Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 16,320 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
(* ========================================================================= *)
(* #87: Desargues's theorem. *)
(* ========================================================================= *)
needs "Multivariate/cross.ml";;
(* ------------------------------------------------------------------------- *)
(* A lemma we want to justify some of the axioms. *)
(* ------------------------------------------------------------------------- *)
let NORMAL_EXISTS = prove
(`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`,
REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN
MP_TAC(ISPEC `{u:real^3,v}` ORTHOGONAL_TO_SUBSPACE_EXISTS) THEN
REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; DIMINDEX_3] THEN
DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC LET_TRANS THEN
EXISTS_TAC `CARD {u:real^3,v}` THEN CONJ_TAC THEN
SIMP_TAC[DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN
SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Type of directions. *)
(* ------------------------------------------------------------------------- *)
let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
(MESON[BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1] `?x:real^3. ~(x = vec 0)`);;
parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;
let perpdir = new_definition
`x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;;
let pardir = new_definition
`x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;;
let DIRECTION_CLAUSES = prove
(`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\
((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
MESON_TAC[direction_tybij]);;
let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove)
(`(!x. x || x) /\
(!x y. x || y <=> y || x) /\
(!x y z. x || y /\ y || z ==> x || z)`,
REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let PARDIR_EQUIV = prove
(`!x y. ((||) x = (||) y) <=> x || y`,
REWRITE_TAC[FUN_EQ_THM] THEN
MESON_TAC[PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS]);;
let DIRECTION_AXIOM_1 = prove
(`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\
!l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN
MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN
MATCH_MP_TAC MONO_EXISTS THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_2 = prove
(`!l l'. ?p. p _|_ l /\ p _|_ l'`,
REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN
MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);;
let DIRECTION_AXIOM_3 = prove
(`?p p' p''.
~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN MAP_EVERY
(fun t -> EXISTS_TAC t THEN SIMP_TAC[BASIS_NONZERO; DIMINDEX_3; ARITH])
[`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN
VEC3_TAC);;
let DIRECTION_AXIOM_4_WEAK = prove
(`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN
`orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\
~((l cross basis 1) cross (l cross basis 2) = vec 0) \/
orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 1) cross (l cross basis 3) = vec 0) \/
orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\
~((l cross basis 2) cross (l cross basis 3) = vec 0)`
MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);;
let ORTHOGONAL_COMBINE = prove
(`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b)
==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN
REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;
let DIRECTION_AXIOM_4 = prove
(`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);;
let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;
let PERPDIR_WELLDEF = prove
(`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`,
REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;
let perpl,perpl_th =
lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS)
"perpl" PERPDIR_WELLDEF;;
let line_lift_thm = lift_theorem line_tybij
(PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];;
let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;;
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;;
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;;
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;;
let point_tybij = new_type_definition "point" ("mk_point","dest_point")
(prove(`?x:line. T`,REWRITE_TAC[]));;
parse_as_infix("on",(11,"right"));;
let on = new_definition `p on l <=> perpl (dest_point p) l`;;
let POINT_CLAUSES = prove
(`((p = p') <=> (dest_point p = dest_point p')) /\
((!p. P (dest_point p)) <=> (!l. P l)) /\
((?p. P (dest_point p)) <=> (?l. P l))`,
MESON_TAC[point_tybij]);;
let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;;
let AXIOM_1 = prove
(`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\
!l'. p on l' /\ p' on l' ==> (l' = l)`,
POINT_TAC LINE_AXIOM_1);;
let AXIOM_2 = prove
(`!l l'. ?p. p on l /\ p on l'`,
POINT_TAC LINE_AXIOM_2);;
let AXIOM_3 = prove
(`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
~(?l. p on l /\ p' on l /\ p'' on l)`,
POINT_TAC LINE_AXIOM_3);;
let AXIOM_4 = prove
(`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
p on l /\ p' on l /\ p'' on l`,
POINT_TAC LINE_AXIOM_4);;
(* ------------------------------------------------------------------------- *)
(* Mappings from vectors in R^3 to projective lines and points. *)
(* ------------------------------------------------------------------------- *)
let projl = new_definition
`projl x = mk_line((||) (mk_dir x))`;;
let projp = new_definition
`projp x = mk_point(projl x)`;;
(* ------------------------------------------------------------------------- *)
(* Mappings in the other direction, to (some) homogeneous coordinates. *)
(* ------------------------------------------------------------------------- *)
let PROJL_TOTAL = prove
(`!l. ?x. ~(x = vec 0) /\ l = projl x`,
GEN_TAC THEN
SUBGOAL_THEN `?d. l = mk_line((||) d)` (CHOOSE_THEN SUBST1_TAC) THENL
[MESON_TAC[fst line_tybij; snd line_tybij];
REWRITE_TAC[projl] THEN EXISTS_TAC `dest_dir d` THEN
MESON_TAC[direction_tybij]]);;
let homol = new_specification ["homol"]
(REWRITE_RULE[SKOLEM_THM] PROJL_TOTAL);;
let PROJP_TOTAL = prove
(`!p. ?x. ~(x = vec 0) /\ p = projp x`,
REWRITE_TAC[projp] THEN MESON_TAC[PROJL_TOTAL; point_tybij]);;
let homop_def = new_definition
`homop p = homol(dest_point p)`;;
let homop = prove
(`!p. ~(homop p = vec 0) /\ p = projp(homop p)`,
GEN_TAC THEN REWRITE_TAC[homop_def; projp; MESON[point_tybij]
`p = mk_point l <=> dest_point p = l`] THEN
MATCH_ACCEPT_TAC homol);;
(* ------------------------------------------------------------------------- *)
(* Key equivalences of concepts in projective space and homogeneous coords. *)
(* ------------------------------------------------------------------------- *)
let parallel = new_definition
`parallel x y <=> x cross y = vec 0`;;
let ON_HOMOL = prove
(`!p l. p on l <=> orthogonal (homop p) (homol l)`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [homop; homol] THEN
REWRITE_TAC[on; projp; projl; REWRITE_RULE[] point_tybij] THEN
REWRITE_TAC[GSYM perpl_th; perpdir] THEN BINOP_TAC THEN
MESON_TAC[homol; homop; direction_tybij]);;
let EQ_HOMOL = prove
(`!l l'. l = l' <=> parallel (homol l) (homol l')`,
REPEAT GEN_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [homol] THEN
REWRITE_TAC[projl; MESON[fst line_tybij; snd line_tybij]
`mk_line((||) l) = mk_line((||) l') <=> (||) l = (||) l'`] THEN
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir; parallel] THEN
