Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 46,644 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
(*  
    Author:      René Thiemann 
                 Akihisa Yamada
    License:     BSD
*)
section \<open>Unique Factorization Domain for Polynomials\<close>

text \<open>In this theory we prove that the polynomials over a unique factorization domain (UFD) form a UFD.\<close>

theory Unique_Factorization_Poly
imports
  Unique_Factorization
  Polynomial_Factorization.Missing_Polynomial_Factorial 
  Subresultants.More_Homomorphisms 
  "HOL-Computational_Algebra.Field_as_Ring"
begin

hide_const (open) module.smult
hide_const (open) Divisibility.irreducible

instantiation fract :: (idom) "{normalization_euclidean_semiring, euclidean_ring}"
begin

definition [simp]: "normalize_fract \<equiv> (normalize_field :: 'a fract \<Rightarrow> _)"
definition [simp]: "unit_factor_fract = (unit_factor_field :: 'a fract \<Rightarrow> _)"
definition [simp]: "euclidean_size_fract = (euclidean_size_field :: 'a fract \<Rightarrow> _)"
definition [simp]: "modulo_fract = (mod_field :: 'a fract \<Rightarrow> _)"

instance by standard (simp_all add: dvd_field_iff divide_simps)

end

instantiation fract :: (idom) euclidean_ring_gcd
begin

definition gcd_fract :: "'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract" where
  "gcd_fract \<equiv> Euclidean_Algorithm.gcd"
definition lcm_fract :: "'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract" where
  "lcm_fract \<equiv> Euclidean_Algorithm.lcm"
definition Gcd_fract :: "'a fract set \<Rightarrow> 'a fract" where
 "Gcd_fract \<equiv> Euclidean_Algorithm.Gcd"
definition Lcm_fract :: "'a fract set \<Rightarrow> 'a fract" where
 "Lcm_fract \<equiv> Euclidean_Algorithm.Lcm"

instance
  by (standard, simp_all add: gcd_fract_def lcm_fract_def Gcd_fract_def Lcm_fract_def)

end
(*field + unique_euclidean_ring + euclidean_ring_gcd + normalization_semidom_multiplicative*)

instantiation fract :: (idom) unique_euclidean_ring
begin

definition [simp]: "division_segment_fract (x :: 'a fract) = (1 :: 'a fract)"

instance by standard (auto split: if_splits)
end

instance fract :: (idom) field_gcd by standard auto


definition divides_ff :: "'a::idom fract \<Rightarrow> 'a fract \<Rightarrow> bool"
  where "divides_ff x y \<equiv> \<exists> r. y = x * to_fract r"

lemma ff_list_pairs: 
  "\<exists> xs. X = map (\<lambda> (x,y). Fraction_Field.Fract x y) xs \<and> 0 \<notin> snd ` set xs"
proof (induct X)
  case (Cons a X)
  from Cons(1) obtain xs where X: "X = map (\<lambda> (x,y). Fraction_Field.Fract x y)  xs" and xs: "0 \<notin> snd ` set xs"
    by auto
  obtain x y where a: "a = Fraction_Field.Fract x y" and y: "y \<noteq> 0" by (cases a, auto)
  show ?case unfolding X a using xs y
    by (intro exI[of _ "(x,y) # xs"], auto)
qed auto

lemma divides_ff_to_fract[simp]: "divides_ff (to_fract x) (to_fract y) \<longleftrightarrow> x dvd y"
  unfolding divides_ff_def dvd_def
  by (simp add: to_fract_def eq_fract(1) mult.commute)

lemma
  shows divides_ff_mult_cancel_left[simp]: "divides_ff (z * x) (z * y) \<longleftrightarrow> z = 0 \<or> divides_ff x y"
    and divides_ff_mult_cancel_right[simp]: "divides_ff (x * z) (y * z) \<longleftrightarrow> z = 0 \<or> divides_ff x y"
  unfolding divides_ff_def by auto

definition gcd_ff_list :: "'a::ufd fract list \<Rightarrow> 'a fract \<Rightarrow> bool" where
  "gcd_ff_list X g = (
     (\<forall> x \<in> set X. divides_ff g x) \<and> 
     (\<forall> d. (\<forall> x \<in> set X. divides_ff d x) \<longrightarrow> divides_ff d g))"

lemma gcd_ff_list_exists: "\<exists> g. gcd_ff_list (X :: 'a::ufd fract list) g"
proof -
  interpret some_gcd: idom_gcd "(*)" "1 :: 'a" "(+)" 0 "(-)" uminus some_gcd
    rewrites "dvd.dvd ((*)) = (dvd)" by (unfold_locales, auto simp: dvd_rewrites)
  from ff_list_pairs[of X] obtain xs where X: "X = map (\<lambda> (x,y). Fraction_Field.Fract x y) xs"
    and xs: "0 \<notin> snd ` set xs" by auto
  define r where "r \<equiv> prod_list (map snd xs)"
  have r: "r \<noteq> 0" unfolding r_def prod_list_zero_iff using xs by auto
  define ys where "ys \<equiv> map (\<lambda> (x,y). x * prod_list (remove1 y (map snd xs))) xs"
  {
    fix i
    assume "i < length X"
    hence i: "i < length xs" unfolding X by auto
    obtain x y where xsi: "xs ! i = (x,y)" by force
    with i have "(x,y) \<in> set xs" unfolding set_conv_nth by force
    hence y_mem: "y \<in> set (map snd xs)" by force
    with xs have y: "y \<noteq> 0" by force
    from i have id1: "ys ! i = x * prod_list (remove1 y (map snd xs))" unfolding ys_def using xsi by auto
    from i xsi have id2: "X ! i = Fraction_Field.Fract x y" unfolding X by auto
    have lp: "prod_list (remove1 y (map snd xs)) * y = r" unfolding r_def
      by (rule prod_list_remove1[OF y_mem])
    have "ys ! i \<in> set ys" using i unfolding ys_def by auto
    moreover have "to_fract (ys ! i) = to_fract r * (X ! i)"
      unfolding id1 id2 to_fract_def mult_fract
      by (subst eq_fract(1), force, force simp: y, simp add: lp)
    ultimately have "ys ! i \<in> set ys" "to_fract (ys ! i) = to_fract r * (X ! i)" .
  } note ys = this
  define G where "G \<equiv> some_gcd.listgcd ys"
  define g where "g \<equiv> to_fract G * Fraction_Field.Fract 1 r"
  have len: "length X = length ys" unfolding X ys_def by auto
  show ?thesis
  proof (rule exI[of _ g], unfold gcd_ff_list_def, intro ballI conjI impI allI)
    fix x
    assume "x \<in> set X"
    then obtain i where i: "i < length X" and x: "x = X ! i" unfolding set_conv_nth by auto
    from ys[OF i] have id: "to_fract (ys ! i) = to_fract r * x" 
      and ysi: "ys ! i \<in> set ys" unfolding x by auto
    from some_gcd.listgcd[OF ysi] have "G dvd ys ! i" unfolding G_def .
    then obtain d where ysi: "ys ! i = G * d" unfolding dvd_def by auto
    have "to_fract d * (to_fract G * Fraction_Field.Fract 1 r) = x * (to_fract r * Fraction_Field.Fract 1 r)" 
      using id[unfolded ysi]
      by (simp add: ac_simps)
    also have "\<dots> = x" using r unfolding to_fract_def by (simp add: eq_fract One_fract_def)
    finally have "to_fract d * (to_fract G * Fraction_Field.Fract 1 r) = x" by simp
    thus "divides_ff g x" unfolding divides_ff_def g_def 
      by (intro exI[of _ d], auto)
  next
    fix d
    assume "\<forall>x \<in> set X. divides_ff d x"
    hence "Ball ((\<lambda> x. to_fract r * x) ` set X) ( divides_ff (to_fract r * d))" by simp
    also have "(\<lambda> x. to_fract r * x) ` set X = to_fract ` set ys"
      unfolding set_conv_nth using ys len by force
    finally have dvd: "Ball (set ys) (\<lambda> y. divides_ff (to_fract r * d) (to_fract y))" by auto
    obtain nd dd where d: "d = Fraction_Field.Fract nd dd" and dd: "dd \<noteq> 0" by (cases d, auto)
    {
      fix y
      assume "y \<in> set ys"
      hence "divides_ff (to_fract r * d) (to_fract y)" using dvd by auto
      from this[unfolded divides_ff_def d to_fract_def mult_fract]
      obtain ra where "Fraction_Field.Fract y 1 = Fraction_Field.Fract (r * nd * ra) dd" by auto
      hence "y * dd = ra * (r * nd)" by (simp add: eq_fract dd)
      hence "r * nd dvd y * dd" by auto
    }
    hence "r * nd dvd some_gcd.listgcd ys * dd" by (rule some_gcd.listgcd_greatest_mult)
    hence "divides_ff (to_fract r * d) (to_fract G)" unfolding to_fract_def d mult_fract
      G_def divides_ff_def by (auto simp add: eq_fract dd dvd_def)
    also have "to_fract G = to_fract r * g" unfolding g_def using r
      by (auto simp: to_fract_def eq_fract)
    finally show "divides_ff d g" using r by simp
  qed
qed

