Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 46,644 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
(*
Author: René Thiemann
Akihisa Yamada
License: BSD
*)
section \<open>Unique Factorization Domain for Polynomials\<close>
text \<open>In this theory we prove that the polynomials over a unique factorization domain (UFD) form a UFD.\<close>
theory Unique_Factorization_Poly
imports
Unique_Factorization
Polynomial_Factorization.Missing_Polynomial_Factorial
Subresultants.More_Homomorphisms
"HOL-Computational_Algebra.Field_as_Ring"
begin
hide_const (open) module.smult
hide_const (open) Divisibility.irreducible
instantiation fract :: (idom) "{normalization_euclidean_semiring, euclidean_ring}"
begin
definition [simp]: "normalize_fract \<equiv> (normalize_field :: 'a fract \<Rightarrow> _)"
definition [simp]: "unit_factor_fract = (unit_factor_field :: 'a fract \<Rightarrow> _)"
definition [simp]: "euclidean_size_fract = (euclidean_size_field :: 'a fract \<Rightarrow> _)"
definition [simp]: "modulo_fract = (mod_field :: 'a fract \<Rightarrow> _)"
instance by standard (simp_all add: dvd_field_iff divide_simps)
end
instantiation fract :: (idom) euclidean_ring_gcd
begin
definition gcd_fract :: "'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract" where
"gcd_fract \<equiv> Euclidean_Algorithm.gcd"
definition lcm_fract :: "'a fract \<Rightarrow> 'a fract \<Rightarrow> 'a fract" where
"lcm_fract \<equiv> Euclidean_Algorithm.lcm"
definition Gcd_fract :: "'a fract set \<Rightarrow> 'a fract" where
"Gcd_fract \<equiv> Euclidean_Algorithm.Gcd"
definition Lcm_fract :: "'a fract set \<Rightarrow> 'a fract" where
"Lcm_fract \<equiv> Euclidean_Algorithm.Lcm"
instance
by (standard, simp_all add: gcd_fract_def lcm_fract_def Gcd_fract_def Lcm_fract_def)
end
(*field + unique_euclidean_ring + euclidean_ring_gcd + normalization_semidom_multiplicative*)
instantiation fract :: (idom) unique_euclidean_ring
begin
definition [simp]: "division_segment_fract (x :: 'a fract) = (1 :: 'a fract)"
instance by standard (auto split: if_splits)
end
instance fract :: (idom) field_gcd by standard auto
definition divides_ff :: "'a::idom fract \<Rightarrow> 'a fract \<Rightarrow> bool"
where "divides_ff x y \<equiv> \<exists> r. y = x * to_fract r"
lemma ff_list_pairs:
"\<exists> xs. X = map (\<lambda> (x,y). Fraction_Field.Fract x y) xs \<and> 0 \<notin> snd ` set xs"
proof (induct X)
case (Cons a X)
from Cons(1) obtain xs where X: "X = map (\<lambda> (x,y). Fraction_Field.Fract x y) xs" and xs: "0 \<notin> snd ` set xs"
by auto
obtain x y where a: "a = Fraction_Field.Fract x y" and y: "y \<noteq> 0" by (cases a, auto)
show ?case unfolding X a using xs y
by (intro exI[of _ "(x,y) # xs"], auto)
qed auto
lemma divides_ff_to_fract[simp]: "divides_ff (to_fract x) (to_fract y) \<longleftrightarrow> x dvd y"
unfolding divides_ff_def dvd_def
by (simp add: to_fract_def eq_fract(1) mult.commute)
lemma
shows divides_ff_mult_cancel_left[simp]: "divides_ff (z * x) (z * y) \<longleftrightarrow> z = 0 \<or> divides_ff x y"
and divides_ff_mult_cancel_right[simp]: "divides_ff (x * z) (y * z) \<longleftrightarrow> z = 0 \<or> divides_ff x y"
unfolding divides_ff_def by auto
definition gcd_ff_list :: "'a::ufd fract list \<Rightarrow> 'a fract \<Rightarrow> bool" where
"gcd_ff_list X g = (
(\<forall> x \<in> set X. divides_ff g x) \<and>
(\<forall> d. (\<forall> x \<in> set X. divides_ff d x) \<longrightarrow> divides_ff d g))"
lemma gcd_ff_list_exists: "\<exists> g. gcd_ff_list (X :: 'a::ufd fract list) g"
proof -
interpret some_gcd: idom_gcd "(*)" "1 :: 'a" "(+)" 0 "(-)" uminus some_gcd
rewrites "dvd.dvd ((*)) = (dvd)" by (unfold_locales, auto simp: dvd_rewrites)
from ff_list_pairs[of X] obtain xs where X: "X = map (\<lambda> (x,y). Fraction_Field.Fract x y) xs"
and xs: "0 \<notin> snd ` set xs" by auto
define r where "r \<equiv> prod_list (map snd xs)"
have r: "r \<noteq> 0" unfolding r_def prod_list_zero_iff using xs by auto
define ys where "ys \<equiv> map (\<lambda> (x,y). x * prod_list (remove1 y (map snd xs))) xs"
{
fix i
assume "i < length X"
hence i: "i < length xs" unfolding X by auto
obtain x y where xsi: "xs ! i = (x,y)" by force
with i have "(x,y) \<in> set xs" unfolding set_conv_nth by force
hence y_mem: "y \<in> set (map snd xs)" by force
with xs have y: "y \<noteq> 0" by force
from i have id1: "ys ! i = x * prod_list (remove1 y (map snd xs))" unfolding ys_def using xsi by auto
from i xsi have id2: "X ! i = Fraction_Field.Fract x y" unfolding X by auto
have lp: "prod_list (remove1 y (map snd xs)) * y = r" unfolding r_def
by (rule prod_list_remove1[OF y_mem])
have "ys ! i \<in> set ys" using i unfolding ys_def by auto
moreover have "to_fract (ys ! i) = to_fract r * (X ! i)"
unfolding id1 id2 to_fract_def mult_fract
by (subst eq_fract(1), force, force simp: y, simp add: lp)
ultimately have "ys ! i \<in> set ys" "to_fract (ys ! i) = to_fract r * (X ! i)" .
