemma pdivmod_monic: assumes g: "monic g" and res: "pdivmod_monic f g = (q, r)"
shows "f = g * q + r" "r = 0 \<or> degree r < degree g"
proof -
from g have g0: "g \<noteq> 0" by auto
from pseudo_divmod[OF g0 res[unfolded pdivmod_monic_pseudo_divmod[OF g]], unfolded g]
show "f = g * q + r" "r = 0 \<or> degree r < degree g" by auto
qed
definition dupe_monic :: "'a :: comm_ring_1 poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow>
'a poly * 'a poly" where
"dupe_monic D H S T U = (case pdivmod_monic (T * U) D of (q,r) \<Rightarrow>
(S * U + H * q, r))"
lemma dupe_monic: assumes 1: "D*S + H*T = 1"
and mon: "monic D"
and dupe: "dupe_monic D H S T U = (A,B)"
shows "A * D + B * H = U" "B = 0 \<or> degree B < degree D"
proof -
obtain Q R where div: "pdivmod_monic ((T * U)) D = (Q,R)" by force
from dupe[unfolded dupe_monic_def div split]
have A: "A = (S * U + H * Q)" and B: "B = R" by auto
from pdivmod_monic[OF mon div] have TU: "T * U = D * Q + R" and
deg: "R = 0 \<or> degree R < degree D" by auto
hence R: "R = T * U - D * Q" by simp
have "A * D + B * H = (D * S + H * T) * U" unfolding A B R by (simp add: field_simps)
also have "\<dots> = U" unfolding 1 by simp
finally show eq: "A * D + B * H = U" .
show "B = 0 \<or> degree B < degree D" using deg unfolding B .
qed
lemma dupe_monic_unique: fixes D :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"
assumes 1: "D*S + H*T = 1"
and mon: "monic D"
and dupe: "dupe_monic D H S T U = (A,B)"
and cop: "coprime D H"
and other: "A' * D + B' * H = U" "B' = 0 \<or> degree B' < degree D"
shows "A' = A" "B' = B"
proof -
from dupe_monic[OF 1 mon dupe] have one: "A * D + B * H = U" "B = 0 \<or> degree B < degree D" by auto
from mon have D0: "D \<noteq> 0" by auto
from uniqueness_poly_equality[OF cop one(2) other(2) D0, of A A', unfolded other, OF one(1)]
show "A' = A" "B' = B" by auto
qed
context ring_ops
begin
lemma poly_rel_dupe_monic_i: assumes mon: "monic D"
and rel: "poly_rel d D" "poly_rel h H" "poly_rel s S" "poly_rel t T" "poly_rel u U"
shows "rel_prod poly_rel poly_rel (dupe_monic_i ops d h s t u) (dupe_monic D H S T U)"
proof -
note defs = dupe_monic_i_def dupe_monic_def
note [transfer_rule] = rel
have [transfer_rule]: "rel_prod poly_rel poly_rel
(pdivmod_monic_i ops (times_poly_i ops t u) d)
(pdivmod_monic (T * U) D)"
by (rule poly_rel_pdivmod_monic[OF mon], transfer_prover+)
show ?thesis unfolding defs by transfer_prover
qed
end
context mod_ring_gen
begin
lemma monic_of_int_poly: "monic D \<Longrightarrow> monic (of_int_poly (Mp D) :: 'a mod_ring poly)"
using Mp_f_representative Mp_to_int_poly monic_Mp by auto
lemma dupe_monic_i: assumes dupe_i: "dupe_monic_i ff_ops d h s t u = (a,b)"
and 1: "D*S + H*T =m 1"
and mon: "monic D"
and A: "A = to_int_poly_i ff_ops a"
and B: "B = to_int_poly_i ff_ops b"
and d: "Mp_rel_i d D"
and h: "Mp_rel_i h H"
and s: "Mp_rel_i s S"
and t: "Mp_rel_i t T"
and u: "Mp_rel_i u U"
shows
"A * D + B * H =m U"
"B = 0 \<or> degree B < degree D"
"Mp_rel_i a A"
"Mp_rel_i b B"
proof -
let ?I = "\<lambda> f. of_int_poly (Mp f) :: 'a mod_ring poly"
let ?i = "to_int_poly_i ff_ops"
note dd = Mp_rel_iD[OF d]
note hh = Mp_rel_iD[OF h]
note ss = Mp_rel_iD[OF s]
note tt = Mp_rel_iD[OF t]
note uu = Mp_rel_iD[OF u]
obtain A' B' where dupe: "dupe_monic (?I D) (?I H) (?I S) (?I T) (?I U) = (A',B')" by force
from poly_rel_dupe_monic_i[OF monic_of_int_poly[OF mon] dd(1) hh(1) ss(1) tt(1) uu(1), unfolded dupe_i dupe]
have a: "poly_rel a A'" and b: "poly_rel b B'" by auto
show aa: "Mp_rel_i a A" by (rule Mp_rel_iI'[OF a, folded A])
show bb: "Mp_rel_i b B" by (rule Mp_rel_iI'[OF b, folded B])
note Aa = Mp_rel_iD[OF aa]
note Bb = Mp_rel_iD[OF bb]
from poly_rel_inj[OF a Aa(1)] A have A: "A' = ?I A" by simp
from poly_rel_inj[OF b Bb(1)] B have B: "B' = ?I B" by simp
note Mp = dd(2) hh(2) ss(2) tt(2) uu(2)
note [transfer_rule] = Mp
have "(=) (D * S + H * T =m 1) (?I D * ?I S + ?I H * ?I T = 1)" by transfer_prover
with 1 have 11: "?I D * ?I S + ?I H * ?I T = 1" by simp
from dupe_monic[OF 11 monic_of_int_poly[OF mon] dupe, unfolded A B]
have res: "?I A * ?I D + ?I B * ?I H = ?I U" "?I B = 0 \<or> degree (?I B) < degree (?I D)" by auto
note [transfer_rule] = Aa(2) Bb(2)
have "(=) (A * D + B * H =m U) (?I A * ?I D + ?I B * ?I H = ?I U)"
"(=) (B =m 0 \<or> degree_m B < degree_m D) (?I B = 0 \<or> degree (?I B) < degree (?I D))" by transfer_prover+
with res have *: "A * D + B * H =m U" "B =m 0 \<or> degree_m B < degree_m D" by auto
show "A * D + B * H =m U" by fact
have B: "Mp B = B" using Mp_rel_i_Mp_to_int_poly_i assms(5) bb by blast
from *(2) show "B = 0 \<or> degree B < degree D" unfolding B using degree_m_le[of D] by auto
qed
lemma Mp_rel_i_of_int_poly_i: assumes "Mp F = F"
shows "Mp_rel_i (of_int_poly_i ff_ops F) F"
by (metis Mp_f_representative Mp_rel_iI' assms poly_rel_of_int_poly to_int_poly_i)
lemma dupe_monic_i_int: assumes dupe_i: "dupe_monic_i_int ff_ops D H S T U = (A,B)"
and 1: "D*S + H*T =m 1"
and mon: "monic D"
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U"
shows
"A * D + B * H =m U"
"B = 0 \<or> degree B < degree D"
"Mp A = A"
"Mp B = B"
proof -
let ?oi = "of_int_poly_i ff_ops"
let ?ti = "to_int_poly_i ff_ops"
note rel = norm[THEN Mp_rel_i_of_int_poly_i]
obtain a b where dupe: "dupe_monic_i ff_ops (?oi D) (?oi H) (?oi S) (?oi T) (?oi U) = (a,b)" by force
from dupe_i[unfolded dupe_monic_i_int_def this Let_def] have AB: "A = ?ti a" "B = ?ti b" by auto
from dupe_monic_i[OF dupe 1 mon AB rel] Mp_rel_i_Mp_to_int_poly_i
show "A * D + B * H =m U"
"B = 0 \<or> degree B < degree D"
"Mp A = A"
"Mp B = B"
unfolding AB by auto
qed
end
definition dupe_monic_dynamic
:: "int \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
"dupe_monic_dynamic p = (
if p \<le> 65535
then dupe_monic_i_int (finite_field_ops32 (uint32_of_int p))
else if p \<le> 4294967295
then dupe_monic_i_int (finite_field_ops64 (uint64_of_int p))
else dupe_monic_i_int (finite_field_ops_integer (integer_of_int p)))"
context poly_mod_2
begin
lemma dupe_monic_i_int_finite_field_ops_integer: assumes
dupe_i: "dupe_monic_i_int (finite_field_ops_integer (integer_of_int m)) D H S T U = (A,B)"
and 1: "D*S + H*T =m 1"
and mon: "monic D"
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U"
shows
"A * D + B * H =m U"
"B = 0 \<or> degree B < degree D"
"Mp A = A"
"Mp B = B"
using m1 mod_ring_gen.dupe_monic_i_int[OF
mod_ring_locale.mod_ring_finite_field_ops_integer[unfolded mod_ring_locale_def],
internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise,
cancel_type_definition, OF _ assms] by auto
lemma dupe_monic_i_int_finite_field_ops32: assumes
m: "m \<le> 65535"
and dupe_i: "dupe_monic_i_int (finite_field_ops32 (uint32_of_int m)) D H S T U = (A,B)"
and 1: "D*S + H*T =m 1"
and mon: "monic D"
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U"
shows
"A * D + B * H =m U"
"B = 0 \<or> degree B < degree D"
"Mp A = A"
"Mp B = B"
using m1 mod_ring_gen.dupe_monic_i_int[OF
mod_ring_locale.mod_ring_finite_field_ops32[unfolded mod_ring_locale_def],
internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise,
cancel_type_definition, OF _ assms] by auto
lemma dupe_monic_i_int_finite_field_ops64: assumes
m: "m \<le> 4294967295"
and dupe_i: "dupe_monic_i_int (finite_field_ops64 (uint64_of_int m)) D H S T U = (A,B)"
and 1: "D*S + H*T =m 1"
and mon: "monic D"
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U"
shows
"A * D + B * H =m U"
"B = 0 \<or> degree B < degree D"
"Mp A = A"
"Mp B = B"
using m1 mod_ring_gen.dupe_monic_i_int[OF
mod_ring_locale.mod_ring_finite_field_ops64[unfolded mod_ring_locale_def],
internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise,
cancel_type_definition, OF _ assms] by auto
lemma dupe_monic_dynamic: assumes dupe: "dupe_monic_dynamic m D H S T U = (A,B)"
and 1: "D*S + H*T =m 1"
and mon: "monic D"
and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U"
shows
"A * D + B * H =m U"
"B = 0 \<or> degree B < degree D"
"Mp A = A"
"Mp B = B"
using dupe
dupe_monic_i_int_finite_field_ops32[OF _ _ 1 mon norm, of A B]
dupe_monic_i_int_finite_field_ops64[OF _ _ 1 mon norm, of A B]
dupe_monic_i_int_finite_field_ops_integer[OF _ 1 mon norm, of A B]
unfolding dupe_monic_dynamic_def by (auto split: if_splits)
end
context poly_mod
begin
definition dupe_monic_int :: "int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow>
int poly * int poly" where
"dupe_monic_int D H S T U = (case pdivmod_monic (Mp (T * U)) D of (q,r) \<Rightarrow>
(Mp (S * U + H * q), Mp r))"
end
declare poly_mod.dupe_monic_int_def[code]
text \<open>Old direct proof on int poly.
It does not permit to change implementation.