definition some_gcd_ff_list :: "'a :: ufd fract list \<Rightarrow> 'a fract" where
  "some_gcd_ff_list xs = (SOME g. gcd_ff_list xs g)"

lemma some_gcd_ff_list: "gcd_ff_list xs (some_gcd_ff_list xs)"
  unfolding some_gcd_ff_list_def using gcd_ff_list_exists[of xs]
  by (rule someI_ex)

lemma some_gcd_ff_list_divides: "x \<in> set xs \<Longrightarrow> divides_ff (some_gcd_ff_list xs) x"
  using some_gcd_ff_list[of xs] unfolding gcd_ff_list_def by auto

lemma some_gcd_ff_list_greatest: "(\<forall>x \<in> set xs. divides_ff d x) \<Longrightarrow> divides_ff d (some_gcd_ff_list xs)"
  using some_gcd_ff_list[of xs] unfolding gcd_ff_list_def by auto

lemma divides_ff_refl[simp]: "divides_ff x x"
  unfolding divides_ff_def
  by (rule exI[of _ 1], auto simp: to_fract_def One_fract_def)

lemma divides_ff_trans:
  "divides_ff x y \<Longrightarrow> divides_ff y z \<Longrightarrow> divides_ff x z"
  unfolding divides_ff_def
  by (auto simp del: to_fract_hom.hom_mult simp add: to_fract_hom.hom_mult[symmetric])

lemma divides_ff_mult_right: "a \<noteq> 0 \<Longrightarrow> divides_ff (x * inverse a) y \<Longrightarrow> divides_ff x (a * y)"
  unfolding divides_ff_def divide_inverse[symmetric] by auto

definition eq_dff :: "'a :: ufd fract \<Rightarrow> 'a fract \<Rightarrow> bool" (infix "=dff" 50) where
  "x =dff y \<longleftrightarrow> divides_ff x y \<and> divides_ff y x"

lemma eq_dffI[intro]: "divides_ff x y \<Longrightarrow> divides_ff y x \<Longrightarrow> x =dff y" 
  unfolding eq_dff_def by auto

lemma eq_dff_refl[simp]: "x =dff x"
  by (intro eq_dffI, auto)

lemma eq_dff_sym: "x =dff y \<Longrightarrow> y =dff x" unfolding eq_dff_def by auto

lemma eq_dff_trans[trans]: "x =dff y \<Longrightarrow> y =dff z \<Longrightarrow> x =dff z"
  unfolding eq_dff_def using divides_ff_trans by auto

lemma eq_dff_cancel_right[simp]: "x * y =dff x * z \<longleftrightarrow> x = 0 \<or> y =dff z" 
  unfolding eq_dff_def by auto

lemma eq_dff_mult_right_trans[trans]: "x =dff y * z \<Longrightarrow> z =dff u \<Longrightarrow> x =dff y * u"
  using eq_dff_trans by force

lemma some_gcd_ff_list_smult: "a \<noteq> 0 \<Longrightarrow> some_gcd_ff_list (map ((*) a) xs) =dff a * some_gcd_ff_list xs"
proof 
  let ?g = "some_gcd_ff_list (map ((*) a) xs)"
  show "divides_ff (a * some_gcd_ff_list xs) ?g"
    by (rule some_gcd_ff_list_greatest, insert some_gcd_ff_list_divides[of _ xs], auto simp: divides_ff_def)
  assume a: "a \<noteq> 0"
  show "divides_ff ?g (a * some_gcd_ff_list xs)"
  proof (rule divides_ff_mult_right[OF a some_gcd_ff_list_greatest], intro ballI)
    fix x
    assume x: "x \<in> set xs"
    have "divides_ff (?g * inverse a) x = divides_ff (inverse a * ?g) (inverse a * (a * x))"
      using a by (simp add: field_simps)
    also have "\<dots>" using a x by (auto intro: some_gcd_ff_list_divides)
    finally show "divides_ff (?g * inverse a) x" .
  qed
qed

definition content_ff :: "'a::ufd fract poly \<Rightarrow> 'a fract" where 
  "content_ff p = some_gcd_ff_list (coeffs p)"

lemma content_ff_iff: "divides_ff x (content_ff p) \<longleftrightarrow> (\<forall> c \<in> set (coeffs p). divides_ff x c)" (is "?l = ?r")
proof
  assume ?l
  from divides_ff_trans[OF this, unfolded content_ff_def, OF some_gcd_ff_list_divides] show ?r ..
next
  assume ?r
  thus ?l unfolding content_ff_def by (intro some_gcd_ff_list_greatest, auto)
qed

lemma content_ff_divides_ff: "x \<in> set (coeffs p) \<Longrightarrow> divides_ff (content_ff p) x"
  unfolding content_ff_def by (rule some_gcd_ff_list_divides)

lemma content_ff_0[simp]: "content_ff 0 = 0"
  using content_ff_iff[of 0 0] by (auto simp: divides_ff_def)

lemma content_ff_0_iff[simp]: "(content_ff p = 0) = (p = 0)"
proof (cases "p = 0")
  case False
  define a where "a \<equiv> last (coeffs p)"
  define xs where "xs \<equiv> coeffs p"
  from False
  have mem: "a \<in> set (coeffs p)" and a: "a \<noteq> 0"
    unfolding a_def last_coeffs_eq_coeff_degree[OF False] coeffs_def by auto
  from content_ff_divides_ff[OF mem] have "divides_ff (content_ff p) a" .
  with a have "content_ff p \<noteq> 0" unfolding divides_ff_def by auto
  with False show ?thesis by auto
qed auto