} note ys = this
define G where "G \<equiv> some_gcd.listgcd ys"
define g where "g \<equiv> to_fract G * Fraction_Field.Fract 1 r"
have len: "length X = length ys" unfolding X ys_def by auto
show ?thesis
proof (rule exI[of _ g], unfold gcd_ff_list_def, intro ballI conjI impI allI)
fix x
assume "x \<in> set X"
then obtain i where i: "i < length X" and x: "x = X ! i" unfolding set_conv_nth by auto
from ys[OF i] have id: "to_fract (ys ! i) = to_fract r * x"
and ysi: "ys ! i \<in> set ys" unfolding x by auto
from some_gcd.listgcd[OF ysi] have "G dvd ys ! i" unfolding G_def .
then obtain d where ysi: "ys ! i = G * d" unfolding dvd_def by auto
have "to_fract d * (to_fract G * Fraction_Field.Fract 1 r) = x * (to_fract r * Fraction_Field.Fract 1 r)"
using id[unfolded ysi]
by (simp add: ac_simps)
also have "\<dots> = x" using r unfolding to_fract_def by (simp add: eq_fract One_fract_def)
finally have "to_fract d * (to_fract G * Fraction_Field.Fract 1 r) = x" by simp
thus "divides_ff g x" unfolding divides_ff_def g_def
by (intro exI[of _ d], auto)
next
fix d
assume "\<forall>x \<in> set X. divides_ff d x"
hence "Ball ((\<lambda> x. to_fract r * x) ` set X) ( divides_ff (to_fract r * d))" by simp
also have "(\<lambda> x. to_fract r * x) ` set X = to_fract ` set ys"
unfolding set_conv_nth using ys len by force
finally have dvd: "Ball (set ys) (\<lambda> y. divides_ff (to_fract r * d) (to_fract y))" by auto
obtain nd dd where d: "d = Fraction_Field.Fract nd dd" and dd: "dd \<noteq> 0" by (cases d, auto)
{
fix y
assume "y \<in> set ys"
hence "divides_ff (to_fract r * d) (to_fract y)" using dvd by auto
from this[unfolded divides_ff_def d to_fract_def mult_fract]
obtain ra where "Fraction_Field.Fract y 1 = Fraction_Field.Fract (r * nd * ra) dd" by auto
hence "y * dd = ra * (r * nd)" by (simp add: eq_fract dd)
hence "r * nd dvd y * dd" by auto
}
hence "r * nd dvd some_gcd.listgcd ys * dd" by (rule some_gcd.listgcd_greatest_mult)
hence "divides_ff (to_fract r * d) (to_fract G)" unfolding to_fract_def d mult_fract
G_def divides_ff_def by (auto simp add: eq_fract dd dvd_def)
also have "to_fract G = to_fract r * g" unfolding g_def using r
by (auto simp: to_fract_def eq_fract)
finally show "divides_ff d g" using r by simp
qed
qed
definition some_gcd_ff_list :: "'a :: ufd fract list \<Rightarrow> 'a fract" where
"some_gcd_ff_list xs = (SOME g. gcd_ff_list xs g)"
lemma some_gcd_ff_list: "gcd_ff_list xs (some_gcd_ff_list xs)"
unfolding some_gcd_ff_list_def using gcd_ff_list_exists[of xs]
by (rule someI_ex)
lemma some_gcd_ff_list_divides: "x \<in> set xs \<Longrightarrow> divides_ff (some_gcd_ff_list xs) x"
using some_gcd_ff_list[of xs] unfolding gcd_ff_list_def by auto
lemma some_gcd_ff_list_greatest: "(\<forall>x \<in> set xs. divides_ff d x) \<Longrightarrow> divides_ff d (some_gcd_ff_list xs)"
using some_gcd_ff_list[of xs] unfolding gcd_ff_list_def by auto
lemma divides_ff_refl[simp]: "divides_ff x x"
unfolding divides_ff_def
by (rule exI[of _ 1], auto simp: to_fract_def One_fract_def)
lemma divides_ff_trans:
"divides_ff x y \<Longrightarrow> divides_ff y z \<Longrightarrow> divides_ff x z"
unfolding divides_ff_def
by (auto simp del: to_fract_hom.hom_mult simp add: to_fract_hom.hom_mult[symmetric])
lemma divides_ff_mult_right: "a \<noteq> 0 \<Longrightarrow> divides_ff (x * inverse a) y \<Longrightarrow> divides_ff x (a * y)"
unfolding divides_ff_def divide_inverse[symmetric] by auto
definition eq_dff :: "'a :: ufd fract \<Rightarrow> 'a fract \<Rightarrow> bool" (infix "=dff" 50) where
"x =dff y \<longleftrightarrow> divides_ff x y \<and> divides_ff y x"
lemma eq_dffI[intro]: "divides_ff x y \<Longrightarrow> divides_ff y x \<Longrightarrow> x =dff y"
unfolding eq_dff_def by auto
lemma eq_dff_refl[simp]: "x =dff x"
by (intro eq_dffI, auto)
lemma eq_dff_sym: "x =dff y \<Longrightarrow> y =dff x" unfolding eq_dff_def by auto
lemma eq_dff_trans[trans]: "x =dff y \<Longrightarrow> y =dff z \<Longrightarrow> x =dff z"
unfolding eq_dff_def using divides_ff_trans by auto
lemma eq_dff_cancel_right[simp]: "x * y =dff x * z \<longleftrightarrow> x = 0 \<or> y =dff z"
unfolding eq_dff_def by auto
lemma eq_dff_mult_right_trans[trans]: "x =dff y * z \<Longrightarrow> z =dff u \<Longrightarrow> x =dff y * u"
using eq_dff_trans by force
lemma some_gcd_ff_list_smult: "a \<noteq> 0 \<Longrightarrow> some_gcd_ff_list (map ((*) a) xs) =dff a * some_gcd_ff_list xs"
proof
let ?g = "some_gcd_ff_list (map ((*) a) xs)"
show "divides_ff (a * some_gcd_ff_list xs) ?g"
by (rule some_gcd_ff_list_greatest, insert some_gcd_ff_list_divides[of _ xs], auto simp: divides_ff_def)
assume a: "a \<noteq> 0"
show "divides_ff ?g (a * some_gcd_ff_list xs)"
proof (rule divides_ff_mult_right[OF a some_gcd_ff_list_greatest], intro ballI)
fix x
assume x: "x \<in> set xs"
have "divides_ff (?g * inverse a) x = divides_ff (inverse a * ?g) (inverse a * (a * x))"
using a by (simp add: field_simps)
also have "\<dots>" using a x by (auto intro: some_gcd_ff_list_divides)
finally show "divides_ff (?g * inverse a) x" .
qed
qed
definition content_ff :: "'a::ufd fract poly \<Rightarrow> 'a fract" where
"content_ff p = some_gcd_ff_list (coeffs p)"
lemma content_ff_iff: "divides_ff x (content_ff p) \<longleftrightarrow> (\<forall> c \<in> set (coeffs p). divides_ff x c)" (is "?l = ?r")
proof
assume ?l
from divides_ff_trans[OF this, unfolded content_ff_def, OF some_gcd_ff_list_divides] show ?r ..
next
assume ?r
thus ?l unfolding content_ff_def by (intro some_gcd_ff_list_greatest, auto)
qed
lemma content_ff_divides_ff: "x \<in> set (coeffs p) \<Longrightarrow> divides_ff (content_ff p) x"
unfolding content_ff_def by (rule some_gcd_ff_list_divides)
lemma content_ff_0[simp]: "content_ff 0 = 0"
using content_ff_iff[of 0 0] by (auto simp: divides_ff_def)
lemma content_ff_0_iff[simp]: "(content_ff p = 0) = (p = 0)"
proof (cases "p = 0")
case False
define a where "a \<equiv> last (coeffs p)"
define xs where "xs \<equiv> coeffs p"
from False
have mem: "a \<in> set (coeffs p)" and a: "a \<noteq> 0"
unfolding a_def last_coeffs_eq_coeff_degree[OF False] coeffs_def by auto
from content_ff_divides_ff[OF mem] have "divides_ff (content_ff p) a" .