This proof is still present, since we did not export the uniqueness part
from the type-based uniqueness result @{thm dupe_monic_unique} via the various relations.\<close>
lemma (in poly_mod_2) dupe_monic_int: assumes 1: "D*S + H*T =m 1"
and mon: "monic D"
and dupe: "dupe_monic_int D H S T U = (A,B)"
shows "A * D + B * H =m U" "B = 0 \<or> degree B < degree D" "Mp A = A" "Mp B = B"
"coprime_m D H \<Longrightarrow> A' * D + B' * H =m U \<Longrightarrow> B' = 0 \<or> degree B' < degree D \<Longrightarrow> Mp D = D
\<Longrightarrow> Mp A' = A' \<Longrightarrow> Mp B' = B' \<Longrightarrow> prime m
\<Longrightarrow> A' = A \<and> B' = B"
proof -
obtain Q R where div: "pdivmod_monic (Mp (T * U)) D = (Q,R)" by force
from dupe[unfolded dupe_monic_int_def div split]
have A: "A = Mp (S * U + H * Q)" and B: "B = Mp R" by auto
from pdivmod_monic[OF mon div] have TU: "Mp (T * U) = D * Q + R" and
deg: "R = 0 \<or> degree R < degree D" by auto
hence "Mp R = Mp (Mp (T * U) - D * Q)" by simp
also have "\<dots> = Mp (T * U - Mp (Mp (Mp D * Q)))" unfolding Mp_Mp unfolding minus_Mp
using minus_Mp mult_Mp by metis
also have "\<dots> = Mp (T * U - D * Q)" by simp
finally have r: "Mp R = Mp (T * U - D * Q)" by simp
have "Mp (A * D + B * H) = Mp (Mp (A * D) + Mp (B * H))" by simp
also have "Mp (A * D) = Mp ((S * U + H * Q) * D)" unfolding A by simp
also have "Mp (B * H) = Mp (Mp R * Mp H)" unfolding B by simp
also have "\<dots> = Mp ((T * U - D * Q) * H)" unfolding r by simp
also have "Mp (Mp ((S * U + H * Q) * D) + Mp ((T * U - D * Q) * H)) =
Mp ((S * U + H * Q) * D + (T * U - D * Q) * H)" by simp
also have "(S * U + H * Q) * D + (T * U - D * Q) * H = (D * S + H * T) * U"
by (simp add: field_simps)
also have "Mp \<dots> = Mp (Mp (D * S + H * T) * U)" by simp
also have "Mp (D * S + H * T) = 1" using 1 by simp
finally show eq: "A * D + B * H =m U" by simp
have id: "degree_m (Mp R) = degree_m R" by simp
have id': "degree D = degree_m D" using mon by simp
show degB: "B = 0 \<or> degree B < degree D" using deg unfolding B id id'
using degree_m_le[of R] by (cases "R = 0", auto)
show Mp: "Mp A = A" "Mp B = B" unfolding A B by auto
assume another: "A' * D + B' * H =m U" and degB': "B' = 0 \<or> degree B' < degree D"
and norm: "Mp A' = A'" "Mp B' = B'" and cop: "coprime_m D H" and D: "Mp D = D"
and prime: "prime m"
from degB Mp D have degB: "B =m 0 \<or> degree_m B < degree_m D" by auto
from degB' Mp D norm have degB': "B' =m 0 \<or> degree_m B' < degree_m D" by auto
from mon D have D0: "\<not> (D =m 0)" by auto
from prime interpret poly_mod_prime m by unfold_locales
from another eq have "A' * D + B' * H =m A * D + B * H" by simp
from uniqueness_poly_equality[OF cop degB' degB D0 this]
show "A' = A \<and> B' = B" unfolding norm Mp by auto
qed
lemma coprime_bezout_coefficients:
assumes cop: "coprime f g"
and ext: "bezout_coefficients f g = (a, b)"
shows "a * f + b * g = 1"
using assms bezout_coefficients [of f g a b]
by simp
lemma (in poly_mod_prime_type) bezout_coefficients_mod_int: assumes f: "(F :: 'a mod_ring poly) = of_int_poly f"
and g: "(G :: 'a mod_ring poly) = of_int_poly g"
and cop: "coprime_m f g"
and fact: "bezout_coefficients F G = (A,B)"
and a: "a = to_int_poly A"
and b: "b = to_int_poly B"
shows "f * a + g * b =m 1"
proof -
have f[transfer_rule]: "MP_Rel f F" unfolding f MP_Rel_def by (simp add: Mp_f_representative)
have g[transfer_rule]: "MP_Rel g G" unfolding g MP_Rel_def by (simp add: Mp_f_representative)
have [transfer_rule]: "MP_Rel a A" unfolding a MP_Rel_def by (rule Mp_to_int_poly)
have [transfer_rule]: "MP_Rel b B" unfolding b MP_Rel_def by (rule Mp_to_int_poly)
from cop have "coprime F G" using coprime_MP_Rel[unfolded rel_fun_def] f g by auto
from coprime_bezout_coefficients [OF this fact]
have "A * F + B * G = 1" .
from this [untransferred]
show ?thesis by (simp add: ac_simps)
qed
definition bezout_coefficients_i :: "'i arith_ops_record \<Rightarrow> 'i list \<Rightarrow> 'i list \<Rightarrow> 'i list \<times> 'i list" where
"bezout_coefficients_i ff_ops f g = fst (euclid_ext_poly_i ff_ops f g)"
definition euclid_ext_poly_mod_main :: "int \<Rightarrow> 'a arith_ops_record \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
"euclid_ext_poly_mod_main p ff_ops f g = (case bezout_coefficients_i ff_ops (of_int_poly_i ff_ops f) (of_int_poly_i ff_ops g) of
(a,b) \<Rightarrow> (to_int_poly_i ff_ops a, to_int_poly_i ff_ops b))"
definition euclid_ext_poly_dynamic :: "int \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
"euclid_ext_poly_dynamic p = (
if p \<le> 65535
then euclid_ext_poly_mod_main p (finite_field_ops32 (uint32_of_int p))
else if p \<le> 4294967295
then euclid_ext_poly_mod_main p (finite_field_ops64 (uint64_of_int p))
else euclid_ext_poly_mod_main p (finite_field_ops_integer (integer_of_int p)))"
context prime_field_gen
begin
lemma bezout_coefficients_i[transfer_rule]:
"(poly_rel ===> poly_rel ===> rel_prod poly_rel poly_rel)
(bezout_coefficients_i ff_ops) bezout_coefficients"
unfolding bezout_coefficients_i_def bezout_coefficients_def
by transfer_prover
lemma bezout_coefficients_i_sound: assumes f: "f' = of_int_poly_i ff_ops f" "Mp f = f"
and g: "g' = of_int_poly_i ff_ops g" "Mp g = g"
and cop: "coprime_m f g"
and res: "bezout_coefficients_i ff_ops f' g' = (a',b')"
and a: "a = to_int_poly_i ff_ops a'"
and b: "b = to_int_poly_i ff_ops b'"
shows "f * a + g * b =m 1"
"Mp a = a" "Mp b = b"
proof -
from f have f': "f' = of_int_poly_i ff_ops (Mp f)" by simp
define f'' where "f'' \<equiv> of_int_poly (Mp f) :: 'a mod_ring poly"
have f'': "f'' = of_int_poly f" unfolding f''_def f by simp
have rel_f[transfer_rule]: "poly_rel f' f''"
by (rule poly_rel_of_int_poly[OF f'], simp add: f'' f)
from g have g': "g' = of_int_poly_i ff_ops (Mp g)" by simp
define g'' where "g'' \<equiv> of_int_poly (Mp g) :: 'a mod_ring poly"
have g'': "g'' = of_int_poly g" unfolding g''_def g by simp
have rel_g[transfer_rule]: "poly_rel g' g''"
by (rule poly_rel_of_int_poly[OF g'], simp add: g'' g)
obtain a'' b'' where eucl: "bezout_coefficients f'' g'' = (a'',b'')" by force
from bezout_coefficients_i[unfolded rel_fun_def rel_prod_conv, rule_format, OF rel_f rel_g,
unfolded res split eucl]
have rel[transfer_rule]: "poly_rel a' a''" "poly_rel b' b''" by auto
with to_int_poly_i have a: "a = to_int_poly a''"
and b: "b = to_int_poly b''" unfolding a b by auto
from bezout_coefficients_mod_int [OF f'' g'' cop eucl a b]
show "f * a + g * b =m 1" .
show "Mp a = a" "Mp b = b" unfolding a b by (auto simp: Mp_to_int_poly)
qed
lemma euclid_ext_poly_mod_main: assumes cop: "coprime_m f g"
and f: "Mp f = f" and g: "Mp g = g"
and res: "euclid_ext_poly_mod_main m ff_ops f g = (a,b)"
shows "f * a + g * b =m 1"
"Mp a = a" "Mp b = b"
proof -
obtain a' b' where res': "bezout_coefficients_i ff_ops (of_int_poly_i ff_ops f)
(of_int_poly_i ff_ops g) = (a', b')" by force
show "f * a + g * b =m 1"
"Mp a = a" "Mp b = b"
by (insert bezout_coefficients_i_sound[OF refl f refl g cop res']
res [unfolded euclid_ext_poly_mod_main_def res'], auto)
qed
end
context poly_mod_prime begin
lemmas euclid_ext_poly_mod_integer = prime_field_gen.euclid_ext_poly_mod_main
[OF prime_field.prime_field_finite_field_ops_integer,
unfolded prime_field_def mod_ring_locale_def poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty]
lemmas euclid_ext_poly_mod_uint32 = prime_field_gen.euclid_ext_poly_mod_main
[OF prime_field.prime_field_finite_field_ops32,
unfolded prime_field_def mod_ring_locale_def poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty]
lemmas euclid_ext_poly_mod_uint64 = prime_field_gen.euclid_ext_poly_mod_main[OF prime_field.prime_field_finite_field_ops64,
unfolded prime_field_def mod_ring_locale_def poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty]
lemma euclid_ext_poly_dynamic:
assumes cop: "coprime_m f g" and f: "Mp f = f" and g: "Mp g = g"
and res: "euclid_ext_poly_dynamic p f g = (a,b)"
shows "f * a + g * b =m 1"
"Mp a = a" "Mp b = b"
using euclid_ext_poly_mod_integer[OF cop f g, of p a b]
euclid_ext_poly_mod_uint32[OF _ cop f g, of p a b]
euclid_ext_poly_mod_uint64[OF _ cop f g, of p a b]
res[unfolded euclid_ext_poly_dynamic_def] by (auto split: if_splits)
end
lemma range_sum_prod: assumes xy: "x \<in> {0..<q}" "(y :: int) \<in> {0..<p}"
shows "x + q * y \<in> {0..<p * q}"
proof -
{
fix x q :: int
have "x \<in> {0 ..< q} \<longleftrightarrow> 0 \<le> x \<and> x < q" by auto
} note id = this
from xy have 0: "0 \<le> x + q * y" by auto
have "x + q * y \<le> q - 1 + q * y" using xy by simp
also have "q * y \<le> q * (p - 1)" using xy by auto
finally have "x + q * y \<le> q - 1 + q * (p - 1)" by auto
also have "\<dots> = p * q - 1" by (simp add: field_simps)
finally show ?thesis using 0 by auto
qed
context
fixes C :: "int poly"
begin
context
fixes p :: int and S T D1 H1 :: "int poly"
begin
(* The linear lifting is implemented for ease of provability.
Aim: show uniqueness of factorization *)
fun linear_hensel_main where
"linear_hensel_main (Suc 0) = (D1,H1)"
| "linear_hensel_main (Suc n) = (
let (D,H) = linear_hensel_main n;
q = p ^ n;
U = poly_mod.Mp p (sdiv_poly (C - D * H) q); \<comment> \<open>\<open>H2 + H3\<close>\<close>
(A,B) = poly_mod.dupe_monic_int p D1 H1 S T U
in (D + smult q B, H + smult q A)) \<comment> \<open>\<open>H4\<close>\<close>"
| "linear_hensel_main 0 = (D1,H1)"
lemma linear_hensel_main: assumes 1: "poly_mod.eq_m p (D1 * S + H1 * T) 1"
and equiv: "poly_mod.eq_m p (D1 * H1) C"
and monD1: "monic D1"
and normDH1: "poly_mod.Mp p D1 = D1" "poly_mod.Mp p H1 = H1"
and res: "linear_hensel_main n = (D,H)"
and n: "n \<noteq> 0"
and prime: "prime p" \<comment> \<open>\<open>p > 1\<close> suffices if one does not need uniqueness\<close>
and cop: "poly_mod.coprime_m p D1 H1"
shows "poly_mod.eq_m (p^n) (D * H) C
\<and> monic D
\<and> poly_mod.eq_m p D D1 \<and> poly_mod.eq_m p H H1
\<and> poly_mod.Mp (p^n) D = D
\<and> poly_mod.Mp (p^n) H = H \<and>
(poly_mod.eq_m (p^n) (D' * H') C \<longrightarrow>
poly_mod.eq_m p D' D1 \<longrightarrow>
poly_mod.eq_m p H' H1 \<longrightarrow>
poly_mod.Mp (p^n) D' = D' \<longrightarrow>
poly_mod.Mp (p^n) H' = H' \<longrightarrow> monic D' \<longrightarrow> D' = D \<and> H' = H)
"
using res n
proof (induct n arbitrary: D H D' H')
case (Suc n D' H' D'' H'')
show ?case
proof (cases "n = 0")
case True
with Suc equiv monD1 normDH1 show ?thesis by auto
next
case False
hence n: "n \<noteq> 0" by auto
let ?q = "p^n"
let ?pq = "p * p^n"
from prime have p: "p > 1" using prime_gt_1_int by force
from n p have q: "?q > 1" by auto
from n p have pq: "?pq > 1" by (metis power_gt1_lemma)
interpret p: poly_mod_2 p using p unfolding poly_mod_2_def .
