Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 11,164 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
(* ========================================================================= *)
(* Birthday problem.                                                         *)
(* ========================================================================= *)

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* Restricted function space.                                                *)
(* ------------------------------------------------------------------------- *)

parse_as_infix("-->",(13,"right"));;

let funspace = new_definition
 `(s --> t) = {f:A->B | (!x. x IN s ==> f(x) IN t) /\
                        (!x. ~(x IN s) ==> f(x) = @y. T)}`;;

(* ------------------------------------------------------------------------- *)
(* Sizes.                                                                    *)
(* ------------------------------------------------------------------------- *)

let FUNSPACE_EMPTY = prove
 (`({} --> t) = {(\x. @y. T)}`,
  REWRITE_TAC[EXTENSION; IN_SING; funspace; IN_ELIM_THM; NOT_IN_EMPTY] THEN
  REWRITE_TAC[FUN_EQ_THM]);;

let HAS_SIZE_FUNSPACE = prove
 (`!s:A->bool t:B->bool m n.
        s HAS_SIZE m /\ t HAS_SIZE n ==> (s --> t) HAS_SIZE (n EXP m)`,
  REWRITE_TAC[HAS_SIZE; GSYM CONJ_ASSOC] THEN
  ONCE_REWRITE_TAC[IMP_CONJ] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
   [SIMP_TAC[CARD_CLAUSES; FINITE_RULES; FUNSPACE_EMPTY; NOT_IN_EMPTY] THEN
    REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
    ASM_REWRITE_TAC[EXP; ARITH];
    ALL_TAC] THEN
  REWRITE_TAC[GSYM HAS_SIZE] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `(x INSERT s) --> t =
        IMAGE (\(y:B,g) u:A. if u = x then y else g(u))
              {y,g | y IN t /\ g IN s --> t}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; funspace; IN_ELIM_THM] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b /\ c) /\ d <=> d /\ a /\ b /\ c`] THEN
    REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    X_GEN_TAC `f:A->B` THEN EQ_TAC THENL
     [STRIP_TAC THEN MAP_EVERY EXISTS_TAC
       [`(f:A->B) x`; `\u. if u = x then @y. T else (f:A->B) u`] THEN
      REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[IN_INSERT];
      REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
      MAP_EVERY X_GEN_TAC [`y:B`; `g:A->B`] THEN
      STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
      ASM_MESON_TAC[IN_INSERT]];
    ALL_TAC] THEN
  MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
   [REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ d <=> d /\ a /\ b`] THEN
    REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    REWRITE_TAC[FUN_EQ_THM; funspace; IN_ELIM_THM] THEN
    REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
     [ASM_MESON_TAC[IN_INSERT]; ALL_TAC] THEN
    X_GEN_TAC `u:A` THEN ASM_CASES_TAC `u:A = x` THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[CARD_CLAUSES; EXP] THEN
  MATCH_MP_TAC HAS_SIZE_PRODUCT THEN ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* The restriction to injective functions.                                   *)
(* ------------------------------------------------------------------------- *)

let FACT_DIVIDES = prove
 (`!m n. m <= n ==> ?d. FACT(n) = d * FACT(m)`,
  REWRITE_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `m:num` THEN ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  SIMP_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; FACT] THEN
  ASM_MESON_TAC[MULT_AC; MULT_CLAUSES]);;

let FACT_DIV_MULT = prove
 (`!m n. m <= n ==> FACT n = (FACT(n) DIV FACT(m)) * FACT(m)`,
  REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o MATCH_MP FACT_DIVIDES) THEN
  ASM_REWRITE_TAC[] THEN
  GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [MULT_SYM] THEN
  ASM_SIMP_TAC[DIV_MULT; GSYM LT_NZ; FACT_LT]);;

