Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 10,074 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
(* ========================================================================= *)
(* The law of cosines, of sines, and sum of angles of a triangle. *)
(* ========================================================================= *)
needs "Multivariate/transcendentals.ml";;
prioritize_vector();;
(* ------------------------------------------------------------------------- *)
(* Angle between vectors (always 0 <= angle <= pi). *)
(* ------------------------------------------------------------------------- *)
let vangle = new_definition
`vangle x y = if x = vec 0 \/ y = vec 0 then pi / &2
else acs((x dot y) / (norm x * norm y))`;;
(* ------------------------------------------------------------------------- *)
(* Traditional geometric notion of angle (but always 0 <= theta <= pi). *)
(* ------------------------------------------------------------------------- *)
let angle = new_definition
`angle(a,b,c) = vangle (a - b) (c - b)`;;
(* ------------------------------------------------------------------------- *)
(* Lemmas (more than we need for this result). *)
(* ------------------------------------------------------------------------- *)
let VANGLE = prove
(`!x y:real^N. x dot y = norm(x) * norm(y) * cos(vangle x y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[vangle] THEN
ASM_CASES_TAC `x:real^N = vec 0` THEN
ASM_REWRITE_TAC[DOT_LZERO; NORM_0; REAL_MUL_LZERO] THEN
ASM_CASES_TAC `y:real^N = vec 0` THEN
ASM_REWRITE_TAC[DOT_RZERO; NORM_0; REAL_MUL_LZERO; REAL_MUL_RZERO] THEN
ONCE_REWRITE_TAC[AC REAL_MUL_AC `a * b * c:real = c * a * b`] THEN
ASM_SIMP_TAC[GSYM REAL_EQ_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT] THEN
MATCH_MP_TAC(GSYM COS_ACS) THEN
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; NORM_POS_LT; REAL_LT_MUL] THEN
MP_TAC(SPECL [`x:real^N`; `y:real^N`] NORM_CAUCHY_SCHWARZ_ABS) THEN
REAL_ARITH_TAC);;
let VANGLE_RANGE = prove
(`!x y:real^N. &0 <= vangle x y /\ vangle x y <= pi`,
REPEAT GEN_TAC THEN REWRITE_TAC[vangle] THEN COND_CASES_TAC THENL
[MP_TAC PI_POS THEN REAL_ARITH_TAC; ALL_TAC] THEN
RULE_ASSUM_TAC(REWRITE_RULE[DE_MORGAN_THM]) THEN MATCH_MP_TAC ACS_BOUNDS THEN
ASM_SIMP_TAC[REAL_LE_RDIV_EQ; REAL_LE_LDIV_EQ; REAL_LT_MUL; NORM_POS_LT] THEN
MATCH_MP_TAC(REAL_ARITH `abs(x) <= a ==> -- &1 * a <= x /\ x <= &1 * a`) THEN
REWRITE_TAC[NORM_CAUCHY_SCHWARZ_ABS]);;
let ORTHOGONAL_VANGLE = prove
(`!x y:real^N. orthogonal x y <=> vangle x y = pi / &2`,
REPEAT STRIP_TAC THEN REWRITE_TAC[orthogonal; vangle] THEN
ASM_CASES_TAC `x:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_LZERO] THEN
ASM_CASES_TAC `y:real^N = vec 0` THEN ASM_REWRITE_TAC[DOT_RZERO] THEN
EQ_TAC THENL
[SIMP_TAC[real_div; REAL_MUL_LZERO] THEN DISCH_TAC THEN
REWRITE_TAC[GSYM real_div; GSYM COS_PI2] THEN
MATCH_MP_TAC ACS_COS THEN MP_TAC PI_POS THEN REAL_ARITH_TAC;