interpret q: poly_mod_2 ?q using q unfolding poly_mod_2_def .
interpret pq: poly_mod_2 ?pq using pq unfolding poly_mod_2_def .
obtain D H where rec: "linear_hensel_main n = (D,H)" by force
obtain V where V: "sdiv_poly (C - D * H) ?q = V" by force
obtain U where U: "p.Mp (sdiv_poly (C - D * H) ?q) = U" by auto
obtain A B where dupe: "p.dupe_monic_int D1 H1 S T U = (A,B)" by force
note IH = Suc(1)[OF rec n]
from IH
have CDH: "q.eq_m (D * H) C"
and monD: "monic D"
and p_eq: "p.eq_m D D1" "p.eq_m H H1"
and norm: "q.Mp D = D" "q.Mp H = H" by auto
from n obtain k where n: "n = Suc k" by (cases n, auto)
have qq: "?q * ?q = ?pq * p^k" unfolding n by simp
from Suc(2)[unfolded n linear_hensel_main.simps, folded n, unfolded rec split Let_def U dupe]
have D': "D' = D + smult ?q B" and H': "H' = H + smult ?q A" by auto
note dupe = p.dupe_monic_int[OF 1 monD1 dupe]
from CDH have "q.Mp C - q.Mp (D * H) = 0" by simp
hence "q.Mp (q.Mp C - q.Mp (D * H)) = 0" by simp
hence "q.Mp (C - D*H) = 0" by simp
from q.Mp_0_smult_sdiv_poly[OF this] have CDHq: "smult ?q (sdiv_poly (C - D * H) ?q) = C - D * H" .
have ADBHU: "p.eq_m (A * D + B * H) U" using p_eq dupe(1)
by (metis (mono_tags, lifting) p.mult_Mp(2) poly_mod.plus_Mp)
have "pq.Mp (D' * H') = pq.Mp ((D + smult ?q B) * (H + smult ?q A))"
unfolding D' H' by simp
also have "(D + smult ?q B) * (H + smult ?q A) = (D * H + smult ?q (A * D + B * H)) + smult (?q * ?q) (A * B)"
by (simp add: field_simps smult_distribs)
also have "pq.Mp \<dots> = pq.Mp (D * H + pq.Mp (smult ?q (A * D + B * H)) + pq.Mp (smult (?q * ?q) (A * B)))"
using pq.plus_Mp by metis
also have "pq.Mp (smult (?q * ?q) (A * B)) = 0" unfolding qq
by (metis pq.Mp_smult_m_0 smult_smult)
finally have DH': "pq.Mp (D' * H') = pq.Mp (D * H + pq.Mp (smult ?q (A * D + B * H)))" by simp
also have "pq.Mp (smult ?q (A * D + B * H)) = pq.Mp (smult ?q U)"
using p.Mp_lift_modulus[OF ADBHU, of ?q] by simp
also have "\<dots> = pq.Mp (C - D * H)"
unfolding arg_cong[OF CDHq, of pq.Mp, symmetric] U[symmetric] V
by (rule p.Mp_lift_modulus[of _ _ ?q], auto)
also have "pq.Mp (D * H + pq.Mp (C - D * H)) = pq.Mp C" by simp
finally have CDH: "pq.eq_m C (D' * H')" by simp
have deg: "degree D1 = degree D" using p_eq(1) monD1 monD
by (metis p.monic_degree_m)
have mon: "monic D'" unfolding D' using dupe(2) monD unfolding deg by (rule monic_smult_add_small)
have normD': "pq.Mp D' = D'"
unfolding D' pq.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq coeff_smult
proof
fix i
from norm(1) dupe(4) have "coeff D i \<in> {0..<?q}" "coeff B i \<in> {0..<p}"
unfolding p.Mp_ident_iff q.Mp_ident_iff by auto
thus "coeff D i + ?q * coeff B i \<in> {0..< ?pq}" by (rule range_sum_prod)
qed
have normH': "pq.Mp H' = H'"
unfolding H' pq.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq coeff_smult
proof
fix i
from norm(2) dupe(3) have "coeff H i \<in> {0..<?q}" "coeff A i \<in> {0..<p}"
unfolding p.Mp_ident_iff q.Mp_ident_iff by auto
thus "coeff H i + ?q * coeff A i \<in> {0..< ?pq}" by (rule range_sum_prod)
qed
have eq: "p.eq_m D D'" "p.eq_m H H'" unfolding D' H' n
poly_eq_iff p.Mp_coeff p.M_def by (auto simp: field_simps)
with p_eq have eq: "p.eq_m D' D1" "p.eq_m H' H1" by auto
{
assume CDH'': "pq.eq_m C (D'' * H'')"
and DH1'': "p.eq_m D1 D''" "p.eq_m H1 H''"
and norm'': "pq.Mp D'' = D''" "pq.Mp H'' = H''"
and monD'': "monic D''"
from q.Dp_Mp_eq[of D''] obtain d B' where D'': "D'' = q.Mp d + smult ?q B'" by auto
from q.Dp_Mp_eq[of H''] obtain h A' where H'': "H'' = q.Mp h + smult ?q A'" by auto
{
fix A B
assume *: "pq.Mp (q.Mp A + smult ?q B) = q.Mp A + smult ?q B"
have "p.Mp B = B" unfolding p.Mp_ident_iff
proof
fix i
from arg_cong[OF *, of "\<lambda> f. coeff f i", unfolded pq.Mp_coeff pq.M_def]
have "coeff (q.Mp A + smult ?q B) i \<in> {0 ..< ?pq}" using "*" pq.Mp_ident_iff by blast
hence sum: "coeff (q.Mp A) i + ?q * coeff B i \<in> {0 ..< ?pq}" by auto
have "q.Mp (q.Mp A) = q.Mp A" by auto
from this[unfolded q.Mp_ident_iff] have A: "coeff (q.Mp A) i \<in> {0 ..< p^n}" by auto
{
assume "coeff B i < 0" hence "coeff B i \<le> -1" by auto
from mult_left_mono[OF this, of ?q] q.m1 have "?q * coeff B i \<le> -?q" by simp
with A sum have False by auto
} hence "coeff B i \<ge> 0" by force
moreover
{
assume "coeff B i \<ge> p"
from mult_left_mono[OF this, of ?q] q.m1 have "?q * coeff B i \<ge> ?pq" by simp
with A sum have False by auto
} hence "coeff B i < p" by force
ultimately show "coeff B i \<in> {0 ..< p}" by auto
qed
} note norm_convert = this
from norm_convert[OF norm''(1)[unfolded D'']] have normB': "p.Mp B' = B'" .
from norm_convert[OF norm''(2)[unfolded H'']] have normA': "p.Mp A' = A'" .
let ?d = "q.Mp d"
let ?h = "q.Mp h"
{
assume lt: "degree ?d < degree B'"
hence eq: "degree D'' = degree B'" unfolding D'' using q.m1 p.m1
by (subst degree_add_eq_right, auto)
from lt have [simp]: "coeff ?d (degree B') = 0" by (rule coeff_eq_0)
from monD''[unfolded eq, unfolded D'', simplified] False q.m1 lt have False
by (metis mod_mult_self1_is_0 poly_mod.M_def q.M_1 zero_neq_one)
}
hence deg_dB': "degree ?d \<ge> degree B'" by presburger
{
assume eq: "degree ?d = degree B'" and B': "B' \<noteq> 0"
let ?B = "coeff B' (degree B')"
from normB'[unfolded p.Mp_ident_iff, rule_format, of "degree B'"] B'
have "?B \<in> {0..<p} - {0}" by simp
hence bnds: "?B > 0" "?B < p" by auto
have degD'': "degree D'' \<le> degree ?d" unfolding D'' using eq by (simp add: degree_add_le)
have "?q * ?B \<ge> 1 * 1" by (rule mult_mono, insert q.m1 bnds, auto)
moreover have "coeff D'' (degree ?d) = 1 + ?q * ?B" using monD''
unfolding D'' using eq
by (metis D'' coeff_smult monD'' plus_poly.rep_eq poly_mod.Dp_Mp_eq
poly_mod.degree_m_eq_monic poly_mod.plus_Mp(1)
q.Mp_smult_m_0 q.m1 q.monic_Mp q.plus_Mp(2))
ultimately have gt: "coeff D'' (degree ?d) > 1" by auto
hence "coeff D'' (degree ?d) \<noteq> 0" by auto
hence "degree D'' \<ge> degree ?d" by (rule le_degree)
with degree_add_le_max[of ?d "smult ?q B'", folded D''] eq
have deg: "degree D'' = degree ?d" using degD'' by linarith
from gt[folded this] have "\<not> monic D''" by auto
with monD'' have False by auto
}
with deg_dB' have deg_dB2: "B' = 0 \<or> degree B' < degree ?d" by fastforce
have d: "q.Mp D'' = ?d" unfolding D''
by (metis add.right_neutral poly_mod.Mp_smult_m_0 poly_mod.plus_Mp)
have h: "q.Mp H'' = ?h" unfolding H''
by (metis add.right_neutral poly_mod.Mp_smult_m_0 poly_mod.plus_Mp)
from CDH'' have "pq.Mp C = pq.Mp (D'' * H'')" by simp
from arg_cong[OF this, of q.Mp]
have "q.Mp C = q.Mp (D'' * H'')"
using p.m1 q.Mp_product_modulus by auto
also have "\<dots> = q.Mp (q.Mp D'' * q.Mp H'')" by simp
also have "\<dots> = q.Mp (?d * ?h)" unfolding d h by simp
finally have eqC: "q.eq_m (?d * ?h) C" by auto
have d1: "p.eq_m ?d D1" unfolding d[symmetric] using DH1''
using assms(4) n p.Mp_product_modulus p.m1 by auto
have h1: "p.eq_m ?h H1" unfolding h[symmetric] using DH1''
using assms(5) n p.Mp_product_modulus p.m1 by auto
have mond: "monic (q.Mp d)" using monD'' deg_dB2 unfolding D''
using d q.monic_Mp[OF monD''] by simp
from eqC d1 h1 mond IH[of "q.Mp d" "q.Mp h"] have IH: "?d = D" "?h = H" by auto
from deg_dB2[unfolded IH] have degB': "B' = 0 \<or> degree B' < degree D" by auto
from IH have D'': "D'' = D + smult ?q B'" and H'': "H'' = H + smult ?q A'"
unfolding D'' H'' by auto
have "pq.Mp (D'' * H'') = pq.Mp (D' * H')" using CDH'' CDH by simp
also have "pq.Mp (D'' * H'') = pq.Mp ((D + smult ?q B') * (H + smult ?q A'))"
unfolding D'' H'' by simp
also have "(D + smult ?q B') * (H + smult ?q A') = (D * H + smult ?q (A' * D + B' * H)) + smult (?q * ?q) (A' * B')"
by (simp add: field_simps smult_distribs)
also have "pq.Mp \<dots> = pq.Mp (D * H + pq.Mp (smult ?q (A' * D + B' * H)) + pq.Mp (smult (?q * ?q) (A' * B')))"
using pq.plus_Mp by metis
also have "pq.Mp (smult (?q * ?q) (A' * B')) = 0" unfolding qq
by (metis pq.Mp_smult_m_0 smult_smult)
finally have "pq.Mp (D * H + pq.Mp (smult ?q (A' * D + B' * H)))
= pq.Mp (D * H + pq.Mp (smult ?q (A * D + B * H)))" unfolding DH' by simp
hence "pq.Mp (smult ?q (A' * D + B' * H)) = pq.Mp (smult ?q (A * D + B * H))"
by (metis (no_types, lifting) add_diff_cancel_left' poly_mod.minus_Mp(1) poly_mod.plus_Mp(2))
hence "p.Mp (A' * D + B' * H) = p.Mp (A * D + B * H)" unfolding poly_eq_iff p.Mp_coeff pq.Mp_coeff coeff_smult
by (insert p, auto simp: p.M_def pq.M_def)
hence "p.Mp (A' * D1 + B' * H1) = p.Mp (A * D1 + B * H1)" using p_eq
by (metis p.mult_Mp(2) poly_mod.plus_Mp)
hence eq: "p.eq_m (A' * D1 + B' * H1) U" using dupe(1) by auto
have "degree D = degree D1" using monD monD1
arg_cong[OF p_eq(1), of degree]
p.degree_m_eq_monic[OF _ p.m1] by auto
hence "B' = 0 \<or> degree B' < degree D1" using degB' by simp
from dupe(5)[OF cop eq this normDH1(1) normA' normB' prime] have "A' = A" "B' = B" by auto
hence "D'' = D'" "H'' = H'" unfolding D'' H'' D' H' by auto
}
thus ?thesis using normD' normH' CDH mon eq by simp
qed
qed simp
end
end
definition linear_hensel_binary :: "int \<Rightarrow> nat \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
"linear_hensel_binary p n C D H = (let
(S,T) = euclid_ext_poly_dynamic p D H
in linear_hensel_main C p S T D H n)"
lemma (in poly_mod_prime) unique_hensel_binary:
assumes prime: "prime p"
and cop: "coprime_m D H" and eq: "eq_m (D * H) C"
and normalized_input: "Mp D = D" "Mp H = H"
and monic_input: "monic D"
and n: "n \<noteq> 0"
shows "\<exists>! (D',H'). \<comment> \<open>\<open>D'\<close>, \<open>H'\<close> are computed via \<open>linear_hensel_binary\<close>\<close>
poly_mod.eq_m (p^n) (D' * H') C \<comment> \<open>the main result: equivalence mod \<open>p^n\<close>\<close>
\<and> monic D' \<comment> \<open>monic output\<close>
\<and> eq_m D D' \<and> eq_m H H' \<comment> \<open>apply \<open>`mod p`\<close> on \<open>D'\<close> and \<open>H'\<close> yields \<open>D\<close> and \<open>H\<close> again\<close>
\<and> poly_mod.Mp (p^n) D' = D' \<and> poly_mod.Mp (p^n) H' = H' \<comment> \<open>output is normalized\<close>"
proof -
obtain D' H' where hensel_result: "linear_hensel_binary p n C D H = (D',H')" by force
from m1 have p: "p > 1" .