let HAS_SIZE_FUNSPACE_INJECTIVE = prove
 (`!s:A->bool t:B->bool m n.
        s HAS_SIZE m /\ t HAS_SIZE n
        ==> {f | f IN (s --> t) /\
                 (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)}
            HAS_SIZE (if n < m then 0 else (FACT n) DIV (FACT(n - m)))`,
  REWRITE_TAC[HAS_SIZE; GSYM CONJ_ASSOC] THEN
  ONCE_REWRITE_TAC[IMP_CONJ] THEN
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN CONJ_TAC THENL
   [SIMP_TAC[CARD_CLAUSES; FINITE_RULES; FUNSPACE_EMPTY; NOT_IN_EMPTY] THEN
    REPEAT GEN_TAC THEN DISCH_THEN(STRIP_ASSUME_TAC o GSYM) THEN
    REWRITE_TAC[SET_RULE `{x | x IN s} = s`] THEN
    ASM_SIMP_TAC[FINITE_RULES; CARD_CLAUSES; FACT] THEN
    SIMP_TAC[NOT_IN_EMPTY; LT; SUB_0; DIV_REFL; GSYM LT_NZ; FACT_LT] THEN
    REWRITE_TAC[ARITH];
    ALL_TAC] THEN
  REWRITE_TAC[GSYM HAS_SIZE] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `{f | f IN (x INSERT s) --> t /\
    (!u v. u IN (x INSERT s) /\ v IN (x INSERT s) /\ f u = f v ==> u = v)} =
        IMAGE (\(y:B,g) u:A. if u = x then y else g(u))
              {y,g | y IN t /\
                     g IN {f | f IN (s --> (t DELETE y)) /\
                               !u v. u IN s /\ v IN s /\ f u = f v ==> u = v}}`
  SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_IMAGE; funspace; IN_ELIM_THM] THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b /\ c) /\ d <=> d /\ a /\ b /\ c`] THEN
    REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    X_GEN_TAC `f:A->B` THEN EQ_TAC THENL
     [REWRITE_TAC[IN_INSERT; IN_DELETE] THEN
      STRIP_TAC THEN MAP_EVERY EXISTS_TAC
       [`(f:A->B) x`; `\u. if u = x then @y. T else (f:A->B) u`] THEN
      REWRITE_TAC[FUN_EQ_THM] THEN ASM_MESON_TAC[];
      REWRITE_TAC[IN_INSERT; IN_DELETE; LEFT_IMP_EXISTS_THM] THEN
      MAP_EVERY X_GEN_TAC [`y:B`; `g:A->B`] THEN
      STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
      ASM_MESON_TAC[]];
    ALL_TAC] THEN
  MATCH_MP_TAC HAS_SIZE_IMAGE_INJ THEN CONJ_TAC THENL
   [REWRITE_TAC[FORALL_PAIR_THM; IN_ELIM_THM] THEN
    CONV_TAC(ONCE_DEPTH_CONV GEN_BETA_CONV) THEN
    ONCE_REWRITE_TAC[TAUT `(a /\ b) /\ d <=> d /\ a /\ b`] THEN
    REWRITE_TAC[PAIR_EQ; EXISTS_PAIR_THM; GSYM CONJ_ASSOC] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; UNWIND_THM1] THEN
    REWRITE_TAC[FUN_EQ_THM; funspace; IN_ELIM_THM; IN_INSERT; IN_DELETE] THEN
    REPEAT GEN_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
     [ASM_MESON_TAC[IN_INSERT]; ALL_TAC] THEN
    X_GEN_TAC `u:A` THEN ASM_CASES_TAC `u:A = x` THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN ASM_SIMP_TAC[CARD_CLAUSES; EXP] THEN
  SUBGOAL_THEN
   `(if n < SUC (CARD s) then 0 else FACT n DIV FACT (n - SUC (CARD s))) =
    n * (if (n - 1) < CARD(s:A->bool) then 0
         else FACT(n - 1) DIV FACT (n - 1 - CARD s))`
  SUBST1_TAC THENL
   [ASM_CASES_TAC `n = 0` THEN ASM_REWRITE_TAC[MULT_CLAUSES; LT_0] THEN
    ASM_SIMP_TAC[ARITH_RULE `~(n = 0) ==> (n - 1 < m <=> n < SUC m)`] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[MULT_CLAUSES] THEN
    REWRITE_TAC[ARITH_RULE `n - SUC(m) = n - 1 - m`] THEN
    UNDISCH_TAC `~(n = 0)` THEN SPEC_TAC(`n:num`,`n:num`) THEN
    INDUCT_TAC THEN REWRITE_TAC[FACT; SUC_SUB1] THEN DISCH_TAC THEN
    MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
    REWRITE_TAC[ADD_CLAUSES; FACT_LT; GSYM MULT_ASSOC] THEN
    AP_TERM_TAC THEN MATCH_MP_TAC FACT_DIV_MULT THEN ARITH_TAC;
    MATCH_MP_TAC HAS_SIZE_PRODUCT_DEPENDENT THEN ASM_REWRITE_TAC[] THEN
    X_GEN_TAC `y:B` THEN DISCH_TAC THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN
    RULE_ASSUM_TAC(REWRITE_RULE[HAS_SIZE]) THEN
    ASM_SIMP_TAC[HAS_SIZE; FINITE_DELETE; CARD_DELETE]]);;