MP_TAC(SPECL [`x:real^N`; `y:real^N`] NORM_CAUCHY_SCHWARZ_ABS) THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_MUL_LID] THEN
REWRITE_TAC[GSYM REAL_BOUNDS_LE] THEN
ONCE_REWRITE_TAC[GSYM REAL_MUL_LNEG] THEN
ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; GSYM REAL_LE_LDIV_EQ;
REAL_LT_MUL; NORM_POS_LT] THEN
STRIP_TAC THEN DISCH_THEN(MP_TAC o AP_TERM `cos`) THEN
ASM_SIMP_TAC[COS_ACS; COS_PI2] THEN
REWRITE_TAC[real_div; REAL_ENTIRE; REAL_INV_EQ_0] THEN
ASM_REWRITE_TAC[NORM_EQ_0]]);;
let VANGLE_EQ_PI = prove
(`!x y:real^N. vangle x y = pi ==> norm(x) % y + norm(y) % x = vec 0`,
REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`x:real^N`; `y:real^N`] VANGLE) THEN
ASM_REWRITE_TAC[COS_PI] THEN STRIP_TAC THEN
MP_TAC(ISPECL [`x:real^N`; `--y:real^N`] NORM_CAUCHY_SCHWARZ_EQ) THEN
REWRITE_TAC[NORM_NEG; DOT_RNEG; VECTOR_MUL_RNEG] THEN
ASM_REWRITE_TAC[REAL_MUL_RNEG; REAL_NEG_NEG; REAL_MUL_RID] THEN
VECTOR_ARITH_TAC);;
let ANGLE_EQ_PI = prove
(`!A B C:real^N. angle(A,B,C) = pi ==> dist(A,C) = dist(A,B) + dist(B,C)`,
REPEAT GEN_TAC THEN REWRITE_TAC[angle] THEN
DISCH_THEN(MP_TAC o MATCH_MP VANGLE_EQ_PI) THEN
REWRITE_TAC[VECTOR_ARITH `a + x % (b - c) = vec 0 <=> a = x % (c - b)`] THEN
GEN_REWRITE_TAC (funpow 3 LAND_CONV) [NORM_SUB] THEN
REWRITE_TAC[GSYM NORM_TRIANGLE_EQ] THEN
REWRITE_TAC[VECTOR_ARITH `(B - A) + (C - B):real^N = C - A`] THEN
REWRITE_TAC[dist; NORM_SUB]);;
let SIN_ANGLE_POS = prove
(`!A B C. &0 <= sin(angle(A,B,C))`,
SIMP_TAC[SIN_POS_PI_LE; angle; VANGLE_RANGE]);;
let ANGLE = prove
(`!A B C. (A - C) dot (B - C) = dist(A,C) * dist(B,C) * cos(angle(A,C,B))`,
REWRITE_TAC[angle; dist; GSYM VANGLE]);;
let ANGLE_REFL = prove
(`!A B. angle(A,A,B) = pi / &2 /\
angle(B,A,A) = pi / &2`,
REWRITE_TAC[angle; vangle; VECTOR_SUB_REFL]);;
let ANGLE_REFL_MID = prove
(`!A B. ~(A = B) ==> angle(A,B,A) = &0`,
SIMP_TAC[angle; vangle; VECTOR_SUB_EQ; GSYM NORM_POW_2; GSYM REAL_POW_2;
REAL_DIV_REFL; ACS_1; REAL_POW_EQ_0; ARITH; NORM_EQ_0]);;
let ANGLE_SYM = prove
(`!A B C. angle(A,B,C) = angle(C,B,A)`,
REWRITE_TAC[angle; vangle; VECTOR_SUB_EQ; DISJ_SYM; REAL_MUL_SYM; DOT_SYM]);;
let ANGLE_RANGE = prove
(`!A B C. &0 <= angle(A,B,C) /\ angle(A,B,C) <= pi`,
REWRITE_TAC[angle; VANGLE_RANGE]);;
(* ------------------------------------------------------------------------- *)
(* The law of cosines. *)
(* ------------------------------------------------------------------------- *)
let LAW_OF_COSINES = prove
(`!A B C:real^N.
dist(B,C) pow 2 = dist(A,B) pow 2 + dist(A,C) pow 2 -
&2 * dist(A,B) * dist(A,C) * cos(angle(B,A,C))`,
REPEAT GEN_TAC THEN
REWRITE_TAC[angle; ONCE_REWRITE_RULE[NORM_SUB] dist; GSYM VANGLE;
NORM_POW_2] THEN
VECTOR_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* The law of sines. *)
(* ------------------------------------------------------------------------- *)
let LAW_OF_SINES = prove
(`!A B C:real^N.