obtain S T where ext: "euclid_ext_poly_dynamic p D H = (S,T)" by force
obtain D1 H1 where main: "linear_hensel_main C p S T D H n = (D1,H1)" by force
from hensel_result[unfolded linear_hensel_binary_def ext split Let_def main]
have id: "D1 = D'" "H1 = H'" by auto
note eucl = euclid_ext_poly_dynamic [OF cop normalized_input ext]
from linear_hensel_main [OF eucl(1)
eq monic_input normalized_input main [unfolded id] n prime cop]
show ?thesis by (intro ex1I, auto)
qed
(* The quadratic lifting is implemented more efficienty.
Aim: compute factorization *)
context
fixes C :: "int poly"
begin
lemma hensel_step_main: assumes
one_q: "poly_mod.eq_m q (D * S + H * T) 1"
and one_p: "poly_mod.eq_m p (D1 * S1 + H1 * T1) 1"
and CDHq: "poly_mod.eq_m q C (D * H)"
and D1D: "poly_mod.eq_m p D1 D"
and H1H: "poly_mod.eq_m p H1 H"
and S1S: "poly_mod.eq_m p S1 S"
and T1T: "poly_mod.eq_m p T1 T"
and mon: "monic D"
and mon1: "monic D1"
and q: "q > 1"
and p: "p > 1"
and D1: "poly_mod.Mp p D1 = D1"
and H1: "poly_mod.Mp p H1 = H1"
and S1: "poly_mod.Mp p S1 = S1"
and T1: "poly_mod.Mp p T1 = T1"
and D: "poly_mod.Mp q D = D"
and H: "poly_mod.Mp q H = H"
and S: "poly_mod.Mp q S = S"
and T: "poly_mod.Mp q T = T"
and U1: "U1 = poly_mod.Mp p (sdiv_poly (C - D * H) q)"
and dupe1: "dupe_monic_dynamic p D1 H1 S1 T1 U1 = (A,B)"
and D': "D' = D + smult q B"
and H': "H' = H + smult q A"
and U2: "U2 = poly_mod.Mp q (sdiv_poly (S*D' + T*H' - 1) p)"
and dupe2: "dupe_monic_dynamic q D H S T U2 = (A',B')"
and rq: "r = p * q"
and pq: "p dvd q"
and S': "S' = poly_mod.Mp r (S - smult p A')"
and T': "T' = poly_mod.Mp r (T - smult p B')"
shows "poly_mod.eq_m r C (D' * H')"
"poly_mod.Mp r D' = D'"
"poly_mod.Mp r H' = H'"
"poly_mod.Mp r S' = S'"
"poly_mod.Mp r T' = T'"
"poly_mod.eq_m r (D' * S' + H' * T') 1"
"monic D'"
unfolding rq
proof -
from pq obtain k where qp: "q = p * k" unfolding dvd_def by auto
from arg_cong[OF qp, of sgn] q p have k0: "k > 0" unfolding sgn_mult by (auto simp: sgn_1_pos)
from qp have qq: "q * q = p * q * k" by auto
let ?r = "p * q"
interpret poly_mod_2 p by (standard, insert p, auto)
interpret q: poly_mod_2 q by (standard, insert q, auto)
from p q have r: "?r > 1" by (simp add: less_1_mult)
interpret r: poly_mod_2 ?r using r unfolding poly_mod_2_def .
have Mp_conv: "Mp (q.Mp x) = Mp x" for x unfolding qp
by (rule Mp_product_modulus[OF refl k0])
from arg_cong[OF CDHq, of Mp, unfolded Mp_conv] have "Mp C = Mp (Mp D * Mp H)"
by simp
also have "Mp D = Mp D1" using D1D by simp
also have "Mp H = Mp H1" using H1H by simp
finally have CDHp: "eq_m C (D1 * H1)" by simp
have "Mp U1 = U1" unfolding U1 by simp
note dupe1 = dupe_monic_dynamic[OF dupe1 one_p mon1 D1 H1 S1 T1 this]
have "q.Mp U2 = U2" unfolding U2 by simp
note dupe2 = q.dupe_monic_dynamic[OF dupe2 one_q mon D H S T this]
from CDHq have "q.Mp C - q.Mp (D * H) = 0" by simp
hence "q.Mp (q.Mp C - q.Mp (D * H)) = 0" by simp
hence "q.Mp (C - D*H) = 0" by simp
from q.Mp_0_smult_sdiv_poly[OF this] have CDHq: "smult q (sdiv_poly (C - D * H) q) = C - D * H" .
{
fix A B
have "Mp (A * D1 + B * H1) = Mp (Mp (A * D1) + Mp (B * H1))" by simp
also have "Mp (A * D1) = Mp (A * Mp D1)" by simp
also have "\<dots> = Mp (A * D)" unfolding D1D by simp
also have "Mp (B * H1) = Mp (B * Mp H1)" by simp
also have "\<dots> = Mp (B * H)" unfolding H1H by simp
finally have "Mp (A * D1 + B * H1) = Mp (A * D + B * H)" by simp
} note D1H1 = this
have "r.Mp (D' * H') = r.Mp ((D + smult q B) * (H + smult q A))"
unfolding D' H' by simp
also have "(D + smult q B) * (H + smult q A) = (D * H + smult q (A * D + B * H)) + smult (q * q) (A * B)"
by (simp add: field_simps smult_distribs)
also have "r.Mp \<dots> = r.Mp (D * H + r.Mp (smult q (A * D + B * H)) + r.Mp (smult (q * q) (A * B)))"
using r.plus_Mp by metis
also have "r.Mp (smult (q * q) (A * B)) = 0" unfolding qq
by (metis r.Mp_smult_m_0 smult_smult)
also have "r.Mp (smult q (A * D + B * H)) = r.Mp (smult q U1)"
proof (rule Mp_lift_modulus[of _ _ q])
show "Mp (A * D + B * H) = Mp U1" using dupe1(1) unfolding D1H1 by simp
qed
also have "\<dots> = r.Mp (C - D * H)"
unfolding arg_cong[OF CDHq, of r.Mp, symmetric]
using Mp_lift_modulus[of U1 "sdiv_poly (C - D * H) q" q] unfolding U1
by simp
also have "r.Mp (D * H + r.Mp (C - D * H) + 0) = r.Mp C" by simp
finally show CDH: "r.eq_m C (D' * H')" by simp
have "degree D1 = degree (Mp D1)" using mon1 by simp
also have "\<dots> = degree D" unfolding D1D using mon by simp
finally have deg_eq: "degree D1 = degree D" by simp
show mon: "monic D'" unfolding D' using dupe1(2) mon unfolding deg_eq by (rule monic_smult_add_small)
have "Mp (S * D' + T * H' - 1) = Mp (Mp (D * S + H * T) + (smult q (S * B + T * A) - 1))"
unfolding D' H' plus_Mp by (simp add: field_simps smult_distribs)
also have "Mp (D * S + H * T) = Mp (Mp (D1 * Mp S) + Mp (H1 * Mp T))" using D1H1[of S T] by (simp add: ac_simps)
also have "\<dots> = 1" using one_p unfolding S1S[symmetric] T1T[symmetric] by simp
also have "Mp (1 + (smult q (S * B + T * A) - 1)) = Mp (smult q (S * B + T * A))" by simp
also have "\<dots> = 0" unfolding qp by (metis Mp_smult_m_0 smult_smult)
finally have "Mp (S * D' + T * H' - 1) = 0" .
from Mp_0_smult_sdiv_poly[OF this]
have SDTH: "smult p (sdiv_poly (S * D' + T * H' - 1) p) = S * D' + T * H' - 1" .
have swap: "q * p = p * q" by simp
have "r.Mp (D' * S' + H' * T') =
r.Mp ((D + smult q B) * (S - smult p A') + (H + smult q A) * (T - smult p B'))"
unfolding D' S' H' T' rq using r.plus_Mp r.mult_Mp by metis
also have "\<dots> = r.Mp ((D * S + H * T +
smult q (B * S + A * T)) - smult p (A' * D + B' * H) - smult ?r (A * B' + B * A'))"
by (simp add: field_simps smult_distribs)
also have "\<dots> = r.Mp ((D * S + H * T +
smult q (B * S + A * T)) - r.Mp (smult p (A' * D + B' * H)) - r.Mp (smult ?r (A * B' + B * A')))"
using r.plus_Mp r.minus_Mp by metis
also have "r.Mp (smult ?r (A * B' + B * A')) = 0" by simp
also have "r.Mp (smult p (A' * D + B' * H)) = r.Mp (smult p U2)"
using q.Mp_lift_modulus[OF dupe2(1), of p] unfolding swap .