lemma content_ff_eq_dff_nonzero: "content_ff p =dff x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> p \<noteq> 0"
  using divides_ff_def eq_dff_def by force

lemma content_ff_smult: "content_ff (smult (a::'a::ufd fract) p) =dff a * content_ff p"
proof (cases "a = 0")
  case False note a = this
  have id: "coeffs (smult a p) = map ((*) a) (coeffs p)"
    unfolding coeffs_smult using a by (simp add: Polynomial.coeffs_smult)
  show ?thesis unfolding content_ff_def id using some_gcd_ff_list_smult[OF a] .
qed simp

definition normalize_content_ff
  where "normalize_content_ff (p::'a::ufd fract poly) \<equiv> smult (inverse (content_ff p)) p"

lemma smult_normalize_content_ff: "smult (content_ff p) (normalize_content_ff p) = p"  
  unfolding normalize_content_ff_def
  by (cases "p = 0", auto)

lemma content_ff_normalize_content_ff_1: assumes p0: "p \<noteq> 0" 
  shows "content_ff (normalize_content_ff p) =dff 1"
proof -
  have "content_ff p = content_ff (smult (content_ff p) (normalize_content_ff p))" unfolding smult_normalize_content_ff ..
  also have "\<dots> =dff content_ff p * content_ff (normalize_content_ff p)" by (rule content_ff_smult)
  finally show ?thesis unfolding eq_dff_def divides_ff_def using p0 by auto
qed

lemma content_ff_to_fract: assumes "set (coeffs p) \<subseteq> range to_fract"
  shows "content_ff p \<in> range to_fract"
proof -
  have "divides_ff 1 (content_ff p)" using assms
    unfolding content_ff_iff unfolding divides_ff_def[abs_def] by auto
  thus ?thesis unfolding divides_ff_def by auto
qed

lemma content_ff_map_poly_to_fract: "content_ff (map_poly to_fract (p :: 'a :: ufd poly)) \<in> range to_fract"
  by (rule content_ff_to_fract, subst coeffs_map_poly, auto)

lemma range_coeffs_to_fract: assumes "set (coeffs p) \<subseteq> range to_fract" 
  shows "\<exists> m. coeff p i = to_fract m"
proof -
  from assms(1) to_fract_0 have "coeff p i \<in> range to_fract" using range_coeff [of p]
    by auto (metis contra_subsetD to_fract_hom.hom_zero insertE range_eqI)
  thus ?thesis by auto
qed

lemma divides_ff_coeff: assumes "set (coeffs p) \<subseteq> range to_fract" and "divides_ff (to_fract n) (coeff p i)"
  shows "\<exists> m. coeff p i = to_fract n * to_fract m"
proof -
  from range_coeffs_to_fract[OF assms(1)]  obtain k where pi: "coeff p i = to_fract k" by auto
  from assms(2)[unfolded this] have "n dvd k" by simp
  then obtain j where k: "k = n * j" unfolding Rings.dvd_def by auto
  show ?thesis unfolding pi k by auto
qed

definition inv_embed :: "'a :: ufd fract \<Rightarrow> 'a" where
  "inv_embed = the_inv to_fract"

lemma inv_embed[simp]: "inv_embed (to_fract x) = x"
  unfolding inv_embed_def
  by (rule the_inv_f_f, auto simp: inj_on_def)

lemma inv_embed_0[simp]: "inv_embed 0 = 0" unfolding to_fract_0[symmetric] inv_embed by simp

lemma range_to_fract_embed_poly: assumes "set (coeffs p) \<subseteq> range to_fract"
  shows "p = map_poly to_fract (map_poly inv_embed p)"
proof -
  have "p = map_poly (to_fract o inv_embed) p"
    by (rule sym, rule map_poly_idI, insert assms, auto)
  also have "\<dots> = map_poly to_fract (map_poly inv_embed p)" 
    by (subst map_poly_map_poly, auto)
  finally show ?thesis .
qed

lemma content_ff_to_fract_coeffs_to_fract: assumes "content_ff p \<in> range to_fract"
  shows "set (coeffs p) \<subseteq> range to_fract"
proof 
  fix x
  assume "x \<in> set (coeffs p)"
  from content_ff_divides_ff[OF this] assms[unfolded eq_dff_def] show "x \<in> range to_fract"
    unfolding divides_ff_def by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
qed

lemma content_ff_1_coeffs_to_fract: assumes "content_ff p =dff 1"
  shows "set (coeffs p) \<subseteq> range to_fract"
proof 
  fix x
  assume "x \<in> set (coeffs p)"
  from content_ff_divides_ff[OF this] assms[unfolded eq_dff_def] show "x \<in> range to_fract"
    unfolding divides_ff_def by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
qed