with a have "content_ff p \<noteq> 0" unfolding divides_ff_def by auto
with False show ?thesis by auto
qed auto
lemma content_ff_eq_dff_nonzero: "content_ff p =dff x \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> p \<noteq> 0"
using divides_ff_def eq_dff_def by force
lemma content_ff_smult: "content_ff (smult (a::'a::ufd fract) p) =dff a * content_ff p"
proof (cases "a = 0")
case False note a = this
have id: "coeffs (smult a p) = map ((*) a) (coeffs p)"
unfolding coeffs_smult using a by (simp add: Polynomial.coeffs_smult)
show ?thesis unfolding content_ff_def id using some_gcd_ff_list_smult[OF a] .
qed simp
definition normalize_content_ff
where "normalize_content_ff (p::'a::ufd fract poly) \<equiv> smult (inverse (content_ff p)) p"
lemma smult_normalize_content_ff: "smult (content_ff p) (normalize_content_ff p) = p"
unfolding normalize_content_ff_def
by (cases "p = 0", auto)
lemma content_ff_normalize_content_ff_1: assumes p0: "p \<noteq> 0"
shows "content_ff (normalize_content_ff p) =dff 1"
proof -
have "content_ff p = content_ff (smult (content_ff p) (normalize_content_ff p))" unfolding smult_normalize_content_ff ..
also have "\<dots> =dff content_ff p * content_ff (normalize_content_ff p)" by (rule content_ff_smult)
finally show ?thesis unfolding eq_dff_def divides_ff_def using p0 by auto
qed
lemma content_ff_to_fract: assumes "set (coeffs p) \<subseteq> range to_fract"
shows "content_ff p \<in> range to_fract"
proof -
have "divides_ff 1 (content_ff p)" using assms
unfolding content_ff_iff unfolding divides_ff_def[abs_def] by auto
thus ?thesis unfolding divides_ff_def by auto
qed
lemma content_ff_map_poly_to_fract: "content_ff (map_poly to_fract (p :: 'a :: ufd poly)) \<in> range to_fract"
by (rule content_ff_to_fract, subst coeffs_map_poly, auto)
lemma range_coeffs_to_fract: assumes "set (coeffs p) \<subseteq> range to_fract"
shows "\<exists> m. coeff p i = to_fract m"
proof -
from assms(1) to_fract_0 have "coeff p i \<in> range to_fract" using range_coeff [of p]
by auto (metis contra_subsetD to_fract_hom.hom_zero insertE range_eqI)
thus ?thesis by auto
qed
lemma divides_ff_coeff: assumes "set (coeffs p) \<subseteq> range to_fract" and "divides_ff (to_fract n) (coeff p i)"
shows "\<exists> m. coeff p i = to_fract n * to_fract m"
proof -
from range_coeffs_to_fract[OF assms(1)] obtain k where pi: "coeff p i = to_fract k" by auto
from assms(2)[unfolded this] have "n dvd k" by simp
then obtain j where k: "k = n * j" unfolding Rings.dvd_def by auto
show ?thesis unfolding pi k by auto
qed
definition inv_embed :: "'a :: ufd fract \<Rightarrow> 'a" where
"inv_embed = the_inv to_fract"
lemma inv_embed[simp]: "inv_embed (to_fract x) = x"
unfolding inv_embed_def
by (rule the_inv_f_f, auto simp: inj_on_def)
lemma inv_embed_0[simp]: "inv_embed 0 = 0" unfolding to_fract_0[symmetric] inv_embed by simp
lemma range_to_fract_embed_poly: assumes "set (coeffs p) \<subseteq> range to_fract"
shows "p = map_poly to_fract (map_poly inv_embed p)"
proof -
have "p = map_poly (to_fract o inv_embed) p"
by (rule sym, rule map_poly_idI, insert assms, auto)
also have "\<dots> = map_poly to_fract (map_poly inv_embed p)"
by (subst map_poly_map_poly, auto)
finally show ?thesis .
qed
lemma content_ff_to_fract_coeffs_to_fract: assumes "content_ff p \<in> range to_fract"
shows "set (coeffs p) \<subseteq> range to_fract"
proof
fix x
assume "x \<in> set (coeffs p)"
from content_ff_divides_ff[OF this] assms[unfolded eq_dff_def] show "x \<in> range to_fract"
unfolding divides_ff_def by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
qed
lemma content_ff_1_coeffs_to_fract: assumes "content_ff p =dff 1"
shows "set (coeffs p) \<subseteq> range to_fract"
proof
fix x
assume "x \<in> set (coeffs p)"
from content_ff_divides_ff[OF this] assms[unfolded eq_dff_def] show "x \<in> range to_fract"
unfolding divides_ff_def by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
qed
lemma gauss_lemma:
fixes p q :: "'a :: ufd fract poly"
shows "content_ff (p * q) =dff content_ff p * content_ff q"
proof (cases "p = 0 \<or> q = 0")
case False
hence p: "p \<noteq> 0" and q: "q \<noteq> 0" by auto
let ?c = "content_ff :: 'a fract poly \<Rightarrow> 'a fract"
{
fix p q :: "'a fract poly"
assume cp1: "?c p =dff 1" and cq1: "?c q =dff 1"
define ip where "ip \<equiv> map_poly inv_embed p"
define iq where "iq \<equiv> map_poly inv_embed q"
interpret map_poly_hom: map_poly_comm_ring_hom to_fract..
from content_ff_1_coeffs_to_fract[OF cp1] have cp: "set (coeffs p) \<subseteq> range to_fract" .
from content_ff_1_coeffs_to_fract[OF cq1] have cq: "set (coeffs q) \<subseteq> range to_fract" .
have ip: "p = map_poly to_fract ip" unfolding ip_def
by (rule range_to_fract_embed_poly[OF cp])
have iq: "q = map_poly to_fract iq" unfolding iq_def
by (rule range_to_fract_embed_poly[OF cq])
have cpq0: "?c (p * q) \<noteq> 0"
unfolding content_ff_0_iff using cp1 cq1 content_ff_eq_dff_nonzero[of _ 1] by auto
have cpq: "set (coeffs (p * q)) \<subseteq> range to_fract" unfolding ip iq
unfolding map_poly_hom.hom_mult[symmetric] to_fract_hom.coeffs_map_poly_hom by auto
have ctnt: "?c (p * q) \<in> range to_fract" using content_ff_to_fract[OF cpq] .
