Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 10,074 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
(* ========================================================================= *)
(* The law of cosines, of sines, and sum of angles of a triangle.            *)
(* ========================================================================= *)

needs "Multivariate/transcendentals.ml";;

prioritize_vector();;

(* ------------------------------------------------------------------------- *)
(* Angle between vectors (always 0 <= angle <= pi).                          *)
(* ------------------------------------------------------------------------- *)

let vangle = new_definition
 `vangle x y = if x = vec 0 \/ y = vec 0 then pi / &2
               else acs((x dot y) / (norm x * norm y))`;;

(* ------------------------------------------------------------------------- *)
(* Traditional geometric notion of angle (but always 0 <= theta <= pi).      *)
(* ------------------------------------------------------------------------- *)

let angle = new_definition
 `angle(a,b,c) = vangle (a - b) (c - b)`;;

(* ------------------------------------------------------------------------- *)
(* Lemmas (more than we need for this result).                               *)
(* ------------------------------------------------------------------------- *)

let VANGLE = prove
 (`!x y:real^N. x dot y = norm(x) * norm(y) * cos(vangle x y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[vangle] THEN
  ASM_CASES_TAC `x:real^N = vec 0` THEN
  ASM_REWRITE_TAC[DOT_LZERO; NORM_0; REAL_MUL_LZERO] THEN
  ASM_CASES_TAC `y:real^N = vec 0` THEN
  ASM_REWRITE_TAC[DOT_RZERO; NORM_0; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
  ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c:real = c * a * b`] THEN
  ASM_SIMP_TAC[GSYM REAL_EQ_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT] THEN
  MATCH_MP_TAC(GSYM COS_ACS) THEN
  ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; NORM_POS_LT; REAL_LT_MUL] THEN
  MP_TAC(SPECL [`x:real^N`; `y:real^N`] NORM_CAUCHY_SCHWARZ_ABS) THEN
  REAL_ARITH_TAC);;

let VANGLE_RANGE = prove
 (`!x y:real^N. &0 <= vangle x y /\ vangle x y <= pi`,
  REPEAT GEN_TAC THEN REWRITE_TAC[vangle] THEN COND_CASES_TAC THENL
   [MP_TAC PI_POS THEN REAL_ARITH_TAC; ALL_TAC] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN MATCH_MP_TAC ACS_BOUNDS THEN
  ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT] THEN
  MATCH_MP_TAC(REAL_ARITH `abs(x) <= a ==> -- &1 * a <= x /\ x <= &1 * a`) THEN
  REWRITE_TAC[NORM_CAUCHY_SCHWARZ_ABS]);;

let ORTHOGONAL_VANGLE = prove
 (`!x y:real^N. orthogonal x y <=> vangle x y = pi / &2`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[orthogonal; vangle] THEN
  ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_LZERO] THEN
  ASM_CASES_TAC `y:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_RZERO] THEN
  EQ_TAC THENL
   [SIMP_TAC[real_div; REAL_MUL_LZERO] THEN DISCH_TAC THEN
    REWRITE_TAC[GSYM real_div; GSYM COS_PI2] THEN
    MATCH_MP_TAC ACS_COS THEN MP_TAC PI_POS THEN REAL_ARITH_TAC;
    MP_TAC(SPECL [`x:real^N`; `y:real^N`] NORM_CAUCHY_SCHWARZ_ABS) THEN
    GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_MUL_LID] THEN
    REWRITE_TAC[GSYM REAL_BOUNDS_LE] THEN
    ONCE_REWRITE_TAC[GSYM REAL_MUL_LNEG] THEN
    ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; GSYM REAL_LE_LDIV_EQ;
                 REAL_LT_MUL; NORM_POS_LT] THEN
    STRIP_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `cos`) THEN
    ASM_SIMP_TAC[COS_ACS; COS_PI2] THEN
    REWRITE_TAC[real_div; REAL_ENTIRE; REAL_INV_EQ_0] THEN
    ASM_REWRITE_TAC[NORM_EQ_0]]);;

let VANGLE_EQ_PI = prove
 (`!x y:real^N. vangle x y = pi ==> norm(x) % y + norm(y) % x = vec 0`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`x:real^N`; `y:real^N`] VANGLE) THEN
  ASM_REWRITE_TAC[COS_PI] THEN STRIP_TAC THEN
  MP_TAC(ISPECL [`x:real^N`; `--y:real^N`] NORM_CAUCHY_SCHWARZ_EQ) THEN
  REWRITE_TAC[NORM_NEG; DOT_RNEG; VECTOR_MUL_RNEG] THEN
  ASM_REWRITE_TAC[REAL_MUL_RNEG; REAL_NEG_NEG; REAL_MUL_RID] THEN
  VECTOR_ARITH_TAC);;

