Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 83,283 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
(*
    Authors:      Jose Divasón
                  Sebastiaan Joosten
                  René Thiemann
                  Akihisa Yamada
*)
section \<open>Hensel Lifting\<close>

subsection \<open>Properties about Factors\<close>

text \<open>We define and prove properties of Hensel-lifting. Here, we show the result that 
  Hensel-lifting can lift a factorization mod $p$ to a factorization mod $p^n$. 
  For the lifting we have proofs for both versions, the original linear Hensel-lifting or 
  the quadratic approach from Zassenhaus. 
  Via the linear version, we also show a uniqueness result, however only in the 
  binary case, i.e., where $f = g \cdot h$. Uniqueness of the general case will later be shown 
  in theory Berlekamp-Hensel by incorporating the factorization algorithm for finite fields algorithm.\<close>

theory Hensel_Lifting
imports 
  "HOL-Computational_Algebra.Euclidean_Algorithm"
  Poly_Mod_Finite_Field_Record_Based
  Polynomial_Factorization.Square_Free_Factorization
begin


lemma uniqueness_poly_equality:
  fixes f g :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"
  assumes cop: "coprime f g"
  and deg: "B = 0 \<or> degree B < degree f" "B' = 0 \<or> degree B' < degree f"
  and f: "f \<noteq> 0" and eq: "A * f + B * g = A' * f + B' * g" 
  shows "A = A'" "B = B'" 
proof -
  from eq have *: "(A - A') * f = (B' - B) * g" by (simp add: field_simps)
  hence "f dvd (B' - B) * g" unfolding dvd_def by (intro exI[of _ "A - A'"], auto simp: field_simps)
  with cop[simplified] have dvd: "f dvd (B' - B)"
    by (simp add: coprime_dvd_mult_right_iff ac_simps)
  from divides_degree[OF this] have "degree f \<le> degree (B' - B) \<or> B = B'" by auto
  with degree_diff_le_max[of B' B] deg 
  show "B = B'" by auto
  with * f show "A = A'" by auto
qed

lemmas (in poly_mod_prime_type) uniqueness_poly_equality =
  uniqueness_poly_equality[where 'a="'a mod_ring", untransferred]
lemmas (in poly_mod_prime) uniqueness_poly_equality = poly_mod_prime_type.uniqueness_poly_equality
  [unfolded poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty]

lemma pseudo_divmod_main_list_1_is_divmod_poly_one_main_list: 
  "pseudo_divmod_main_list (1 :: 'a :: comm_ring_1) q f g n = divmod_poly_one_main_list q f g n"
  by (induct n arbitrary: q f g, auto simp: Let_def)

lemma pdivmod_monic_pseudo_divmod: assumes g: "monic g" shows "pdivmod_monic f g = pseudo_divmod f g" 
proof -
  from g have id: "(coeffs g = []) = False" by auto
  from g have mon: "hd (rev (coeffs g)) = 1" by (metis coeffs_eq_Nil hd_rev id last_coeffs_eq_coeff_degree)
  show ?thesis
    unfolding pseudo_divmod_impl pseudo_divmod_list_def id if_False pdivmod_monic_def Let_def mon
      pseudo_divmod_main_list_1_is_divmod_poly_one_main_list by (auto split: prod.splits)
qed

lemma pdivmod_monic: assumes g: "monic g" and res: "pdivmod_monic f g = (q, r)"
  shows "f = g * q + r" "r = 0 \<or> degree r < degree g"
proof -
  from g have g0: "g \<noteq> 0" by auto
  from pseudo_divmod[OF g0 res[unfolded pdivmod_monic_pseudo_divmod[OF g]], unfolded g]
  show "f = g * q + r" "r = 0 \<or> degree r < degree g" by auto
qed

definition dupe_monic :: "'a :: comm_ring_1  poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly \<Rightarrow>
  'a poly * 'a poly" where
  "dupe_monic D H S T U = (case pdivmod_monic (T * U) D of (q,r) \<Rightarrow>
     (S * U + H * q, r))"

lemma dupe_monic: assumes 1: "D*S + H*T = 1" 
  and mon: "monic D" 
  and dupe: "dupe_monic D H S T U = (A,B)" 
shows "A * D + B * H = U" "B = 0 \<or> degree B < degree D"
proof -
  obtain Q R where div: "pdivmod_monic ((T * U)) D = (Q,R)" by force
  from dupe[unfolded dupe_monic_def div split]
  have A: "A = (S * U + H * Q)" and B: "B = R" by auto
  from pdivmod_monic[OF mon div] have TU: "T * U = D * Q + R" and 
    deg: "R = 0 \<or> degree R < degree D" by auto
  hence R: "R = T * U - D * Q" by simp
  have "A * D + B * H = (D * S + H * T) * U" unfolding A B R by (simp add: field_simps)
  also have "\<dots> = U" unfolding 1 by simp
  finally show eq: "A * D + B * H = U" .
  show "B = 0 \<or> degree B < degree D" using deg unfolding B .
qed

lemma dupe_monic_unique: fixes D :: "'a ::  {factorial_ring_gcd,semiring_gcd_mult_normalize} poly" 
  assumes 1: "D*S + H*T = 1" 
  and mon: "monic D" 
  and dupe: "dupe_monic D H S T U = (A,B)" 
  and cop: "coprime D H"
  and other: "A' * D + B' * H = U" "B' = 0 \<or> degree B' < degree D"
shows "A' = A" "B' = B"
proof -
  from dupe_monic[OF 1 mon dupe] have one: "A * D + B * H = U" "B = 0 \<or> degree B < degree D" by auto
  from mon have D0: "D \<noteq> 0" by auto
  from uniqueness_poly_equality[OF cop one(2) other(2) D0, of A A', unfolded other, OF one(1)] 
  show "A' = A" "B' = B" by auto
qed

context ring_ops
begin
lemma poly_rel_dupe_monic_i: assumes mon: "monic D" 
  and rel: "poly_rel d D" "poly_rel h H" "poly_rel s S" "poly_rel t T" "poly_rel u U" 
shows "rel_prod poly_rel poly_rel (dupe_monic_i ops d h s t u) (dupe_monic D H S T U)" 
proof -
  note defs = dupe_monic_i_def dupe_monic_def
  note [transfer_rule] = rel
  have [transfer_rule]: "rel_prod poly_rel poly_rel 
    (pdivmod_monic_i ops (times_poly_i ops t u) d) 
    (pdivmod_monic (T * U) D)" 
    by (rule poly_rel_pdivmod_monic[OF mon], transfer_prover+)
  show ?thesis unfolding defs by transfer_prover
qed
end
              
context mod_ring_gen
begin 

lemma monic_of_int_poly: "monic D \<Longrightarrow> monic (of_int_poly (Mp D) :: 'a mod_ring poly)"
  using Mp_f_representative Mp_to_int_poly monic_Mp by auto

lemma dupe_monic_i: assumes dupe_i: "dupe_monic_i ff_ops d h s t u = (a,b)" 
  and 1: "D*S + H*T =m 1" 
  and mon: "monic D" 
  and A: "A = to_int_poly_i ff_ops a" 
  and B: "B = to_int_poly_i ff_ops b" 
  and d: "Mp_rel_i d D" 
  and h: "Mp_rel_i h H" 
  and s: "Mp_rel_i s S" 
  and t: "Mp_rel_i t T" 
  and u: "Mp_rel_i u U" 
shows 
  "A * D + B * H =m U" 
  "B = 0 \<or> degree B < degree D" 
  "Mp_rel_i a A" 
  "Mp_rel_i b B"
proof -
  let ?I = "\<lambda> f. of_int_poly (Mp f) :: 'a mod_ring poly" 
  let ?i = "to_int_poly_i ff_ops" 
  note dd = Mp_rel_iD[OF d]
  note hh = Mp_rel_iD[OF h]
  note ss = Mp_rel_iD[OF s]
  note tt = Mp_rel_iD[OF t]
  note uu = Mp_rel_iD[OF u]  
  obtain A' B' where dupe: "dupe_monic (?I D) (?I H) (?I S) (?I T) (?I U) = (A',B')"  by force
  from poly_rel_dupe_monic_i[OF monic_of_int_poly[OF mon] dd(1) hh(1) ss(1) tt(1) uu(1), unfolded dupe_i dupe]
  have a: "poly_rel a A'" and b: "poly_rel b B'" by auto
  show aa: "Mp_rel_i a A" by (rule Mp_rel_iI'[OF a, folded A])
  show bb: "Mp_rel_i b B" by (rule Mp_rel_iI'[OF b, folded B])
  note Aa = Mp_rel_iD[OF aa]
  note Bb = Mp_rel_iD[OF bb]
  from poly_rel_inj[OF a Aa(1)] A have A: "A' = ?I A" by simp
  from poly_rel_inj[OF b Bb(1)] B have B: "B' = ?I B" by simp
  note Mp = dd(2) hh(2) ss(2) tt(2) uu(2)
  note [transfer_rule] = Mp
  have "(=) (D * S + H * T =m 1) (?I D * ?I S + ?I H * ?I T = 1)" by transfer_prover
  with 1 have 11: "?I D * ?I S + ?I H * ?I T = 1" by simp
  from dupe_monic[OF 11 monic_of_int_poly[OF mon] dupe, unfolded A B]
  have res: "?I A * ?I D + ?I B * ?I H = ?I U" "?I B = 0 \<or> degree (?I B) < degree (?I D)" by auto  
  note [transfer_rule] = Aa(2) Bb(2)
  have "(=) (A * D + B * H =m U) (?I A * ?I D + ?I B * ?I H = ?I U)"
       "(=) (B =m 0 \<or> degree_m B < degree_m D) (?I B = 0 \<or> degree (?I B) < degree (?I D))" by transfer_prover+
  with res have *: "A * D + B * H =m U" "B =m 0 \<or> degree_m B < degree_m D" by auto
  show "A * D + B * H =m U" by fact
  have B: "Mp B = B" using Mp_rel_i_Mp_to_int_poly_i assms(5) bb by blast
  from *(2) show "B = 0 \<or> degree B < degree D" unfolding B using degree_m_le[of D] by auto
qed

lemma Mp_rel_i_of_int_poly_i: assumes "Mp F = F"
  shows "Mp_rel_i (of_int_poly_i ff_ops F) F" 
  by (metis Mp_f_representative Mp_rel_iI' assms poly_rel_of_int_poly to_int_poly_i)

lemma dupe_monic_i_int: assumes dupe_i: "dupe_monic_i_int ff_ops D H S T U = (A,B)" 
  and 1: "D*S + H*T =m 1" 
  and mon: "monic D" 
  and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" 
shows 
  "A * D + B * H =m U" 
  "B = 0 \<or> degree B < degree D" 
  "Mp A = A" 
  "Mp B = B" 
proof -
  let ?oi = "of_int_poly_i ff_ops" 
  let ?ti = "to_int_poly_i ff_ops"
  note rel = norm[THEN Mp_rel_i_of_int_poly_i]
  obtain a b where dupe: "dupe_monic_i ff_ops (?oi D) (?oi H) (?oi S) (?oi T) (?oi U) = (a,b)" by force
  from dupe_i[unfolded dupe_monic_i_int_def this Let_def] have AB: "A = ?ti a" "B = ?ti b" by auto
  from dupe_monic_i[OF dupe 1 mon AB rel] Mp_rel_i_Mp_to_int_poly_i 
  show "A * D + B * H =m U" 
    "B = 0 \<or> degree B < degree D" 
    "Mp A = A" 
    "Mp B = B"
    unfolding AB by auto
qed

end

definition dupe_monic_dynamic 
  :: "int \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
  "dupe_monic_dynamic p = ( 
    if p \<le> 65535 
    then dupe_monic_i_int (finite_field_ops32 (uint32_of_int p))
    else if p \<le> 4294967295
    then dupe_monic_i_int (finite_field_ops64 (uint64_of_int p))
    else dupe_monic_i_int (finite_field_ops_integer (integer_of_int p)))" 

context poly_mod_2
begin

lemma dupe_monic_i_int_finite_field_ops_integer: assumes 
      dupe_i: "dupe_monic_i_int (finite_field_ops_integer (integer_of_int m)) D H S T U = (A,B)" 
  and 1: "D*S + H*T =m 1" 
  and mon: "monic D" 
  and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" 
shows 
  "A * D + B * H =m U" 
  "B = 0 \<or> degree B < degree D" 
  "Mp A = A" 
  "Mp B = B" 
  using m1 mod_ring_gen.dupe_monic_i_int[OF 
        mod_ring_locale.mod_ring_finite_field_ops_integer[unfolded mod_ring_locale_def], 
        internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise, 
        cancel_type_definition, OF _ assms] by auto

lemma dupe_monic_i_int_finite_field_ops32: assumes 
      m: "m \<le> 65535"
  and dupe_i: "dupe_monic_i_int (finite_field_ops32 (uint32_of_int m)) D H S T U = (A,B)" 
  and 1: "D*S + H*T =m 1" 
  and mon: "monic D" 
  and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" 
shows 
  "A * D + B * H =m U" 
  "B = 0 \<or> degree B < degree D" 
  "Mp A = A" 
  "Mp B = B" 
  using m1 mod_ring_gen.dupe_monic_i_int[OF 
        mod_ring_locale.mod_ring_finite_field_ops32[unfolded mod_ring_locale_def], 
        internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise, 
        cancel_type_definition, OF _ assms] by auto