MESON_TAC[homol; direction_tybij]);;
let EQ_HOMOP = prove
(`!p p'. p = p' <=> parallel (homop p) (homop p')`,
REWRITE_TAC[homop_def; GSYM EQ_HOMOL] THEN
MESON_TAC[point_tybij]);;
(* ------------------------------------------------------------------------- *)
(* A "welldefinedness" result for homogeneous coordinate map. *)
(* ------------------------------------------------------------------------- *)
let PARALLEL_PROJL_HOMOL = prove
(`!x. parallel x (homol(projl x))`,
GEN_TAC THEN REWRITE_TAC[parallel] THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
ASM_REWRITE_TAC[CROSS_0] THEN MP_TAC(ISPEC `projl x` homol) THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [projl] THEN
DISCH_THEN(MP_TAC o AP_TERM `dest_line`) THEN
REWRITE_TAC[MESON[fst line_tybij; snd line_tybij]
`dest_line(mk_line((||) l)) = (||) l`] THEN
REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir] THEN
ASM_MESON_TAC[direction_tybij]);;
let PARALLEL_PROJP_HOMOP = prove
(`!x. parallel x (homop(projp x))`,
REWRITE_TAC[homop_def; projp; REWRITE_RULE[] point_tybij] THEN
REWRITE_TAC[PARALLEL_PROJL_HOMOL]);;
let PARALLEL_PROJP_HOMOP_EXPLICIT = prove
(`!x. ~(x = vec 0) ==> ?a. ~(a = &0) /\ homop(projp x) = a % x`,
MP_TAC PARALLEL_PROJP_HOMOP THEN MATCH_MP_TAC MONO_FORALL THEN
REWRITE_TAC[parallel; CROSS_EQ_0; COLLINEAR_LEMMA] THEN
GEN_TAC THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
ASM_REWRITE_TAC[homop] THEN MATCH_MP_TAC MONO_EXISTS THEN
X_GEN_TAC `c:real` THEN ASM_CASES_TAC `c = &0` THEN
ASM_REWRITE_TAC[homop; VECTOR_MUL_LZERO]);;
(* ------------------------------------------------------------------------- *)
(* Brackets, collinearity and their connection. *)
(* ------------------------------------------------------------------------- *)
let bracket = define
`bracket[a;b;c] = det(vector[homop a;homop b;homop c])`;;
let COLLINEAR = new_definition
`COLLINEAR s <=> ?l. !p. p IN s ==> p on l`;;
let COLLINEAR_SINGLETON = prove
(`!a. COLLINEAR {a}`,
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[AXIOM_1; AXIOM_3]);;
let COLLINEAR_PAIR = prove
(`!a b. COLLINEAR{a,b}`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `a:point = b` THEN
ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_SINGLETON] THEN
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
ASM_MESON_TAC[AXIOM_1]);;
let COLLINEAR_TRIPLE = prove
(`!a b c. COLLINEAR{a,b,c} <=> ?l. a on l /\ b on l /\ c on l`,
REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY]);;
let COLLINEAR_BRACKET = prove
(`!p1 p2 p3. COLLINEAR {p1,p2,p3} <=> bracket[p1;p2;p3] = &0`,
let lemma = prove
(`!a b c x y.
x cross y = vec 0 /\ ~(x = vec 0) /\
orthogonal a x /\ orthogonal b x /\ orthogonal c x
==> orthogonal a y /\ orthogonal b y /\ orthogonal c y`,
REWRITE_TAC[orthogonal] THEN VEC3_TAC) in
REPEAT GEN_TAC THEN EQ_TAC THENL
[REWRITE_TAC[COLLINEAR_TRIPLE; bracket; ON_HOMOL; LEFT_IMP_EXISTS_THM] THEN
MP_TAC homol THEN MATCH_MP_TAC MONO_FORALL THEN
GEN_TAC THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[DET_3; orthogonal; DOT_3; VECTOR_3; CART_EQ;
DIMINDEX_3; FORALL_3; VEC_COMPONENT] THEN
CONV_TAC REAL_RING;
ASM_CASES_TAC `p1:point = p2` THENL
[ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_PAIR]; ALL_TAC] THEN
POP_ASSUM MP_TAC THEN
REWRITE_TAC[parallel; COLLINEAR_TRIPLE; bracket; EQ_HOMOP; ON_HOMOL] THEN
REPEAT STRIP_TAC THEN
EXISTS_TAC `mk_line((||) (mk_dir(homop p1 cross homop p2)))` THEN
MATCH_MP_TAC lemma THEN EXISTS_TAC `homop p1 cross homop p2` THEN
ASM_REWRITE_TAC[ORTHOGONAL_CROSS] THEN
REWRITE_TAC[orthogonal] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
ONCE_REWRITE_TAC[CROSS_TRIPLE] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