also have "\<dots> = r.Mp (S * D' + T * H' - 1)"
unfolding arg_cong[OF SDTH, of r.Mp, symmetric]
using q.Mp_lift_modulus[of U2 "sdiv_poly (S * D' + T * H' - 1) p" p]
unfolding U2 swap by simp
also have "S * D' + T * H' - 1 = S * D + T * H + smult q (B * S + A * T) - 1"
unfolding D' H' by (simp add: field_simps smult_distribs)
also have "r.Mp (D * S + H * T + smult q (B * S + A * T) -
r.Mp (S * D + T * H + smult q (B * S + A * T) - 1) - 0)
= 1" by simp
finally show 1: "r.eq_m (D' * S' + H' * T') 1" by simp
show D': "r.Mp D' = D'" unfolding D' r.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq
coeff_smult
proof
fix n
from D dupe1(4) have "coeff D n \<in> {0..<q}" "coeff B n \<in> {0..<p}"
unfolding q.Mp_ident_iff Mp_ident_iff by auto
thus "coeff D n + q * coeff B n \<in> {0..<?r}" by (metis range_sum_prod)
qed
show H': "r.Mp H' = H'" unfolding H' r.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq
coeff_smult
proof
fix n
from H dupe1(3) have "coeff H n \<in> {0..<q}" "coeff A n \<in> {0..<p}"
unfolding q.Mp_ident_iff Mp_ident_iff by auto
thus "coeff H n + q * coeff A n \<in> {0..<?r}" by (metis range_sum_prod)
qed
show "poly_mod.Mp ?r S' = S'" "poly_mod.Mp ?r T' = T'"
unfolding S' T' rq by auto
qed
definition hensel_step where
"hensel_step p q S1 T1 D1 H1 S T D H = (
let U = poly_mod.Mp p (sdiv_poly (C - D * H) q); \<comment> \<open>\<open>Z2 and Z3\<close>\<close>
(A,B) = dupe_monic_dynamic p D1 H1 S1 T1 U;
D' = D + smult q B; \<comment> \<open>\<open>Z4\<close>\<close>
H' = H + smult q A;
U' = poly_mod.Mp q (sdiv_poly (S*D' + T*H' - 1) p); \<comment> \<open>\<open>Z5 + Z6\<close>\<close>
(A',B') = dupe_monic_dynamic q D H S T U';
q' = p * q;
S' = poly_mod.Mp q' (S - smult p A'); \<comment> \<open>\<open>Z7\<close>\<close>
T' = poly_mod.Mp q' (T - smult p B')
in (S',T',D',H'))"
definition "quadratic_hensel_step q S T D H = hensel_step q q S T D H S T D H"
lemma quadratic_hensel_step_code[code]:
"quadratic_hensel_step q S T D H =
(let dupe = dupe_monic_dynamic q D H S T; \<comment> \<open>this will share the conversions of \<open>D H S T\<close>\<close>
U = poly_mod.Mp q (sdiv_poly (C - D * H) q);
(A, B) = dupe U;
D' = D + Polynomial.smult q B;
H' = H + Polynomial.smult q A;
U' = poly_mod.Mp q (sdiv_poly (S * D' + T * H' - 1) q);
(A', B') = dupe U';
q' = q * q;
S' = poly_mod.Mp q' (S - Polynomial.smult q A');
T' = poly_mod.Mp q' (T - Polynomial.smult q B')
in (S', T', D', H'))"
unfolding quadratic_hensel_step_def[unfolded hensel_step_def] Let_def ..
definition simple_quadratic_hensel_step where \<comment> \<open>do not compute new values \<open>S'\<close> and \<open>T'\<close>\<close>
"simple_quadratic_hensel_step q S T D H = (
let U = poly_mod.Mp q (sdiv_poly (C - D * H) q); \<comment> \<open>\<open>Z2 + Z3\<close>\<close>
(A,B) = dupe_monic_dynamic q D H S T U;
D' = D + smult q B; \<comment> \<open>\<open>Z4\<close>\<close>
H' = H + smult q A
in (D',H'))"
lemma hensel_step: assumes step: "hensel_step p q S1 T1 D1 H1 S T D H = (S', T', D', H')"
and one_p: "poly_mod.eq_m p (D1 * S1 + H1 * T1) 1"
and mon1: "monic D1"
and p: "p > 1"
and CDHq: "poly_mod.eq_m q C (D * H)"
and one_q: "poly_mod.eq_m q (D * S + H * T) 1"
and D1D: "poly_mod.eq_m p D1 D"
and H1H: "poly_mod.eq_m p H1 H"
and S1S: "poly_mod.eq_m p S1 S"
and T1T: "poly_mod.eq_m p T1 T"
and mon: "monic D"
and q: "q > 1"
and D1: "poly_mod.Mp p D1 = D1"
and H1: "poly_mod.Mp p H1 = H1"
and S1: "poly_mod.Mp p S1 = S1"
and T1: "poly_mod.Mp p T1 = T1"
and D: "poly_mod.Mp q D = D"
and H: "poly_mod.Mp q H = H"
and S: "poly_mod.Mp q S = S"
and T: "poly_mod.Mp q T = T"
and rq: "r = p * q"
and pq: "p dvd q"
shows
"poly_mod.eq_m r C (D' * H')"
"poly_mod.eq_m r (D' * S' + H' * T') 1"
"poly_mod.Mp r D' = D'"
"poly_mod.Mp r H' = H'"
"poly_mod.Mp r S' = S'"
"poly_mod.Mp r T' = T'"
"poly_mod.Mp p D1 = poly_mod.Mp p D'"
"poly_mod.Mp p H1 = poly_mod.Mp p H'"
"poly_mod.Mp p S1 = poly_mod.Mp p S'"
"poly_mod.Mp p T1 = poly_mod.Mp p T'"
"monic D'"
proof -
define U where U: "U = poly_mod.Mp p (sdiv_poly (C - D * H) q)"
note step = step[unfolded hensel_step_def Let_def, folded U]
obtain A B where dupe1: "dupe_monic_dynamic p D1 H1 S1 T1 U = (A,B)" by force
note step = step[unfolded dupe1 split]
from step have D': "D' = D + smult q B" and H': "H' = H + smult q A"
by (auto split: prod.splits)
define U' where U': "U' = poly_mod.Mp q (sdiv_poly (S * D' + T * H' - 1) p)"
obtain A' B' where dupe2: "dupe_monic_dynamic q D H S T U' = (A',B')" by force
from step[folded D' H', folded U', unfolded dupe2 split, folded rq]
have S': "S' = poly_mod.Mp r (S - Polynomial.smult p A')" and
T': "T' = poly_mod.Mp r (T - Polynomial.smult p B')" by auto
from hensel_step_main[OF one_q one_p CDHq D1D H1H S1S T1T mon mon1 q p D1 H1 S1 T1 D H S T U
dupe1 D' H' U' dupe2 rq pq S' T']
show "poly_mod.eq_m r (D' * S' + H' * T') 1"
"poly_mod.eq_m r C (D' * H')"
"poly_mod.Mp r D' = D'"
"poly_mod.Mp r H' = H'"
"poly_mod.Mp r S' = S'"
"poly_mod.Mp r T' = T'"
"monic D'" by auto
from pq obtain s where q: "q = p * s" by (metis dvdE)
show "poly_mod.Mp p D1 = poly_mod.Mp p D'"
"poly_mod.Mp p H1 = poly_mod.Mp p H'"
unfolding q D' D1D H' H1H
by (metis add.right_neutral poly_mod.Mp_smult_m_0 poly_mod.plus_Mp(2) smult_smult)+
from \<open>q > 1\<close> have q0: "q > 0" by auto
show "poly_mod.Mp p S1 = poly_mod.Mp p S'"
"poly_mod.Mp p T1 = poly_mod.Mp p T'"
unfolding S' S1S T' T1T poly_mod_2.Mp_product_modulus[OF poly_mod_2.intro[OF \<open>p > 1\<close>] rq q0]
by (metis group_add_class.diff_0_right poly_mod.Mp_smult_m_0 poly_mod.minus_Mp(2))+
qed
lemma quadratic_hensel_step: assumes step: "quadratic_hensel_step q S T D H = (S', T', D', H')"
and CDH: "poly_mod.eq_m q C (D * H)"
and one: "poly_mod.eq_m q (D * S + H * T) 1"
and D: "poly_mod.Mp q D = D"
and H: "poly_mod.Mp q H = H"
and S: "poly_mod.Mp q S = S"
and T: "poly_mod.Mp q T = T"
and mon: "monic D"
and q: "q > 1"
and rq: "r = q * q"
shows
"poly_mod.eq_m r C (D' * H')"
"poly_mod.eq_m r (D' * S' + H' * T') 1"
"poly_mod.Mp r D' = D'"
"poly_mod.Mp r H' = H'"
"poly_mod.Mp r S' = S'"
"poly_mod.Mp r T' = T'"
"poly_mod.Mp q D = poly_mod.Mp q D'"
"poly_mod.Mp q H = poly_mod.Mp q H'"
"poly_mod.Mp q S = poly_mod.Mp q S'"
"poly_mod.Mp q T = poly_mod.Mp q T'"
"monic D'"
proof (atomize(full), goal_cases)
case 1
from hensel_step[OF step[unfolded quadratic_hensel_step_def] one mon q CDH one refl refl refl refl mon q D H S T D H S T rq]
show ?case by auto
qed
context
fixes p :: int and S1 T1 D1 H1 :: "int poly"
begin
private lemma decrease[termination_simp]: "\<not> j \<le> 1 \<Longrightarrow> odd j \<Longrightarrow> Suc (j div 2) < j" by presburger
fun quadratic_hensel_loop where
"quadratic_hensel_loop (j :: nat) = (
if j \<le> 1 then (p, S1, T1, D1, H1) else
if even j then
(case quadratic_hensel_loop (j div 2) of
(q, S, T, D, H) \<Rightarrow>
let qq = q * q in
(case quadratic_hensel_step q S T D H of \<comment> \<open>quadratic step\<close>
(S', T', D', H') \<Rightarrow> (qq, S', T', D', H')))
else \<comment> \<open>odd \<open>j\<close>\<close>
(case quadratic_hensel_loop (j div 2 + 1) of
(q, S, T, D, H) \<Rightarrow>
(case quadratic_hensel_step q S T D H of \<comment> \<open>quadratic step\<close>
(S', T', D', H') \<Rightarrow>
let qq = q * q; pj = qq div p; down = poly_mod.Mp pj in
(pj, down S', down T', down D', down H'))))"
definition "quadratic_hensel_main j = (case quadratic_hensel_loop j of
(qq, S, T, D, H) \<Rightarrow> (D, H))"
declare quadratic_hensel_loop.simps[simp del]
\<comment> \<open>unroll the definition of \<open>hensel_loop\<close> so that in outermost iteration we can use \<open>simple_hensel_step\<close>\<close>
lemma quadratic_hensel_main_code[code]: "quadratic_hensel_main j = (
if j \<le> 1 then (D1, H1)
else if even j
then (case quadratic_hensel_loop (j div 2) of
(q, S, T, D, H) \<Rightarrow>
simple_quadratic_hensel_step q S T D H)
else (case quadratic_hensel_loop (j div 2 + 1) of
(q, S, T, D, H) \<Rightarrow>
(case simple_quadratic_hensel_step q S T D H of
(D', H') \<Rightarrow> let down = poly_mod.Mp (q * q div p) in (down D', down H'))))"
unfolding quadratic_hensel_loop.simps[of j] quadratic_hensel_main_def Let_def
by (simp split: if_splits prod.splits option.splits sum.splits
add: quadratic_hensel_step_code simple_quadratic_hensel_step_def Let_def)
context
fixes j :: nat
assumes 1: "poly_mod.eq_m p (D1 * S1 + H1 * T1) 1"