then obtain cpq where id: "?c (p * q) = to_fract cpq" by auto
have dvd: "divides_ff 1 (?c (p * q))" using ctnt unfolding divides_ff_def by auto
from cpq0[unfolded id] have cpq0: "cpq \<noteq> 0" unfolding to_fract_def Zero_fract_def by auto
hence cpqM: "cpq \<in> carrier mk_monoid" by auto
have "?c (p * q) =dff 1"
proof (rule ccontr)
assume "\<not> ?c (p * q) =dff 1"
with dvd have "\<not> divides_ff (?c (p * q)) 1"
unfolding eq_dff_def by auto
from this[unfolded id divides_ff_def] have cpq: "\<And> r. cpq * r \<noteq> 1"
by (auto simp: to_fract_def One_fract_def eq_fract)
then have cpq1: "\<not> cpq dvd 1" by (auto elim:dvdE simp:ac_simps)
from mset_factors_exist[OF cpq0 cpq1]
obtain F where F: "mset_factors F cpq" by auto
have "F \<noteq> {#}" using F by auto
then obtain f where f: "f \<in># F" by auto
with F have irrf: "irreducible f" and f0: "f \<noteq> 0" by (auto dest: mset_factorsD)
from irrf have pf: "prime_elem f" by simp
note * = this[unfolded prime_elem_def]
from * have no_unit: "\<not> f dvd 1" by auto
from * f0 have prime: "\<And> a b. f dvd a * b \<Longrightarrow> f dvd a \<or> f dvd b" unfolding dvd_def by force
let ?f = "to_fract f"
from F f
have fdvd: "f dvd cpq" by (auto intro:mset_factors_imp_dvd)
hence "divides_ff ?f (to_fract cpq)" by simp
from divides_ff_trans[OF this, folded id, OF content_ff_divides_ff]
have dvd: "\<And> z. z \<in> set (coeffs (p * q)) \<Longrightarrow> divides_ff ?f z" .
{
fix p :: "'a fract poly"
assume cp: "?c p =dff 1"
let ?P = "\<lambda> i. \<not> divides_ff ?f (coeff p i)"
{
assume "\<forall> c \<in> set (coeffs p). divides_ff ?f c"
hence n: "divides_ff ?f (?c p)" unfolding content_ff_iff by auto
from divides_ff_trans[OF this] cp[unfolded eq_dff_def] have "divides_ff ?f 1" by auto
also have "1 = to_fract 1" by simp
finally have "f dvd 1" by (unfold divides_ff_to_fract)
hence False using no_unit unfolding dvd_def by (auto simp: ac_simps)
}
then obtain cp where cp: "cp \<in> set (coeffs p)" and ncp: "\<not> divides_ff ?f cp" by auto
hence "cp \<in> range (coeff p)" unfolding range_coeff by auto
with ncp have "\<exists> i. ?P i" by auto
from LeastI_ex[OF this] not_less_Least[of _ ?P]
have "\<exists> i. ?P i \<and> (\<forall> j. j < i \<longrightarrow> divides_ff ?f (coeff p j))" by blast
} note cont = this
from cont[OF cp1] obtain r where
r: "\<not> divides_ff ?f (coeff p r)" and r': "\<And> i. i < r \<Longrightarrow> divides_ff ?f (coeff p i)" by auto
have "\<forall> i. \<exists> k. i < r \<longrightarrow> coeff p i = ?f * to_fract k" using divides_ff_coeff[OF cp r'] by blast
from choice[OF this] obtain rr where r': "\<And> i. i < r \<Longrightarrow> coeff p i = ?f * to_fract (rr i)" by blast
let ?r = "coeff p r"
from cont[OF cq1] obtain s where
s: "\<not> divides_ff ?f (coeff q s)" and s': "\<And> i. i < s \<Longrightarrow> divides_ff ?f (coeff q i)" by auto
have "\<forall> i. \<exists> k. i < s \<longrightarrow> coeff q i = ?f * to_fract k" using divides_ff_coeff[OF cq s'] by blast
from choice[OF this] obtain ss where s': "\<And> i. i < s \<Longrightarrow> coeff q i = ?f * to_fract (ss i)" by blast
from range_coeffs_to_fract[OF cp] have "\<forall> i. \<exists> m. coeff p i = to_fract m" ..
from choice[OF this] obtain pi where pi: "\<And> i. coeff p i = to_fract (pi i)" by blast
from range_coeffs_to_fract[OF cq] have "\<forall> i. \<exists> m. coeff q i = to_fract m" ..
from choice[OF this] obtain qi where qi: "\<And> i. coeff q i = to_fract (qi i)" by blast
let ?s = "coeff q s"
let ?g = "\<lambda> i. coeff p i * coeff q (r + s - i)"
define a where "a = (\<Sum>i\<in>{..<r}. (rr i * qi (r + s - i)))"
define b where "b = (\<Sum> i \<in> {Suc r..r + s}. pi i * (ss (r + s - i)))"
have "coeff (p * q) (r + s) = (\<Sum>i\<le>r + s. ?g i)" unfolding coeff_mult ..
also have "{..r+s} = {..< r} \<union> {r .. r+s}" by auto
also have "(\<Sum>i\<in>{..<r} \<union> {r..r + s}. ?g i)
= (\<Sum>i\<in>{..<r}. ?g i) + (\<Sum> i \<in> {r..r + s}. ?g i)"
by (rule sum.union_disjoint, auto)
also have "(\<Sum>i\<in>{..<r}. ?g i) = (\<Sum>i\<in>{..<r}. ?f * (to_fract (rr i) * to_fract (qi (r + s - i))))"
by (rule sum.cong[OF refl], insert r' qi, auto)
also have "\<dots> = to_fract (f * a)" by (simp add: a_def sum_distrib_left)
also have "(\<Sum> i \<in> {r..r + s}. ?g i) = ?g r + (\<Sum> i \<in> {Suc r..r + s}. ?g i)"
by (subst sum.remove[of _ r], auto intro: sum.cong)
also have "(\<Sum> i \<in> {Suc r..r + s}. ?g i) = (\<Sum> i \<in> {Suc r..r + s}. ?f * (to_fract (pi i) * to_fract (ss (r + s - i))))"
by (rule sum.cong[OF refl], insert s' pi, auto)
also have "\<dots> = to_fract (f * b)" by (simp add: sum_distrib_left b_def)
finally have cpq: "coeff (p * q) (r + s) = to_fract (f * (a + b)) + ?r * ?s" by (simp add: field_simps)
{
fix i
from dvd[of "coeff (p * q) i"] have "divides_ff ?f (coeff (p * q) i)" using range_coeff[of "p * q"]
by (cases "coeff (p * q) i = 0", auto simp: divides_ff_def)
}
from this[of "r + s", unfolded cpq] have "divides_ff ?f (to_fract (f * (a + b) + pi r * qi s))"
unfolding pi qi by simp
from this[unfolded divides_ff_to_fract] have "f dvd pi r * qi s"
by (metis dvd_add_times_triv_left_iff mult.commute)
from prime[OF this] have "f dvd pi r \<or> f dvd qi s" by auto
with r s show False unfolding pi qi by auto
qed
} note main = this
define n where "n \<equiv> normalize_content_ff :: 'a fract poly \<Rightarrow> 'a fract poly"
let ?s = "\<lambda> p. smult (content_ff p) (n p)"
have "?c (p * q) = ?c (?s p * ?s q)" unfolding smult_normalize_content_ff n_def by simp
also have "?s p * ?s q = smult (?c p * ?c q) (n p * n q)" by (simp add: mult.commute)
also have "?c (\<dots>) =dff (?c p * ?c q) * ?c (n p * n q)" by (rule content_ff_smult)
also have "?c (n p * n q) =dff 1" unfolding n_def
by (rule main, insert p q, auto simp: content_ff_normalize_content_ff_1)
finally show ?thesis by simp
qed auto
abbreviation (input) "content_ff_ff p \<equiv> content_ff (map_poly to_fract p)"
lemma factorization_to_fract:
assumes q: "q \<noteq> 0" and factor: "map_poly to_fract (p :: 'a :: ufd poly) = q * r"
shows "\<exists> q' r' c. c \<noteq> 0 \<and> q = smult c (map_poly to_fract q') \<and>
r = smult (inverse c) (map_poly to_fract r') \<and>
content_ff_ff q' =dff 1 \<and> p = q' * r'"
proof -
let ?c = content_ff
let ?p = "map_poly to_fract p"
interpret map_poly_inj_comm_ring_hom "to_fract :: 'a \<Rightarrow> _"..