lemma dupe_monic_i_int_finite_field_ops64: assumes 
      m: "m \<le> 4294967295"
  and dupe_i: "dupe_monic_i_int (finite_field_ops64 (uint64_of_int m)) D H S T U = (A,B)" 
  and 1: "D*S + H*T =m 1" 
  and mon: "monic D" 
  and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" 
shows 
  "A * D + B * H =m U" 
  "B = 0 \<or> degree B < degree D" 
  "Mp A = A" 
  "Mp B = B" 
  using m1 mod_ring_gen.dupe_monic_i_int[OF 
        mod_ring_locale.mod_ring_finite_field_ops64[unfolded mod_ring_locale_def], 
        internalize_sort "'a :: nontriv", OF type_to_set, unfolded remove_duplicate_premise, 
        cancel_type_definition, OF _ assms] by auto

lemma dupe_monic_dynamic: assumes dupe: "dupe_monic_dynamic m D H S T U = (A,B)" 
  and 1: "D*S + H*T =m 1" 
  and mon: "monic D" 
  and norm: "Mp D = D" "Mp H = H" "Mp S = S" "Mp T = T" "Mp U = U" 
shows 
  "A * D + B * H =m U" 
  "B = 0 \<or> degree B < degree D" 
  "Mp A = A" 
  "Mp B = B"
  using dupe
    dupe_monic_i_int_finite_field_ops32[OF _ _ 1 mon norm, of A B]
    dupe_monic_i_int_finite_field_ops64[OF _ _ 1 mon norm, of A B]
    dupe_monic_i_int_finite_field_ops_integer[OF _ 1 mon norm, of A B]
  unfolding dupe_monic_dynamic_def by (auto split: if_splits)
end


context poly_mod
begin

definition dupe_monic_int :: "int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> 
  int poly * int poly" where
  "dupe_monic_int D H S T U = (case pdivmod_monic (Mp (T * U)) D of (q,r) \<Rightarrow>
     (Mp (S * U + H * q), Mp r))"

end

declare poly_mod.dupe_monic_int_def[code]

text \<open>Old direct proof on int poly. 
  It does not permit to change implementation.
  This proof is still present, since we did not export the uniqueness part
  from the type-based uniqueness result @{thm dupe_monic_unique} via the various relations.\<close>

lemma (in poly_mod_2) dupe_monic_int: assumes 1: "D*S + H*T =m 1" 
  and mon: "monic D" 
  and dupe: "dupe_monic_int D H S T U = (A,B)" 
  shows "A * D + B * H =m U" "B = 0 \<or> degree B < degree D" "Mp A = A" "Mp B = B" 
    "coprime_m D H \<Longrightarrow> A' * D + B' * H =m U \<Longrightarrow> B' = 0 \<or> degree B' < degree D \<Longrightarrow> Mp D = D 
    \<Longrightarrow> Mp A' = A' \<Longrightarrow> Mp B' = B' \<Longrightarrow> prime m
    \<Longrightarrow> A' = A \<and> B' = B"
proof -
  obtain Q R where div: "pdivmod_monic (Mp (T * U)) D = (Q,R)" by force
  from dupe[unfolded dupe_monic_int_def div split]
  have A: "A = Mp (S * U + H * Q)" and B: "B = Mp R" by auto
  from pdivmod_monic[OF mon div] have TU: "Mp (T * U) = D * Q + R" and 
    deg: "R = 0 \<or> degree R < degree D" by auto
  hence "Mp R = Mp (Mp (T * U) - D * Q)" by simp
  also have "\<dots> = Mp (T * U - Mp (Mp (Mp D * Q)))" unfolding Mp_Mp unfolding minus_Mp
    using minus_Mp mult_Mp by metis
  also have "\<dots> = Mp (T * U - D * Q)" by simp
  finally have r: "Mp R = Mp (T * U - D * Q)" by simp
  have "Mp (A * D + B * H) = Mp (Mp (A * D) + Mp (B * H))" by simp
  also have "Mp (A * D) = Mp ((S * U + H * Q) * D)" unfolding A by simp
  also have "Mp (B * H) = Mp (Mp R * Mp H)" unfolding B by simp
  also have "\<dots> = Mp ((T * U - D * Q) * H)" unfolding r by simp
  also have "Mp (Mp ((S * U + H * Q) * D) + Mp ((T * U - D * Q) * H)) = 
    Mp ((S * U + H * Q) * D + (T * U - D * Q) * H)" by simp
  also have "(S * U + H * Q) * D + (T * U - D * Q) * H = (D * S + H * T) * U"
    by (simp add: field_simps)
  also have "Mp \<dots> = Mp (Mp (D * S + H * T) * U)" by simp
  also have "Mp (D * S + H * T) = 1" using 1 by simp
  finally show eq: "A * D + B * H =m U" by simp
  have id: "degree_m (Mp R) = degree_m R" by simp
  have id': "degree D = degree_m D" using mon by simp
  show degB: "B = 0 \<or> degree B < degree D" using deg unfolding B id id'
    using degree_m_le[of R] by (cases "R = 0", auto)
  show Mp: "Mp A = A" "Mp B = B" unfolding A B by auto
  assume another: "A' * D + B' * H =m U" and degB': "B' = 0 \<or> degree B' < degree D" 
    and norm: "Mp A' = A'" "Mp B' = B'" and cop: "coprime_m D H" and D: "Mp D = D" 
    and prime: "prime m"
  from degB Mp D have degB: "B =m 0 \<or> degree_m B < degree_m D" by auto
  from degB' Mp D norm have degB': "B' =m 0 \<or> degree_m B' < degree_m D" by auto
  from mon D have D0: "\<not> (D =m 0)" by auto
  from prime interpret poly_mod_prime m by unfold_locales
  from another eq have "A' * D + B' * H =m A * D + B * H" by simp
  from uniqueness_poly_equality[OF cop degB' degB D0 this]
  show "A' = A \<and> B' = B" unfolding norm Mp by auto
qed


lemma coprime_bezout_coefficients:
  assumes cop: "coprime f g"
    and ext: "bezout_coefficients f g = (a, b)" 
  shows "a * f + b * g = 1"
  using assms bezout_coefficients [of f g a b]
  by simp

lemma (in poly_mod_prime_type) bezout_coefficients_mod_int: assumes f: "(F :: 'a mod_ring poly) = of_int_poly f"
  and g: "(G :: 'a mod_ring poly) = of_int_poly g" 
  and cop: "coprime_m f g" 
  and fact: "bezout_coefficients F G = (A,B)" 
  and a: "a = to_int_poly A"
  and b: "b = to_int_poly B"
  shows "f * a + g * b =m 1"
proof -
  have f[transfer_rule]: "MP_Rel f F" unfolding f MP_Rel_def by (simp add: Mp_f_representative)
  have g[transfer_rule]: "MP_Rel g G" unfolding g MP_Rel_def by (simp add: Mp_f_representative)
  have [transfer_rule]: "MP_Rel a A" unfolding a MP_Rel_def by (rule Mp_to_int_poly)
  have [transfer_rule]: "MP_Rel b B" unfolding b MP_Rel_def by (rule Mp_to_int_poly)
  from cop have "coprime F G" using coprime_MP_Rel[unfolded rel_fun_def] f g by auto
  from coprime_bezout_coefficients [OF this fact]
  have "A * F + B * G = 1" .
  from this [untransferred]
  show ?thesis by (simp add: ac_simps)
qed
  
definition bezout_coefficients_i :: "'i arith_ops_record \<Rightarrow> 'i list \<Rightarrow> 'i list \<Rightarrow> 'i list \<times> 'i list" where
  "bezout_coefficients_i ff_ops f g = fst (euclid_ext_poly_i ff_ops f g)"

definition euclid_ext_poly_mod_main :: "int \<Rightarrow> 'a arith_ops_record \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
  "euclid_ext_poly_mod_main p ff_ops f g = (case bezout_coefficients_i ff_ops (of_int_poly_i ff_ops f) (of_int_poly_i ff_ops g) of 
      (a,b) \<Rightarrow> (to_int_poly_i ff_ops a, to_int_poly_i ff_ops b))" 

definition euclid_ext_poly_dynamic :: "int \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
  "euclid_ext_poly_dynamic p = ( 
    if p \<le> 65535 
    then euclid_ext_poly_mod_main p (finite_field_ops32 (uint32_of_int p))
    else if p \<le> 4294967295
    then euclid_ext_poly_mod_main p (finite_field_ops64 (uint64_of_int p))
    else euclid_ext_poly_mod_main p (finite_field_ops_integer (integer_of_int p)))" 
  
context prime_field_gen
begin
lemma bezout_coefficients_i[transfer_rule]: 
  "(poly_rel ===> poly_rel ===> rel_prod poly_rel poly_rel)
     (bezout_coefficients_i ff_ops) bezout_coefficients"
  unfolding bezout_coefficients_i_def bezout_coefficients_def
  by transfer_prover

lemma bezout_coefficients_i_sound: assumes f: "f' = of_int_poly_i ff_ops f" "Mp f = f"
  and g: "g' = of_int_poly_i ff_ops g" "Mp g = g"  
  and cop: "coprime_m f g" 
  and res: "bezout_coefficients_i ff_ops f' g' = (a',b')" 
  and a: "a = to_int_poly_i ff_ops a'"
  and b: "b = to_int_poly_i ff_ops b'"
shows "f * a + g * b =m 1"
  "Mp a = a" "Mp b = b" 
proof -
  from f have f': "f' = of_int_poly_i ff_ops (Mp f)" by simp
  define f'' where "f'' \<equiv> of_int_poly (Mp f) :: 'a mod_ring poly"
  have f'': "f'' = of_int_poly f" unfolding f''_def f by simp
  have rel_f[transfer_rule]: "poly_rel f' f''" 
    by (rule poly_rel_of_int_poly[OF f'], simp add: f'' f)
  from g have g': "g' = of_int_poly_i ff_ops (Mp g)" by simp
  define g'' where "g'' \<equiv> of_int_poly (Mp g) :: 'a mod_ring poly"
  have g'': "g'' = of_int_poly g" unfolding g''_def g by simp
  have rel_g[transfer_rule]: "poly_rel g' g''"     
    by (rule poly_rel_of_int_poly[OF g'], simp add: g'' g)
  obtain a'' b'' where eucl: "bezout_coefficients f'' g'' = (a'',b'')" by force
  from bezout_coefficients_i[unfolded rel_fun_def rel_prod_conv, rule_format, OF rel_f rel_g,
    unfolded res split eucl]
  have rel[transfer_rule]: "poly_rel a' a''" "poly_rel b' b''" by auto
  with to_int_poly_i have a: "a = to_int_poly a''" 
    and b: "b = to_int_poly b''" unfolding a b by auto
  from bezout_coefficients_mod_int [OF f'' g'' cop eucl a b]
  show "f * a + g * b =m 1" .
  show "Mp a = a" "Mp b = b" unfolding a b by (auto simp: Mp_to_int_poly)
qed

lemma euclid_ext_poly_mod_main: assumes cop: "coprime_m f g" 
  and f: "Mp f = f" and g: "Mp g = g" 
  and res: "euclid_ext_poly_mod_main m ff_ops f g = (a,b)" 
shows "f * a + g * b =m 1" 
  "Mp a = a" "Mp b = b" 
proof -
  obtain a' b' where res': "bezout_coefficients_i ff_ops (of_int_poly_i ff_ops f) 
    (of_int_poly_i ff_ops g) = (a', b')" by force
  show "f * a + g * b =m 1" 
  "Mp a = a" "Mp b = b"
    by (insert bezout_coefficients_i_sound[OF refl f refl g cop res']
    res [unfolded euclid_ext_poly_mod_main_def res'], auto)
qed

end

context poly_mod_prime begin

lemmas euclid_ext_poly_mod_integer = prime_field_gen.euclid_ext_poly_mod_main
  [OF prime_field.prime_field_finite_field_ops_integer,
  unfolded prime_field_def mod_ring_locale_def poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty]

lemmas euclid_ext_poly_mod_uint32 = prime_field_gen.euclid_ext_poly_mod_main
  [OF prime_field.prime_field_finite_field_ops32,
  unfolded prime_field_def mod_ring_locale_def poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty]

lemmas euclid_ext_poly_mod_uint64 = prime_field_gen.euclid_ext_poly_mod_main[OF prime_field.prime_field_finite_field_ops64,
  unfolded prime_field_def mod_ring_locale_def poly_mod_type_simps, internalize_sort "'a :: prime_card", OF type_to_set, unfolded remove_duplicate_premise, cancel_type_definition, OF non_empty]

lemma euclid_ext_poly_dynamic:
  assumes cop: "coprime_m f g" and f: "Mp f = f" and g: "Mp g = g"
    and res: "euclid_ext_poly_dynamic p f g = (a,b)" 
  shows "f * a + g * b =m 1" 
    "Mp a = a" "Mp b = b"
  using euclid_ext_poly_mod_integer[OF cop f g, of p a b]
    euclid_ext_poly_mod_uint32[OF _ cop f g, of p a b]
    euclid_ext_poly_mod_uint64[OF _ cop f g, of p a b]
    res[unfolded euclid_ext_poly_dynamic_def] by (auto split: if_splits)