lemma gauss_lemma:
  fixes p q :: "'a :: ufd fract poly"
  shows "content_ff (p * q) =dff content_ff p * content_ff q"
proof (cases "p = 0 \<or> q = 0")
  case False
  hence p: "p \<noteq> 0" and q: "q \<noteq> 0" by auto
  let ?c = "content_ff :: 'a fract poly \<Rightarrow> 'a fract"
  {
    fix p q :: "'a fract poly"
    assume cp1: "?c p =dff 1" and cq1: "?c q =dff 1"
    define ip where "ip \<equiv> map_poly inv_embed p"
    define iq where "iq \<equiv> map_poly inv_embed q"
    interpret map_poly_hom: map_poly_comm_ring_hom to_fract..
    from content_ff_1_coeffs_to_fract[OF cp1] have cp: "set (coeffs p) \<subseteq> range to_fract" .
    from content_ff_1_coeffs_to_fract[OF cq1] have cq: "set (coeffs q) \<subseteq> range to_fract" .
    have ip: "p = map_poly to_fract ip" unfolding ip_def
      by (rule range_to_fract_embed_poly[OF cp])
    have iq: "q = map_poly to_fract iq" unfolding iq_def
      by (rule range_to_fract_embed_poly[OF cq])
    have cpq0: "?c (p * q) \<noteq> 0"
      unfolding content_ff_0_iff using cp1 cq1 content_ff_eq_dff_nonzero[of _ 1] by auto
    have cpq: "set (coeffs (p * q)) \<subseteq> range to_fract" unfolding ip iq
    unfolding map_poly_hom.hom_mult[symmetric] to_fract_hom.coeffs_map_poly_hom by auto
    have ctnt: "?c (p * q) \<in> range to_fract" using content_ff_to_fract[OF cpq] .
    then obtain cpq where id: "?c (p * q) = to_fract cpq" by auto
    have dvd: "divides_ff 1 (?c (p * q))" using ctnt unfolding divides_ff_def by auto
    from cpq0[unfolded id] have cpq0: "cpq \<noteq> 0" unfolding to_fract_def Zero_fract_def by auto
    hence cpqM: "cpq \<in> carrier mk_monoid" by auto
    have "?c (p * q) =dff 1"
    proof (rule ccontr)
      assume "\<not> ?c (p * q) =dff 1"
      with dvd have "\<not> divides_ff (?c (p * q)) 1"
        unfolding eq_dff_def by auto
      from this[unfolded id divides_ff_def] have cpq: "\<And> r. cpq * r \<noteq> 1" 
        by (auto simp: to_fract_def One_fract_def eq_fract)
      then have cpq1: "\<not> cpq dvd 1" by (auto elim:dvdE simp:ac_simps)
      from mset_factors_exist[OF cpq0 cpq1]
      obtain F where F: "mset_factors F cpq" by auto
      have "F \<noteq> {#}" using F by auto
      then obtain f where f: "f \<in># F" by auto
      with F have irrf: "irreducible f" and f0: "f \<noteq> 0" by (auto dest: mset_factorsD)
      from irrf have pf: "prime_elem f" by simp
      note * = this[unfolded prime_elem_def]
      from * have no_unit: "\<not> f dvd 1" by auto
      from * f0 have prime: "\<And> a b. f dvd a * b \<Longrightarrow> f dvd a \<or> f dvd b" unfolding dvd_def by force
      let ?f = "to_fract f"
      from F f
      have fdvd: "f dvd cpq" by (auto intro:mset_factors_imp_dvd)
      hence "divides_ff ?f (to_fract cpq)" by simp
      from divides_ff_trans[OF this, folded id, OF content_ff_divides_ff] 
      have dvd: "\<And> z. z \<in> set (coeffs (p * q)) \<Longrightarrow> divides_ff ?f z" .
      {
        fix p :: "'a fract poly"
        assume cp: "?c p =dff 1" 
        let ?P = "\<lambda> i. \<not> divides_ff ?f (coeff p i)"
        {
          assume "\<forall> c \<in> set (coeffs p). divides_ff ?f c"           
          hence n: "divides_ff ?f (?c p)" unfolding content_ff_iff by auto
          from divides_ff_trans[OF this] cp[unfolded eq_dff_def] have "divides_ff ?f 1" by auto
          also have "1 = to_fract 1" by simp
          finally have "f dvd 1" by (unfold divides_ff_to_fract)
          hence False using no_unit unfolding dvd_def by (auto simp: ac_simps)
        }
        then obtain cp where cp: "cp \<in> set (coeffs p)" and ncp: "\<not> divides_ff ?f cp" by auto
        hence "cp \<in> range (coeff p)" unfolding range_coeff by auto
        with ncp have "\<exists> i. ?P i" by auto
        from LeastI_ex[OF this] not_less_Least[of _ ?P]
        have "\<exists> i. ?P i \<and> (\<forall> j. j < i \<longrightarrow> divides_ff ?f (coeff p j))" by blast
      } note cont = this
      from cont[OF cp1] obtain r where 
        r: "\<not> divides_ff ?f (coeff p r)" and r': "\<And> i. i < r \<Longrightarrow> divides_ff ?f (coeff p i)" by auto
      have "\<forall> i. \<exists> k. i < r \<longrightarrow> coeff p i = ?f * to_fract k" using divides_ff_coeff[OF cp r'] by blast
      from choice[OF this] obtain rr where r': "\<And> i. i < r \<Longrightarrow> coeff p i = ?f * to_fract (rr i)" by blast
      let ?r = "coeff p r"
      from cont[OF cq1] obtain s where 
        s: "\<not> divides_ff ?f (coeff q s)" and s': "\<And> i. i < s \<Longrightarrow> divides_ff ?f (coeff q i)" by auto
      have "\<forall> i. \<exists> k. i < s \<longrightarrow> coeff q i = ?f * to_fract k" using divides_ff_coeff[OF cq s'] by blast
      from choice[OF this] obtain ss where s': "\<And> i. i < s \<Longrightarrow> coeff q i = ?f * to_fract (ss i)" by blast
      from range_coeffs_to_fract[OF cp] have "\<forall> i. \<exists> m. coeff p i = to_fract m" ..
      from choice[OF this] obtain pi where pi: "\<And> i. coeff p i = to_fract (pi i)" by blast
      from range_coeffs_to_fract[OF cq] have "\<forall> i. \<exists> m. coeff q i = to_fract m" ..
      from choice[OF this] obtain qi where qi: "\<And> i. coeff q i = to_fract (qi i)" by blast
      let ?s = "coeff q s"
      let ?g = "\<lambda> i. coeff p i * coeff q (r + s - i)"
      define a where "a = (\<Sum>i\<in>{..<r}. (rr i * qi (r + s - i)))"
      define b where "b = (\<Sum> i \<in> {Suc r..r + s}. pi i * (ss (r + s - i)))" 
      have "coeff (p * q) (r + s) = (\<Sum>i\<le>r + s. ?g i)" unfolding coeff_mult ..
      also have "{..r+s} = {..< r} \<union> {r .. r+s}" by auto
      also have "(\<Sum>i\<in>{..<r} \<union> {r..r + s}. ?g i)
        = (\<Sum>i\<in>{..<r}. ?g i) + (\<Sum> i \<in> {r..r + s}. ?g i)" 
        by (rule sum.union_disjoint, auto)
      also have "(\<Sum>i\<in>{..<r}. ?g i) = (\<Sum>i\<in>{..<r}. ?f * (to_fract (rr i) * to_fract (qi (r + s - i))))"
        by (rule sum.cong[OF refl], insert r' qi, auto)
      also have "\<dots> = to_fract (f * a)" by (simp add: a_def sum_distrib_left)
      also have "(\<Sum> i \<in> {r..r + s}. ?g i) = ?g r + (\<Sum> i \<in> {Suc r..r + s}. ?g i)"
        by (subst sum.remove[of _ r], auto intro: sum.cong)
      also have "(\<Sum> i \<in> {Suc r..r + s}. ?g i) = (\<Sum> i \<in> {Suc r..r + s}. ?f * (to_fract (pi i) * to_fract (ss (r + s - i))))"
        by (rule sum.cong[OF refl], insert s' pi, auto)
      also have "\<dots> = to_fract (f * b)" by (simp add: sum_distrib_left b_def)
      finally have cpq: "coeff (p * q) (r + s) = to_fract (f * (a + b)) + ?r * ?s" by (simp add: field_simps)
      {
        fix i
        from dvd[of "coeff (p * q) i"] have "divides_ff ?f (coeff (p * q) i)" using range_coeff[of "p * q"] 
          by (cases "coeff (p * q) i = 0", auto simp: divides_ff_def)
      }
      from this[of "r + s", unfolded cpq] have "divides_ff ?f (to_fract (f * (a + b) + pi r * qi s))" 
        unfolding pi qi by simp
      from this[unfolded divides_ff_to_fract] have "f dvd pi r * qi s"
        by (metis dvd_add_times_triv_left_iff mult.commute)
      from prime[OF this] have "f dvd pi r \<or> f dvd qi s" by auto
      with r s show False unfolding pi qi by auto
    qed
  } note main = this
  define n where "n \<equiv> normalize_content_ff :: 'a fract poly \<Rightarrow> 'a fract poly"
  let ?s = "\<lambda> p. smult (content_ff p) (n p)"
  have "?c (p * q) = ?c (?s p * ?s q)" unfolding smult_normalize_content_ff n_def by simp
  also have "?s p * ?s q = smult (?c p * ?c q) (n p * n q)" by (simp add: mult.commute)
  also have "?c (\<dots>) =dff (?c p * ?c q) * ?c (n p * n q)" by (rule content_ff_smult)
  also have "?c (n p * n q) =dff 1" unfolding n_def
    by (rule main, insert p q, auto simp: content_ff_normalize_content_ff_1)
  finally show ?thesis by simp
qed auto

