Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 11,164 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
(* ========================================================================= *)
(* Birthday problem. *)
(* ========================================================================= *)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Restricted function space. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("-->",(13,"right"));;
let funspace = new_definition
`(s --> t) = {f:A->B | (!x. x IN s ==> f(x) IN t) /\
(!x. ~(x IN s) ==> f(x) = @y. T)}`;;
(* ------------------------------------------------------------------------- *)
(* Sizes. *)
(* ------------------------------------------------------------------------- *)
let FUNSPACE_EMPTY = prove
(`({} --> t) = {(\x. @y. T)}`,
REWRITE_TAC[EXTENSION; IN_SING; funspace; IN_ELIM_THM; NOT_IN_EMPTY] THEN
REWRITE_TAC[FUN_EQ_THM]);;
let HAS_SIZE_FUNSPACE = prove
(`!s:A->bool t:B->bool m n.
s HAS_SIZE m /\ t HAS_SIZE n ==> (s --> t) HAS_SIZE (n EXP m)`,
REWRITE_TAC[HAS_SIZE; GSYM CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
[SIMP_TAC[CARD_CLAUSES; FINITE_RULES; FUNSPACE_EMPTY; NOT_IN_EMPTY] THEN
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
ASM_REWRITE_TAC[EXP; ARITH];
ALL_TAC] THEN
REWRITE_TAC[GSYM HAS_SIZE] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`(x INSERT s) --> t =
IMAGE (\(y:B,g) u:A. if u = x then y else g(u))
{y,g | y IN t /\ g IN s --> t}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; funspace; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b /\ c) /\ d <=> d /\ a /\ b /\ c`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
X_GEN_TAC `f:A->B` THEN EQ_TAC THENL
[STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`(f:A->B) x`; `\u. if u = x then @y. T else (f:A->B) u`] THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[IN_INSERT];
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`y:B`; `g:A->B`] THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_MESON_TAC[IN_INSERT]];
ALL_TAC] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ d <=> d /\ a /\ b`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REWRITE_TAC[FUN_EQ_THM; funspace; IN_ELIM_THM] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
[ASM_MESON_TAC[IN_INSERT]; ALL_TAC] THEN
X_GEN_TAC `u:A` THEN ASM_CASES_TAC `u:A = x` THEN ASM_MESON_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[CARD_CLAUSES; EXP] THEN
MATCH_MP_TAC HAS_SIZE_PRODUCT THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* The restriction to injective functions. *)
(* ------------------------------------------------------------------------- *)
let FACT_DIVIDES = prove
(`!m n. m <= n ==> ?d. FACT(n) = d * FACT(m)`,
REWRITE_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `m:num` THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
SIMP_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT] THEN
ASM_MESON_TAC[MULT_AC; MULT_CLAUSES]);;
let FACT_DIV_MULT = prove
(`!m n. m <= n ==> FACT n = (FACT(n) DIV FACT(m)) * FACT(m)`,
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP FACT_DIVIDES) THEN
ASM_REWRITE_TAC[] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
ASM_SIMP_TAC[DIV_MULT; GSYM LT_NZ; FACT_LT]);;
let HAS_SIZE_FUNSPACE_INJECTIVE = prove
(`!s:A->bool t:B->bool m n.
s HAS_SIZE m /\ t HAS_SIZE n
==> {f | f IN (s --> t) /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)}
HAS_SIZE (if n < m then 0 else (FACT n) DIV (FACT(n - m)))`,
REWRITE_TAC[HAS_SIZE; GSYM CONJ_ASSOC] THEN
ONCE_REWRITE_TAC[IMP_CONJ] THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
[SIMP_TAC[CARD_CLAUSES; FINITE_RULES; FUNSPACE_EMPTY; NOT_IN_EMPTY] THEN
REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
REWRITE_TAC[SET_RULE `{x | x IN s} = s`] THEN
ASM_SIMP_TAC[FINITE_RULES; CARD_CLAUSES; FACT] THEN
SIMP_TAC[NOT_IN_EMPTY; LT; SUB_0; DIV_REFL; GSYM LT_NZ; FACT_LT] THEN
REWRITE_TAC[ARITH];
ALL_TAC] THEN
REWRITE_TAC[GSYM HAS_SIZE] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`{f | f IN (x INSERT s) --> t /\
(!u v. u IN (x INSERT s) /\ v IN (x INSERT s) /\ f u = f v ==> u = v)} =
IMAGE (\(y:B,g) u:A. if u = x then y else g(u))
{y,g | y IN t /\
g IN {f | f IN (s --> (t DELETE y)) /\
!u v. u IN s /\ v IN s /\ f u = f v ==> u = v}}`
SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_IMAGE; funspace; IN_ELIM_THM] THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b /\ c) /\ d <=> d /\ a /\ b /\ c`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
X_GEN_TAC `f:A->B` THEN EQ_TAC THENL
[REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
STRIP_TAC THEN MAP_EVERY EXISTS_TAC