end

lemma range_sum_prod: assumes xy: "x \<in> {0..<q}" "(y :: int) \<in> {0..<p}" 
  shows "x + q * y \<in> {0..<p * q}"
proof -
  {
    fix x q :: int
    have "x \<in> {0 ..< q} \<longleftrightarrow> 0 \<le> x \<and> x < q" by auto
  } note id = this
  from xy have 0: "0 \<le> x + q * y" by auto
  have "x + q * y \<le> q - 1 + q * y" using xy by simp
  also have "q * y \<le> q * (p - 1)" using xy by auto
  finally have "x + q * y \<le> q - 1 + q * (p - 1)" by auto
  also have "\<dots> = p * q - 1" by (simp add: field_simps)
  finally show ?thesis using 0 by auto
qed

context 
  fixes C :: "int poly" 
begin

context
  fixes p :: int and S T D1 H1 :: "int poly" 
begin
(* The linear lifting is implemented for ease of provability.
   Aim: show uniqueness of factorization *)
fun linear_hensel_main where 
  "linear_hensel_main (Suc 0) = (D1,H1)" 
| "linear_hensel_main (Suc n) = (
      let (D,H) = linear_hensel_main n;
        q = p ^ n;
        U = poly_mod.Mp p (sdiv_poly (C - D * H) q);   \<comment> \<open>\<open>H2 + H3\<close>\<close>
        (A,B) = poly_mod.dupe_monic_int p D1 H1 S T U
      in (D + smult q B, H + smult q A)) \<comment> \<open>\<open>H4\<close>\<close>"
    | "linear_hensel_main 0 = (D1,H1)" 

lemma linear_hensel_main: assumes 1: "poly_mod.eq_m p (D1 * S + H1 * T) 1" 
  and equiv: "poly_mod.eq_m p (D1 * H1) C"
  and monD1: "monic D1" 
  and normDH1: "poly_mod.Mp p D1 = D1" "poly_mod.Mp p H1 = H1"
  and res: "linear_hensel_main n = (D,H)" 
  and n: "n \<noteq> 0" 
  and prime: "prime p" \<comment> \<open>\<open>p > 1\<close> suffices if one does not need uniqueness\<close>
  and cop: "poly_mod.coprime_m p D1 H1"
  shows "poly_mod.eq_m (p^n) (D * H) C
    \<and> monic D
    \<and> poly_mod.eq_m p D D1 \<and> poly_mod.eq_m p H H1
    \<and> poly_mod.Mp (p^n) D = D
    \<and> poly_mod.Mp (p^n) H = H \<and> 
    (poly_mod.eq_m (p^n) (D' * H') C \<longrightarrow>
     poly_mod.eq_m p D' D1 \<longrightarrow> 
     poly_mod.eq_m p H' H1 \<longrightarrow>
     poly_mod.Mp (p^n) D' = D' \<longrightarrow>
     poly_mod.Mp (p^n) H' = H' \<longrightarrow> monic D' \<longrightarrow> D' = D \<and> H' = H)
     " 
  using res n 
proof (induct n arbitrary: D H D' H')
  case (Suc n D' H' D'' H'')
  show ?case
  proof (cases "n = 0")
    case True
    with Suc equiv monD1 normDH1 show ?thesis by auto
  next
    case False
    hence n: "n \<noteq> 0" by auto
    let ?q = "p^n"
    let ?pq = "p * p^n"
    from prime have p: "p > 1" using prime_gt_1_int by force
    from n p have q: "?q > 1" by auto
    from n p have pq: "?pq > 1" by (metis power_gt1_lemma)
    interpret p: poly_mod_2 p using p unfolding poly_mod_2_def .
    interpret q: poly_mod_2 ?q using q unfolding poly_mod_2_def .
    interpret pq: poly_mod_2 ?pq using pq unfolding poly_mod_2_def .
    obtain D H where rec: "linear_hensel_main n = (D,H)" by force
    obtain V where V: "sdiv_poly (C - D * H) ?q = V" by force
    obtain U where U: "p.Mp (sdiv_poly (C - D * H) ?q) = U" by auto
    obtain A B where dupe: "p.dupe_monic_int D1 H1 S T U = (A,B)" by force
    note IH = Suc(1)[OF rec n]
    from IH
    have CDH: "q.eq_m (D * H) C"
      and monD: "monic D"
      and p_eq: "p.eq_m D D1" "p.eq_m H H1"
      and norm: "q.Mp D = D" "q.Mp H = H" by auto
    from n obtain k where n: "n = Suc k" by (cases n, auto)
    have qq: "?q * ?q = ?pq * p^k" unfolding n by simp
    from Suc(2)[unfolded n linear_hensel_main.simps, folded n, unfolded rec split Let_def U dupe]
    have D': "D' = D + smult ?q B" and H': "H' = H + smult ?q A" by auto
    note dupe = p.dupe_monic_int[OF 1 monD1 dupe]
    from CDH have "q.Mp C - q.Mp (D * H) = 0" by simp
    hence "q.Mp (q.Mp C - q.Mp (D * H)) = 0" by simp
    hence "q.Mp (C - D*H) = 0" by simp
    from q.Mp_0_smult_sdiv_poly[OF this] have CDHq: "smult ?q (sdiv_poly (C - D * H) ?q) = C - D * H" .
    have ADBHU: "p.eq_m (A * D + B * H) U" using p_eq dupe(1) 
      by (metis (mono_tags, lifting) p.mult_Mp(2) poly_mod.plus_Mp)
    have "pq.Mp (D' * H') = pq.Mp ((D + smult ?q B) * (H + smult ?q A))" 
      unfolding D' H' by simp
    also have "(D + smult ?q B) * (H + smult ?q A) = (D * H + smult ?q (A * D + B * H)) + smult (?q * ?q) (A * B)" 
      by (simp add: field_simps smult_distribs)
    also have "pq.Mp \<dots> = pq.Mp (D * H + pq.Mp (smult ?q (A * D + B * H)) + pq.Mp (smult (?q * ?q) (A * B)))"
      using pq.plus_Mp by metis
    also have "pq.Mp (smult (?q * ?q) (A * B)) = 0" unfolding qq
      by (metis pq.Mp_smult_m_0 smult_smult)
    finally have DH': "pq.Mp (D' * H') = pq.Mp (D * H + pq.Mp (smult ?q (A * D + B * H)))" by simp
    also have "pq.Mp (smult ?q (A * D + B * H)) = pq.Mp (smult ?q U)"
      using p.Mp_lift_modulus[OF ADBHU, of ?q] by simp
    also have "\<dots> = pq.Mp (C - D * H)" 
      unfolding arg_cong[OF CDHq, of pq.Mp, symmetric] U[symmetric] V
      by (rule p.Mp_lift_modulus[of _ _ ?q], auto) 
    also have "pq.Mp (D * H + pq.Mp (C - D * H)) = pq.Mp C" by simp
    finally have CDH: "pq.eq_m C (D' * H')" by simp

    have deg: "degree D1 = degree D" using p_eq(1) monD1 monD
      by (metis p.monic_degree_m)
    have mon: "monic D'" unfolding D' using dupe(2) monD unfolding deg by (rule monic_smult_add_small)
    have normD': "pq.Mp D' = D'" 
      unfolding D' pq.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq coeff_smult 
    proof 
      fix i
      from norm(1) dupe(4) have "coeff D i \<in> {0..<?q}" "coeff B i \<in> {0..<p}" 
        unfolding p.Mp_ident_iff q.Mp_ident_iff by auto
      thus "coeff D i + ?q * coeff B i \<in> {0..< ?pq}" by (rule range_sum_prod)
    qed
    have normH': "pq.Mp H' = H'" 
      unfolding H' pq.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq coeff_smult 
    proof 
      fix i
      from norm(2) dupe(3) have "coeff H i \<in> {0..<?q}" "coeff A i \<in> {0..<p}" 
        unfolding p.Mp_ident_iff q.Mp_ident_iff by auto
      thus "coeff H i + ?q * coeff A i \<in> {0..< ?pq}" by (rule range_sum_prod)
    qed
    have eq: "p.eq_m D D'" "p.eq_m H H'" unfolding D' H' n 
        poly_eq_iff p.Mp_coeff p.M_def by (auto simp: field_simps)
    with p_eq have eq: "p.eq_m D' D1" "p.eq_m H' H1" by auto
    {
      assume CDH'': "pq.eq_m C (D'' * H'')" 
        and DH1'': "p.eq_m D1 D''" "p.eq_m H1 H''"
        and norm'': "pq.Mp D'' = D''" "pq.Mp H'' = H''" 
        and monD'': "monic D''" 
      from q.Dp_Mp_eq[of D''] obtain d B' where D'': "D'' = q.Mp d + smult ?q B'" by auto
      from q.Dp_Mp_eq[of H''] obtain h A' where H'': "H'' = q.Mp h + smult ?q A'" by auto
      {
        fix A B
        assume *: "pq.Mp (q.Mp A + smult ?q B) = q.Mp A + smult ?q B" 
        have "p.Mp B = B" unfolding p.Mp_ident_iff
        proof 
          fix i
          from arg_cong[OF *, of "\<lambda> f. coeff f i", unfolded pq.Mp_coeff pq.M_def]
          have "coeff (q.Mp A + smult ?q B) i \<in> {0 ..< ?pq}" using "*" pq.Mp_ident_iff by blast 
          hence sum: "coeff (q.Mp A) i + ?q * coeff B i \<in> {0 ..< ?pq}" by auto
          have "q.Mp (q.Mp A) = q.Mp A" by auto
          from this[unfolded q.Mp_ident_iff] have A: "coeff (q.Mp A) i \<in> {0 ..< p^n}" by auto
          {
            assume "coeff B i < 0" hence "coeff B i \<le> -1" by auto
            from mult_left_mono[OF this, of ?q] q.m1 have "?q * coeff B i \<le> -?q" by simp
            with A sum have False by auto
          } hence "coeff B i \<ge> 0" by force
          moreover
          {
            assume "coeff B i \<ge> p" 
            from mult_left_mono[OF this, of ?q] q.m1 have "?q * coeff B i \<ge> ?pq" by simp
            with A sum have False by auto
          } hence "coeff B i < p" by force
          ultimately show "coeff B i \<in> {0 ..< p}" by auto
        qed
      } note norm_convert = this
      from norm_convert[OF norm''(1)[unfolded D'']] have normB': "p.Mp B' = B'" . 
      from norm_convert[OF norm''(2)[unfolded H'']] have normA': "p.Mp A' = A'" . 
      let ?d = "q.Mp d" 
      let ?h = "q.Mp h"
      {
        assume lt: "degree ?d < degree B'"
        hence eq: "degree D'' = degree B'" unfolding D'' using q.m1 p.m1
          by (subst degree_add_eq_right, auto)
        from lt have [simp]: "coeff ?d (degree B') = 0" by (rule coeff_eq_0)
        from monD''[unfolded eq, unfolded D'', simplified] False q.m1 lt have False
          by (metis mod_mult_self1_is_0 poly_mod.M_def q.M_1 zero_neq_one)
      }
      hence deg_dB': "degree ?d \<ge> degree B'" by presburger
      {
        assume eq: "degree ?d = degree B'" and B': "B' \<noteq> 0"  
        let ?B = "coeff B' (degree B')" 
        from normB'[unfolded p.Mp_ident_iff, rule_format, of "degree B'"] B'
        have "?B \<in> {0..<p} - {0}" by simp
        hence bnds: "?B > 0" "?B < p" by auto
        have degD'': "degree D'' \<le> degree ?d" unfolding D'' using eq by (simp add: degree_add_le)
        have "?q * ?B \<ge> 1 * 1" by (rule mult_mono, insert q.m1 bnds, auto) 
        moreover have "coeff D'' (degree ?d) = 1 + ?q * ?B" using monD''
          unfolding D'' using eq 
          by (metis D'' coeff_smult monD'' plus_poly.rep_eq poly_mod.Dp_Mp_eq 
              poly_mod.degree_m_eq_monic poly_mod.plus_Mp(1) 
              q.Mp_smult_m_0 q.m1 q.monic_Mp q.plus_Mp(2))
        ultimately have gt: "coeff D'' (degree ?d) > 1" by auto
        hence "coeff D'' (degree ?d) \<noteq> 0" by auto
        hence "degree D'' \<ge> degree ?d" by (rule le_degree)
        with degree_add_le_max[of ?d "smult ?q B'", folded D''] eq 
        have deg: "degree D'' = degree ?d" using degD'' by linarith
        from gt[folded this] have "\<not> monic D''" by auto
        with monD'' have False by auto
      }
      with deg_dB' have deg_dB2: "B' = 0 \<or> degree B' < degree ?d" by fastforce
      have d: "q.Mp D'' = ?d" unfolding D''
        by (metis add.right_neutral poly_mod.Mp_smult_m_0 poly_mod.plus_Mp)
      have h: "q.Mp H'' = ?h" unfolding H''
        by (metis add.right_neutral poly_mod.Mp_smult_m_0 poly_mod.plus_Mp)
      from CDH'' have "pq.Mp C = pq.Mp (D'' * H'')" by simp
      from arg_cong[OF this, of q.Mp] 
      have "q.Mp C = q.Mp (D'' * H'')"
        using p.m1 q.Mp_product_modulus by auto
      also have "\<dots> = q.Mp (q.Mp D'' * q.Mp H'')" by simp
      also have "\<dots> = q.Mp (?d * ?h)" unfolding d h by simp
      finally have eqC: "q.eq_m (?d * ?h) C" by auto
      have d1: "p.eq_m ?d D1" unfolding d[symmetric] using DH1''
        using assms(4) n p.Mp_product_modulus p.m1 by auto
      have h1: "p.eq_m ?h H1" unfolding h[symmetric] using DH1''
        using assms(5) n p.Mp_product_modulus p.m1 by auto
      have mond: "monic (q.Mp d)" using monD'' deg_dB2 unfolding D''
        using d q.monic_Mp[OF monD''] by simp
      from eqC d1 h1 mond IH[of "q.Mp d" "q.Mp h"] have IH: "?d = D" "?h = H" by auto
      from deg_dB2[unfolded IH] have degB': "B' = 0 \<or> degree B' < degree D" by auto
      from IH have D'': "D'' = D + smult ?q B'" and H'': "H'' = H + smult ?q A'" 
        unfolding D'' H'' by auto
      have "pq.Mp (D'' * H'') = pq.Mp (D' * H')" using CDH'' CDH  by simp
      also have "pq.Mp (D'' * H'') = pq.Mp ((D + smult ?q B') * (H + smult ?q A'))" 
        unfolding D'' H'' by simp
      also have "(D + smult ?q B') * (H + smult ?q A') = (D * H + smult ?q (A' * D + B' * H)) + smult (?q * ?q) (A' * B')" 
        by (simp add: field_simps smult_distribs)
      also have "pq.Mp \<dots> = pq.Mp (D * H + pq.Mp (smult ?q (A' * D + B' * H)) + pq.Mp (smult (?q * ?q) (A' * B')))"
        using pq.plus_Mp by metis
      also have "pq.Mp (smult (?q * ?q) (A' * B')) = 0" unfolding qq
        by (metis pq.Mp_smult_m_0 smult_smult)
      finally have "pq.Mp (D * H + pq.Mp (smult ?q (A' * D + B' * H))) 
        = pq.Mp (D * H + pq.Mp (smult ?q (A * D + B * H)))" unfolding DH' by simp
      hence "pq.Mp (smult ?q (A' * D + B' * H)) = pq.Mp (smult ?q (A * D + B * H))"
        by (metis (no_types, lifting) add_diff_cancel_left' poly_mod.minus_Mp(1) poly_mod.plus_Mp(2))
      hence "p.Mp (A' * D + B' * H) = p.Mp (A * D + B * H)" unfolding poly_eq_iff p.Mp_coeff pq.Mp_coeff coeff_smult
        by (insert p, auto simp: p.M_def pq.M_def)
      hence "p.Mp (A' * D1 + B' * H1) = p.Mp (A * D1 + B * H1)" using p_eq
        by (metis p.mult_Mp(2) poly_mod.plus_Mp)
      hence eq: "p.eq_m (A' * D1 + B' * H1) U" using dupe(1) by auto
      have "degree D = degree D1" using monD monD1 
          arg_cong[OF p_eq(1), of degree] 
          p.degree_m_eq_monic[OF _ p.m1] by auto
      hence "B' = 0 \<or> degree B' < degree D1" using degB' by simp
      from dupe(5)[OF cop eq this normDH1(1) normA' normB' prime] have "A' = A" "B' = B" by auto
      hence "D'' = D'" "H'' = H'" unfolding D'' H'' D' H' by auto
    }
    thus ?thesis using normD' normH' CDH mon eq by simp
  qed
qed simp
end
end