sin(angle(A,B,C)) * dist(B,C) = sin(angle(B,A,C)) * dist(A,C)`,
REPEAT GEN_TAC THEN MATCH_MP_TAC REAL_POW_EQ THEN EXISTS_TAC `2` THEN
SIMP_TAC[SIN_ANGLE_POS; DIST_POS_LE; REAL_LE_MUL; ARITH] THEN
REWRITE_TAC[REAL_POW_MUL; MATCH_MP
(REAL_ARITH `x + y = &1 ==> x = &1 - y`) (SPEC_ALL SIN_CIRCLE)] THEN
ASM_CASES_TAC `A:real^N = B` THEN ASM_REWRITE_TAC[ANGLE_REFL; COS_PI2] THEN
RULE_ASSUM_TAC(ONCE_REWRITE_RULE[GSYM VECTOR_SUB_EQ]) THEN
RULE_ASSUM_TAC(REWRITE_RULE[GSYM NORM_EQ_0]) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_RING
`~(a = &0) ==> a pow 2 * x = a pow 2 * y ==> x = y`)) THEN
ONCE_REWRITE_TAC[DIST_SYM] THEN REWRITE_TAC[GSYM dist] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o ONCE_DEPTH_CONV) [DIST_SYM] THEN
REWRITE_TAC[REAL_RING
`a * (&1 - x) * b = c * (&1 - y) * d <=>
a * b - a * b * x = c * d - c * d * y`] THEN
REWRITE_TAC[GSYM REAL_POW_MUL; GSYM ANGLE] THEN
REWRITE_TAC[REAL_POW_MUL; dist; NORM_POW_2] THEN
REWRITE_TAC[DOT_LSUB; DOT_RSUB; DOT_SYM] THEN CONV_TAC REAL_RING);;
(* ------------------------------------------------------------------------- *)
(* Hence the sum of the angles of a triangle. *)
(* ------------------------------------------------------------------------- *)
let TRIANGLE_ANGLE_SUM_LEMMA = prove
(`!A B C:real^N. ~(A = B) /\ ~(A = C) /\ ~(B = C)
==> cos(angle(B,A,C) + angle(A,B,C) + angle(B,C,A)) = -- &1`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM VECTOR_SUB_EQ] THEN
REWRITE_TAC[GSYM NORM_EQ_0] THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_COSINES) THEN
MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_COSINES) THEN
MP_TAC(ISPECL [`C:real^N`; `B:real^N`; `A:real^N`] LAW_OF_COSINES) THEN
MP_TAC(ISPECL [`A:real^N`; `B:real^N`; `C:real^N`] LAW_OF_SINES) THEN
MP_TAC(ISPECL [`B:real^N`; `A:real^N`; `C:real^N`] LAW_OF_SINES) THEN
MP_TAC(ISPECL [`B:real^N`; `C:real^N`; `A:real^N`] LAW_OF_SINES) THEN
REWRITE_TAC[COS_ADD; SIN_ADD; dist; NORM_SUB] THEN
MAP_EVERY (fun t -> MP_TAC(SPEC t SIN_CIRCLE))
[`angle(B:real^N,A,C)`; `angle(A:real^N,B,C)`; `angle(B:real^N,C,A)`] THEN
REWRITE_TAC[COS_ADD; SIN_ADD; ANGLE_SYM] THEN CONV_TAC REAL_RING);;
let COS_MINUS1_LEMMA = prove
(`!x. cos(x) = -- &1 /\ &0 <= x /\ x < &3 * pi ==> x = pi`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?n. integer n /\ x = n * pi`
(X_CHOOSE_THEN `nn:real` (CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC)) THEN
REWRITE_TAC[GSYM SIN_EQ_0] THENL
[MP_TAC(SPEC `x:real` SIN_CIRCLE) THEN ASM_REWRITE_TAC[] THEN
CONV_TAC REAL_RING;
ALL_TAC] THEN
SUBGOAL_THEN `?n. nn = &n` (X_CHOOSE_THEN `n:num` SUBST_ALL_TAC) THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [REAL_MUL_POS_LE]) THEN
SIMP_TAC[PI_POS; REAL_ARITH `&0 < p ==> ~(p < &0) /\ ~(p = &0)`] THEN
ASM_MESON_TAC[INTEGER_POS; REAL_LT_LE];
ALL_TAC] THEN
MATCH_MP_TAC(REAL_RING `n = &1 ==> n * p = p`) THEN
REWRITE_TAC[REAL_OF_NUM_EQ] THEN
MATCH_MP_TAC(ARITH_RULE `n < 3 /\ ~(n = 0) /\ ~(n = 2) ==> n = 1`) THEN
RULE_ASSUM_TAC(SIMP_RULE[REAL_LT_RMUL_EQ; PI_POS; REAL_OF_NUM_LT]) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THEN DISCH_THEN SUBST_ALL_TAC THEN
REPEAT(POP_ASSUM MP_TAC) THEN SIMP_TAC[COS_0; REAL_MUL_LZERO; COS_NPI] THEN
REAL_ARITH_TAC);;
let TRIANGLE_ANGLE_SUM = prove
(`!A B C:real^N. ~(A = B) /\ ~(A = C) /\ ~(B = C)
==> angle(B,A,C) + angle(A,B,C) + angle(B,C,A) = pi`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC COS_MINUS1_LEMMA THEN
ASM_SIMP_TAC[TRIANGLE_ANGLE_SUM_LEMMA; REAL_LE_ADD; ANGLE_RANGE] THEN
MATCH_MP_TAC(REAL_ARITH
`&0 <= x /\ x <= p /\ &0 <= y /\ y <= p /\ &0 <= z /\ z <= p /\
~(x = p /\ y = p /\ z = p)
==> x + y + z < &3 * p`) THEN
ASM_SIMP_TAC[ANGLE_RANGE] THEN REPEAT STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP ANGLE_EQ_PI)) THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE RAND_CONV
[GSYM VECTOR_SUB_EQ])) THEN
REWRITE_TAC[GSYM NORM_EQ_0; dist; NORM_SUB] THEN REAL_ARITH_TAC);;
|