let ANGLE_EQ_PI = prove
 (`!A B C:real^N. angle(A,B,C) = pi ==> dist(A,C) = dist(A,B) + dist(B,C)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[angle] THEN
  DISCH_THEN(MP_TAC o MATCH_MP VANGLE_EQ_PI) THEN
  REWRITE_TAC[VECTOR_ARITH `a + x % (b - c) = vec 0 <=> a = x % (c - b)`] THEN
  GEN_REWRITE_TAC (funpow 3 LAND_CONV) [NORM_SUB] THEN
  REWRITE_TAC[GSYM NORM_TRIANGLE_EQ] THEN
  REWRITE_TAC[VECTOR_ARITH `(B - A) + (C - B):real^N = C - A`] THEN
  REWRITE_TAC[dist; NORM_SUB]);;

let SIN_ANGLE_POS = prove
 (`!A B C. &0 <= sin(angle(A,B,C))`,
  SIMP_TAC[SIN_POS_PI_LE; angle; VANGLE_RANGE]);;

let ANGLE = prove
 (`!A B C. (A - C) dot (B - C) = dist(A,C) * dist(B,C) * cos(angle(A,C,B))`,
  REWRITE_TAC[angle; dist; GSYM VANGLE]);;

let ANGLE_REFL = prove
 (`!A B. angle(A,A,B) = pi / &2 /\
         angle(B,A,A) = pi / &2`,
  REWRITE_TAC[angle; vangle; VECTOR_SUB_REFL]);;

let ANGLE_REFL_MID = prove
 (`!A B. ~(A = B) ==> angle(A,B,A) = &0`,
  SIMP_TAC[angle; vangle; VECTOR_SUB_EQ; GSYM NORM_POW_2; GSYM REAL_POW_2;
           REAL_DIV_REFL; ACS_1; REAL_POW_EQ_0; ARITH; NORM_EQ_0]);;

let ANGLE_SYM = prove
 (`!A B C. angle(A,B,C) = angle(C,B,A)`,
  REWRITE_TAC[angle; vangle; VECTOR_SUB_EQ; DISJ_SYM; REAL_MUL_SYM; DOT_SYM]);;

let ANGLE_RANGE = prove
 (`!A B C. &0 <= angle(A,B,C) /\ angle(A,B,C) <= pi`,
  REWRITE_TAC[angle; VANGLE_RANGE]);;

(* ------------------------------------------------------------------------- *)
(* The law of cosines.                                                       *)
(* ------------------------------------------------------------------------- *)

let LAW_OF_COSINES = prove
 (`!A B C:real^N.
     dist(B,C) pow 2 = dist(A,B) pow 2 + dist(A,C) pow 2 -
                         &2 * dist(A,B) * dist(A,C) * cos(angle(B,A,C))`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[angle; ONCE_REWRITE_RULE[NORM_SUB] dist; GSYM VANGLE;
              NORM_POW_2] THEN
  VECTOR_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* The law of sines.                                                         *)
(* ------------------------------------------------------------------------- *)

let LAW_OF_SINES = prove
 (`!A B C:real^N.
      sin(angle(A,B,C)) * dist(B,C) = sin(angle(B,A,C)) * dist(A,C)`,
  REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_POW_EQ THEN EXISTS_TAC `2` THEN
  SIMP_TAC[SIN_ANGLE_POS; DIST_POS_LE; REAL_LE_MUL; ARITH] THEN
  REWRITE_TAC[REAL_POW_MUL; MATCH_MP
   (REAL_ARITH `x + y = &1 ==> x = &1 - y`) (SPEC_ALL SIN_CIRCLE)] THEN
  ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[ANGLE_REFL; COS_PI2] THEN
  RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM VECTOR_SUB_EQ]) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[GSYM NORM_EQ_0]) THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_RING
   `~(a = &0) ==> a pow 2 * x = a pow 2 * y ==> x = y`)) THEN
  ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[GSYM dist] THEN
  GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [DIST_SYM] THEN
  REWRITE_TAC[REAL_RING
   `a * (&1 - x) * b = c * (&1 - y) * d <=>
    a * b - a * b * x = c * d - c * d * y`] THEN
  REWRITE_TAC[GSYM REAL_POW_MUL; GSYM ANGLE] THEN
  REWRITE_TAC[REAL_POW_MUL; dist; NORM_POW_2] THEN
  REWRITE_TAC[DOT_LSUB; DOT_RSUB; DOT_SYM] THEN CONV_TAC REAL_RING);;