definition linear_hensel_binary :: "int \<Rightarrow> nat \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
  "linear_hensel_binary p n C D H = (let
     (S,T) = euclid_ext_poly_dynamic p D H
     in linear_hensel_main C p S T D H n)"

lemma (in poly_mod_prime) unique_hensel_binary: 
  assumes prime: "prime p"
  and cop: "coprime_m D H" and eq: "eq_m (D * H) C"
  and normalized_input: "Mp D = D" "Mp H = H"
  and monic_input: "monic D" 
  and n: "n \<noteq> 0" 
shows "\<exists>! (D',H'). \<comment> \<open>\<open>D'\<close>, \<open>H'\<close> are computed via \<open>linear_hensel_binary\<close>\<close>
      poly_mod.eq_m (p^n) (D' * H') C \<comment> \<open>the main result: equivalence mod \<open>p^n\<close>\<close>
    \<and> monic D' \<comment> \<open>monic output\<close>
    \<and> eq_m D D' \<and> eq_m H H' \<comment> \<open>apply \<open>`mod p`\<close> on \<open>D'\<close> and \<open>H'\<close> yields \<open>D\<close> and \<open>H\<close> again\<close>
    \<and> poly_mod.Mp (p^n) D' = D' \<and> poly_mod.Mp (p^n) H' = H' \<comment> \<open>output is normalized\<close>"
proof -
  obtain D' H' where hensel_result: "linear_hensel_binary p n C D H = (D',H')" by force
  from m1 have p: "p > 1" .
  obtain S T where ext: "euclid_ext_poly_dynamic p D H = (S,T)" by force
  obtain D1 H1 where main: "linear_hensel_main C p S T D H n = (D1,H1)" by force
  from hensel_result[unfolded linear_hensel_binary_def ext split Let_def main]
  have id: "D1 = D'" "H1 = H'" by auto
  note eucl = euclid_ext_poly_dynamic [OF cop normalized_input ext]
  from linear_hensel_main [OF eucl(1)
    eq monic_input normalized_input main [unfolded id] n prime cop]
  show ?thesis by (intro ex1I, auto)
qed

(* The quadratic lifting is implemented more efficienty.
   Aim: compute factorization *)
context
  fixes C :: "int poly"
begin

lemma hensel_step_main: assumes 
      one_q: "poly_mod.eq_m q (D * S + H * T) 1"
  and one_p: "poly_mod.eq_m p (D1 * S1 + H1 * T1) 1"
  and CDHq: "poly_mod.eq_m q C (D * H)"
  and D1D: "poly_mod.eq_m p D1 D" 
  and H1H: "poly_mod.eq_m p H1 H" 
  and S1S: "poly_mod.eq_m p S1 S" 
  and T1T: "poly_mod.eq_m p T1 T" 
  and mon: "monic D" 
  and mon1: "monic D1" 
  and q: "q > 1" 
  and p: "p > 1" 
  and D1: "poly_mod.Mp p D1 = D1" 
  and H1: "poly_mod.Mp p H1 = H1"
  and S1: "poly_mod.Mp p S1 = S1" 
  and T1: "poly_mod.Mp p T1 = T1"
  and D: "poly_mod.Mp q D = D" 
  and H: "poly_mod.Mp q H = H"
  and S: "poly_mod.Mp q S = S" 
  and T: "poly_mod.Mp q T = T"
  and U1: "U1 = poly_mod.Mp p (sdiv_poly (C - D * H) q)"
  and dupe1: "dupe_monic_dynamic p D1 H1 S1 T1 U1 = (A,B)" 
  and D': "D' = D + smult q B"
  and H': "H' = H + smult q A" 
  and U2: "U2 = poly_mod.Mp q (sdiv_poly (S*D' + T*H' - 1) p)" 
  and dupe2: "dupe_monic_dynamic q D H S T U2 = (A',B')" 
  and rq: "r = p * q" 
  and pq: "p dvd q"  
  and S': "S' = poly_mod.Mp r (S - smult p A')"
  and T': "T' = poly_mod.Mp r (T - smult p B')" 
shows "poly_mod.eq_m r C (D' * H')" 
  "poly_mod.Mp r D' = D'" 
  "poly_mod.Mp r H' = H'" 
  "poly_mod.Mp r S' = S'" 
  "poly_mod.Mp r T' = T'" 
  "poly_mod.eq_m r (D' * S' + H' * T') 1" 
  "monic D'" 
  unfolding rq
proof -
  from pq obtain k where qp: "q = p * k" unfolding dvd_def by auto
  from arg_cong[OF qp, of sgn] q p have k0: "k > 0" unfolding sgn_mult by (auto simp: sgn_1_pos)
  from qp have qq: "q * q = p * q * k" by auto
  let ?r = "p * q" 
  interpret poly_mod_2 p by (standard, insert p, auto)
  interpret q: poly_mod_2 q by (standard, insert q, auto)
  from p q have r: "?r > 1" by (simp add: less_1_mult)
  interpret r: poly_mod_2 ?r using r unfolding poly_mod_2_def .  
  have Mp_conv: "Mp (q.Mp x) = Mp x" for x unfolding qp
    by (rule Mp_product_modulus[OF refl k0])
  from arg_cong[OF CDHq, of Mp, unfolded Mp_conv] have "Mp C = Mp (Mp D * Mp H)"
    by simp
  also have "Mp D = Mp D1" using D1D by simp
  also have "Mp H = Mp H1" using H1H by simp
  finally have CDHp: "eq_m C (D1 * H1)" by simp
  have "Mp U1 = U1" unfolding U1 by simp
  note dupe1 = dupe_monic_dynamic[OF dupe1 one_p mon1 D1 H1 S1 T1 this]
  have "q.Mp U2 = U2" unfolding U2 by simp
  note dupe2 = q.dupe_monic_dynamic[OF dupe2 one_q mon D H S T this]
  from CDHq have "q.Mp C - q.Mp (D * H) = 0" by simp
  hence "q.Mp (q.Mp C - q.Mp (D * H)) = 0" by simp
  hence "q.Mp (C - D*H) = 0" by simp
  from q.Mp_0_smult_sdiv_poly[OF this] have CDHq: "smult q (sdiv_poly (C - D * H) q) = C - D * H" .
  {
    fix A B
    have "Mp (A * D1 + B * H1) = Mp (Mp (A * D1) + Mp (B * H1))" by simp
    also have "Mp (A * D1) = Mp (A * Mp D1)" by simp
    also have "\<dots> = Mp (A * D)" unfolding D1D by simp
    also have "Mp (B * H1) = Mp (B * Mp H1)" by simp
    also have "\<dots> = Mp (B * H)" unfolding H1H by simp
    finally have "Mp (A * D1 + B * H1) = Mp (A * D + B * H)" by simp
  } note D1H1 = this
  have "r.Mp (D' * H') = r.Mp ((D + smult q B) * (H + smult q A))" 
    unfolding D' H' by simp
  also have "(D + smult q B) * (H + smult q A) = (D * H + smult q (A * D + B * H)) + smult (q * q) (A * B)" 
    by (simp add: field_simps smult_distribs)
  also have "r.Mp \<dots> = r.Mp (D * H + r.Mp (smult q (A * D + B * H)) + r.Mp (smult (q * q) (A * B)))"
    using r.plus_Mp by metis
  also have "r.Mp (smult (q * q) (A * B)) = 0" unfolding qq
    by (metis r.Mp_smult_m_0 smult_smult)
  also have "r.Mp (smult q (A * D + B * H)) = r.Mp (smult q U1)" 
  proof (rule Mp_lift_modulus[of _ _ q])
    show "Mp (A * D + B * H) = Mp U1" using dupe1(1) unfolding D1H1 by simp
  qed
  also have "\<dots> = r.Mp (C - D * H)" 
    unfolding arg_cong[OF CDHq, of r.Mp, symmetric]
    using Mp_lift_modulus[of U1 "sdiv_poly (C - D * H) q" q] unfolding U1 
    by simp
  also have "r.Mp (D * H + r.Mp (C - D * H) + 0) = r.Mp C" by simp
  finally show CDH: "r.eq_m C (D' * H')" by simp
  have "degree D1 = degree (Mp D1)" using mon1 by simp
  also have "\<dots> = degree D" unfolding D1D using mon by simp
  finally have deg_eq: "degree D1 = degree D" by simp
  show mon: "monic D'" unfolding D' using dupe1(2) mon unfolding deg_eq by (rule monic_smult_add_small)
  have "Mp (S * D' + T * H' - 1) = Mp (Mp (D * S + H * T) + (smult q (S * B + T * A) - 1))" 
    unfolding D' H' plus_Mp by (simp add: field_simps smult_distribs)
  also have "Mp (D * S + H * T) = Mp (Mp (D1 * Mp S) + Mp (H1 * Mp T))" using  D1H1[of S T] by (simp add: ac_simps)
  also have "\<dots> = 1" using one_p unfolding S1S[symmetric] T1T[symmetric] by simp
  also have "Mp (1 + (smult q (S * B + T * A) - 1)) = Mp (smult q (S * B + T * A))" by simp
  also have "\<dots> = 0" unfolding qp by (metis Mp_smult_m_0 smult_smult)
  finally have "Mp (S * D' + T * H' - 1) = 0" .
  from Mp_0_smult_sdiv_poly[OF this] 
  have SDTH: "smult p (sdiv_poly (S * D' + T * H' - 1) p) = S * D' + T * H' - 1" .
  have swap: "q * p = p * q" by simp
  have "r.Mp (D' * S' + H' * T') = 
    r.Mp ((D + smult q B) * (S - smult p A') + (H + smult q A) * (T - smult p B'))"
    unfolding D' S' H' T' rq using r.plus_Mp r.mult_Mp by metis
  also have "\<dots> = r.Mp ((D * S + H * T +
    smult q (B * S + A * T)) - smult p (A' * D + B' * H) - smult ?r (A * B' + B * A'))" 
    by (simp add: field_simps smult_distribs)
  also have "\<dots> = r.Mp ((D * S + H * T +
    smult q (B * S + A * T)) - r.Mp (smult p (A' * D + B' * H)) - r.Mp (smult ?r (A * B' + B * A')))"
    using r.plus_Mp r.minus_Mp by metis
  also have "r.Mp (smult ?r (A * B' + B * A')) = 0" by simp
  also have "r.Mp (smult p (A' * D + B' * H)) = r.Mp (smult p U2)" 
    using q.Mp_lift_modulus[OF dupe2(1), of p] unfolding swap .
  also have "\<dots> = r.Mp (S * D' + T * H' - 1)" 
    unfolding arg_cong[OF SDTH, of r.Mp, symmetric] 
    using q.Mp_lift_modulus[of U2 "sdiv_poly (S * D' + T * H' - 1) p" p] 
    unfolding U2 swap by simp
  also have "S * D' + T * H' - 1 = S * D + T * H + smult q (B * S + A * T) - 1" 
    unfolding D' H' by (simp add: field_simps smult_distribs)
  also have "r.Mp (D * S + H * T + smult q (B * S + A * T) -
     r.Mp (S * D + T * H + smult q (B * S + A * T) - 1) - 0) 
       = 1" by simp
  finally show 1: "r.eq_m (D' * S' + H' * T') 1" by simp
  show D': "r.Mp D' = D'" unfolding D' r.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq
    coeff_smult 
  proof 
    fix n
    from D dupe1(4) have "coeff D n \<in> {0..<q}" "coeff B n \<in> {0..<p}" 
      unfolding q.Mp_ident_iff Mp_ident_iff by auto
    thus "coeff D n + q * coeff B n \<in> {0..<?r}" by (metis range_sum_prod)
  qed
  show H': "r.Mp H' = H'" unfolding H' r.Mp_ident_iff poly_mod.Mp_coeff plus_poly.rep_eq
    coeff_smult 
  proof 
    fix n
    from H dupe1(3) have "coeff H n \<in> {0..<q}" "coeff A n \<in> {0..<p}" 
      unfolding q.Mp_ident_iff Mp_ident_iff by auto
    thus "coeff H n + q * coeff A n \<in> {0..<?r}" by (metis range_sum_prod)
  qed
  show "poly_mod.Mp ?r S' = S'" "poly_mod.Mp ?r T' = T'" 
    unfolding S' T' rq by auto
qed