abbreviation (input) "content_ff_ff p \<equiv> content_ff (map_poly to_fract p)"

lemma factorization_to_fract:
  assumes q: "q \<noteq> 0" and factor: "map_poly to_fract (p :: 'a :: ufd poly) = q * r"
  shows "\<exists> q' r' c. c \<noteq> 0 \<and> q = smult c (map_poly to_fract q') \<and>
    r = smult (inverse c) (map_poly to_fract r') \<and>
    content_ff_ff q' =dff 1 \<and> p = q' * r'"
proof -
  let ?c = content_ff
  let ?p = "map_poly to_fract p"
  interpret map_poly_inj_comm_ring_hom "to_fract :: 'a \<Rightarrow> _"..
  define cq where "cq \<equiv> normalize_content_ff q"
  define cr where "cr \<equiv> smult (content_ff q) r"
  define q' where "q' \<equiv> map_poly inv_embed cq"
  define r' where "r' \<equiv> map_poly inv_embed cr"
  from content_ff_map_poly_to_fract have cp_ff: "?c ?p \<in> range to_fract" by auto
  from smult_normalize_content_ff[of q] have cqs: "q = smult (content_ff q) cq" unfolding cq_def ..
  from content_ff_normalize_content_ff_1[OF q] have c_cq: "content_ff cq =dff 1" unfolding cq_def .
  from content_ff_1_coeffs_to_fract[OF this] have cq_ff: "set (coeffs cq) \<subseteq> range to_fract" .
  have factor: "?p = cq * cr" unfolding factor cr_def using cqs
    by (metis mult_smult_left mult_smult_right)
  from gauss_lemma[of cq cr] have cp: "?c ?p =dff ?c cq * ?c cr" unfolding factor .
  with c_cq have "?c ?p =dff ?c cr"
    by (metis eq_dff_mult_right_trans mult.commute mult.right_neutral)
  with cp_ff have "?c cr \<in> range to_fract"
    by (metis divides_ff_def to_fract_hom.hom_mult eq_dff_def image_iff range_eqI)
  from content_ff_to_fract_coeffs_to_fract[OF this] have cr_ff: "set (coeffs cr) \<subseteq> range to_fract" by auto
  have cq: "cq = map_poly to_fract q'" unfolding q'_def
    by (rule range_to_fract_embed_poly[OF cq_ff])
  have cr: "cr = map_poly to_fract r'" unfolding r'_def
    by (rule range_to_fract_embed_poly[OF cr_ff])
  from factor[unfolded cq cr]
  have p: "p = q' * r'" by (simp add: injectivity)
  from c_cq have ctnt: "content_ff_ff q' =dff 1" using cq q'_def by force
  from cqs have idq: "q = smult (?c q) (map_poly to_fract q')" unfolding cq .
  with q have cq: "?c q \<noteq> 0" by auto
  have "r = smult (inverse (?c q)) cr" unfolding cr_def using cq by auto
  also have "cr = map_poly to_fract r'" by (rule cr)
  finally have idr: "r = smult (inverse (?c q)) (map_poly to_fract r')" by auto
  from cq p ctnt idq idr show ?thesis by blast
qed

lemma irreducible_PM_M_PFM:
  assumes irr: "irreducible p"
  shows "degree p = 0 \<and> irreducible (coeff p 0) \<or> 
  degree p \<noteq> 0 \<and> irreducible (map_poly to_fract p) \<and> content_ff_ff p =dff 1"
proof-
  interpret map_poly_inj_idom_hom to_fract..
  from irr[unfolded irreducible_altdef]
  have p0: "p \<noteq> 0" and irr: "\<not> p dvd 1" "\<And> b. b dvd p \<Longrightarrow> \<not> p dvd b \<Longrightarrow> b dvd 1" by auto
  show ?thesis
  proof (cases "degree p = 0")
    case True
    from degree0_coeffs[OF True] obtain a where p: "p = [:a:]" by auto
    note irr = irr[unfolded p]
    from p p0 have a0: "a \<noteq> 0" by auto
    moreover have "\<not> a dvd 1" using irr(1) by simp
    moreover {
      fix b
      assume "b dvd a" "\<not> a dvd b"
      hence "[:b:] dvd [:a:]" "\<not> [:a:] dvd [:b:]" unfolding const_poly_dvd .
      from irr(2)[OF this] have "b dvd 1" unfolding const_poly_dvd_1 .
    }
    ultimately have "irreducible a" unfolding irreducible_altdef by auto
    with True show ?thesis unfolding p by auto
  next
    case False
    let ?E = "map_poly to_fract"
    let ?p = "?E p"
    have dp: "degree ?p \<noteq> 0" using False by simp
    from p0 have p': "?p \<noteq> 0" by simp
    moreover have "\<not> ?p dvd 1" 
      proof
        assume "?p dvd 1" then obtain q where id: "?p * q = 1" unfolding dvd_def by auto
        have deg: "degree (?p * q) = degree ?p + degree q"
          by (rule degree_mult_eq, insert id, auto)
        from arg_cong[OF id, of degree, unfolded deg] dp show False by auto
      qed
    moreover {
      fix q
      assume "q dvd ?p" and ndvd: "\<not> ?p dvd q"
      then obtain r where fact: "?p = q * r" unfolding dvd_def by auto
      with p' have q0: "q \<noteq> 0" by auto
      from factorization_to_fract[OF this fact] obtain q' r' c where *: "c \<noteq> 0" "q = smult c (?E q')"
        "r = smult (inverse c) (?E r')" "content_ff_ff q' =dff 1"
        "p = q' * r'" by auto
      hence "q' dvd p" unfolding dvd_def by auto
      note irr = irr(2)[OF this]
      have "\<not> p dvd q'"
      proof
        assume "p dvd q'"
        then obtain u where q': "q' = p * u" unfolding dvd_def by auto
        from arg_cong[OF this, of "\<lambda> x. smult c (?E x)", unfolded *(2)[symmetric]]
        have "q = ?p * smult c (?E u)" by simp
        hence "?p dvd q" unfolding dvd_def by blast
        with ndvd show False ..
      qed
      from irr[OF this] have "q' dvd 1" .
      from divides_degree[OF this] have "degree q' = 0" by auto
      from degree0_coeffs[OF this] obtain a' where "q' = [:a':]" by auto
      from *(2)[unfolded this] obtain a where q: "q = [:a:]"
        by (simp add: to_fract_hom.map_poly_pCons_hom)
      with q0 have a: "a \<noteq> 0" by auto
      have "q dvd 1" unfolding q const_poly_dvd_1 using a unfolding dvd_def
        by (intro exI[of _ "inverse a"], auto)
    }
    ultimately have irr_p': "irreducible ?p" unfolding irreducible_altdef by auto
    let ?c = "content_ff"
    have "?c ?p \<in> range to_fract"
      by (rule content_ff_to_fract, unfold to_fract_hom.coeffs_map_poly_hom, auto)
    then obtain c where cp: "?c ?p = to_fract c" by auto
    from p' cp have c: "c \<noteq> 0" by auto
    have "?c ?p =dff 1" unfolding cp
    proof (rule ccontr)
      define cp where "cp = normalize_content_ff ?p"
      from smult_normalize_content_ff[of ?p] have cps: "?p = smult (to_fract c) cp" unfolding cp_def cp ..
      from content_ff_normalize_content_ff_1[OF p'] have c_cp: "content_ff cp =dff 1" unfolding cp_def .
      from range_to_fract_embed_poly[OF content_ff_1_coeffs_to_fract[OF c_cp]] obtain cp' where "cp = ?E cp'" by auto
      from cps[unfolded this] have "p = smult c cp'" by (simp add: injectivity)
      hence dvd: "[: c :] dvd p" unfolding dvd_def by auto
      have "\<not> p dvd [: c :]" using divides_degree[of p "[: c :]"] c False by auto
      from irr(2)[OF dvd this] have "c dvd 1" by simp
      assume "\<not> to_fract c =dff 1"
      from this[unfolded eq_dff_def One_fract_def to_fract_def[symmetric] divides_ff_def to_fract_mult]
      have c1: "\<And> r. 1 \<noteq> c * r" by (auto simp: ac_simps simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
      with \<open>c dvd 1\<close> show False unfolding dvd_def by blast
    qed
    with False irr_p' show ?thesis by auto
  qed
qed