define cq where "cq \<equiv> normalize_content_ff q"
define cr where "cr \<equiv> smult (content_ff q) r"
define q' where "q' \<equiv> map_poly inv_embed cq"
define r' where "r' \<equiv> map_poly inv_embed cr"
from content_ff_map_poly_to_fract have cp_ff: "?c ?p \<in> range to_fract" by auto
from smult_normalize_content_ff[of q] have cqs: "q = smult (content_ff q) cq" unfolding cq_def ..
from content_ff_normalize_content_ff_1[OF q] have c_cq: "content_ff cq =dff 1" unfolding cq_def .
from content_ff_1_coeffs_to_fract[OF this] have cq_ff: "set (coeffs cq) \<subseteq> range to_fract" .
have factor: "?p = cq * cr" unfolding factor cr_def using cqs
by (metis mult_smult_left mult_smult_right)
from gauss_lemma[of cq cr] have cp: "?c ?p =dff ?c cq * ?c cr" unfolding factor .
with c_cq have "?c ?p =dff ?c cr"
by (metis eq_dff_mult_right_trans mult.commute mult.right_neutral)
with cp_ff have "?c cr \<in> range to_fract"
by (metis divides_ff_def to_fract_hom.hom_mult eq_dff_def image_iff range_eqI)
from content_ff_to_fract_coeffs_to_fract[OF this] have cr_ff: "set (coeffs cr) \<subseteq> range to_fract" by auto
have cq: "cq = map_poly to_fract q'" unfolding q'_def
by (rule range_to_fract_embed_poly[OF cq_ff])
have cr: "cr = map_poly to_fract r'" unfolding r'_def
by (rule range_to_fract_embed_poly[OF cr_ff])
from factor[unfolded cq cr]
have p: "p = q' * r'" by (simp add: injectivity)
from c_cq have ctnt: "content_ff_ff q' =dff 1" using cq q'_def by force
from cqs have idq: "q = smult (?c q) (map_poly to_fract q')" unfolding cq .
with q have cq: "?c q \<noteq> 0" by auto
have "r = smult (inverse (?c q)) cr" unfolding cr_def using cq by auto
also have "cr = map_poly to_fract r'" by (rule cr)
finally have idr: "r = smult (inverse (?c q)) (map_poly to_fract r')" by auto
from cq p ctnt idq idr show ?thesis by blast
qed
lemma irreducible_PM_M_PFM:
assumes irr: "irreducible p"
shows "degree p = 0 \<and> irreducible (coeff p 0) \<or>
degree p \<noteq> 0 \<and> irreducible (map_poly to_fract p) \<and> content_ff_ff p =dff 1"
proof-
interpret map_poly_inj_idom_hom to_fract..
from irr[unfolded irreducible_altdef]
have p0: "p \<noteq> 0" and irr: "\<not> p dvd 1" "\<And> b. b dvd p \<Longrightarrow> \<not> p dvd b \<Longrightarrow> b dvd 1" by auto
show ?thesis
proof (cases "degree p = 0")
case True
from degree0_coeffs[OF True] obtain a where p: "p = [:a:]" by auto
note irr = irr[unfolded p]
from p p0 have a0: "a \<noteq> 0" by auto
moreover have "\<not> a dvd 1" using irr(1) by simp
moreover {
fix b
assume "b dvd a" "\<not> a dvd b"
hence "[:b:] dvd [:a:]" "\<not> [:a:] dvd [:b:]" unfolding const_poly_dvd .
from irr(2)[OF this] have "b dvd 1" unfolding const_poly_dvd_1 .
}
ultimately have "irreducible a" unfolding irreducible_altdef by auto
with True show ?thesis unfolding p by auto
next
case False
let ?E = "map_poly to_fract"
let ?p = "?E p"
have dp: "degree ?p \<noteq> 0" using False by simp
from p0 have p': "?p \<noteq> 0" by simp
moreover have "\<not> ?p dvd 1"
proof
assume "?p dvd 1" then obtain q where id: "?p * q = 1" unfolding dvd_def by auto
have deg: "degree (?p * q) = degree ?p + degree q"
by (rule degree_mult_eq, insert id, auto)
from arg_cong[OF id, of degree, unfolded deg] dp show False by auto
qed
moreover {
fix q
assume "q dvd ?p" and ndvd: "\<not> ?p dvd q"
then obtain r where fact: "?p = q * r" unfolding dvd_def by auto
with p' have q0: "q \<noteq> 0" by auto
from factorization_to_fract[OF this fact] obtain q' r' c where *: "c \<noteq> 0" "q = smult c (?E q')"
"r = smult (inverse c) (?E r')" "content_ff_ff q' =dff 1"
"p = q' * r'" by auto
hence "q' dvd p" unfolding dvd_def by auto
note irr = irr(2)[OF this]
have "\<not> p dvd q'"
proof
assume "p dvd q'"
then obtain u where q': "q' = p * u" unfolding dvd_def by auto
from arg_cong[OF this, of "\<lambda> x. smult c (?E x)", unfolded *(2)[symmetric]]
have "q = ?p * smult c (?E u)" by simp
hence "?p dvd q" unfolding dvd_def by blast
with ndvd show False ..
qed
from irr[OF this] have "q' dvd 1" .
from divides_degree[OF this] have "degree q' = 0" by auto
from degree0_coeffs[OF this] obtain a' where "q' = [:a':]" by auto
from *(2)[unfolded this] obtain a where q: "q = [:a:]"
by (simp add: to_fract_hom.map_poly_pCons_hom)
with q0 have a: "a \<noteq> 0" by auto
have "q dvd 1" unfolding q const_poly_dvd_1 using a unfolding dvd_def
by (intro exI[of _ "inverse a"], auto)
}
ultimately have irr_p': "irreducible ?p" unfolding irreducible_altdef by auto
let ?c = "content_ff"
have "?c ?p \<in> range to_fract"
by (rule content_ff_to_fract, unfold to_fract_hom.coeffs_map_poly_hom, auto)
then obtain c where cp: "?c ?p = to_fract c" by auto
from p' cp have c: "c \<noteq> 0" by auto
have "?c ?p =dff 1" unfolding cp
proof (rule ccontr)
define cp where "cp = normalize_content_ff ?p"
from smult_normalize_content_ff[of ?p] have cps: "?p = smult (to_fract c) cp" unfolding cp_def cp ..