definition hensel_step where 
  "hensel_step p q S1 T1 D1 H1 S T D H = (
      let U = poly_mod.Mp p (sdiv_poly (C - D * H) q); \<comment> \<open>\<open>Z2 and Z3\<close>\<close>        
        (A,B) = dupe_monic_dynamic p D1 H1 S1 T1 U;
        D' = D + smult q B; \<comment> \<open>\<open>Z4\<close>\<close>
        H' = H + smult q A;
        U' = poly_mod.Mp q (sdiv_poly (S*D' + T*H' - 1) p); \<comment> \<open>\<open>Z5 + Z6\<close>\<close>
        (A',B') = dupe_monic_dynamic q D H S T U';
        q' = p * q;
        S' = poly_mod.Mp q' (S - smult p A'); \<comment> \<open>\<open>Z7\<close>\<close>
        T' = poly_mod.Mp q' (T - smult p B')
     in (S',T',D',H'))" 

definition "quadratic_hensel_step q S T D H = hensel_step q q S T D H S T D H" 

lemma quadratic_hensel_step_code[code]:
  "quadratic_hensel_step q S T D H =
    (let dupe = dupe_monic_dynamic q D H S T; \<comment> \<open>this will share the conversions of \<open>D H S T\<close>\<close>
         U = poly_mod.Mp q (sdiv_poly (C - D * H) q); 
         (A, B) = dupe U; 
         D' = D + Polynomial.smult q B;
         H' = H + Polynomial.smult q A; 
         U' = poly_mod.Mp q (sdiv_poly (S * D' + T * H' - 1) q); 
         (A', B') = dupe U';
         q' = q * q; 
         S' = poly_mod.Mp q' (S - Polynomial.smult q A'); 
         T' = poly_mod.Mp q' (T - Polynomial.smult q B')
           in (S', T', D', H'))" 
  unfolding quadratic_hensel_step_def[unfolded hensel_step_def] Let_def ..

definition simple_quadratic_hensel_step where \<comment> \<open>do not compute new values \<open>S'\<close> and \<open>T'\<close>\<close>
  "simple_quadratic_hensel_step q S T D H = (
      let U = poly_mod.Mp q (sdiv_poly (C - D * H) q); \<comment> \<open>\<open>Z2 + Z3\<close>\<close>
        (A,B) = dupe_monic_dynamic q D H S T U;
        D' = D + smult q B; \<comment> \<open>\<open>Z4\<close>\<close>
        H' = H + smult q A
     in (D',H'))" 

lemma hensel_step: assumes step: "hensel_step p q S1 T1 D1 H1 S T D H = (S', T', D', H')"
  and one_p: "poly_mod.eq_m p (D1 * S1 + H1 * T1) 1"
  and mon1: "monic D1" 
  and p: "p > 1" 
  and CDHq: "poly_mod.eq_m q C (D * H)"
  and one_q: "poly_mod.eq_m q (D * S + H * T) 1"
  and D1D: "poly_mod.eq_m p D1 D"
  and H1H: "poly_mod.eq_m p H1 H"
  and S1S: "poly_mod.eq_m p S1 S"
  and T1T: "poly_mod.eq_m p T1 T"
  and mon: "monic D" 
  and q: "q > 1" 
  and D1: "poly_mod.Mp p D1 = D1" 
  and H1: "poly_mod.Mp p H1 = H1"
  and S1: "poly_mod.Mp p S1 = S1" 
  and T1: "poly_mod.Mp p T1 = T1"
  and D: "poly_mod.Mp q D = D" 
  and H: "poly_mod.Mp q H = H"
  and S: "poly_mod.Mp q S = S" 
  and T: "poly_mod.Mp q T = T"
  and rq: "r = p * q" 
  and pq: "p dvd q"  
shows 
  "poly_mod.eq_m r C (D' * H')" 
  "poly_mod.eq_m r (D' * S' + H' * T') 1"
  "poly_mod.Mp r D' = D'" 
  "poly_mod.Mp r H' = H'" 
  "poly_mod.Mp r S' = S'" 
  "poly_mod.Mp r T' = T'" 
  "poly_mod.Mp p D1 = poly_mod.Mp p D'" 
  "poly_mod.Mp p H1 = poly_mod.Mp p H'" 
  "poly_mod.Mp p S1 = poly_mod.Mp p S'" 
  "poly_mod.Mp p T1 = poly_mod.Mp p T'" 
  "monic D'" 
proof -
  define U where U: "U = poly_mod.Mp p (sdiv_poly (C - D * H) q)" 
  note step = step[unfolded hensel_step_def Let_def, folded U]
  obtain A B where dupe1: "dupe_monic_dynamic p D1 H1 S1 T1 U = (A,B)" by force
  note step = step[unfolded dupe1 split]  
  from step have D': "D' = D + smult q B" and H': "H' = H + smult q A"
    by (auto split: prod.splits)
  define U' where U': "U' = poly_mod.Mp q (sdiv_poly (S * D' + T * H' - 1) p)" 
  obtain A' B' where dupe2: "dupe_monic_dynamic q D H S T U' = (A',B')" by force
  from step[folded D' H', folded U', unfolded dupe2 split, folded rq]  
  have S': "S' = poly_mod.Mp r (S - Polynomial.smult p A')" and
    T': "T' = poly_mod.Mp r (T - Polynomial.smult p B')" by auto
  from hensel_step_main[OF one_q one_p CDHq D1D H1H S1S T1T mon mon1 q p D1 H1 S1 T1 D H S T U 
    dupe1 D' H' U' dupe2 rq pq S' T']
  show "poly_mod.eq_m r (D' * S' + H' * T') 1"
    "poly_mod.eq_m r C (D' * H')" 
    "poly_mod.Mp r D' = D'" 
    "poly_mod.Mp r H' = H'" 
    "poly_mod.Mp r S' = S'" 
    "poly_mod.Mp r T' = T'"
    "monic D'" by auto
  from pq obtain s where q: "q = p * s" by (metis dvdE)
  show "poly_mod.Mp p D1 = poly_mod.Mp p D'" 
    "poly_mod.Mp p H1 = poly_mod.Mp p H'" 
    unfolding q D' D1D H' H1H
    by (metis add.right_neutral poly_mod.Mp_smult_m_0 poly_mod.plus_Mp(2) smult_smult)+  
  from \<open>q > 1\<close> have q0: "q > 0" by auto
  show "poly_mod.Mp p S1 = poly_mod.Mp p S'" 
    "poly_mod.Mp p T1 = poly_mod.Mp p T'" 
    unfolding S' S1S T' T1T poly_mod_2.Mp_product_modulus[OF poly_mod_2.intro[OF \<open>p > 1\<close>] rq q0]
    by (metis group_add_class.diff_0_right poly_mod.Mp_smult_m_0 poly_mod.minus_Mp(2))+  
qed

lemma quadratic_hensel_step: assumes step: "quadratic_hensel_step q S T D H = (S', T', D', H')"
  and CDH: "poly_mod.eq_m q C (D * H)"
  and one: "poly_mod.eq_m q (D * S + H * T) 1"
  and D: "poly_mod.Mp q D = D" 
  and H: "poly_mod.Mp q H = H"
  and S: "poly_mod.Mp q S = S" 
  and T: "poly_mod.Mp q T = T"
  and mon: "monic D" 
  and q: "q > 1" 
  and rq: "r = q * q" 
shows 
  "poly_mod.eq_m r C (D' * H')" 
  "poly_mod.eq_m r (D' * S' + H' * T') 1"
  "poly_mod.Mp r D' = D'" 
  "poly_mod.Mp r H' = H'" 
  "poly_mod.Mp r S' = S'" 
  "poly_mod.Mp r T' = T'" 
  "poly_mod.Mp q D = poly_mod.Mp q D'" 
  "poly_mod.Mp q H = poly_mod.Mp q H'" 
  "poly_mod.Mp q S = poly_mod.Mp q S'" 
  "poly_mod.Mp q T = poly_mod.Mp q T'" 
  "monic D'" 
proof (atomize(full), goal_cases)
  case 1
  from hensel_step[OF step[unfolded quadratic_hensel_step_def] one mon q CDH one refl refl refl refl mon q D H S T D H S T rq]
  show ?case by auto
qed

context
  fixes p :: int and S1 T1 D1 H1 :: "int poly" 
begin
private lemma decrease[termination_simp]: "\<not> j \<le> 1 \<Longrightarrow> odd j \<Longrightarrow> Suc (j div 2) < j" by presburger

fun quadratic_hensel_loop where 
  "quadratic_hensel_loop (j :: nat) = (
      if j \<le> 1 then (p, S1, T1, D1, H1) else
      if even j then 
          (case quadratic_hensel_loop (j div 2) of
             (q, S, T, D, H) \<Rightarrow>
          let qq = q * q in 
          (case quadratic_hensel_step q S T D H of \<comment> \<open>quadratic step\<close>
            (S', T', D', H') \<Rightarrow> (qq, S', T', D', H')))
     else \<comment> \<open>odd \<open>j\<close>\<close>
        (case quadratic_hensel_loop (j div 2 + 1) of
           (q, S, T, D, H) \<Rightarrow>       
          (case quadratic_hensel_step q S T D H of \<comment> \<open>quadratic step\<close>
            (S', T', D', H') \<Rightarrow> 
                let qq = q * q; pj = qq div p; down = poly_mod.Mp pj in
                  (pj, down S', down T', down D', down H'))))"

definition "quadratic_hensel_main j = (case quadratic_hensel_loop j of 
    (qq, S, T, D, H) \<Rightarrow> (D, H))" 

declare quadratic_hensel_loop.simps[simp del]

\<comment> \<open>unroll the definition of \<open>hensel_loop\<close> so that in outermost iteration we can use \<open>simple_hensel_step\<close>\<close>
lemma quadratic_hensel_main_code[code]: "quadratic_hensel_main j = (
   if j \<le> 1 then (D1, H1)
      else if even j
      then (case quadratic_hensel_loop (j div 2) of
            (q, S, T, D, H) \<Rightarrow>
               simple_quadratic_hensel_step q S T D H)            
       else (case quadratic_hensel_loop (j div 2 + 1) of
            (q, S, T, D, H) \<Rightarrow>
              (case simple_quadratic_hensel_step q S T D H of 
                (D', H') \<Rightarrow> let down = poly_mod.Mp (q * q div p) in (down D', down H'))))"
  unfolding quadratic_hensel_loop.simps[of j] quadratic_hensel_main_def Let_def 
  by (simp split: if_splits prod.splits option.splits sum.splits 
      add: quadratic_hensel_step_code simple_quadratic_hensel_step_def Let_def)


context
  fixes j :: nat 
  assumes 1: "poly_mod.eq_m p (D1 * S1 + H1 * T1) 1"
  and CDH1: "poly_mod.eq_m p C (D1 * H1)" 
  and mon1: "monic D1" 
  and p: "p > 1" 
  and D1: "poly_mod.Mp p D1 = D1" 
  and H1: "poly_mod.Mp p H1 = H1"  
  and S1: "poly_mod.Mp p S1 = S1" 
  and T1: "poly_mod.Mp p T1 = T1"  
  and j: "j \<ge> 1" 
begin