lemma irreducible_M_PM:
  fixes p :: "'a :: ufd poly" assumes 0: "degree p = 0" and irr: "irreducible (coeff p 0)"
  shows "irreducible p"
proof (cases "p = 0")
  case True
  thus ?thesis using assms by auto
next
  case False
  from degree0_coeffs[OF 0] obtain a where p: "p = [:a:]" by auto
  with False have a0: "a \<noteq> 0" by auto
  from p irr have "irreducible a" by auto
  from this[unfolded irreducible_altdef]
  have a1: "\<not> a dvd 1" and irr: "\<And> b. b dvd a \<Longrightarrow> \<not> a dvd b \<Longrightarrow> b dvd 1" by auto
  { 
    fix b
    assume *: "b dvd [:a:]" "\<not> [:a:] dvd b"
    from divides_degree[OF this(1)] a0 have "degree b = 0" by auto
    from degree0_coeffs[OF this] obtain bb where b: "b = [: bb :]" by auto
    from * irr[of bb] have "b dvd 1" unfolding b const_poly_dvd by auto
  }
  with a0 a1 show ?thesis by (auto simp: irreducible_altdef p)
qed

lemma primitive_irreducible_imp_degree:
 "primitive (p::'a::{semiring_gcd,idom} poly) \<Longrightarrow> irreducible p \<Longrightarrow> degree p > 0"
  by (unfold irreducible_primitive_connect[symmetric], auto)

lemma irreducible_degree_field:
  fixes p :: "'a :: field poly" assumes "irreducible p"
  shows "degree p > 0"
proof-
  {
    assume "degree p = 0"
    from degree0_coeffs[OF this] assms obtain a where p: "p = [:a:]" and a: "a \<noteq> 0" by auto
    hence "1 = p * [:inverse a:]" by auto
    hence "p dvd 1" ..
    hence "p \<in> Units mk_monoid" by simp
    with assms have False unfolding irreducible_def by auto
  } then show ?thesis by auto
qed

lemma irreducible_PFM_PM: assumes
  irr: "irreducible (map_poly to_fract p)" and ct: "content_ff_ff p =dff 1"
  shows "irreducible p"
proof -
  let ?E = "map_poly to_fract"
  let ?p = "?E p"
  from ct have p0: "p \<noteq> 0" by (auto simp: eq_dff_def divides_ff_def)
  moreover
    from irreducible_degree_field[OF irr] have deg: "degree p \<noteq> 0" by simp
    from irr[unfolded irreducible_altdef]
    have irr: "\<And> b. b dvd ?p \<Longrightarrow> \<not> ?p dvd b \<Longrightarrow> b dvd 1" by auto
    have "\<not> p dvd 1" using deg divides_degree[of p 1] by auto
  moreover {
    fix q :: "'a poly"
    assume dvd: "q dvd p" and ndvd: "\<not> p dvd q"
    from dvd obtain r where pqr: "p = q * r" ..
    from arg_cong[OF this, of ?E] have pqr': "?p = ?E q * ?E r" by simp
    from p0 pqr have q: "q \<noteq> 0" and r: "r \<noteq> 0" by auto
    have dp: "degree p = degree q + degree r" unfolding pqr
      by (subst degree_mult_eq, insert q r, auto)
    from eq_dff_trans[OF eq_dff_sym[OF gauss_lemma[of "?E q" "?E r", folded pqr']] ct]
    have ct: "content_ff (?E q) * content_ff (?E r) =dff 1" .
    from content_ff_map_poly_to_fract obtain cq where cq: "content_ff (?E q) = to_fract cq" by auto
    from content_ff_map_poly_to_fract obtain cr where cr: "content_ff (?E r) = to_fract cr" by auto
    note ct[unfolded cq cr to_fract_mult eq_dff_def divides_ff_def]
    from this[folded hom_distribs]
    obtain c where c: "cq * cr * c = 1" by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
    hence one: "1 = cq * (c * cr)" "1 = cr * (c * cq)" by (auto simp: ac_simps)
    {
      assume *: "degree q \<noteq> 0 \<and> degree r \<noteq> 0"
      with dp have "degree q < degree p" by auto
      hence "degree (?E q) < degree (?E p)" by simp
      hence ndvd: "\<not> ?p dvd ?E q" using divides_degree[of ?p "?E q"] q by auto
      have "?E q dvd ?p" unfolding pqr' by auto
      from irr[OF this ndvd] have "?E q dvd 1" .
      from divides_degree[OF this] * have False by auto
    }
    hence "degree q = 0 \<or> degree r = 0" by blast
    then have "q dvd 1" 
    proof
      assume "degree q = 0"
      from degree0_coeffs[OF this] q obtain a where q: "q = [:a:]" and a: "a \<noteq> 0" by auto
      hence id: "set (coeffs (?E q)) = {to_fract a}" by auto
      have "divides_ff (to_fract a) (content_ff (?E q))" unfolding content_ff_iff id by auto
      from this[unfolded cq divides_ff_def, folded hom_distribs]
      obtain rr where cq: "cq = a * rr" by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
      with one(1) have "1 = a * (rr * c * cr)" by (auto simp: ac_simps)
      hence "a dvd 1" ..
      thus ?thesis by (simp add: q)
    next
      assume "degree r = 0"
      from degree0_coeffs[OF this] r obtain a where r: "r = [:a:]" and a: "a \<noteq> 0" by auto
      hence id: "set (coeffs (?E r)) = {to_fract a}" by auto
      have "divides_ff (to_fract a) (content_ff (?E r))" unfolding content_ff_iff id by auto
      note this[unfolded cr divides_ff_def to_fract_mult]
      note this[folded hom_distribs]
      then obtain rr where cr: "cr = a * rr" by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
      with one(2) have one: "1 = a * (rr * c * cq)" by (auto simp: ac_simps)
      from arg_cong[OF pqr[unfolded r], of "\<lambda> p. p * [:rr * c * cq:]"]
      have "p * [:rr * c * cq:] = q * [:a * (rr * c * cq):]" by (simp add: ac_simps)
      also have "\<dots> = q" unfolding one[symmetric] by auto
      finally obtain r where "q = p * r" by blast
      hence "p dvd q" ..
      with ndvd show ?thesis by auto
    qed
  }
  ultimately show ?thesis by (auto simp:irreducible_altdef)
qed