and CDH1: "poly_mod.eq_m p C (D1 * H1)"
and mon1: "monic D1"
and p: "p > 1"
and D1: "poly_mod.Mp p D1 = D1"
and H1: "poly_mod.Mp p H1 = H1"
and S1: "poly_mod.Mp p S1 = S1"
and T1: "poly_mod.Mp p T1 = T1"
and j: "j \<ge> 1"
begin
lemma quadratic_hensel_loop:
assumes "quadratic_hensel_loop j = (q, S, T, D, H)"
shows "(poly_mod.eq_m q C (D * H) \<and> monic D
\<and> poly_mod.eq_m p D1 D \<and> poly_mod.eq_m p H1 H
\<and> poly_mod.eq_m q (D * S + H * T) 1
\<and> poly_mod.Mp q D = D \<and> poly_mod.Mp q H = H
\<and> poly_mod.Mp q S = S \<and> poly_mod.Mp q T = T
\<and> q = p^j)"
using j assms
proof (induct j arbitrary: q S T D H rule: less_induct)
case (less j q' S' T' D' H')
note res = less(3)
interpret poly_mod_2 p using p by (rule poly_mod_2.intro)
let ?hens = "quadratic_hensel_loop"
note simp[simp] = quadratic_hensel_loop.simps[of j]
show ?case
proof (cases "j = 1")
case True
show ?thesis using res simp unfolding True using CDH1 1 mon1 D1 H1 S1 T1 by auto
next
case False
with less(2) have False: "(j \<le> 1) = False" by auto
have mod_2: "k \<ge> 1 \<Longrightarrow> poly_mod_2 (p^k)" for k by (intro poly_mod_2.intro, insert p, auto)
{
fix k D
assume *: "k \<ge> 1" "k \<le> j" "poly_mod.Mp (p ^ k) D = D"
from *(2) have "{0..<p ^ k} \<subseteq> {0..<p ^ j}" using p by auto
hence "poly_mod.Mp (p ^ j) D = D"
unfolding poly_mod_2.Mp_ident_iff[OF mod_2[OF less(2)]]
using *(3)[unfolded poly_mod_2.Mp_ident_iff[OF mod_2[OF *(1)]]] by blast
} note lift_norm = this
show ?thesis
proof (cases "even j")
case True
let ?j2 = "j div 2"
from False have lt: "?j2 < j" "1 \<le> ?j2" by auto
obtain q S T D H where rec: "?hens ?j2 = (q, S, T, D, H)" by (cases "?hens ?j2", auto)
note IH = less(1)[OF lt rec]
from IH
have *: "poly_mod.eq_m q C (D * H)"
"poly_mod.eq_m q (D * S + H * T) 1"
"monic D"
"eq_m D1 D"
"eq_m H1 H"
"poly_mod.Mp q D = D"
"poly_mod.Mp q H = H"
"poly_mod.Mp q S = S"
"poly_mod.Mp q T = T"
"q = p ^ ?j2"
by auto
hence norm: "poly_mod.Mp (p ^ j) D = D" "poly_mod.Mp (p ^ j) H = H"
"poly_mod.Mp (p ^ j) S = S" "poly_mod.Mp (p ^ j) T = T"
using lift_norm[OF lt(2)] by auto
from lt p have q: "q > 1" unfolding * by simp
let ?step = "quadratic_hensel_step q S T D H"
obtain S2 T2 D2 H2 where step_res: "?step = (S2, T2, D2, H2)" by (cases ?step, auto)
note step = quadratic_hensel_step[OF step_res *(1,2,6-9,3) q refl]
let ?qq = "q * q"
{
fix D D2
assume "poly_mod.Mp q D = poly_mod.Mp q D2"
from arg_cong[OF this, of Mp] Mp_Mp_pow_is_Mp[of ?j2, OF _ p, folded *(10)] lt
have "Mp D = Mp D2" by simp
} note shrink = this
have **: "poly_mod.eq_m ?qq C (D2 * H2)"
"poly_mod.eq_m ?qq (D2 * S2 + H2 * T2) 1"
"monic D2"
"eq_m D1 D2"
"eq_m H1 H2"
"poly_mod.Mp ?qq D2 = D2"
"poly_mod.Mp ?qq H2 = H2"
"poly_mod.Mp ?qq S2 = S2"
"poly_mod.Mp ?qq T2 = T2"
using step shrink[of H H2] shrink[of D D2] *(4-7) by auto
note simp = simp False if_False rec split Let_def step_res option.simps
from True have j: "p ^ j = p ^ (2 * ?j2)" by auto
with *(10) have qq: "q * q = p ^ j"
by (simp add: power_mult_distrib semiring_normalization_rules(30-))
from res[unfolded simp] True have id': "q' = ?qq" "S' = S2" "T' = T2" "D' = D2" "H' = H2" by auto
show ?thesis unfolding id' using ** by (auto simp: qq)
next
case odd: False
hence False': "(even j) = False" by auto
let ?j2 = "j div 2 + 1"
from False odd have lt: "?j2 < j" "1 \<le> ?j2" by presburger+
obtain q S T D H where rec: "?hens ?j2 = (q, S, T, D, H)" by (cases "?hens ?j2", auto)
note IH = less(1)[OF lt rec]
note simp = simp False if_False rec sum.simps split Let_def False' option.simps
from IH have *: "poly_mod.eq_m q C (D * H)"
"poly_mod.eq_m q (D * S + H * T) 1"
"monic D"
"eq_m D1 D"
"eq_m H1 H"
"poly_mod.Mp q D = D"
"poly_mod.Mp q H = H"
"poly_mod.Mp q S = S"
"poly_mod.Mp q T = T"
"q = p ^ ?j2"
by auto
hence norm: "poly_mod.Mp (p ^ j) D = D" "poly_mod.Mp (p ^ j) H = H"
using lift_norm[OF lt(2)] lt by auto
from lt p have q: "q > 1" unfolding *
using mod_2 poly_mod_2.m1 by blast
let ?step = "quadratic_hensel_step q S T D H"
obtain S2 T2 D2 H2 where step_res: "?step = (S2, T2, D2, H2)" by (cases ?step, auto)
have dvd: "q dvd q" by auto
note step = quadratic_hensel_step[OF step_res *(1,2,6-9,3) q refl]
let ?qq = "q * q"
{
fix D D2
assume "poly_mod.Mp q D = poly_mod.Mp q D2"
from arg_cong[OF this, of Mp] Mp_Mp_pow_is_Mp[of ?j2, OF _ p, folded *(10)] lt
have "Mp D = Mp D2" by simp
} note shrink = this
have **: "poly_mod.eq_m ?qq C (D2 * H2)"
"poly_mod.eq_m ?qq (D2 * S2 + H2 * T2) 1"
"monic D2"
"eq_m D1 D2"
"eq_m H1 H2"
"poly_mod.Mp ?qq D2 = D2"
"poly_mod.Mp ?qq H2 = H2"
"poly_mod.Mp ?qq S2 = S2"
"poly_mod.Mp ?qq T2 = T2"
using step shrink[of H H2] shrink[of D D2] *(4-7) by auto
note simp = simp False if_False rec split Let_def step_res option.simps
from odd have j: "Suc j = 2 * ?j2" by auto
from arg_cong[OF this, of "\<lambda> j. p ^ j div p"]
have pj: "p ^ j = q * q div p" and qq: "q * q = p ^ j * p" unfolding *(10) using p
by (simp add: power_mult_distrib semiring_normalization_rules(30-))+
let ?pj = "p ^ j"
from res[unfolded simp] pj
have id:
"q' = p^j"
"S' = poly_mod.Mp ?pj S2"
"T' = poly_mod.Mp ?pj T2"
"D' = poly_mod.Mp ?pj D2"
"H' = poly_mod.Mp ?pj H2"
by auto
interpret pj: poly_mod_2 ?pj by (rule mod_2[OF \<open>1 \<le> j\<close>])
have norm: "pj.Mp D' = D'" "pj.Mp H' = H'"
unfolding id by (auto simp: poly_mod.Mp_Mp)
have mon: "monic D'" using pj.monic_Mp[OF step(11)] unfolding id .
have id': "Mp (pj.Mp D) = Mp D" for D using \<open>1 \<le> j\<close>
by (simp add: Mp_Mp_pow_is_Mp p)
have eq: "eq_m D1 D2 \<Longrightarrow> eq_m D1 (pj.Mp D2)" for D1 D2
unfolding id' by auto
have id'': "pj.Mp (poly_mod.Mp (q * q) D) = pj.Mp D" for D
unfolding qq by (rule pj.Mp_product_modulus[OF refl], insert p, auto)
{
fix D1 D2
assume "poly_mod.eq_m (q * q) D1 D2"
hence "poly_mod.Mp (q * q) D1 = poly_mod.Mp (q * q) D2" by simp
from arg_cong[OF this, of pj.Mp]
have "pj.Mp D1 = pj.Mp D2" unfolding id'' .
} note eq' = this
from eq'[OF step(1)] have eq1: "pj.eq_m C (D' * H')" unfolding id by simp
from eq'[OF step(2)] have eq2: "pj.eq_m (D' * S' + H' * T') 1"
unfolding id by (metis pj.mult_Mp pj.plus_Mp)
from **(4-5) have eq3: "eq_m D1 D'" "eq_m H1 H'"
unfolding id by (auto intro: eq)
from norm mon eq1 eq2 eq3
show ?thesis unfolding id by simp
qed
qed
qed
lemma quadratic_hensel_main: assumes res: "quadratic_hensel_main j = (D,H)"
shows "poly_mod.eq_m (p^j) C (D * H)"
"monic D"
"poly_mod.eq_m p D1 D"
"poly_mod.eq_m p H1 H"
"poly_mod.Mp (p^j) D = D"
"poly_mod.Mp (p^j) H = H"
proof (atomize(full), goal_cases)
case 1
let ?hen = "quadratic_hensel_loop j"
from res obtain q S T where hen: "?hen = (q, S, T, D, H)"
by (cases ?hen, auto simp: quadratic_hensel_main_def)
from quadratic_hensel_loop[OF hen] show ?case by auto
qed
end
end
end
datatype 'a factor_tree = Factor_Leaf 'a "int poly" | Factor_Node 'a "'a factor_tree" "'a factor_tree"
fun factor_node_info :: "'a factor_tree \<Rightarrow> 'a" where
"factor_node_info (Factor_Leaf i x) = i"
| "factor_node_info (Factor_Node i l r) = i"
fun factors_of_factor_tree :: "'a factor_tree \<Rightarrow> int poly multiset" where
"factors_of_factor_tree (Factor_Leaf i x) = {#x#}"
| "factors_of_factor_tree (Factor_Node i l r) = factors_of_factor_tree l + factors_of_factor_tree r"
fun product_factor_tree :: "int \<Rightarrow> 'a factor_tree \<Rightarrow> int poly factor_tree" where
"product_factor_tree p (Factor_Leaf i x) = (Factor_Leaf x x)"
| "product_factor_tree p (Factor_Node i l r) = (let
L = product_factor_tree p l;
R = product_factor_tree p r;
f = factor_node_info L;
g = factor_node_info R;
fg = poly_mod.Mp p (f * g)
in Factor_Node fg L R)"
fun sub_trees :: "'a factor_tree \<Rightarrow> 'a factor_tree set" where
"sub_trees (Factor_Leaf i x) = {Factor_Leaf i x}"
| "sub_trees (Factor_Node i l r) = insert (Factor_Node i l r) (sub_trees l \<union> sub_trees r)"
lemma sub_trees_refl[simp]: "t \<in> sub_trees t" by (cases t, auto)
lemma product_factor_tree: assumes "\<And> x. x \<in># factors_of_factor_tree t \<Longrightarrow> poly_mod.Mp p x = x"
shows "u \<in> sub_trees (product_factor_tree p t) \<Longrightarrow> factor_node_info u = f \<Longrightarrow>
poly_mod.Mp p f = f \<and> f = poly_mod.Mp p (prod_mset (factors_of_factor_tree u)) \<and>
factors_of_factor_tree (product_factor_tree p t) = factors_of_factor_tree t"
using assms
proof (induct t arbitrary: u f)
case (Factor_Node i l r u f)
interpret poly_mod p .