ASM_REWRITE_TAC[DOT_CROSS_DET] THEN
REWRITE_TAC[GSYM projl; GSYM parallel; PARALLEL_PROJL_HOMOL]]);;
(* ------------------------------------------------------------------------- *)
(* Rather crude shuffling of bracket triple into canonical order. *)
(* ------------------------------------------------------------------------- *)
let BRACKET_SWAP,BRACKET_SHUFFLE = (CONJ_PAIR o prove)
(`bracket[x;y;z] = --bracket[x;z;y] /\
bracket[x;y;z] = bracket[y;z;x] /\
bracket[x;y;z] = bracket[z;x;y]`,
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING);;
let BRACKET_SWAP_CONV =
let conv = GEN_REWRITE_CONV I [BRACKET_SWAP] in
fun tm -> let th = conv tm in
let tm' = rand(rand(concl th)) in
if term_order tm tm' then th else failwith "BRACKET_SWAP_CONV";;
(* ------------------------------------------------------------------------- *)
(* Direct proof following Richter-Gebert's "Meditations on Ceva's Theorem", *)
(* except for a change of variable names. The degenerate conditions here are *)
(* just those that naturally get used in the proof. *)
(* ------------------------------------------------------------------------- *)
let DESARGUES_DIRECT = prove
(`~COLLINEAR {A',B,S} /\
~COLLINEAR {A,P,C} /\
~COLLINEAR {A,P,R} /\
~COLLINEAR {A,C,B} /\
~COLLINEAR {A,B,R} /\
~COLLINEAR {C',P,A'} /\
~COLLINEAR {C',P,B} /\
~COLLINEAR {C',P,B'} /\
~COLLINEAR {C',A',S} /\
~COLLINEAR {C',A',B'} /\
~COLLINEAR {P,C,A'} /\
~COLLINEAR {P,C,B} /\
~COLLINEAR {P,A',R} /\
~COLLINEAR {P,B,Q} /\
~COLLINEAR {P,Q,B'} /\
~COLLINEAR {C,B,S} /\
~COLLINEAR {A',Q,B'}
==> COLLINEAR {P,A',A} /\
COLLINEAR {P,B,B'} /\
COLLINEAR {P,C',C} /\
COLLINEAR {B,C,Q} /\
COLLINEAR {B',C',Q} /\
COLLINEAR {A,R,C} /\
COLLINEAR {A',C',R} /\
COLLINEAR {B,S,A} /\
COLLINEAR {A',S,B'}
==> COLLINEAR {Q,S,R}`,
REPEAT GEN_TAC THEN REWRITE_TAC[COLLINEAR_BRACKET] THEN DISCH_TAC THEN
SUBGOAL_THEN
`(bracket[P;A';A] = &0
==> bracket[P;A';R] * bracket[P;A;C] =
bracket[P;A';C] * bracket[P;A;R]) /\
(bracket[P;B;B'] = &0
==> bracket[P;B;Q] * bracket[P;B';C'] =
bracket[P;B;C'] * bracket[P;B';Q]) /\
(bracket[P;C';C] = &0
==> bracket[P;C';B] * bracket[P;C;A'] =
bracket[P;C';A'] * bracket[P;C;B]) /\
(bracket[B;C;Q] = &0
==> bracket[B;C;P] * bracket[B;Q;S] =
bracket[B;C;S] * bracket[B;Q;P]) /\
(bracket[B';C';Q] = &0
==> bracket[B';C';A'] * bracket[B';Q;P] =
bracket[B';C';P] * bracket[B';Q;A']) /\
(bracket[A;R;C] = &0
==> bracket[A;R;P] * bracket[A;C;B] =
bracket[A;R;B] * bracket[A;C;P]) /\
(bracket[A';C';R] = &0
==> bracket[A';C';P] * bracket[A';R;S] =
bracket[A';C';S] * bracket[A';R;P]) /\
(bracket[B;S;A] = &0
==> bracket[B;S;C] * bracket[B;A;R] =
bracket[B;S;R] * bracket[B;A;C]) /\
(bracket[A';S;B'] = &0
==> bracket[A';S;C'] * bracket[A';B';Q] =
bracket[A';S;Q] * bracket[A';B';C'])`
MP_TAC THENL
[REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING;
ALL_TAC] THEN
REPEAT(MATCH_MP_TAC(TAUT
`(c ==> d ==> b ==> e) ==> ((a ==> b) /\ c ==> a /\ d ==> e)`)) THEN
DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o MATCH_MP th)) THEN
REPEAT(ONCE_REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING
`a = b /\ x:real = y ==> a * x = b * y`))) THEN
POP_ASSUM MP_TAC THEN REWRITE_TAC[BRACKET_SHUFFLE] THEN
CONV_TAC(ONCE_DEPTH_CONV BRACKET_SWAP_CONV) THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN
REWRITE_TAC[REAL_NEG_NEG; REAL_NEG_EQ_0] THEN DISCH_TAC THEN
MATCH_MP_TAC(TAUT `!b. (a ==> b) /\ (b ==> c) ==> a ==> c`) THEN
EXISTS_TAC `bracket[B;Q;S] * bracket[A';R;S] =
bracket[B;R;S] * bracket[A';Q;S]` THEN
CONJ_TAC THENL [POP_ASSUM MP_TAC THEN CONV_TAC REAL_RING; ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o CONJUNCT1) THEN
REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING);;
|