(* ------------------------------------------------------------------------- *)
(* So the actual birthday result.                                            *)
(* ------------------------------------------------------------------------- *)

let HAS_SIZE_DIFF = prove
 (`!s t:A->bool m n.
        s SUBSET t /\ s HAS_SIZE m /\ t HAS_SIZE n
        ==> (t DIFF s) HAS_SIZE (n - m)`,
  SIMP_TAC[HAS_SIZE; FINITE_DIFF] THEN
  REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
  DISCH_THEN(SUBST_ALL_TAC o SYM) THEN FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP (SET_RULE
   `s SUBSET t ==> t = s UNION (t DIFF s)`)) THEN
  DISCH_THEN(fun th -> GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV) [th]) THEN
  ASM_SIMP_TAC[CARD_UNION; FINITE_DIFF; ADD_SUB2;
               SET_RULE `s INTER (t DIFF s) = {}`]);;

let BIRTHDAY_THM = prove
 (`!s:A->bool t:B->bool m n.
        s HAS_SIZE m /\ t HAS_SIZE n
        ==> {f | f IN (s --> t) /\
                 ?x y. x IN s /\ y IN s /\ ~(x = y) /\ f(x) = f(y)}
            HAS_SIZE (if m <= n then (n EXP m) - (FACT n) DIV (FACT(n - m))
                      else n EXP m)`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[SET_RULE
   `{f:A->B | f IN (s --> t) /\
              ?x y. x IN s /\ y IN s /\ ~(x = y) /\ f(x) = f(y)} =
    (s --> t) DIFF
    {f | f IN (s --> t) /\
                 (!x y. x IN s /\ y IN s /\ f x = f y ==> x = y)}`] THEN
  REWRITE_TAC[ARITH_RULE
   `(if a <= b then x - y else x) = x - (if b < a then 0 else y)`] THEN
  MATCH_MP_TAC HAS_SIZE_DIFF THEN
  ASM_SIMP_TAC[HAS_SIZE_FUNSPACE_INJECTIVE; HAS_SIZE_FUNSPACE] THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM]);;

(* ------------------------------------------------------------------------- *)
(* The usual explicit instantiation.                                         *)
(* ------------------------------------------------------------------------- *)

let FACT_DIV_SIMP = prove
 (`!m n. m < n
         ==> (FACT n) DIV (FACT m) = n * FACT(n - 1) DIV FACT(m)`,
  GEN_TAC THEN REWRITE_TAC[LT_EXISTS; LEFT_IMP_EXISTS_THM] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  SIMP_TAC[LEFT_FORALL_IMP_THM; EXISTS_REFL] THEN
  REWRITE_TAC[ARITH_RULE `(m + SUC d) - 1 - m = d`] THEN
  REWRITE_TAC[ARITH_RULE `(m + SUC d) - 1 = m + d`; ADD_SUB2] THEN
  GEN_TAC THEN MATCH_MP_TAC DIV_UNIQ THEN EXISTS_TAC `0` THEN
  REWRITE_TAC[FACT_LT; ARITH_RULE `x + 0 = x`] THEN REWRITE_TAC[FACT] THEN
  SIMP_TAC[GSYM MULT_ASSOC; GSYM FACT_DIV_MULT; LE_ADD] THEN
  REWRITE_TAC[ADD_CLAUSES; FACT]);;

let BIRTHDAY_THM_EXPLICIT = prove
 (`!s t. s HAS_SIZE 23 /\ t HAS_SIZE 365
         ==> 2 * CARD {f | f IN (s --> t) /\
                           ?x y. x IN s /\ y IN s /\ ~(x = y) /\ f(x) = f(y)}
             >= CARD (s --> t)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP BIRTHDAY_THM) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP HAS_SIZE_FUNSPACE) THEN
  CONV_TAC(ONCE_DEPTH_CONV NUM_SUB_CONV) THEN
  REPEAT(CHANGED_TAC
   (SIMP_TAC[FACT_DIV_SIMP; ARITH_LE; ARITH_LT] THEN
    CONV_TAC(ONCE_DEPTH_CONV NUM_SUB_CONV))) THEN
  SIMP_TAC[DIV_REFL; GSYM LT_NZ; FACT_LT] THEN
  REWRITE_TAC[HAS_SIZE] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  CONV_TAC NUM_REDUCE_CONV);;