Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 16,320 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
(* ========================================================================= *)
(* #87: Desargues's theorem.                                                 *)
(* ========================================================================= *)

needs "Multivariate/cross.ml";;

(* ------------------------------------------------------------------------- *)
(* A lemma we want to justify some of the axioms.                            *)
(* ------------------------------------------------------------------------- *)

let NORMAL_EXISTS = prove
 (`!u v:real^3. ?w. ~(w = vec 0) /\ orthogonal u w /\ orthogonal v w`,
  REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[ORTHOGONAL_SYM] THEN
  MP_TAC(ISPEC `{u:real^3,v}` ORTHOGONAL_TO_SUBSPACE_EXISTS) THEN
  REWRITE_TAC[FORALL_IN_INSERT; NOT_IN_EMPTY; DIMINDEX_3] THEN
  DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC LET_TRANS THEN
  EXISTS_TAC `CARD {u:real^3,v}` THEN CONJ_TAC THEN
  SIMP_TAC[DIM_LE_CARD; FINITE_INSERT; FINITE_EMPTY] THEN
  SIMP_TAC[CARD_CLAUSES; FINITE_INSERT; FINITE_EMPTY] THEN ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Type of directions.                                                       *)
(* ------------------------------------------------------------------------- *)

let direction_tybij = new_type_definition "direction" ("mk_dir","dest_dir")
 (MESON[BASIS_NONZERO; LE_REFL; DIMINDEX_GE_1] `?x:real^3. ~(x = vec 0)`);;

parse_as_infix("||",(11,"right"));;
parse_as_infix("_|_",(11,"right"));;

let perpdir = new_definition
 `x _|_ y <=> orthogonal (dest_dir x) (dest_dir y)`;;

let pardir = new_definition
 `x || y <=> (dest_dir x) cross (dest_dir y) = vec 0`;;

let DIRECTION_CLAUSES = prove
 (`((!x. P(dest_dir x)) <=> (!x. ~(x = vec 0) ==> P x)) /\
   ((?x. P(dest_dir x)) <=> (?x. ~(x = vec 0) /\ P x))`,
  MESON_TAC[direction_tybij]);;

let [PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS] = (CONJUNCTS o prove)
 (`(!x. x || x) /\
   (!x y. x || y <=> y || x) /\
   (!x y z. x || y /\ y || z ==> x || z)`,
  REWRITE_TAC[pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;

let PARDIR_EQUIV = prove
 (`!x y. ((||) x = (||) y) <=> x || y`,
  REWRITE_TAC[FUN_EQ_THM] THEN
  MESON_TAC[PARDIR_REFL; PARDIR_SYM; PARDIR_TRANS]);;

let DIRECTION_AXIOM_1 = prove
 (`!p p'. ~(p || p') ==> ?l. p _|_ l /\ p' _|_ l /\
                             !l'. p _|_ l' /\ p' _|_ l' ==> l' || l`,
  REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`p:real^3`; `p':real^3`] NORMAL_EXISTS) THEN
  MATCH_MP_TAC MONO_EXISTS THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;

let DIRECTION_AXIOM_2 = prove
 (`!l l'. ?p. p _|_ l /\ p _|_ l'`,
  REWRITE_TAC[perpdir; DIRECTION_CLAUSES] THEN
  MESON_TAC[NORMAL_EXISTS; ORTHOGONAL_SYM]);;

let DIRECTION_AXIOM_3 = prove
 (`?p p' p''.
        ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
        ~(?l. p _|_ l /\ p' _|_ l /\ p'' _|_ l)`,
  REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN MAP_EVERY
   (fun t -> EXISTS_TAC t THEN SIMP_TAC[BASIS_NONZERO; DIMINDEX_3; ARITH])
   [`basis 1 :real^3`; `basis 2 : real^3`; `basis 3 :real^3`] THEN
  VEC3_TAC);;

let DIRECTION_AXIOM_4_WEAK = prove
 (`!l. ?p p'. ~(p || p') /\ p _|_ l /\ p' _|_ l`,
  REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN
   `orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 2) l /\
    ~((l cross basis 1) cross (l cross basis 2) = vec 0) \/
    orthogonal (l cross basis 1) l /\ orthogonal (l cross basis 3) l /\
    ~((l cross basis 1) cross (l cross basis 3) = vec 0) \/
    orthogonal (l cross basis 2) l /\ orthogonal (l cross basis 3) l /\
    ~((l cross basis 2) cross (l cross basis 3) = vec 0)`
  MP_TAC THENL [POP_ASSUM MP_TAC THEN VEC3_TAC; MESON_TAC[CROSS_0]]);;