lemma irreducible_cases: "irreducible p \<longleftrightarrow>
  degree p = 0 \<and> irreducible (coeff p 0) \<or> 
  degree p \<noteq> 0 \<and> irreducible (map_poly to_fract p) \<and> content_ff_ff p =dff 1"
  using irreducible_PM_M_PFM irreducible_M_PM irreducible_PFM_PM
  by blast

lemma dvd_PM_iff: "p dvd q \<longleftrightarrow> divides_ff (content_ff_ff p) (content_ff_ff q) \<and> 
  map_poly to_fract p dvd map_poly to_fract q"
proof -
  interpret map_poly_inj_idom_hom to_fract..
  let ?E = "map_poly to_fract"
  show ?thesis (is "?l = ?r")
  proof
    assume "p dvd q"
    then obtain r where qpr: "q = p * r" ..
    from arg_cong[OF this, of ?E]
    have dvd: "?E p dvd ?E q" by auto
    from content_ff_map_poly_to_fract obtain cq where cq: "content_ff_ff q = to_fract cq" by auto
    from content_ff_map_poly_to_fract obtain cp where cp: "content_ff_ff p = to_fract cp" by auto
    from content_ff_map_poly_to_fract obtain cr where cr: "content_ff_ff r = to_fract cr" by auto
    from gauss_lemma[of "?E p" "?E r", folded hom_distribs qpr, unfolded cq cp cr]
    have "divides_ff (content_ff_ff p) (content_ff_ff q)" unfolding cq cp eq_dff_def
      by (metis divides_ff_def divides_ff_trans)
    with dvd show ?r by blast
  next
    assume ?r
    show ?l 
    proof (cases "q = 0")
      case True
      with \<open>?r\<close> show ?l by auto
    next
      case False note q = this
      hence q': "?E q \<noteq> 0" by auto
      from \<open>?r\<close> obtain rr where qpr: "?E q = ?E p * rr" unfolding dvd_def by auto
      with q have p: "p \<noteq> 0" and Ep: "?E p \<noteq> 0" and rr: "rr \<noteq> 0" by auto
      from gauss_lemma[of "?E p" rr, folded qpr] 
      have ct: "content_ff_ff q =dff content_ff_ff p * content_ff rr"
        by auto
      from content_ff_map_poly_to_fract[of p] obtain cp where cp: "content_ff_ff p = to_fract cp" by auto
      from content_ff_map_poly_to_fract[of q] obtain cq where cq: "content_ff_ff q = to_fract cq" by auto
      from \<open>?r\<close>[unfolded cp cq] have "divides_ff (to_fract cp) (to_fract cq)" ..
      with ct[unfolded cp cq eq_dff_def] have "content_ff rr \<in> range to_fract"
        by (metis (no_types, lifting) Ep content_ff_0_iff cp divides_ff_def 
          divides_ff_trans mult.commute mult_right_cancel range_eqI)
      from range_to_fract_embed_poly[OF content_ff_to_fract_coeffs_to_fract[OF this]] obtain r
        where rr: "rr = ?E r" by auto
      from qpr[unfolded rr, folded hom_distribs]
      have "q = p * r" by (rule injectivity)
      thus "p dvd q" ..
    qed
  qed
qed