from content_ff_normalize_content_ff_1[OF p'] have c_cp: "content_ff cp =dff 1" unfolding cp_def .
from range_to_fract_embed_poly[OF content_ff_1_coeffs_to_fract[OF c_cp]] obtain cp' where "cp = ?E cp'" by auto
from cps[unfolded this] have "p = smult c cp'" by (simp add: injectivity)
hence dvd: "[: c :] dvd p" unfolding dvd_def by auto
have "\<not> p dvd [: c :]" using divides_degree[of p "[: c :]"] c False by auto
from irr(2)[OF dvd this] have "c dvd 1" by simp
assume "\<not> to_fract c =dff 1"
from this[unfolded eq_dff_def One_fract_def to_fract_def[symmetric] divides_ff_def to_fract_mult]
have c1: "\<And> r. 1 \<noteq> c * r" by (auto simp: ac_simps simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
with \<open>c dvd 1\<close> show False unfolding dvd_def by blast
qed
with False irr_p' show ?thesis by auto
qed
qed
lemma irreducible_M_PM:
fixes p :: "'a :: ufd poly" assumes 0: "degree p = 0" and irr: "irreducible (coeff p 0)"
shows "irreducible p"
proof (cases "p = 0")
case True
thus ?thesis using assms by auto
next
case False
from degree0_coeffs[OF 0] obtain a where p: "p = [:a:]" by auto
with False have a0: "a \<noteq> 0" by auto
from p irr have "irreducible a" by auto
from this[unfolded irreducible_altdef]
have a1: "\<not> a dvd 1" and irr: "\<And> b. b dvd a \<Longrightarrow> \<not> a dvd b \<Longrightarrow> b dvd 1" by auto
{
fix b
assume *: "b dvd [:a:]" "\<not> [:a:] dvd b"
from divides_degree[OF this(1)] a0 have "degree b = 0" by auto
from degree0_coeffs[OF this] obtain bb where b: "b = [: bb :]" by auto
from * irr[of bb] have "b dvd 1" unfolding b const_poly_dvd by auto
}
with a0 a1 show ?thesis by (auto simp: irreducible_altdef p)
qed
lemma primitive_irreducible_imp_degree:
"primitive (p::'a::{semiring_gcd,idom} poly) \<Longrightarrow> irreducible p \<Longrightarrow> degree p > 0"
by (unfold irreducible_primitive_connect[symmetric], auto)
lemma irreducible_degree_field:
fixes p :: "'a :: field poly" assumes "irreducible p"
shows "degree p > 0"
proof-
{
assume "degree p = 0"
from degree0_coeffs[OF this] assms obtain a where p: "p = [:a:]" and a: "a \<noteq> 0" by auto
hence "1 = p * [:inverse a:]" by auto
hence "p dvd 1" ..
hence "p \<in> Units mk_monoid" by simp
with assms have False unfolding irreducible_def by auto
} then show ?thesis by auto
qed
lemma irreducible_PFM_PM: assumes
irr: "irreducible (map_poly to_fract p)" and ct: "content_ff_ff p =dff 1"
shows "irreducible p"
proof -
let ?E = "map_poly to_fract"
let ?p = "?E p"
from ct have p0: "p \<noteq> 0" by (auto simp: eq_dff_def divides_ff_def)
moreover
from irreducible_degree_field[OF irr] have deg: "degree p \<noteq> 0" by simp
from irr[unfolded irreducible_altdef]
have irr: "\<And> b. b dvd ?p \<Longrightarrow> \<not> ?p dvd b \<Longrightarrow> b dvd 1" by auto
have "\<not> p dvd 1" using deg divides_degree[of p 1] by auto
moreover {
fix q :: "'a poly"
assume dvd: "q dvd p" and ndvd: "\<not> p dvd q"
from dvd obtain r where pqr: "p = q * r" ..
from arg_cong[OF this, of ?E] have pqr': "?p = ?E q * ?E r" by simp
from p0 pqr have q: "q \<noteq> 0" and r: "r \<noteq> 0" by auto
have dp: "degree p = degree q + degree r" unfolding pqr
by (subst degree_mult_eq, insert q r, auto)
from eq_dff_trans[OF eq_dff_sym[OF gauss_lemma[of "?E q" "?E r", folded pqr']] ct]
have ct: "content_ff (?E q) * content_ff (?E r) =dff 1" .
from content_ff_map_poly_to_fract obtain cq where cq: "content_ff (?E q) = to_fract cq" by auto
from content_ff_map_poly_to_fract obtain cr where cr: "content_ff (?E r) = to_fract cr" by auto
note ct[unfolded cq cr to_fract_mult eq_dff_def divides_ff_def]
from this[folded hom_distribs]
obtain c where c: "cq * cr * c = 1" by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
hence one: "1 = cq * (c * cr)" "1 = cr * (c * cq)" by (auto simp: ac_simps)
{
assume *: "degree q \<noteq> 0 \<and> degree r \<noteq> 0"
with dp have "degree q < degree p" by auto
hence "degree (?E q) < degree (?E p)" by simp
hence ndvd: "\<not> ?p dvd ?E q" using divides_degree[of ?p "?E q"] q by auto
have "?E q dvd ?p" unfolding pqr' by auto
from irr[OF this ndvd] have "?E q dvd 1" .
from divides_degree[OF this] * have False by auto
}
hence "degree q = 0 \<or> degree r = 0" by blast
then have "q dvd 1"
proof
assume "degree q = 0"
from degree0_coeffs[OF this] q obtain a where q: "q = [:a:]" and a: "a \<noteq> 0" by auto
hence id: "set (coeffs (?E q)) = {to_fract a}" by auto
have "divides_ff (to_fract a) (content_ff (?E q))" unfolding content_ff_iff id by auto
from this[unfolded cq divides_ff_def, folded hom_distribs]
obtain rr where cq: "cq = a * rr" by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
with one(1) have "1 = a * (rr * c * cr)" by (auto simp: ac_simps)
hence "a dvd 1" ..
thus ?thesis by (simp add: q)
next
assume "degree r = 0"
from degree0_coeffs[OF this] r obtain a where r: "r = [:a:]" and a: "a \<noteq> 0" by auto
hence id: "set (coeffs (?E r)) = {to_fract a}" by auto
have "divides_ff (to_fract a) (content_ff (?E r))" unfolding content_ff_iff id by auto
note this[unfolded cr divides_ff_def to_fract_mult]
note this[folded hom_distribs]
then obtain rr where cr: "cr = a * rr" by (auto simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
with one(2) have one: "1 = a * (rr * c * cq)" by (auto simp: ac_simps)
from arg_cong[OF pqr[unfolded r], of "\<lambda> p. p * [:rr * c * cq:]"]
have "p * [:rr * c * cq:] = q * [:a * (rr * c * cq):]" by (simp add: ac_simps)
also have "\<dots> = q" unfolding one[symmetric] by auto
finally obtain r where "q = p * r" by blast
hence "p dvd q" ..