let ORTHOGONAL_COMBINE = prove
 (`!x a b. a _|_ x /\ b _|_ x /\ ~(a || b)
           ==> ?c. c _|_ x /\ ~(a || c) /\ ~(b || c)`,
  REWRITE_TAC[DIRECTION_CLAUSES; pardir; perpdir] THEN
  REPEAT STRIP_TAC THEN EXISTS_TAC `a + b:real^3` THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN VEC3_TAC);;

let DIRECTION_AXIOM_4 = prove
 (`!l. ?p p' p''. ~(p || p') /\ ~(p' || p'') /\ ~(p || p'') /\
                  p _|_ l /\ p' _|_ l /\ p'' _|_ l`,
  MESON_TAC[DIRECTION_AXIOM_4_WEAK; ORTHOGONAL_COMBINE]);;

let line_tybij = define_quotient_type "line" ("mk_line","dest_line") `(||)`;;

let PERPDIR_WELLDEF = prove
 (`!x y x' y'. x || x' /\ y || y' ==> (x _|_ y <=> x' _|_ y')`,
  REWRITE_TAC[perpdir; pardir; DIRECTION_CLAUSES] THEN VEC3_TAC);;

let perpl,perpl_th =
  lift_function (snd line_tybij) (PARDIR_REFL,PARDIR_TRANS)
                "perpl" PERPDIR_WELLDEF;;

let line_lift_thm = lift_theorem line_tybij
 (PARDIR_REFL,PARDIR_SYM,PARDIR_TRANS) [perpl_th];;

let LINE_AXIOM_1 = line_lift_thm DIRECTION_AXIOM_1;;
let LINE_AXIOM_2 = line_lift_thm DIRECTION_AXIOM_2;;
let LINE_AXIOM_3 = line_lift_thm DIRECTION_AXIOM_3;;
let LINE_AXIOM_4 = line_lift_thm DIRECTION_AXIOM_4;;

let point_tybij = new_type_definition "point" ("mk_point","dest_point")
 (prove(`?x:line. T`,REWRITE_TAC[]));;

parse_as_infix("on",(11,"right"));;

let on = new_definition `p on l <=> perpl (dest_point p) l`;;

let POINT_CLAUSES = prove
 (`((p = p') <=> (dest_point p = dest_point p')) /\
   ((!p. P (dest_point p)) <=> (!l. P l)) /\
   ((?p. P (dest_point p)) <=> (?l. P l))`,
  MESON_TAC[point_tybij]);;

let POINT_TAC th = REWRITE_TAC[on; POINT_CLAUSES] THEN ACCEPT_TAC th;;

let AXIOM_1 = prove
 (`!p p'. ~(p = p') ==> ?l. p on l /\ p' on l /\
          !l'. p on l' /\ p' on l' ==> (l' = l)`,
  POINT_TAC LINE_AXIOM_1);;

let AXIOM_2 = prove
 (`!l l'. ?p. p on l /\ p on l'`,
  POINT_TAC LINE_AXIOM_2);;

let AXIOM_3 = prove
 (`?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    ~(?l. p on l /\ p' on l /\ p'' on l)`,
  POINT_TAC LINE_AXIOM_3);;

let AXIOM_4 = prove
 (`!l. ?p p' p''. ~(p = p') /\ ~(p' = p'') /\ ~(p = p'') /\
    p on l /\ p' on l /\ p'' on l`,
  POINT_TAC LINE_AXIOM_4);;

(* ------------------------------------------------------------------------- *)
(* Mappings from vectors in R^3 to projective lines and points.              *)
(* ------------------------------------------------------------------------- *)

let projl = new_definition
 `projl x = mk_line((||) (mk_dir x))`;;

let projp = new_definition
 `projp x = mk_point(projl x)`;;

(* ------------------------------------------------------------------------- *)
(* Mappings in the other direction, to (some) homogeneous coordinates.       *)
(* ------------------------------------------------------------------------- *)

let PROJL_TOTAL = prove
 (`!l. ?x. ~(x = vec 0) /\ l = projl x`,
  GEN_TAC THEN
  SUBGOAL_THEN `?d. l = mk_line((||) d)` (CHOOSE_THEN SUBST1_TAC) THENL
   [MESON_TAC[fst line_tybij; snd line_tybij];
    REWRITE_TAC[projl] THEN EXISTS_TAC `dest_dir d` THEN
    MESON_TAC[direction_tybij]]);;

let homol = new_specification ["homol"]
  (REWRITE_RULE[SKOLEM_THM] PROJL_TOTAL);;

let PROJP_TOTAL = prove
 (`!p. ?x. ~(x = vec 0) /\ p = projp x`,
  REWRITE_TAC[projp] THEN MESON_TAC[PROJL_TOTAL; point_tybij]);;

let homop_def = new_definition
 `homop p = homol(dest_point p)`;;

let homop = prove
 (`!p. ~(homop p = vec 0) /\ p = projp(homop p)`,
  GEN_TAC THEN REWRITE_TAC[homop_def; projp; MESON[point_tybij]
   `p = mk_point l <=> dest_point p = l`] THEN
  MATCH_ACCEPT_TAC homol);;