lemma factorial_monoid_poly: "factorial_monoid (mk_monoid :: 'a :: ufd poly monoid)"
proof (fold factorial_condition_one, intro conjI)
  interpret M: factorial_monoid "mk_monoid :: 'a monoid" by (fact factorial_monoid)
  interpret PFM: factorial_monoid "mk_monoid :: 'a fract poly monoid" 
    by (rule as_ufd.factorial_monoid)
  interpret PM: comm_monoid_cancel "mk_monoid :: 'a poly monoid" by (unfold_locales, auto)
  let ?E = "map_poly to_fract"
  show "divisor_chain_condition_monoid (mk_monoid::'a poly monoid)"
  proof (unfold_locales, unfold mk_monoid_simps)
    let ?rel' = "{(x::'a poly, y). x \<noteq> 0 \<and> y \<noteq> 0 \<and> properfactor x y}"
    let ?rel'' = "{(x::'a, y). x \<noteq> 0 \<and> y \<noteq> 0 \<and> properfactor x y}"
    let ?relPM = "{(x, y). x \<noteq> 0 \<and> y \<noteq> 0 \<and> x dvd y \<and> \<not> y dvd (x :: 'a poly)}"
    let ?relM = "{(x, y). x \<noteq> 0 \<and> y \<noteq> 0 \<and> x dvd y \<and> \<not> y dvd (x :: 'a)}"
    have id: "?rel' = ?relPM" using properfactor_nz by auto
    have id': "?rel'' = ?relM" using properfactor_nz by auto
    have "wf ?rel''" using M.division_wellfounded by auto
    hence wfM: "wf ?relM" using id' by auto
    let ?c = "\<lambda> p. inv_embed (content_ff_ff p)"
    let ?f = "\<lambda> p. (degree p, ?c p)"
    note wf = wf_inv_image[OF wf_lex_prod[OF wf_less wfM], of ?f]
    show "wf ?rel'" unfolding id
    proof (rule wf_subset[OF wf], clarify)
      fix p q :: "'a poly"
      assume p: "p \<noteq> 0" and q: "q \<noteq> 0" and dvd: "p dvd q" and ndvd: "\<not> q dvd p"
      from dvd obtain r where qpr: "q = p * r" ..
      from degree_mult_eq[of p r, folded qpr] q qpr have r: "r \<noteq> 0" 
        and deg: "degree q = degree p + degree r" by auto
      show "(p,q) \<in> inv_image ({(x, y). x < y} <*lex*> ?relM) ?f"
      proof (cases "degree p = degree q")
        case False
        with deg have "degree p < degree q" by auto
        thus ?thesis by auto
      next
        case True
        with deg have "degree r = 0" by simp
        from degree0_coeffs[OF this] r obtain a where ra: "r = [:a:]" and a: "a \<noteq> 0" by auto
        from arg_cong[OF qpr, of "\<lambda> p. ?E p * [:inverse (to_fract a):]"] a
        have "?E p = ?E q * [:inverse (to_fract a):]"
          by (auto simp: ac_simps ra)
        hence "?E q dvd ?E p" ..
        with ndvd dvd_PM_iff have ndvd: "\<not> divides_ff (content_ff_ff q) (content_ff_ff p)" by auto
        from content_ff_map_poly_to_fract obtain cq where cq: "content_ff_ff q = to_fract cq" by auto
        from content_ff_map_poly_to_fract obtain cp where cp: "content_ff_ff p = to_fract cp" by auto
        from ndvd[unfolded cp cq] have ndvd: "\<not> cq dvd cp" by simp
        from iffD1[OF dvd_PM_iff,OF dvd,unfolded cq cp]
        have dvd: "cp dvd cq" by simp
        have c_p: "?c p = cp" unfolding cp by simp
        have c_q: "?c q = cq" unfolding cq by simp
        from q cq have cq0: "cq \<noteq> 0" by auto
        from p cp have cp0: "cp \<noteq> 0" by auto
        from ndvd cq0 cp0 dvd have "(?c p, ?c q) \<in> ?relM" unfolding c_p c_q by auto
        with True show ?thesis by auto
      qed
    qed
  qed
  show "primeness_condition_monoid (mk_monoid::'a poly monoid)"
  proof (unfold_locales, unfold mk_monoid_simps)
    fix p :: "'a poly"
    assume p: "p \<noteq> 0" and "irred p"
    then have irr: "irreducible p" by auto
    from p have p': "?E p \<noteq> 0" by auto
    from irreducible_PM_M_PFM[OF irr] have choice: "degree p = 0 \<and> irred (coeff p 0)
      \<or> degree p \<noteq> 0 \<and> irred (?E p) \<and> content_ff_ff p =dff 1" by auto
    show "Divisibility.prime mk_monoid p"
    proof (rule Divisibility.primeI, unfold mk_monoid_simps mem_Units)
      show "\<not> p dvd 1"
      proof
        assume "p dvd 1"
        from divides_degree[OF this] have dp: "degree p = 0" by auto
        from degree0_coeffs[OF this] p obtain a where p: "p = [:a:]" and a: "a \<noteq> 0" by auto
        with choice have irr: "irreducible a" by auto
        from \<open>p dvd 1\<close>[unfolded p] have "a dvd 1" by auto
        with irr show False unfolding irreducible_def by auto
      qed
      fix q r :: "'a poly"
      assume q: "q \<noteq> 0" and r: "r \<noteq> 0" and "factor p (q * r)"
      from this[unfolded factor_idom] have "p dvd q * r" by auto
      from iffD1[OF dvd_PM_iff this] have dvd_ct: "divides_ff (content_ff_ff p) (content_ff (?E (q * r)))"
        and dvd_E: "?E p dvd ?E q * ?E r" by auto
      from gauss_lemma[of "?E q" "?E r"] divides_ff_trans[OF dvd_ct, of "content_ff_ff q * content_ff_ff r"]
      have dvd_ct: "divides_ff (content_ff_ff p) (content_ff_ff q * content_ff_ff r)"
        unfolding eq_dff_def by auto
      from choice
      have "p dvd q \<or> p dvd r"
      proof
        assume "degree p \<noteq> 0 \<and> irred (?E p) \<and> content_ff_ff p =dff 1"
        hence deg: "degree p \<noteq> 0" and irr: "irred (?E p)" and ct: "content_ff_ff p =dff 1" by auto
        from PFM.irreducible_prime[OF irr] p have prime: "Divisibility.prime mk_monoid (?E p)" by auto
        from q r have Eq: "?E q \<in> carrier mk_monoid" and Er: "?E r \<in> carrier mk_monoid" 
          and q': "?E q \<noteq> 0" and r': "?E r \<noteq> 0" and qr': "?E q * ?E r \<noteq> 0" by auto
        from PFM.prime_divides[OF Eq Er prime] q' r' qr' dvd_E
        have dvd_E: "?E p dvd ?E q \<or> ?E p dvd ?E r" by simp
        from ct have ct: "divides_ff (content_ff_ff p) 1" unfolding eq_dff_def by auto
        moreover have "\<And> q. divides_ff 1 (content_ff_ff q)" using content_ff_map_poly_to_fract
          unfolding divides_ff_def by auto
        from divides_ff_trans[OF ct this] have ct: "\<And> q. divides_ff (content_ff_ff p) (content_ff_ff q)" .
        with dvd_E show ?thesis using dvd_PM_iff by blast
      next
        assume "degree p = 0 \<and> irred (coeff p 0)"
        hence deg: "degree p = 0" and irr: "irred (coeff p 0)" by auto
        from degree0_coeffs[OF deg] p obtain a where p: "p = [:a:]" and a: "a \<noteq> 0" by auto
        with irr have irr: "irred a" and aM: "a \<in> carrier mk_monoid" by auto
        from M.irreducible_prime[OF irr aM] have prime: "Divisibility.prime mk_monoid a" .
        from content_ff_map_poly_to_fract obtain cq where cq: "content_ff_ff q = to_fract cq" by auto
        from content_ff_map_poly_to_fract obtain cp where cp: "content_ff_ff p = to_fract cp" by auto
        from content_ff_map_poly_to_fract obtain cr where cr: "content_ff_ff r = to_fract cr" by auto
        have "divides_ff (to_fract a) (content_ff_ff p)" unfolding p content_ff_iff using a by auto
        from divides_ff_trans[OF this[unfolded cp] dvd_ct[unfolded cp cq cr]]
        have "divides_ff (to_fract a) (to_fract (cq * cr))" by simp
        hence dvd: "a dvd cq * cr" by (auto simp add: divides_ff_def simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
        from content_ff_divides_ff[of "to_fract a" "?E p"] have "divides_ff (to_fract cp) (to_fract a)"
          using cp a p by auto
        hence cpa: "cp dvd a" by simp
        from a q r cq cr have aM: "a \<in> carrier mk_monoid" and qM: "cq \<in> carrier mk_monoid" and rM: "cr \<in> carrier mk_monoid"
          and q': "cq \<noteq> 0" and r': "cr \<noteq> 0" and qr': "cq * cr \<noteq> 0" 
          by auto
        from M.prime_divides[OF qM rM prime] q' r' qr' dvd
        have "a dvd cq \<or> a dvd cr" by simp
        with dvd_trans[OF cpa] have dvd: "cp dvd cq \<or> cp dvd cr" by auto
        have "\<And> q. ?E p * (smult (inverse (to_fract a)) q) = q" unfolding p using a by (auto simp: one_poly_def)
        hence Edvd: "\<And> q. ?E p dvd q" unfolding dvd_def by metis
        from dvd Edvd show ?thesis apply (subst(1 2) dvd_PM_iff) unfolding cp cq cr by auto
      qed
      thus "factor p q \<or> factor p r" unfolding factor_idom using p q r by auto
    qed
  qed
qed

instance poly :: (ufd) ufd
  by (intro class.ufd.of_class.intro factorial_monoid_imp_ufd factorial_monoid_poly)


lemma primitive_iff_some_content_dvd_1:
  fixes f :: "'a :: ufd poly" (* gcd_condition suffices... *)
  shows "primitive f \<longleftrightarrow> some_gcd.listgcd (coeffs f) dvd 1" (is "_ \<longleftrightarrow> ?c dvd 1")
proof(intro iffI primitiveI)
  fix x
  assume "(\<And>y. y \<in> set (coeffs f) \<Longrightarrow> x dvd y)"
  from some_gcd.listgcd_greatest[of "coeffs f", OF this]
  have "x dvd ?c" by simp
  also assume "?c dvd 1"
  finally show "x dvd 1".
next
  assume "primitive f"
  from primitiveD[OF this some_gcd.listgcd[of _ "coeffs f"]]
  show "?c dvd 1" by auto
qed

end