with ndvd show ?thesis by auto
qed
}
ultimately show ?thesis by (auto simp:irreducible_altdef)
qed
lemma irreducible_cases: "irreducible p \<longleftrightarrow>
degree p = 0 \<and> irreducible (coeff p 0) \<or>
degree p \<noteq> 0 \<and> irreducible (map_poly to_fract p) \<and> content_ff_ff p =dff 1"
using irreducible_PM_M_PFM irreducible_M_PM irreducible_PFM_PM
by blast
lemma dvd_PM_iff: "p dvd q \<longleftrightarrow> divides_ff (content_ff_ff p) (content_ff_ff q) \<and>
map_poly to_fract p dvd map_poly to_fract q"
proof -
interpret map_poly_inj_idom_hom to_fract..
let ?E = "map_poly to_fract"
show ?thesis (is "?l = ?r")
proof
assume "p dvd q"
then obtain r where qpr: "q = p * r" ..
from arg_cong[OF this, of ?E]
have dvd: "?E p dvd ?E q" by auto
from content_ff_map_poly_to_fract obtain cq where cq: "content_ff_ff q = to_fract cq" by auto
from content_ff_map_poly_to_fract obtain cp where cp: "content_ff_ff p = to_fract cp" by auto
from content_ff_map_poly_to_fract obtain cr where cr: "content_ff_ff r = to_fract cr" by auto
from gauss_lemma[of "?E p" "?E r", folded hom_distribs qpr, unfolded cq cp cr]
have "divides_ff (content_ff_ff p) (content_ff_ff q)" unfolding cq cp eq_dff_def
by (metis divides_ff_def divides_ff_trans)
with dvd show ?r by blast
next
assume ?r
show ?l
proof (cases "q = 0")
case True
with \<open>?r\<close> show ?l by auto
next
case False note q = this
hence q': "?E q \<noteq> 0" by auto
from \<open>?r\<close> obtain rr where qpr: "?E q = ?E p * rr" unfolding dvd_def by auto
with q have p: "p \<noteq> 0" and Ep: "?E p \<noteq> 0" and rr: "rr \<noteq> 0" by auto
from gauss_lemma[of "?E p" rr, folded qpr]
have ct: "content_ff_ff q =dff content_ff_ff p * content_ff rr"
by auto
from content_ff_map_poly_to_fract[of p] obtain cp where cp: "content_ff_ff p = to_fract cp" by auto
from content_ff_map_poly_to_fract[of q] obtain cq where cq: "content_ff_ff q = to_fract cq" by auto
from \<open>?r\<close>[unfolded cp cq] have "divides_ff (to_fract cp) (to_fract cq)" ..
with ct[unfolded cp cq eq_dff_def] have "content_ff rr \<in> range to_fract"
by (metis (no_types, lifting) Ep content_ff_0_iff cp divides_ff_def
divides_ff_trans mult.commute mult_right_cancel range_eqI)
from range_to_fract_embed_poly[OF content_ff_to_fract_coeffs_to_fract[OF this]] obtain r
where rr: "rr = ?E r" by auto
from qpr[unfolded rr, folded hom_distribs]
have "q = p * r" by (rule injectivity)
thus "p dvd q" ..
qed
qed
qed
lemma factorial_monoid_poly: "factorial_monoid (mk_monoid :: 'a :: ufd poly monoid)"
proof (fold factorial_condition_one, intro conjI)
interpret M: factorial_monoid "mk_monoid :: 'a monoid" by (fact factorial_monoid)
interpret PFM: factorial_monoid "mk_monoid :: 'a fract poly monoid"
by (rule as_ufd.factorial_monoid)
interpret PM: comm_monoid_cancel "mk_monoid :: 'a poly monoid" by (unfold_locales, auto)
let ?E = "map_poly to_fract"
show "divisor_chain_condition_monoid (mk_monoid::'a poly monoid)"
proof (unfold_locales, unfold mk_monoid_simps)
let ?rel' = "{(x::'a poly, y). x \<noteq> 0 \<and> y \<noteq> 0 \<and> properfactor x y}"
let ?rel'' = "{(x::'a, y). x \<noteq> 0 \<and> y \<noteq> 0 \<and> properfactor x y}"
let ?relPM = "{(x, y). x \<noteq> 0 \<and> y \<noteq> 0 \<and> x dvd y \<and> \<not> y dvd (x :: 'a poly)}"
let ?relM = "{(x, y). x \<noteq> 0 \<and> y \<noteq> 0 \<and> x dvd y \<and> \<not> y dvd (x :: 'a)}"
have id: "?rel' = ?relPM" using properfactor_nz by auto
have id': "?rel'' = ?relM" using properfactor_nz by auto
have "wf ?rel''" using M.division_wellfounded by auto
hence wfM: "wf ?relM" using id' by auto
let ?c = "\<lambda> p. inv_embed (content_ff_ff p)"
let ?f = "\<lambda> p. (degree p, ?c p)"
note wf = wf_inv_image[OF wf_lex_prod[OF wf_less wfM], of ?f]
show "wf ?rel'" unfolding id
proof (rule wf_subset[OF wf], clarify)
fix p q :: "'a poly"
assume p: "p \<noteq> 0" and q: "q \<noteq> 0" and dvd: "p dvd q" and ndvd: "\<not> q dvd p"
from dvd obtain r where qpr: "q = p * r" ..
from degree_mult_eq[of p r, folded qpr] q qpr have r: "r \<noteq> 0"
and deg: "degree q = degree p + degree r" by auto
show "(p,q) \<in> inv_image ({(x, y). x < y} <*lex*> ?relM) ?f"
proof (cases "degree p = degree q")
case False
with deg have "degree p < degree q" by auto
thus ?thesis by auto
next
case True
with deg have "degree r = 0" by simp
from degree0_coeffs[OF this] r obtain a where ra: "r = [:a:]" and a: "a \<noteq> 0" by auto
from arg_cong[OF qpr, of "\<lambda> p. ?E p * [:inverse (to_fract a):]"] a
have "?E p = ?E q * [:inverse (to_fract a):]"
by (auto simp: ac_simps ra)
hence "?E q dvd ?E p" ..