lemma quadratic_hensel_loop:
  assumes "quadratic_hensel_loop j = (q, S, T, D, H)"
  shows "(poly_mod.eq_m q C (D * H) \<and> monic D
    \<and> poly_mod.eq_m p D1 D \<and> poly_mod.eq_m p H1 H
    \<and> poly_mod.eq_m q (D * S + H * T) 1
    \<and> poly_mod.Mp q D = D \<and> poly_mod.Mp q H = H
    \<and> poly_mod.Mp q S = S \<and> poly_mod.Mp q T = T
    \<and> q = p^j)" 
  using j assms
proof (induct j arbitrary: q S T D H rule: less_induct)
  case (less j q' S' T' D' H')
  note res = less(3)
  interpret poly_mod_2 p using p by (rule poly_mod_2.intro)
  let ?hens = "quadratic_hensel_loop" 
  note simp[simp] = quadratic_hensel_loop.simps[of j]
  show ?case
  proof (cases "j = 1")
    case True
    show ?thesis using res simp unfolding True using CDH1 1 mon1 D1 H1 S1 T1 by auto
  next
    case False
    with less(2) have False: "(j \<le> 1) = False" by auto
    have mod_2: "k \<ge> 1 \<Longrightarrow> poly_mod_2 (p^k)" for k by (intro poly_mod_2.intro, insert p, auto)
    {
      fix k D
      assume *: "k \<ge> 1" "k \<le> j" "poly_mod.Mp (p ^ k) D = D" 
      from *(2) have "{0..<p ^ k} \<subseteq> {0..<p ^ j}" using p by auto
      hence "poly_mod.Mp (p ^ j) D = D" 
        unfolding poly_mod_2.Mp_ident_iff[OF mod_2[OF less(2)]]
        using *(3)[unfolded poly_mod_2.Mp_ident_iff[OF mod_2[OF *(1)]]] by blast
    } note lift_norm = this
    show ?thesis
    proof (cases "even j")
      case True
      let ?j2 = "j div 2" 
      from False have lt: "?j2 < j" "1 \<le> ?j2" by auto
      obtain q S T D H where rec: "?hens ?j2 = (q, S, T, D, H)" by (cases "?hens ?j2", auto)
      note IH = less(1)[OF lt rec]
      from IH
      have *: "poly_mod.eq_m q C (D * H)" 
        "poly_mod.eq_m q (D * S + H * T) 1"
        "monic D" 
        "eq_m D1 D" 
        "eq_m H1 H"
        "poly_mod.Mp q D = D"
        "poly_mod.Mp q H = H"
        "poly_mod.Mp q S = S"
        "poly_mod.Mp q T = T"
        "q = p ^ ?j2"
        by auto
      hence norm: "poly_mod.Mp (p ^ j) D = D" "poly_mod.Mp (p ^ j) H = H"
        "poly_mod.Mp (p ^ j) S = S" "poly_mod.Mp (p ^ j) T = T"
        using lift_norm[OF lt(2)] by auto
      from lt p have q: "q > 1" unfolding * by simp
      let ?step = "quadratic_hensel_step q S T D H" 
      obtain S2 T2 D2 H2 where step_res: "?step = (S2, T2, D2, H2)" by (cases ?step, auto)
      note step = quadratic_hensel_step[OF step_res *(1,2,6-9,3) q refl]
      let ?qq = "q * q"
      {
        fix D D2
        assume "poly_mod.Mp q D = poly_mod.Mp q D2" 
        from arg_cong[OF this, of Mp] Mp_Mp_pow_is_Mp[of ?j2, OF _ p, folded *(10)] lt
        have "Mp D = Mp D2" by simp
      } note shrink = this
      have **: "poly_mod.eq_m ?qq C (D2 * H2)" 
        "poly_mod.eq_m ?qq (D2 * S2 + H2 * T2) 1" 
        "monic D2" 
        "eq_m D1 D2"
        "eq_m H1 H2" 
        "poly_mod.Mp ?qq D2 = D2" 
        "poly_mod.Mp ?qq H2 = H2" 
        "poly_mod.Mp ?qq S2 = S2" 
        "poly_mod.Mp ?qq T2 = T2" 
        using step shrink[of H H2] shrink[of D D2] *(4-7) by auto
      note simp = simp False if_False rec split Let_def step_res option.simps
      from True have j: "p ^ j = p ^ (2 * ?j2)" by auto
      with *(10) have qq: "q * q = p ^ j"
        by (simp add: power_mult_distrib semiring_normalization_rules(30-))
      from res[unfolded simp] True have id': "q' = ?qq" "S' = S2" "T' = T2" "D' = D2" "H' = H2" by auto 
      show ?thesis unfolding id' using ** by (auto simp: qq)
    next
      case odd: False
      hence False': "(even j) = False" by auto
      let ?j2 = "j div 2 + 1" 
      from False odd have lt: "?j2 < j" "1 \<le> ?j2" by presburger+
      obtain q S T D H where rec: "?hens ?j2 = (q, S, T, D, H)" by (cases "?hens ?j2", auto)
      note IH = less(1)[OF lt rec]
      note simp = simp False if_False rec sum.simps split Let_def False' option.simps
      from IH have *: "poly_mod.eq_m q C (D * H)" 
          "poly_mod.eq_m q (D * S + H * T) 1"
          "monic D" 
          "eq_m D1 D" 
          "eq_m H1 H"
          "poly_mod.Mp q D = D"
          "poly_mod.Mp q H = H"
          "poly_mod.Mp q S = S"
          "poly_mod.Mp q T = T"
          "q = p ^ ?j2"
          by auto
      hence norm: "poly_mod.Mp (p ^ j) D = D" "poly_mod.Mp (p ^ j) H = H" 
        using lift_norm[OF lt(2)] lt by auto
      from lt p have q: "q > 1" unfolding *
        using mod_2 poly_mod_2.m1 by blast
      let ?step = "quadratic_hensel_step q S T D H" 
      obtain S2 T2 D2 H2 where step_res: "?step = (S2, T2, D2, H2)" by (cases ?step, auto)
      have dvd: "q dvd q" by auto
      note step = quadratic_hensel_step[OF step_res *(1,2,6-9,3) q refl]         
      let ?qq = "q * q"
      {
        fix D D2
        assume "poly_mod.Mp q D = poly_mod.Mp q D2" 
        from arg_cong[OF this, of Mp] Mp_Mp_pow_is_Mp[of ?j2, OF _ p, folded *(10)] lt
        have "Mp D = Mp D2" by simp
      } note shrink = this
      have **: "poly_mod.eq_m ?qq C (D2 * H2)" 
        "poly_mod.eq_m ?qq (D2 * S2 + H2 * T2) 1" 
        "monic D2" 
        "eq_m D1 D2"
        "eq_m H1 H2" 
        "poly_mod.Mp ?qq D2 = D2" 
        "poly_mod.Mp ?qq H2 = H2" 
        "poly_mod.Mp ?qq S2 = S2"
        "poly_mod.Mp ?qq T2 = T2"
        using step shrink[of H H2] shrink[of D D2] *(4-7) by auto
      note simp = simp False if_False rec split Let_def step_res option.simps
      from odd have j: "Suc j = 2 * ?j2" by auto
      from arg_cong[OF this, of "\<lambda> j. p ^ j div p"]
      have pj: "p ^ j = q * q div p" and qq: "q * q = p ^ j * p" unfolding *(10) using p
        by (simp add: power_mult_distrib semiring_normalization_rules(30-))+
      let ?pj = "p ^ j" 
      from res[unfolded simp] pj
      have id: 
        "q' = p^j" 
        "S' = poly_mod.Mp ?pj S2" 
        "T' = poly_mod.Mp ?pj T2" 
        "D' = poly_mod.Mp ?pj D2" 
        "H' = poly_mod.Mp ?pj H2" 
        by auto
      interpret pj: poly_mod_2 ?pj by (rule mod_2[OF \<open>1 \<le> j\<close>])
      have norm: "pj.Mp D' = D'" "pj.Mp H' = H'"
        unfolding id by (auto simp: poly_mod.Mp_Mp)
      have mon: "monic D'" using pj.monic_Mp[OF step(11)] unfolding id .
      have id': "Mp (pj.Mp D) = Mp D" for D using \<open>1 \<le> j\<close>
        by (simp add: Mp_Mp_pow_is_Mp p)
      have eq: "eq_m D1 D2 \<Longrightarrow> eq_m D1 (pj.Mp D2)" for D1 D2 
        unfolding id' by auto
      have id'': "pj.Mp (poly_mod.Mp (q * q) D) = pj.Mp D" for D
        unfolding qq by (rule pj.Mp_product_modulus[OF refl], insert p, auto)
      {
        fix D1 D2
        assume "poly_mod.eq_m (q * q) D1 D2" 
        hence "poly_mod.Mp (q * q) D1 = poly_mod.Mp (q * q) D2" by simp
        from arg_cong[OF this, of pj.Mp] 
        have "pj.Mp D1 = pj.Mp D2" unfolding id'' .
      } note eq' = this
      from eq'[OF step(1)] have eq1: "pj.eq_m C (D' * H')" unfolding id by simp
      from eq'[OF step(2)] have eq2: "pj.eq_m (D' * S' + H' * T') 1" 
        unfolding id by (metis pj.mult_Mp pj.plus_Mp)
      from **(4-5) have eq3: "eq_m D1 D'" "eq_m H1 H'" 
        unfolding id by (auto intro: eq)
      from norm mon eq1 eq2 eq3
      show ?thesis unfolding id by simp
    qed
  qed
qed

lemma quadratic_hensel_main: assumes res: "quadratic_hensel_main j = (D,H)" 
  shows "poly_mod.eq_m (p^j) C (D * H)"
  "monic D" 
  "poly_mod.eq_m p D1 D" 
  "poly_mod.eq_m p H1 H" 
  "poly_mod.Mp (p^j) D = D" 
  "poly_mod.Mp (p^j) H = H" 
proof (atomize(full), goal_cases)
  case 1
  let ?hen = "quadratic_hensel_loop j"
  from res obtain q S T where hen: "?hen = (q, S, T, D, H)" 
    by (cases ?hen, auto simp: quadratic_hensel_main_def)
  from quadratic_hensel_loop[OF hen] show ?case by auto
qed
end
end
end

datatype 'a factor_tree = Factor_Leaf 'a "int poly" | Factor_Node 'a "'a factor_tree" "'a factor_tree" 

fun factor_node_info :: "'a factor_tree \<Rightarrow> 'a" where
  "factor_node_info (Factor_Leaf i x) = i" 
| "factor_node_info (Factor_Node i l r) = i" 
  
fun factors_of_factor_tree :: "'a factor_tree \<Rightarrow> int poly multiset" where
  "factors_of_factor_tree (Factor_Leaf i x) = {#x#}" 
| "factors_of_factor_tree (Factor_Node i l r) = factors_of_factor_tree l + factors_of_factor_tree r"
  
fun product_factor_tree :: "int \<Rightarrow> 'a factor_tree \<Rightarrow> int poly factor_tree" where
  "product_factor_tree p (Factor_Leaf i x) = (Factor_Leaf x x)" 
| "product_factor_tree p (Factor_Node i l r) = (let 
    L = product_factor_tree p l;
    R = product_factor_tree p r;
    f = factor_node_info L;
    g = factor_node_info R;
    fg = poly_mod.Mp p (f * g) 
   in Factor_Node fg L R)"
  
fun sub_trees :: "'a factor_tree \<Rightarrow> 'a factor_tree set" where
  "sub_trees (Factor_Leaf i x) = {Factor_Leaf i x}" 
| "sub_trees (Factor_Node i l r) = insert (Factor_Node i l r) (sub_trees l \<union> sub_trees r)" 
  
lemma sub_trees_refl[simp]: "t \<in> sub_trees t" by (cases t, auto)
  
lemma product_factor_tree: assumes "\<And> x. x \<in># factors_of_factor_tree t \<Longrightarrow> poly_mod.Mp p x = x" 
  shows "u \<in> sub_trees (product_factor_tree p t) \<Longrightarrow> factor_node_info u = f \<Longrightarrow> 
  poly_mod.Mp p f = f \<and> f = poly_mod.Mp p (prod_mset (factors_of_factor_tree u)) \<and> 
  factors_of_factor_tree (product_factor_tree p t) = factors_of_factor_tree t" 
  using assms
proof (induct t arbitrary: u f)
  case (Factor_Node i l r u f)
  interpret poly_mod p . 
  let ?L = "product_factor_tree p l" 
  let ?R = "product_factor_tree p r"
  let ?f = "factor_node_info ?L"
  let ?g = "factor_node_info ?R"
  let ?fg = "Mp (?f * ?g)" 
  have "Mp ?f = ?f \<and> ?f = Mp (prod_mset (factors_of_factor_tree ?L)) \<and>
      (factors_of_factor_tree ?L) = (factors_of_factor_tree l)"      
      by (rule Factor_Node(1)[OF sub_trees_refl refl], insert Factor_Node(5), auto)
  hence IH1: "?f = Mp (prod_mset (factors_of_factor_tree ?L))" 
      "(factors_of_factor_tree ?L) = (factors_of_factor_tree l)" by blast+
  have "Mp ?g = ?g \<and> ?g = Mp (prod_mset (factors_of_factor_tree ?R)) \<and>
      (factors_of_factor_tree ?R) = (factors_of_factor_tree r)" 
      by (rule Factor_Node(2)[OF sub_trees_refl refl], insert Factor_Node(5), auto)
  hence IH2: "?g = Mp (prod_mset (factors_of_factor_tree ?R))" 
      "(factors_of_factor_tree ?R) = (factors_of_factor_tree r)" by blast+
  have id: "(factors_of_factor_tree (product_factor_tree p (Factor_Node i l r))) =
    (factors_of_factor_tree (Factor_Node i l r))" by (simp add: Let_def IH1 IH2)
  from Factor_Node(3) consider (root) "u = Factor_Node ?fg ?L ?R" 
    | (l) "u \<in> sub_trees ?L" | (r) "u \<in> sub_trees ?R" 
    by (auto simp: Let_def)  
  thus ?case
  proof cases
    case root
    with Factor_Node have f: "f = ?fg" by auto
    show ?thesis unfolding f root id by (simp add: Let_def ac_simps IH1 IH2)
  next
    case l
    have "Mp f = f \<and> f = Mp (prod_mset (factors_of_factor_tree u))" 
      using Factor_Node(1)[OF l Factor_Node(4)] Factor_Node(5) by auto
    thus ?thesis unfolding id by blast
  next
    case r
    have "Mp f = f \<and> f = Mp (prod_mset (factors_of_factor_tree u))" 
      using Factor_Node(2)[OF r Factor_Node(4)] Factor_Node(5) by auto
    thus ?thesis unfolding id by blast
  qed
qed auto