[`(f:A->B) x`; `\u. if u = x then @y. T else (f:A->B) u`] THEN
REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[];
REWRITE_TAC[IN_INSERT; IN_DELETE; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`y:B`; `g:A->B`] THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
ASM_MESON_TAC[]];
ALL_TAC] THEN
MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ d <=> d /\ a /\ b`] THEN
REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
REWRITE_TAC[FUN_EQ_THM; funspace; IN_ELIM_THM; IN_INSERT; IN_DELETE] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
[ASM_MESON_TAC[IN_INSERT]; ALL_TAC] THEN
X_GEN_TAC `u:A` THEN ASM_CASES_TAC `u:A = x` THEN ASM_MESON_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[CARD_CLAUSES; EXP] THEN
SUBGOAL_THEN
`(if n < SUC (CARD s) then 0 else FACT n DIV FACT (n - SUC (CARD s))) =
n * (if (n - 1) < CARD(s:A->bool) then 0
else FACT(n - 1) DIV FACT (n - 1 - CARD s))`
SUBST1_TAC THENL
[ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; LT_0] THEN
ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (n - 1 < m <=> n < SUC m)`] THEN
COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
REWRITE_TAC[ARITH_RULE `n - SUC(m) = n - 1 - m`] THEN
UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN
INDUCT_TAC THEN REWRITE_TAC[FACT; SUC_SUB1] THEN DISCH_TAC THEN
MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
REWRITE_TAC[ADD_CLAUSES; FACT_LT; GSYM MULT_ASSOC] THEN
AP_TERM_TAC THEN MATCH_MP_TAC FACT_DIV_MULT THEN ARITH_TAC;
MATCH_MP_TAC HAS_SIZE_PRODUCT_DEPENDENT THEN ASM_REWRITE_TAC[] THEN
X_GEN_TAC `y:B` THEN DISCH_TAC THEN
FIRST_X_ASSUM MATCH_MP_TAC THEN
RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN
ASM_SIMP_TAC[HAS_SIZE; FINITE_DELETE; CARD_DELETE]]);;
(* ------------------------------------------------------------------------- *)
(* So the actual birthday result. *)
(* ------------------------------------------------------------------------- *)
let HAS_SIZE_DIFF = prove
(`!s t:A->bool m n.
s SUBSET t /\ s HAS_SIZE m /\ t HAS_SIZE n
==> (t DIFF s) HAS_SIZE (n - m)`,
SIMP_TAC[HAS_SIZE; FINITE_DIFF] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
DISCH_THEN(SUBST_ALL_TAC o SYM) THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE
`s SUBSET t ==> t = s UNION (t DIFF s)`)) THEN
DISCH_THEN(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [th]) THEN
ASM_SIMP_TAC[CARD_UNION; FINITE_DIFF; ADD_SUB2;
SET_RULE `s INTER (t DIFF s) = {}`]);;
let BIRTHDAY_THM = prove
(`!s:A->bool t:B->bool m n.
s HAS_SIZE m /\ t HAS_SIZE n
==> {f | f IN (s --> t) /\
?x y. x IN s /\ y IN s /\ ~(x = y) /\ f(x) = f(y)}
HAS_SIZE (if m <= n then (n EXP m) - (FACT n) DIV (FACT(n - m))
else n EXP m)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[SET_RULE
`{f:A->B | f IN (s --> t) /\
?x y. x IN s /\ y IN s /\ ~(x = y) /\ f(x) = f(y)} =
(s --> t) DIFF
{f | f IN (s --> t) /\
(!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)}`] THEN
REWRITE_TAC[ARITH_RULE
`(if a <= b then x - y else x) = x - (if b < a then 0 else y)`] THEN
MATCH_MP_TAC HAS_SIZE_DIFF THEN
ASM_SIMP_TAC[HAS_SIZE_FUNSPACE_INJECTIVE; HAS_SIZE_FUNSPACE] THEN
SIMP_TAC[SUBSET; IN_ELIM_THM]);;
(* ------------------------------------------------------------------------- *)
(* The usual explicit instantiation. *)
(* ------------------------------------------------------------------------- *)
let FACT_DIV_SIMP = prove
(`!m n. m < n
==> (FACT n) DIV (FACT m) = n * FACT(n - 1) DIV FACT(m)`,
GEN_TAC THEN REWRITE_TAC[LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN
ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
SIMP_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
REWRITE_TAC[ARITH_RULE `(m + SUC d) - 1 - m = d`] THEN
REWRITE_TAC[ARITH_RULE `(m + SUC d) - 1 = m + d`; ADD_SUB2] THEN
GEN_TAC THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
REWRITE_TAC[FACT_LT; ARITH_RULE `x + 0 = x`] THEN REWRITE_TAC[FACT] THEN
SIMP_TAC[GSYM MULT_ASSOC; GSYM FACT_DIV_MULT; LE_ADD] THEN
REWRITE_TAC[ADD_CLAUSES; FACT]);;
let BIRTHDAY_THM_EXPLICIT = prove
(`!s t. s HAS_SIZE 23 /\ t HAS_SIZE 365
==> 2 * CARD {f | f IN (s --> t) /\
?x y. x IN s /\ y IN s /\ ~(x = y) /\ f(x) = f(y)}
>= CARD (s --> t)`,
REPEAT GEN_TAC THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP BIRTHDAY_THM) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP HAS_SIZE_FUNSPACE) THEN
CONV_TAC(ONCE_DEPTH_CONV NUM_SUB_CONV) THEN
REPEAT(CHANGED_TAC
(SIMP_TAC[FACT_DIV_SIMP; ARITH_LE; ARITH_LT] THEN
CONV_TAC(ONCE_DEPTH_CONV NUM_SUB_CONV))) THEN
SIMP_TAC[DIV_REFL; GSYM LT_NZ; FACT_LT] THEN
REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
CONV_TAC NUM_REDUCE_CONV);;
|