with ndvd dvd_PM_iff have ndvd: "\<not> divides_ff (content_ff_ff q) (content_ff_ff p)" by auto
from content_ff_map_poly_to_fract obtain cq where cq: "content_ff_ff q = to_fract cq" by auto
from content_ff_map_poly_to_fract obtain cp where cp: "content_ff_ff p = to_fract cp" by auto
from ndvd[unfolded cp cq] have ndvd: "\<not> cq dvd cp" by simp
from iffD1[OF dvd_PM_iff,OF dvd,unfolded cq cp]
have dvd: "cp dvd cq" by simp
have c_p: "?c p = cp" unfolding cp by simp
have c_q: "?c q = cq" unfolding cq by simp
from q cq have cq0: "cq \<noteq> 0" by auto
from p cp have cp0: "cp \<noteq> 0" by auto
from ndvd cq0 cp0 dvd have "(?c p, ?c q) \<in> ?relM" unfolding c_p c_q by auto
with True show ?thesis by auto
qed
qed
qed
show "primeness_condition_monoid (mk_monoid::'a poly monoid)"
proof (unfold_locales, unfold mk_monoid_simps)
fix p :: "'a poly"
assume p: "p \<noteq> 0" and "irred p"
then have irr: "irreducible p" by auto
from p have p': "?E p \<noteq> 0" by auto
from irreducible_PM_M_PFM[OF irr] have choice: "degree p = 0 \<and> irred (coeff p 0)
\<or> degree p \<noteq> 0 \<and> irred (?E p) \<and> content_ff_ff p =dff 1" by auto
show "Divisibility.prime mk_monoid p"
proof (rule Divisibility.primeI, unfold mk_monoid_simps mem_Units)
show "\<not> p dvd 1"
proof
assume "p dvd 1"
from divides_degree[OF this] have dp: "degree p = 0" by auto
from degree0_coeffs[OF this] p obtain a where p: "p = [:a:]" and a: "a \<noteq> 0" by auto
with choice have irr: "irreducible a" by auto
from \<open>p dvd 1\<close>[unfolded p] have "a dvd 1" by auto
with irr show False unfolding irreducible_def by auto
qed
fix q r :: "'a poly"
assume q: "q \<noteq> 0" and r: "r \<noteq> 0" and "factor p (q * r)"
from this[unfolded factor_idom] have "p dvd q * r" by auto
from iffD1[OF dvd_PM_iff this] have dvd_ct: "divides_ff (content_ff_ff p) (content_ff (?E (q * r)))"
and dvd_E: "?E p dvd ?E q * ?E r" by auto
from gauss_lemma[of "?E q" "?E r"] divides_ff_trans[OF dvd_ct, of "content_ff_ff q * content_ff_ff r"]
have dvd_ct: "divides_ff (content_ff_ff p) (content_ff_ff q * content_ff_ff r)"
unfolding eq_dff_def by auto
from choice
have "p dvd q \<or> p dvd r"
proof
assume "degree p \<noteq> 0 \<and> irred (?E p) \<and> content_ff_ff p =dff 1"
hence deg: "degree p \<noteq> 0" and irr: "irred (?E p)" and ct: "content_ff_ff p =dff 1" by auto
from PFM.irreducible_prime[OF irr] p have prime: "Divisibility.prime mk_monoid (?E p)" by auto
from q r have Eq: "?E q \<in> carrier mk_monoid" and Er: "?E r \<in> carrier mk_monoid"
and q': "?E q \<noteq> 0" and r': "?E r \<noteq> 0" and qr': "?E q * ?E r \<noteq> 0" by auto
from PFM.prime_divides[OF Eq Er prime] q' r' qr' dvd_E
have dvd_E: "?E p dvd ?E q \<or> ?E p dvd ?E r" by simp
from ct have ct: "divides_ff (content_ff_ff p) 1" unfolding eq_dff_def by auto
moreover have "\<And> q. divides_ff 1 (content_ff_ff q)" using content_ff_map_poly_to_fract
unfolding divides_ff_def by auto
from divides_ff_trans[OF ct this] have ct: "\<And> q. divides_ff (content_ff_ff p) (content_ff_ff q)" .
with dvd_E show ?thesis using dvd_PM_iff by blast
next
assume "degree p = 0 \<and> irred (coeff p 0)"
hence deg: "degree p = 0" and irr: "irred (coeff p 0)" by auto
from degree0_coeffs[OF deg] p obtain a where p: "p = [:a:]" and a: "a \<noteq> 0" by auto
with irr have irr: "irred a" and aM: "a \<in> carrier mk_monoid" by auto
from M.irreducible_prime[OF irr aM] have prime: "Divisibility.prime mk_monoid a" .
from content_ff_map_poly_to_fract obtain cq where cq: "content_ff_ff q = to_fract cq" by auto
from content_ff_map_poly_to_fract obtain cp where cp: "content_ff_ff p = to_fract cp" by auto
from content_ff_map_poly_to_fract obtain cr where cr: "content_ff_ff r = to_fract cr" by auto
have "divides_ff (to_fract a) (content_ff_ff p)" unfolding p content_ff_iff using a by auto
from divides_ff_trans[OF this[unfolded cp] dvd_ct[unfolded cp cq cr]]
have "divides_ff (to_fract a) (to_fract (cq * cr))" by simp
hence dvd: "a dvd cq * cr" by (auto simp add: divides_ff_def simp del: to_fract_hom.hom_mult simp: to_fract_hom.hom_mult[symmetric])
from content_ff_divides_ff[of "to_fract a" "?E p"] have "divides_ff (to_fract cp) (to_fract a)"
using cp a p by auto
hence cpa: "cp dvd a" by simp
from a q r cq cr have aM: "a \<in> carrier mk_monoid" and qM: "cq \<in> carrier mk_monoid" and rM: "cr \<in> carrier mk_monoid"
and q': "cq \<noteq> 0" and r': "cr \<noteq> 0" and qr': "cq * cr \<noteq> 0"
by auto
from M.prime_divides[OF qM rM prime] q' r' qr' dvd
have "a dvd cq \<or> a dvd cr" by simp
with dvd_trans[OF cpa] have dvd: "cp dvd cq \<or> cp dvd cr" by auto
have "\<And> q. ?E p * (smult (inverse (to_fract a)) q) = q" unfolding p using a by (auto simp: one_poly_def)
hence Edvd: "\<And> q. ?E p dvd q" unfolding dvd_def by metis
from dvd Edvd show ?thesis apply (subst(1 2) dvd_PM_iff) unfolding cp cq cr by auto
qed
thus "factor p q \<or> factor p r" unfolding factor_idom using p q r by auto
qed
qed
qed
instance poly :: (ufd) ufd
by (intro class.ufd.of_class.intro factorial_monoid_imp_ufd factorial_monoid_poly)
lemma primitive_iff_some_content_dvd_1:
fixes f :: "'a :: ufd poly" (* gcd_condition suffices... *)
shows "primitive f \<longleftrightarrow> some_gcd.listgcd (coeffs f) dvd 1" (is "_ \<longleftrightarrow> ?c dvd 1")
proof(intro iffI primitiveI)
fix x
assume "(\<And>y. y \<in> set (coeffs f) \<Longrightarrow> x dvd y)"
from some_gcd.listgcd_greatest[of "coeffs f", OF this]
have "x dvd ?c" by simp
also assume "?c dvd 1"
finally show "x dvd 1".
next
assume "primitive f"
from primitiveD[OF this some_gcd.listgcd[of _ "coeffs f"]]
show "?c dvd 1" by auto
qed
end
|