fun create_factor_tree_simple :: "int poly list \<Rightarrow> unit factor_tree" where
  "create_factor_tree_simple xs = (let n = length xs in if n \<le> 1 then Factor_Leaf () (hd xs)
    else let i = n div 2;
      xs1 = take i xs;
      xs2 = drop i xs
      in Factor_Node () (create_factor_tree_simple xs1) (create_factor_tree_simple xs2)
      )" 
  
declare create_factor_tree_simple.simps[simp del]
  
lemma create_factor_tree_simple: "xs \<noteq> [] \<Longrightarrow> factors_of_factor_tree (create_factor_tree_simple xs) = mset xs" 
proof (induct xs rule: wf_induct[OF wf_measure[of length]])
  case (1 xs)
  from 1(2) have xs: "length xs \<noteq> 0" by auto
  then consider (base) "length xs = 1" | (step) "length xs > 1" by linarith
  thus ?case
  proof cases
    case base
    then obtain x where xs: "xs = [x]" by (cases xs; cases "tl xs"; auto)
    thus ?thesis by (auto simp: create_factor_tree_simple.simps)
  next
    case step
    let ?i = "length xs div 2" 
    let ?xs1 = "take ?i xs" 
    let ?xs2 = "drop ?i xs" 
    from step have xs1: "(?xs1, xs) \<in> measure length" "?xs1 \<noteq> []" by auto
    from step have xs2: "(?xs2, xs) \<in> measure length" "?xs2 \<noteq> []" by auto
    from step have id: "create_factor_tree_simple xs = Factor_Node () (create_factor_tree_simple (take ?i xs))
            (create_factor_tree_simple (drop ?i xs))" unfolding create_factor_tree_simple.simps[of xs] Let_def by auto
    have xs: "xs = ?xs1 @ ?xs2" by auto
    show ?thesis unfolding id arg_cong[OF xs, of mset] mset_append
      using 1(1)[rule_format, OF xs1] 1(1)[rule_format, OF xs2]
      by auto
  qed
qed

text \<open>We define a better factorization tree which balances the trees according to their degree.,
  cf. Modern Computer Algebra, Chapter 15.5 on Multifactor Hensel lifting.\<close>
  
fun partition_factors_main :: "nat \<Rightarrow> ('a \<times> nat) list \<Rightarrow> ('a \<times> nat) list \<times> ('a \<times> nat) list" where
  "partition_factors_main s [] = ([], [])" 
| "partition_factors_main s ((f,d) # xs) = (if d \<le> s then case partition_factors_main (s - d) xs of
     (l,r) \<Rightarrow> ((f,d) # l, r) else case partition_factors_main d xs of 
     (l,r) \<Rightarrow> (l, (f,d) # r))" 
  
lemma partition_factors_main: "partition_factors_main s xs = (a,b) \<Longrightarrow> mset xs = mset a + mset b" 
  by (induct s xs arbitrary: a b rule: partition_factors_main.induct, auto split: if_splits prod.splits)

definition partition_factors :: "('a \<times> nat) list \<Rightarrow> ('a \<times> nat) list \<times> ('a \<times> nat) list" where
  "partition_factors xs = (let n = sum_list (map snd xs) div 2 in
     case partition_factors_main n xs of
     ([], x # y # ys) \<Rightarrow> ([x], y # ys)
   | (x # y # ys, []) \<Rightarrow> ([x], y # ys)
   | pair \<Rightarrow> pair)" 
  
lemma partition_factors: "partition_factors xs = (a,b) \<Longrightarrow> mset xs = mset a + mset b"
  unfolding partition_factors_def Let_def 
  by (cases "partition_factors_main (sum_list (map snd xs) div 2) xs", auto split: list.splits
    simp: partition_factors_main)

lemma partition_factors_length: assumes "\<not> length xs \<le> 1" "(a,b) = partition_factors xs"
  shows [termination_simp]: "length a < length xs" "length b < length xs" and "a \<noteq> []" "b \<noteq> []" 
proof -
  obtain ys zs where main: "partition_factors_main (sum_list (map snd xs) div 2) xs = (ys,zs)" by force
  note res = assms(2)[unfolded partition_factors_def Let_def main split]
  from arg_cong[OF partition_factors_main[OF main], of size] have len: "length xs = length ys + length zs" by auto
  with assms(1) have len2: "length ys + length zs \<ge> 2" by auto
  from res len2 have "length a < length xs \<and> length b < length xs \<and> a \<noteq> [] \<and> b \<noteq> []" unfolding len
    by (cases ys; cases zs; cases "tl ys"; cases "tl zs"; auto)
  thus "length a < length xs" "length b < length xs" "a \<noteq> []" "b \<noteq> []" by blast+
qed 
  
fun create_factor_tree_balanced :: "(int poly \<times> nat)list \<Rightarrow> unit factor_tree" where
  "create_factor_tree_balanced xs = (if length xs \<le> 1 then Factor_Leaf () (fst (hd xs)) else
     case partition_factors xs of (l,r) \<Rightarrow> Factor_Node () 
      (create_factor_tree_balanced l)
      (create_factor_tree_balanced r))" 

definition create_factor_tree :: "int poly list \<Rightarrow> unit factor_tree" where
  "create_factor_tree xs = (let ys = map (\<lambda> f. (f, degree f)) xs;
     zs = rev (sort_key snd ys)
     in create_factor_tree_balanced zs)" 

lemma create_factor_tree_balanced: "xs \<noteq> [] \<Longrightarrow> factors_of_factor_tree (create_factor_tree_balanced xs) = mset (map fst xs)" 
proof (induct xs rule: create_factor_tree_balanced.induct)
  case (1 xs)
  show ?case
  proof (cases "length xs \<le> 1")
    case True
    with 1(3) obtain x where xs: "xs = [x]" by (cases xs; cases "tl xs", auto)
    show ?thesis unfolding xs by auto
  next
    case False
    obtain a b where part: "partition_factors xs = (a,b)" by force
    note abp = this[symmetric]
    note nonempty = partition_factors_length(3-4)[OF False abp]
    note IH = 1(1)[OF False abp nonempty(1)] 1(2)[OF False abp nonempty(2)]
    show ?thesis unfolding create_factor_tree_balanced.simps[of xs] part split using 
      False IH partition_factors[OF part] by auto
  qed
qed

lemma create_factor_tree: assumes "xs \<noteq> []"
  shows "factors_of_factor_tree (create_factor_tree xs) = mset xs" 
proof -
  let ?xs = "rev (sort_key snd (map (\<lambda>f. (f, degree f)) xs))" 
  from assms have "set xs \<noteq> {}" by auto
  hence "set ?xs \<noteq> {}" by auto
  hence xs: "?xs \<noteq> []" by blast
  show ?thesis unfolding create_factor_tree_def Let_def create_factor_tree_balanced[OF xs]
    by (auto, induct xs, auto)
qed

context
  fixes p :: int and n :: nat
begin

definition quadratic_hensel_binary :: "int poly \<Rightarrow> int poly \<Rightarrow> int poly \<Rightarrow> int poly \<times> int poly" where
  "quadratic_hensel_binary C D H = (
     case euclid_ext_poly_dynamic p D H of 
      (S,T) \<Rightarrow> quadratic_hensel_main C p S T D H n)" 

fun hensel_lifting_main :: "int poly \<Rightarrow> int poly factor_tree \<Rightarrow> int poly list" where
  "hensel_lifting_main U (Factor_Leaf _ _) = [U]"
| "hensel_lifting_main U (Factor_Node _ l r) = (let 
    v = factor_node_info l;
    w = factor_node_info r;
    (V,W) = quadratic_hensel_binary U v w
    in hensel_lifting_main V l @ hensel_lifting_main W r)"

definition hensel_lifting_monic :: "int poly \<Rightarrow> int poly list \<Rightarrow> int poly list" where
  "hensel_lifting_monic u vs = (if vs = [] then [] else let 
     pn = p^n; 
     C = poly_mod.Mp pn u;
     tree = product_factor_tree p (create_factor_tree vs)
     in hensel_lifting_main C tree)" 

definition hensel_lifting :: "int poly \<Rightarrow> int poly list \<Rightarrow> int poly list" where 
  "hensel_lifting f gs = (let lc = lead_coeff f; 
     ilc = inverse_mod lc (p^n);
     g = smult ilc f
     in hensel_lifting_monic g gs)"

end


context poly_mod_prime begin

context
  fixes n :: nat
  assumes n: "n \<noteq> 0" 
begin

abbreviation "hensel_binary \<equiv> quadratic_hensel_binary p n" 

abbreviation "hensel_main \<equiv> hensel_lifting_main p n" 

lemma hensel_binary: 
  assumes cop: "coprime_m D H" and eq: "eq_m C (D * H)"
  and normalized_input: "Mp D = D" "Mp H = H"
  and monic_input: "monic D" 
  and hensel_result: "hensel_binary C D H = (D',H')" 
  shows "poly_mod.eq_m (p^n) C (D' * H') \<comment> \<open>the main result: equivalence mod \<open>p^n\<close>\<close>
    \<and> monic D' \<comment> \<open>monic output\<close>
    \<and> eq_m D D' \<and> eq_m H H' \<comment> \<open>apply \<open>`mod p`\<close> on \<open>D'\<close> and \<open>H'\<close> yields \<open>D\<close> and \<open>H\<close> again\<close>
    \<and> poly_mod.Mp (p^n) D' = D' \<and> poly_mod.Mp (p^n) H' = H' \<comment> \<open>output is normalized\<close>"
proof -
  from m1 have p: "p > 1" .
  obtain S T where ext: "euclid_ext_poly_dynamic p D H = (S,T)" by force
  obtain D1 H1 where main: "quadratic_hensel_main C p S T D H n = (D1,H1)" by force
  note hen = hensel_result[unfolded quadratic_hensel_binary_def ext split Let_def main]
  from n have n: "n \<ge> 1" by simp
  note eucl = euclid_ext_poly_dynamic[OF cop normalized_input ext]
  note main = quadratic_hensel_main[OF eucl(1) eq monic_input p normalized_input eucl(2-) n main]
  show ?thesis using hen main by auto
qed