(* ------------------------------------------------------------------------- *)
(* Hence the sum of the angles of a triangle.                                *)
(* ------------------------------------------------------------------------- *)

let TRIANGLE_ANGLE_SUM_LEMMA = prove
 (`!A B C:real^N. ~(A = B) /\ ~(A = C) /\ ~(B = C)
                  ==> cos(angle(B,A,C) + angle(A,B,C) + angle(B,C,A)) = -- &1`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
  REWRITE_TAC[GSYM NORM_EQ_0] THEN
  MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_COSINES) THEN
  MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_COSINES) THEN
  MP_TAC(ISPECL [`C:real^N`; `B:real^N`; `A:real^N`] LAW_OF_COSINES) THEN
  MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_SINES) THEN
  MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_SINES) THEN
  MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `A:real^N`] LAW_OF_SINES) THEN
  REWRITE_TAC[COS_ADD; SIN_ADD; dist; NORM_SUB] THEN
  MAP_EVERY (fun t -> MP_TAC(SPEC t SIN_CIRCLE))
   [`angle(B:real^N,A,C)`; `angle(A:real^N,B,C)`; `angle(B:real^N,C,A)`] THEN
  REWRITE_TAC[COS_ADD; SIN_ADD; ANGLE_SYM] THEN CONV_TAC REAL_RING);;

let COS_MINUS1_LEMMA = prove
 (`!x. cos(x) = -- &1 /\ &0 <= x /\ x < &3 * pi ==> x = pi`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?n. integer n /\ x = n * pi`
   (X_CHOOSE_THEN `nn:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
  REWRITE_TAC[GSYM SIN_EQ_0] THENL
   [MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC REAL_RING;
    ALL_TAC] THEN
  SUBGOAL_THEN `?n. nn = &n` (X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_MUL_POS_LE]) THEN
    SIMP_TAC[PI_POS; REAL_ARITH `&0 < p ==> ~(p < &0) /\ ~(p = &0)`] THEN
    ASM_MESON_TAC[INTEGER_POS; REAL_LT_LE];
    ALL_TAC] THEN
  MATCH_MP_TAC(REAL_RING `n = &1 ==> n * p = p`) THEN
  REWRITE_TAC[REAL_OF_NUM_EQ] THEN
  MATCH_MP_TAC(ARITH_RULE `n < 3 /\ ~(n = 0) /\ ~(n = 2) ==> n = 1`) THEN
  RULE_ASSUM_TAC(SIMP_RULE[REAL_LT_RMUL_EQ; PI_POS; REAL_OF_NUM_LT]) THEN
  ASM_REWRITE_TAC[] THEN CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
  REPEAT(POP_ASSUM MP_TAC) THEN SIMP_TAC[COS_0; REAL_MUL_LZERO; COS_NPI] THEN
  REAL_ARITH_TAC);;

let TRIANGLE_ANGLE_SUM = prove
 (`!A B C:real^N. ~(A = B) /\ ~(A = C) /\ ~(B = C)
                  ==> angle(B,A,C) + angle(A,B,C) + angle(B,C,A) = pi`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC COS_MINUS1_LEMMA THEN
  ASM_SIMP_TAC[TRIANGLE_ANGLE_SUM_LEMMA; REAL_LE_ADD; ANGLE_RANGE] THEN
  MATCH_MP_TAC(REAL_ARITH
   `&0 <= x /\ x <= p /\ &0 <= y /\ y <= p /\ &0 <= z /\ z <= p /\
    ~(x = p /\ y = p /\ z = p)
    ==> x + y + z < &3 * p`) THEN
  ASM_SIMP_TAC[ANGLE_RANGE] THEN REPEAT STRIP_TAC THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP ANGLE_EQ_PI)) THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV
   [GSYM VECTOR_SUB_EQ])) THEN
  REWRITE_TAC[GSYM NORM_EQ_0; dist; NORM_SUB] THEN REAL_ARITH_TAC);;