let ?L = "product_factor_tree p l"
let ?R = "product_factor_tree p r"
let ?f = "factor_node_info ?L"
let ?g = "factor_node_info ?R"
let ?fg = "Mp (?f * ?g)"
have "Mp ?f = ?f \<and> ?f = Mp (prod_mset (factors_of_factor_tree ?L)) \<and>
(factors_of_factor_tree ?L) = (factors_of_factor_tree l)"
by (rule Factor_Node(1)[OF sub_trees_refl refl], insert Factor_Node(5), auto)
hence IH1: "?f = Mp (prod_mset (factors_of_factor_tree ?L))"
"(factors_of_factor_tree ?L) = (factors_of_factor_tree l)" by blast+
have "Mp ?g = ?g \<and> ?g = Mp (prod_mset (factors_of_factor_tree ?R)) \<and>
(factors_of_factor_tree ?R) = (factors_of_factor_tree r)"
by (rule Factor_Node(2)[OF sub_trees_refl refl], insert Factor_Node(5), auto)
hence IH2: "?g = Mp (prod_mset (factors_of_factor_tree ?R))"
"(factors_of_factor_tree ?R) = (factors_of_factor_tree r)" by blast+
have id: "(factors_of_factor_tree (product_factor_tree p (Factor_Node i l r))) =
(factors_of_factor_tree (Factor_Node i l r))" by (simp add: Let_def IH1 IH2)
from Factor_Node(3) consider (root) "u = Factor_Node ?fg ?L ?R"
| (l) "u \<in> sub_trees ?L" | (r) "u \<in> sub_trees ?R"
by (auto simp: Let_def)
thus ?case
proof cases
case root
with Factor_Node have f: "f = ?fg" by auto
show ?thesis unfolding f root id by (simp add: Let_def ac_simps IH1 IH2)
next
case l
have "Mp f = f \<and> f = Mp (prod_mset (factors_of_factor_tree u))"
using Factor_Node(1)[OF l Factor_Node(4)] Factor_Node(5) by auto
thus ?thesis unfolding id by blast
next
case r
have "Mp f = f \<and> f = Mp (prod_mset (factors_of_factor_tree u))"
using Factor_Node(2)[OF r Factor_Node(4)] Factor_Node(5) by auto
thus ?thesis unfolding id by blast
qed
qed auto
fun create_factor_tree_simple :: "int poly list \<Rightarrow> unit factor_tree" where
"create_factor_tree_simple xs = (let n = length xs in if n \<le> 1 then Factor_Leaf () (hd xs)
else let i = n div 2;
xs1 = take i xs;
xs2 = drop i xs
in Factor_Node () (create_factor_tree_simple xs1) (create_factor_tree_simple xs2)
)"
declare create_factor_tree_simple.simps[simp del]
lemma create_factor_tree_simple: "xs \<noteq> [] \<Longrightarrow> factors_of_factor_tree (create_factor_tree_simple xs) = mset xs"
proof (induct xs rule: wf_induct[OF wf_measure[of length]])
case (1 xs)
from 1(2) have xs: "length xs \<noteq> 0" by auto
then consider (base) "length xs = 1" | (step) "length xs > 1" by linarith
thus ?case
proof cases
case base
then obtain x where xs: "xs = [x]" by (cases xs; cases "tl xs"; auto)
thus ?thesis by (auto simp: create_factor_tree_simple.simps)
next
case step
let ?i = "length xs div 2"
let ?xs1 = "take ?i xs"
let ?xs2 = "drop ?i xs"
from step have xs1: "(?xs1, xs) \<in> measure length" "?xs1 \<noteq> []" by auto
from step have xs2: "(?xs2, xs) \<in> measure length" "?xs2 \<noteq> []" by auto
from step have id: "create_factor_tree_simple xs = Factor_Node () (create_factor_tree_simple (take ?i xs))
(create_factor_tree_simple (drop ?i xs))" unfolding create_factor_tree_simple.simps[of xs] Let_def by auto
have xs: "xs = ?xs1 @ ?xs2" by auto
show ?thesis unfolding id arg_cong[OF xs, of mset] mset_append
using 1(1)[rule_format, OF xs1] 1(1)[rule_format, OF xs2]
by auto
qed
qed
text \<open>We define a better factorization tree which balances the trees according to their degree.,
cf. Modern Computer Algebra, Chapter 15.5 on Multifactor Hensel lifting.\<close>
fun partition_factors_main :: "nat \<Rightarrow> ('a \<times> nat) list \<Rightarrow> ('a \<times> nat) list \<times> ('a \<times> nat) list" where
"partition_factors_main s [] = ([], [])"
| "partition_factors_main s ((f,d) # xs) = (if d \<le> s then case partition_factors_main (s - d) xs of
(l,r) \<Rightarrow> ((f,d) # l, r) else case partition_factors_main d xs of
(l,r) \<Rightarrow> (l, (f,d) # r))"
lemma partition_factors_main: "partition_factors_main s xs = (a,b) \<Longrightarrow> mset xs = mset a + mset b"
by (induct s xs arbitrary: a b rule: partition_factors_main.induct, auto split: if_splits prod.splits)
definition partition_factors :: "('a \<times> nat) list \<Rightarrow> ('a \<times> nat) list \<times> ('a \<times> nat) list" where
"partition_factors xs = (let n = sum_list (map snd xs) div 2 in
case partition_factors_main n xs of
([], x # y # ys) \<Rightarrow> ([x], y # ys)
| (x # y # ys, []) \<Rightarrow> ([x], y # ys)
| pair \<Rightarrow> pair)"
lemma partition_factors: "partition_factors xs = (a,b) \<Longrightarrow> mset xs = mset a + mset b"
unfolding partition_factors_def Let_def
by (cases "partition_factors_main (sum_list (map snd xs) div 2) xs", auto split: list.splits
simp: partition_factors_main)
lemma partition_factors_length: assumes "\<not> length xs \<le> 1" "(a,b) = partition_factors xs"
shows [termination_simp]: "length a < length xs" "length b < length xs" and "a \<noteq> []" "b \<noteq> []"
proof -
obtain ys zs where main: "partition_factors_main (sum_list (map snd xs) div 2) xs = (ys,zs)" by force
note res = assms(2)[unfolded partition_factors_def Let_def main split]
from arg_cong[OF partition_factors_main[OF main], of size] have len: "length xs = length ys + length zs" by auto
with assms(1) have len2: "length ys + length zs \<ge> 2" by auto
from res len2 have "length a < length xs \<and> length b < length xs \<and> a \<noteq> [] \<and> b \<noteq> []" unfolding len
by (cases ys; cases zs; cases "tl ys"; cases "tl zs"; auto)
thus "length a < length xs" "length b < length xs" "a \<noteq> []" "b \<noteq> []" by blast+
qed
fun create_factor_tree_balanced :: "(int poly \<times> nat)list \<Rightarrow> unit factor_tree" where
"create_factor_tree_balanced xs = (if length xs \<le> 1 then Factor_Leaf () (fst (hd xs)) else
case partition_factors xs of (l,r) \<Rightarrow> Factor_Node ()
(create_factor_tree_balanced l)
(create_factor_tree_balanced r))"
definition create_factor_tree :: "int poly list \<Rightarrow> unit factor_tree" where
"create_factor_tree xs = (let ys = map (\<lambda> f. (f, degree f)) xs;
zs = rev (sort_key snd ys)
in create_factor_tree_balanced zs)"
lemma create_factor_tree_balanced: "xs \<noteq> [] \<Longrightarrow> factors_of_factor_tree (create_factor_tree_balanced xs) = mset (map fst xs)"
proof (induct xs rule: create_factor_tree_balanced.induct)
case (1 xs)
show ?case
proof (cases "length xs \<le> 1")
case True
with 1(3) obtain x where xs: "xs = [x]" by (cases xs; cases "tl xs", auto)
show ?thesis unfolding xs by auto
next
case False
obtain a b where part: "partition_factors xs = (a,b)" by force
note abp = this[symmetric]
note nonempty = partition_factors_length(3-4)[OF False abp]
note IH = 1(1)[OF False abp nonempty(1)] 1(2)[OF False abp nonempty(2)]
show ?thesis unfolding create_factor_tree_balanced.simps[of xs] part split using
False IH partition_factors[OF part] by auto
qed
qed
lemma create_factor_tree: assumes "xs \<noteq> []"
shows "factors_of_factor_tree (create_factor_tree xs) = mset xs"
proof -
let ?xs = "rev (sort_key snd (map (\<lambda>f. (f, degree f)) xs))"
from assms have "set xs \<noteq> {}" by auto
hence "set ?xs \<noteq> {}" by auto
hence xs: "?xs \<noteq> []" by blast
show ?thesis unfolding create_factor_tree_def Let_def create_factor_tree_balanced[OF xs]
by (auto, induct xs, auto)
qed
context
fixes p :: int and n :: nat
begin
definition quadratic_hensel_binary :: "int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
"quadratic_hensel_binary C D H = (
case euclid_ext_poly_dynamic p D H of
(S,T) \<Rightarrow> quadratic_hensel_main C p S T D H n)"
fun hensel_lifting_main :: "int poly \<Rightarrow> int poly factor_tree \<Rightarrow> int poly list" where
"hensel_lifting_main U (Factor_Leaf _ _) = [U]"
| "hensel_lifting_main U (Factor_Node _ l r) = (let
v = factor_node_info l;
w = factor_node_info r;
(V,W) = quadratic_hensel_binary U v w
in hensel_lifting_main V l @ hensel_lifting_main W r)"
definition hensel_lifting_monic :: "int poly \<Rightarrow> int poly list \<Rightarrow> int poly list" where
"hensel_lifting_monic u vs = (if vs = [] then [] else let
pn = p^n;
C = poly_mod.Mp pn u;
tree = product_factor_tree p (create_factor_tree vs)
in hensel_lifting_main C tree)"
definition hensel_lifting :: "int poly \<Rightarrow> int poly list \<Rightarrow> int poly list" where
"hensel_lifting f gs = (let lc = lead_coeff f;
ilc = inverse_mod lc (p^n);
g = smult ilc f
in hensel_lifting_monic g gs)"
end
context poly_mod_prime begin
context
fixes n :: nat
assumes n: "n \<noteq> 0"
begin
abbreviation "hensel_binary \<equiv> quadratic_hensel_binary p n"
abbreviation "hensel_main \<equiv> hensel_lifting_main p n"
lemma hensel_binary:
assumes cop: "coprime_m D H" and eq: "eq_m C (D * H)"
and normalized_input: "Mp D = D" "Mp H = H"
and monic_input: "monic D"
and hensel_result: "hensel_binary C D H = (D',H')"
shows "poly_mod.eq_m (p^n) C (D' * H') \<comment> \<open>the main result: equivalence mod \<open>p^n\<close>\<close>
\<and> monic D' \<comment> \<open>monic output\<close>
\<and> eq_m D D' \<and> eq_m H H' \<comment> \<open>apply \<open>`mod p`\<close> on \<open>D'\<close> and \<open>H'\<close> yields \<open>D\<close> and \<open>H\<close> again\<close>
\<and> poly_mod.Mp (p^n) D' = D' \<and> poly_mod.Mp (p^n) H' = H' \<comment> \<open>output is normalized\<close>"
proof -
from m1 have p: "p > 1" .
obtain S T where ext: "euclid_ext_poly_dynamic p D H = (S,T)" by force
obtain D1 H1 where main: "quadratic_hensel_main C p S T D H n = (D1,H1)" by force
note hen = hensel_result[unfolded quadratic_hensel_binary_def ext split Let_def main]
from n have n: "n \<ge> 1" by simp
note eucl = euclid_ext_poly_dynamic[OF cop normalized_input ext]
note main = quadratic_hensel_main[OF eucl(1) eq monic_input p normalized_input eucl(2-) n main]
show ?thesis using hen main by auto
qed
lemma hensel_main:
assumes eq: "eq_m C (prod_mset (factors_of_factor_tree Fs))"
and "\<And> F. F \<in># factors_of_factor_tree Fs \<Longrightarrow> Mp F = F \<and> monic F"
and hensel_result: "hensel_main C Fs = Gs"
and C: "monic C" "poly_mod.Mp (p^n) C = C"
and sf: "square_free_m C"
and "\<And> f t. t \<in> sub_trees Fs \<Longrightarrow> factor_node_info t = f \<Longrightarrow> f = Mp (prod_mset (factors_of_factor_tree t))"
shows "poly_mod.eq_m (p^n) C (prod_list Gs) \<comment> \<open>the main result: equivalence mod \<open>p^n\<close>\<close>
\<and> factors_of_factor_tree Fs = mset (map Mp Gs)
\<and> (\<forall> G. G \<in> set Gs \<longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G)"
using assms
proof (induct Fs arbitrary: C Gs)
case (Factor_Leaf f fs C Gs)
thus ?case by auto
next
case (Factor_Node f l r C Gs) note * = this
note simps = hensel_lifting_main.simps
note IH1 = *(1)[rule_format]
note IH2 = *(2)[rule_format]
note res = *(5)[unfolded simps Let_def]
note eq = *(3)
note Fs = *(4)
note C = *(6,7)
note sf = *(8)
note inv = *(9)
interpret pn: poly_mod_2 "p^n" apply (unfold_locales) using m1 n by auto
let ?Mp = "pn.Mp"
define D where "D \<equiv> prod_mset (factors_of_factor_tree l)"
define H where "H \<equiv> prod_mset (factors_of_factor_tree r)"
let ?D = "Mp D"
let ?H = "Mp H"
let ?D' = "factor_node_info l"
let ?H' = "factor_node_info r"
obtain A B where hen: "hensel_binary C ?D' ?H' = (A,B)" by force
note res = res[unfolded hen split]
obtain AD where AD': "AD = hensel_main A l" by auto
obtain BH where BH': "BH = hensel_main B r" by auto
from inv[of l, OF _ refl] have D': "?D' = ?D" unfolding D_def by auto
from inv[of r, OF _ refl] have H': "?H' = ?H" unfolding H_def by auto
from eq[simplified]
have eq': "Mp C = Mp (?D * ?H)" unfolding D_def H_def by simp
from square_free_m_cong[OF sf, of "?D * ?H", OF eq']
have sf': "square_free_m (?D * ?H)" .
from poly_mod_prime.square_free_m_prod_imp_coprime_m[OF _ this]
have cop': "coprime_m ?D ?H" unfolding poly_mod_prime_def using prime .
from eq' have eq': "eq_m C (?D * ?H)" by simp
have monD: "monic D" unfolding D_def by (rule monic_prod_mset, insert Fs, auto)
from hensel_binary[OF _ _ _ _ _ hen, unfolded D' H', OF cop' eq' Mp_Mp Mp_Mp monic_Mp[OF monD]]
have step: "poly_mod.eq_m (p ^ n) C (A * B) \<and> monic A \<and> eq_m ?D A \<and>
eq_m ?H B \<and> ?Mp A = A \<and> ?Mp B = B" .