lemma hensel_main: 
  assumes eq: "eq_m C (prod_mset (factors_of_factor_tree Fs))"
  and "\<And> F. F \<in># factors_of_factor_tree Fs \<Longrightarrow> Mp F = F \<and> monic F"  
  and hensel_result: "hensel_main C Fs = Gs" 
  and C: "monic C" "poly_mod.Mp (p^n) C = C" 
  and sf: "square_free_m C" 
  and "\<And> f t. t \<in> sub_trees Fs \<Longrightarrow> factor_node_info t = f \<Longrightarrow> f = Mp (prod_mset (factors_of_factor_tree t))"
  shows "poly_mod.eq_m (p^n) C (prod_list Gs) \<comment> \<open>the main result: equivalence mod \<open>p^n\<close>\<close>
    \<and> factors_of_factor_tree Fs = mset (map Mp Gs)
    \<and> (\<forall> G. G \<in> set Gs \<longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G)"
  using assms
proof (induct Fs arbitrary: C Gs)
  case (Factor_Leaf f fs C Gs)
  thus ?case by auto
next
  case (Factor_Node f l r C Gs) note * = this
  note simps = hensel_lifting_main.simps
  note IH1 = *(1)[rule_format]
  note IH2 = *(2)[rule_format]
  note res = *(5)[unfolded simps Let_def]
  note eq = *(3)
  note Fs = *(4)
  note C = *(6,7)
  note sf = *(8)
  note inv = *(9)
  interpret pn: poly_mod_2 "p^n" apply (unfold_locales) using m1 n by auto
  let ?Mp = "pn.Mp"
  define D where "D \<equiv> prod_mset (factors_of_factor_tree l)" 
  define H where "H \<equiv> prod_mset (factors_of_factor_tree r)" 
  let ?D = "Mp D" 
  let ?H = "Mp H"
  let ?D' = "factor_node_info l" 
  let ?H' = "factor_node_info r" 
  obtain A B where hen: "hensel_binary C ?D' ?H' = (A,B)" by force
  note res = res[unfolded hen split]  
  obtain AD where AD': "AD = hensel_main A l" by auto
  obtain BH where BH': "BH = hensel_main B r" by auto
  from inv[of l, OF _ refl] have D': "?D' = ?D" unfolding D_def by auto
  from inv[of r, OF _ refl] have H': "?H' = ?H" unfolding H_def by auto
  from eq[simplified]
  have eq': "Mp C = Mp (?D * ?H)" unfolding D_def H_def by simp
  from square_free_m_cong[OF sf, of "?D * ?H", OF eq'] 
  have sf': "square_free_m (?D * ?H)" .
  from poly_mod_prime.square_free_m_prod_imp_coprime_m[OF _ this]
  have cop': "coprime_m ?D ?H" unfolding poly_mod_prime_def using prime .
  from eq' have eq': "eq_m C (?D * ?H)" by simp
  have monD: "monic D" unfolding D_def by (rule monic_prod_mset, insert Fs, auto)
  from hensel_binary[OF _ _ _ _ _ hen, unfolded D' H', OF cop' eq' Mp_Mp Mp_Mp monic_Mp[OF monD]] 
  have step: "poly_mod.eq_m (p ^ n) C (A * B) \<and> monic A \<and> eq_m ?D A \<and>
     eq_m ?H B \<and> ?Mp A = A \<and> ?Mp B = B" .
  from res have Gs: "Gs = AD @ BH" by (simp add: AD' BH')
  have AD: "eq_m A ?D" "?Mp A = A" "eq_m A (prod_mset (factors_of_factor_tree l))"  
    and monA: "monic A"
    using step by (auto simp: D_def)
  note sf_fact = square_free_m_factor[OF sf']
  from square_free_m_cong[OF sf_fact(1)] AD have sfA: "square_free_m A" by auto
  have IH1: "poly_mod.eq_m (p ^ n) A (prod_list AD) \<and>
    factors_of_factor_tree l = mset (map Mp AD) \<and>
    (\<forall>G. G \<in> set AD \<longrightarrow> monic G \<and> ?Mp G = G)"
    by (rule IH1[OF AD(3) Fs AD'[symmetric] monA AD(2) sfA inv], auto)
  have BH: "eq_m B ?H" "pn.Mp B = B" "eq_m B (prod_mset (factors_of_factor_tree r))"
      using step by (auto simp: H_def)
  from step have "pn.eq_m C (A * B)" by simp
  hence "?Mp C = ?Mp (A * B)" by simp
  with C AD(2) have "pn.Mp C = pn.Mp (A * pn.Mp B)" by simp
  from arg_cong[OF this, of lead_coeff] C
  have "monic (pn.Mp (A * B))" by simp
  then have "lead_coeff (pn.Mp A) * lead_coeff (pn.Mp B) = 1"
    by (metis lead_coeff_mult leading_coeff_neq_0 local.step mult_cancel_right2 pn.degree_m_eq pn.m1 poly_mod.M_def poly_mod.Mp_coeff)
  with monA AD(2) BH(2) have monB: "monic B" by simp
  from square_free_m_cong[OF sf_fact(2)] BH have sfB: "square_free_m B" by auto
  have IH2: "poly_mod.eq_m (p ^ n) B (prod_list BH) \<and>
      factors_of_factor_tree r = mset (map Mp BH) \<and>
      (\<forall>G. G \<in> set BH \<longrightarrow> monic G \<and> ?Mp G = G)" 
    by (rule IH2[OF BH(3) Fs BH'[symmetric] monB BH(2) sfB inv], auto)
  from step have "?Mp C = ?Mp (?Mp A * ?Mp B)" by auto
  also have "?Mp A = ?Mp (prod_list AD)" using IH1 by auto
  also have "?Mp B = ?Mp (prod_list BH)" using IH2 by auto
  finally have "poly_mod.eq_m (p ^ n) C (prod_list AD * prod_list BH)" 
    by (auto simp: poly_mod.mult_Mp)
  thus ?case unfolding Gs using IH1 IH2 by auto
qed

lemma hensel_lifting_monic: 
  assumes eq: "poly_mod.eq_m p C (prod_list Fs)"
  and Fs: "\<And> F. F \<in> set Fs \<Longrightarrow> poly_mod.Mp p F = F \<and> monic F"  
  and res: "hensel_lifting_monic p n C Fs = Gs" 
  and mon: "monic (poly_mod.Mp (p^n) C)" 
  and sf: "poly_mod.square_free_m p C"
  shows "poly_mod.eq_m (p^n) C (prod_list Gs)"
    "mset (map (poly_mod.Mp p) Gs) = mset Fs" 
    "G \<in> set Gs \<Longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G"
proof -
  note res = res[unfolded hensel_lifting_monic_def Let_def]
  let ?Mp = "poly_mod.Mp (p ^ n)" 
  let ?C = "?Mp C" 
  interpret poly_mod_prime p
    by (unfold_locales, insert n prime, auto)
  interpret pn: poly_mod_2 "p^n" using m1 n poly_mod_2.intro by auto
  from eq n have eq: "eq_m (?Mp C) (prod_list Fs)"
    using Mp_Mp_pow_is_Mp eq m1 n by force
  have "poly_mod.eq_m (p^n) C (prod_list Gs) \<and> mset (map (poly_mod.Mp p) Gs) = mset Fs
    \<and> (G \<in> set Gs \<longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G)" 
  proof (cases "Fs = []")
    case True
    with res have Gs: "Gs = []" by auto
    from eq have "Mp ?C = 1" unfolding True by simp
    hence "degree (Mp ?C) = 0" by simp
    with degree_m_eq_monic[OF mon m1] have "degree ?C = 0" by simp
    with mon have "?C = 1" using monic_degree_0 by blast
    thus ?thesis unfolding True Gs by auto
  next
    case False
    let ?t = "create_factor_tree Fs" 
    note tree = create_factor_tree[OF False]
    from False res have hen: "hensel_main ?C (product_factor_tree p ?t) = Gs" by auto
    have tree1: "x \<in># factors_of_factor_tree ?t \<Longrightarrow> Mp x = x" for x unfolding tree using Fs by auto
    from product_factor_tree[OF tree1 sub_trees_refl refl, of ?t]
    have id: "(factors_of_factor_tree (product_factor_tree p ?t)) =
        (factors_of_factor_tree ?t)" by auto
    have eq: "eq_m ?C (prod_mset (factors_of_factor_tree (product_factor_tree p ?t)))"
      unfolding id tree using eq by auto  
    have id': "Mp C = Mp ?C" using n by (simp add: Mp_Mp_pow_is_Mp m1)
    have "pn.eq_m ?C (prod_list Gs) \<and> mset Fs = mset (map Mp Gs) \<and> (\<forall>G. G \<in> set Gs \<longrightarrow> monic G \<and> pn.Mp G = G)"
      by (rule hensel_main[OF eq Fs hen mon pn.Mp_Mp square_free_m_cong[OF sf id'], unfolded id tree],
      insert product_factor_tree[OF tree1], auto)
    thus ?thesis by auto
  qed
  thus "poly_mod.eq_m (p^n) C (prod_list Gs)"
    "mset (map (poly_mod.Mp p) Gs) = mset Fs" 
    "G \<in> set Gs \<Longrightarrow> monic G \<and> poly_mod.Mp (p^n) G = G" by blast+
qed

lemma hensel_lifting:
  assumes res: "hensel_lifting p n f fs = gs"                      \<comment> \<open>result of hensel is fact. \<open>gs\<close>\<close>
    and cop: "coprime (lead_coeff f) p"
    and sf: "poly_mod.square_free_m p f"
    and fact: "poly_mod.factorization_m p f (c, mset fs)"          \<comment> \<open>input is fact. \<open>fs mod p\<close>\<close>
    and c: "c \<in> {0..<p}"
    and norm: "(\<forall>fi\<in>set fs. set (coeffs fi) \<subseteq> {0..<p})"
  shows "poly_mod.factorization_m (p^n) f (lead_coeff f, mset gs) \<comment> \<open>factorization mod \<open>p^n\<close>\<close>"
      "sort (map degree fs) = sort (map degree gs)                \<comment> \<open>degrees stay the same\<close>"
      "\<And> g. g \<in> set gs \<Longrightarrow> monic g \<and> poly_mod.Mp (p^n) g = g \<and>   \<comment> \<open>monic and normalized\<close>
        irreducible_m g \<and>                               \<comment> \<open>irreducibility even mod \<open>p\<close>\<close>
        degree_m g = degree g   \<comment> \<open>mod \<open>p\<close> does not change degree of \<open>g\<close>\<close>"
proof -
  interpret poly_mod_prime p using prime by unfold_locales
  interpret q: poly_mod_2 "p^n" using m1 n unfolding poly_mod_2_def by auto
  from fact have eq: "eq_m f (smult c (prod_list fs))"  
    and mon_fs: "(\<forall>fi\<in>set fs. monic (Mp fi) \<and> irreducible\<^sub>d_m fi)"
    unfolding factorization_m_def by auto
  {
    fix f
    assume "f \<in> set fs" 
    with mon_fs norm have "set (coeffs f) \<subseteq> {0..<p}" and "monic (Mp f)" by auto
    hence "monic f" using Mp_ident_iff' by force
  } note mon_fs' = this
  have Mp_id: "\<And> f. Mp (q.Mp f) = Mp f" by (simp add: Mp_Mp_pow_is_Mp m1 n)
  let ?lc = "lead_coeff f" 
  let ?q = "p ^ n" 
  define ilc where "ilc \<equiv> inverse_mod ?lc ?q" 
  define F where "F \<equiv> smult ilc f" 
  from res[unfolded hensel_lifting_def Let_def] 
  have hen: "hensel_lifting_monic p n F fs = gs" 
    unfolding ilc_def F_def .
  from m1 n cop have inv: "q.M (ilc * ?lc) = 1"
    by (auto simp add: q.M_def inverse_mod_pow ilc_def)
  hence ilc0: "ilc \<noteq> 0" by (cases "ilc = 0", auto)
  {
    fix q
    assume "ilc * ?lc = ?q * q" 
    from arg_cong[OF this, of q.M] have "q.M (ilc * ?lc) = 0" 
      unfolding q.M_def by auto
    with inv have False by auto
  } note not_dvd = this
  have mon: "monic (q.Mp F)" unfolding F_def q.Mp_coeff coeff_smult
    by (subst q.degree_m_eq [OF _ q.m1]) (auto simp: inv ilc0 [symmetric] intro: not_dvd)
  have "q.Mp f = q.Mp (smult (q.M (?lc * ilc)) f)" using inv by (simp add: ac_simps)
  also have "\<dots> = q.Mp (smult ?lc F)" by (simp add: F_def)
  finally have f: "q.Mp f = q.Mp (smult ?lc F)" .
  from arg_cong[OF f, of Mp]
  have f_p: "Mp f = Mp (smult ?lc F)" 
    by (simp add: Mp_Mp_pow_is_Mp n m1)
  from arg_cong[OF this, of square_free_m, unfolded Mp_square_free_m] sf
  have "square_free_m (smult ?lc F)" by simp
  from square_free_m_smultD[OF this] have sf: "square_free_m F" .
  
  define c' where "c' \<equiv> M (c * ilc)"
  from factorization_m_smult[OF fact, of ilc, folded F_def] 
  have fact: "factorization_m F (c', mset fs)" unfolding c'_def factorization_m_def by auto
  hence eq: "eq_m F (smult c' (prod_list fs))" unfolding factorization_m_def by auto
  from factorization_m_lead_coeff[OF fact] monic_Mp[OF mon, unfolded Mp_id] have "M c' = 1" 
    by auto
  hence c': "c' = 1" unfolding c'_def by auto
  with eq have eq: "eq_m F (prod_list fs)" by auto 
  {
    fix f
    assume "f \<in> set fs" 
    with mon_fs' norm have "Mp f = f \<and> monic f" unfolding Mp_ident_iff'
      by auto
  } note fs = this
  note hen = hensel_lifting_monic[OF eq fs hen mon sf]
  from hen(2) have gs_fs: "mset (map Mp gs) = mset fs" by auto
  have eq: "q.eq_m f (smult ?lc (prod_list gs))" 
    unfolding f using arg_cong[OF hen(1), of "\<lambda> f. q.Mp (smult ?lc f)"] by simp
  {
    fix g 
    assume g: "g \<in> set gs"
    from hen(3)[OF _ g] have mon_g: "monic g" and Mp_g: "q.Mp g = g" by auto
    from g have "Mp g \<in># mset (map Mp gs)" by auto
    from this[unfolded gs_fs] obtain f where f: "f \<in> set fs" and fg: "eq_m f g" by auto
    from mon_fs f fs have irr_f: "irreducible\<^sub>d_m f" and mon_f: "monic f" and Mp_f: "Mp f = f" by auto
    have deg: "degree_m g = degree g" 
      by (rule degree_m_eq_monic[OF mon_g m1])
    from irr_f fg have irr_g: "irreducible\<^sub>d_m g" 
      unfolding irreducible\<^sub>d_m_def dvdm_def by simp
    have "q.irreducible\<^sub>d_m g"
      by (rule irreducible\<^sub>d_lifting[OF n _ irr_g], unfold deg, rule q.degree_m_eq_monic[OF mon_g q.m1])
    note mon_g Mp_g deg irr_g this
  } note g = this
  {
    fix g
    assume "g \<in> set gs" 
    from g[OF this]
    show "monic g \<and> q.Mp g = g \<and> irreducible_m g \<and> degree_m g = degree g" by auto
  }
  show "sort (map degree fs) = sort (map degree gs)" 
  proof (rule sort_key_eq_sort_key)
    have "mset (map degree fs) = image_mset degree (mset fs)" by auto
    also have "\<dots> = image_mset degree (mset (map Mp gs))" unfolding gs_fs ..
    also have "\<dots> = mset (map degree (map Mp gs))" unfolding mset_map ..
    also have "map degree (map Mp gs) = map degree_m gs" by auto
    also have "\<dots> = map degree gs" using g(3) by auto
    finally show "mset (map degree fs) = mset (map degree gs)" .
  qed auto
  show "q.factorization_m f (lead_coeff f, mset gs)" 
    using eq g unfolding q.factorization_m_def by auto
qed

end

end
end