from res have Gs: "Gs = AD @ BH" by (simp add: AD' BH')
have AD: "eq_m A ?D" "?Mp A = A" "eq_m A (prod_mset (factors_of_factor_tree l))"
and monA: "monic A"
using step by (auto simp: D_def)
note sf_fact = square_free_m_factor[OF sf']
from square_free_m_cong[OF sf_fact(1)] AD have sfA: "square_free_m A" by auto
have IH1: "poly_mod.eq_m (p ^ n) A (prod_list AD) \<and>
factors_of_factor_tree l = mset (map Mp AD) \<and>
(\<forall>G. G \<in> set AD \<longrightarrow> monic G \<and> ?Mp G = G)"
by (rule IH1[OF AD(3) Fs AD'[symmetric] monA AD(2) sfA inv], auto)
have BH: "eq_m B ?H" "pn.Mp B = B" "eq_m B (prod_mset (factors_of_factor_tree r))"
using step by (auto simp: H_def)
from step have "pn.eq_m C (A * B)" by simp
hence "?Mp C = ?Mp (A * B)" by simp
with C AD(2) have "pn.Mp C = pn.Mp (A * pn.Mp B)" by simp
from arg_cong[OF this, of lead_coeff] C
have "monic (pn.Mp (A * B))" by simp
then have "lead_coeff (pn.Mp A) * lead_coeff (pn.Mp B) = 1"
by (metis lead_coeff_mult leading_coeff_neq_0 local.step mult_cancel_right2 pn.degree_m_eq pn.m1 poly_mod.M_def poly_mod.Mp_coeff)
with monA AD(2) BH(2) have monB: "monic B" by simp
from square_free_m_cong[OF sf_fact(2)] BH have sfB: "square_free_m B" by auto
have IH2: "poly_mod.eq_m (p ^ n) B (prod_list BH) \<and>
factors_of_factor_tree r = mset (map Mp BH) \<and>
(\<forall>G. G \<in> set BH \<longrightarrow> monic G \<and> ?Mp G = G)"
by (rule IH2[OF BH(3) Fs BH'[symmetric] monB BH(2) sfB inv], auto)
from step have "?Mp C = ?Mp (?Mp A * ?Mp B)" by auto
also have "?Mp A = ?Mp (prod_list AD)" using IH1 by auto
also have "?Mp B = ?Mp (prod_list BH)" using IH2 by auto
finally have "poly_mod.eq_m (p ^ n) C (prod_list AD * prod_list BH)"
by (auto simp: poly_mod.mult_Mp)
thus ?case unfolding Gs using IH1 IH2 by auto
qed
lemma hensel_lifting_monic:
assumes eq: "poly_mod.eq_m p C (prod_list Fs)"
and Fs: "\<And> F. F \<in> set Fs \<Longrightarrow> poly_mod.Mp p F = F \<and> monic F"
and res: "hensel_lifting_monic p n C Fs = Gs"
and mon: "monic (poly_mod.Mp (p^n) C)"
and sf: "poly_mod.square_free_m p C"
shows "poly_mod.eq_m (p^n) C (prod_list Gs)"
"mset (map (poly_mod.Mp p) Gs) = mset Fs"
"G \<in> set Gs \<Longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G"
proof -
note res = res[unfolded hensel_lifting_monic_def Let_def]
let ?Mp = "poly_mod.Mp (p ^ n)"
let ?C = "?Mp C"
interpret poly_mod_prime p
by (unfold_locales, insert n prime, auto)
interpret pn: poly_mod_2 "p^n" using m1 n poly_mod_2.intro by auto
from eq n have eq: "eq_m (?Mp C) (prod_list Fs)"
using Mp_Mp_pow_is_Mp eq m1 n by force
have "poly_mod.eq_m (p^n) C (prod_list Gs) \<and> mset (map (poly_mod.Mp p) Gs) = mset Fs
\<and> (G \<in> set Gs \<longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G)"
proof (cases "Fs = []")
case True
with res have Gs: "Gs = []" by auto
from eq have "Mp ?C = 1" unfolding True by simp
hence "degree (Mp ?C) = 0" by simp
with degree_m_eq_monic[OF mon m1] have "degree ?C = 0" by simp
with mon have "?C = 1" using monic_degree_0 by blast
thus ?thesis unfolding True Gs by auto
next
case False
let ?t = "create_factor_tree Fs"
note tree = create_factor_tree[OF False]
from False res have hen: "hensel_main ?C (product_factor_tree p ?t) = Gs" by auto
have tree1: "x \<in># factors_of_factor_tree ?t \<Longrightarrow> Mp x = x" for x unfolding tree using Fs by auto
from product_factor_tree[OF tree1 sub_trees_refl refl, of ?t]
have id: "(factors_of_factor_tree (product_factor_tree p ?t)) =
(factors_of_factor_tree ?t)" by auto
have eq: "eq_m ?C (prod_mset (factors_of_factor_tree (product_factor_tree p ?t)))"
unfolding id tree using eq by auto
have id': "Mp C = Mp ?C" using n by (simp add: Mp_Mp_pow_is_Mp m1)
have "pn.eq_m ?C (prod_list Gs) \<and> mset Fs = mset (map Mp Gs) \<and> (\<forall>G. G \<in> set Gs \<longrightarrow> monic G \<and> pn.Mp G = G)"
by (rule hensel_main[OF eq Fs hen mon pn.Mp_Mp square_free_m_cong[OF sf id'], unfolded id tree],
insert product_factor_tree[OF tree1], auto)
thus ?thesis by auto
qed
thus "poly_mod.eq_m (p^n) C (prod_list Gs)"
"mset (map (poly_mod.Mp p) Gs) = mset Fs"
"G \<in> set Gs \<Longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G" by blast+
qed
lemma hensel_lifting:
assumes res: "hensel_lifting p n f fs = gs" \<comment> \<open>result of hensel is fact. \<open>gs\<close>\<close>
and cop: "coprime (lead_coeff f) p"
and sf: "poly_mod.square_free_m p f"
and fact: "poly_mod.factorization_m p f (c, mset fs)" \<comment> \<open>input is fact. \<open>fs mod p\<close>\<close>
and c: "c \<in> {0..<p}"
and norm: "(\<forall>fi\<in>set fs. set (coeffs fi) \<subseteq> {0..<p})"
shows "poly_mod.factorization_m (p^n) f (lead_coeff f, mset gs) \<comment> \<open>factorization mod \<open>p^n\<close>\<close>"
"sort (map degree fs) = sort (map degree gs) \<comment> \<open>degrees stay the same\<close>"
"\<And> g. g \<in> set gs \<Longrightarrow> monic g \<and> poly_mod.Mp (p^n) g = g \<and> \<comment> \<open>monic and normalized\<close>
irreducible_m g \<and> \<comment> \<open>irreducibility even mod \<open>p\<close>\<close>
degree_m g = degree g \<comment> \<open>mod \<open>p\<close> does not change degree of \<open>g\<close>\<close>"
proof -
interpret poly_mod_prime p using prime by unfold_locales
interpret q: poly_mod_2 "p^n" using m1 n unfolding poly_mod_2_def by auto
from fact have eq: "eq_m f (smult c (prod_list fs))"
and mon_fs: "(\<forall>fi\<in>set fs. monic (Mp fi) \<and> irreducible\<^sub>d_m fi)"
unfolding factorization_m_def by auto
{
fix f
assume "f \<in> set fs"
with mon_fs norm have "set (coeffs f) \<subseteq> {0..<p}" and "monic (Mp f)" by auto
hence "monic f" using Mp_ident_iff' by force
} note mon_fs' = this
have Mp_id: "\<And> f. Mp (q.Mp f) = Mp f" by (simp add: Mp_Mp_pow_is_Mp m1 n)
let ?lc = "lead_coeff f"
let ?q = "p ^ n"
define ilc where "ilc \<equiv> inverse_mod ?lc ?q"
define F where "F \<equiv> smult ilc f"
from res[unfolded hensel_lifting_def Let_def]
have hen: "hensel_lifting_monic p n F fs = gs"
unfolding ilc_def F_def .
from m1 n cop have inv: "q.M (ilc * ?lc) = 1"
by (auto simp add: q.M_def inverse_mod_pow ilc_def)
hence ilc0: "ilc \<noteq> 0" by (cases "ilc = 0", auto)
{
fix q
assume "ilc * ?lc = ?q * q"
from arg_cong[OF this, of q.M] have "q.M (ilc * ?lc) = 0"
unfolding q.M_def by auto
with inv have False by auto
} note not_dvd = this
have mon: "monic (q.Mp F)" unfolding F_def q.Mp_coeff coeff_smult
by (subst q.degree_m_eq [OF _ q.m1]) (auto simp: inv ilc0 [symmetric] intro: not_dvd)
have "q.Mp f = q.Mp (smult (q.M (?lc * ilc)) f)" using inv by (simp add: ac_simps)
also have "\<dots> = q.Mp (smult ?lc F)" by (simp add: F_def)
finally have f: "q.Mp f = q.Mp (smult ?lc F)" .
from arg_cong[OF f, of Mp]
have f_p: "Mp f = Mp (smult ?lc F)"
by (simp add: Mp_Mp_pow_is_Mp n m1)
from arg_cong[OF this, of square_free_m, unfolded Mp_square_free_m] sf
have "square_free_m (smult ?lc F)" by simp
from square_free_m_smultD[OF this] have sf: "square_free_m F" .
define c' where "c' \<equiv> M (c * ilc)"
from factorization_m_smult[OF fact, of ilc, folded F_def]
have fact: "factorization_m F (c', mset fs)" unfolding c'_def factorization_m_def by auto
hence eq: "eq_m F (smult c' (prod_list fs))" unfolding factorization_m_def by auto
from factorization_m_lead_coeff[OF fact] monic_Mp[OF mon, unfolded Mp_id] have "M c' = 1"
by auto
hence c': "c' = 1" unfolding c'_def by auto
with eq have eq: "eq_m F (prod_list fs)" by auto
{
fix f
assume "f \<in> set fs"
with mon_fs' norm have "Mp f = f \<and> monic f" unfolding Mp_ident_iff'
by auto
} note fs = this
note hen = hensel_lifting_monic[OF eq fs hen mon sf]
from hen(2) have gs_fs: "mset (map Mp gs) = mset fs" by auto
have eq: "q.eq_m f (smult ?lc (prod_list gs))"
unfolding f using arg_cong[OF hen(1), of "\<lambda> f. q.Mp (smult ?lc f)"] by simp
{
fix g
assume g: "g \<in> set gs"
from hen(3)[OF _ g] have mon_g: "monic g" and Mp_g: "q.Mp g = g" by auto
from g have "Mp g \<in># mset (map Mp gs)" by auto
from this[unfolded gs_fs] obtain f where f: "f \<in> set fs" and fg: "eq_m f g" by auto
from mon_fs f fs have irr_f: "irreducible\<^sub>d_m f" and mon_f: "monic f" and Mp_f: "Mp f = f" by auto
have deg: "degree_m g = degree g"
by (rule degree_m_eq_monic[OF mon_g m1])
from irr_f fg have irr_g: "irreducible\<^sub>d_m g"
unfolding irreducible\<^sub>d_m_def dvdm_def by simp
have "q.irreducible\<^sub>d_m g"
by (rule irreducible\<^sub>d_lifting[OF n _ irr_g], unfold deg, rule q.degree_m_eq_monic[OF mon_g q.m1])
note mon_g Mp_g deg irr_g this
} note g = this
{
fix g
assume "g \<in> set gs"
from g[OF this]
show "monic g \<and> q.Mp g = g \<and> irreducible_m g \<and> degree_m g = degree g" by auto
}
show "sort (map degree fs) = sort (map degree gs)"
proof (rule sort_key_eq_sort_key)
have "mset (map degree fs) = image_mset degree (mset fs)" by auto
also have "\<dots> = image_mset degree (mset (map Mp gs))" unfolding gs_fs ..
also have "\<dots> = mset (map degree (map Mp gs))" unfolding mset_map ..
also have "map degree (map Mp gs) = map degree_m gs" by auto
also have "\<dots> = map degree gs" using g(3) by auto
finally show "mset (map degree fs) = mset (map degree gs)" .
qed auto
show "q.factorization_m f (lead_coeff f, mset gs)"
using eq g unfolding q.factorization_m_def by auto
qed
end
end
end
|