(* ------------------------------------------------------------------------- *)
(* Key equivalences of concepts in projective space and homogeneous coords.  *)
(* ------------------------------------------------------------------------- *)

let parallel = new_definition
 `parallel x y <=> x cross y = vec 0`;;

let ON_HOMOL = prove
 (`!p l. p on l <=> orthogonal (homop p) (homol l)`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [homop; homol] THEN
  REWRITE_TAC[on; projp; projl; REWRITE_RULE[] point_tybij] THEN
  REWRITE_TAC[GSYM perpl_th; perpdir] THEN BINOP_TAC THEN
  MESON_TAC[homol; homop; direction_tybij]);;

let EQ_HOMOL = prove
 (`!l l'. l = l' <=> parallel (homol l) (homol l')`,
  REPEAT GEN_TAC THEN
  GEN_REWRITE_TAC (LAND_CONV o BINOP_CONV) [homol] THEN
  REWRITE_TAC[projl; MESON[fst line_tybij; snd line_tybij]
   `mk_line((||) l) = mk_line((||) l') <=> (||) l = (||) l'`] THEN
  REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir; parallel] THEN
  MESON_TAC[homol; direction_tybij]);;

let EQ_HOMOP = prove
 (`!p p'. p = p' <=> parallel (homop p) (homop p')`,
  REWRITE_TAC[homop_def; GSYM EQ_HOMOL] THEN
  MESON_TAC[point_tybij]);;

(* ------------------------------------------------------------------------- *)
(* A "welldefinedness" result for homogeneous coordinate map.                *)
(* ------------------------------------------------------------------------- *)

let PARALLEL_PROJL_HOMOL = prove
 (`!x. parallel x (homol(projl x))`,
  GEN_TAC THEN REWRITE_TAC[parallel] THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
  ASM_REWRITE_TAC[CROSS_0] THEN MP_TAC(ISPEC `projl x` homol) THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [projl] THEN
  DISCH_THEN(MP_TAC o AP_TERM `dest_line`) THEN
  REWRITE_TAC[MESON[fst line_tybij; snd line_tybij]
   `dest_line(mk_line((||) l)) = (||) l`] THEN
  REWRITE_TAC[PARDIR_EQUIV] THEN REWRITE_TAC[pardir] THEN
  ASM_MESON_TAC[direction_tybij]);;

let PARALLEL_PROJP_HOMOP = prove
 (`!x. parallel x (homop(projp x))`,
  REWRITE_TAC[homop_def; projp; REWRITE_RULE[] point_tybij] THEN
  REWRITE_TAC[PARALLEL_PROJL_HOMOL]);;

let PARALLEL_PROJP_HOMOP_EXPLICIT = prove
 (`!x. ~(x = vec 0) ==> ?a. ~(a = &0) /\ homop(projp x) = a % x`,
  MP_TAC PARALLEL_PROJP_HOMOP THEN MATCH_MP_TAC MONO_FORALL THEN
  REWRITE_TAC[parallel; CROSS_EQ_0; COLLINEAR_LEMMA] THEN
  GEN_TAC THEN ASM_CASES_TAC `x:real^3 = vec 0` THEN
  ASM_REWRITE_TAC[homop] THEN MATCH_MP_TAC MONO_EXISTS THEN
  X_GEN_TAC `c:real` THEN ASM_CASES_TAC `c = &0` THEN
  ASM_REWRITE_TAC[homop; VECTOR_MUL_LZERO]);;

(* ------------------------------------------------------------------------- *)
(* Brackets, collinearity and their connection.                              *)
(* ------------------------------------------------------------------------- *)

let bracket = define
 `bracket[a;b;c] = det(vector[homop a;homop b;homop c])`;;

let COLLINEAR = new_definition
 `COLLINEAR s <=> ?l. !p. p IN s ==> p on l`;;

let COLLINEAR_SINGLETON = prove
 (`!a. COLLINEAR {a}`,
  REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
  MESON_TAC[AXIOM_1; AXIOM_3]);;

let COLLINEAR_PAIR = prove
 (`!a b. COLLINEAR{a,b}`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `a:point = b` THEN
  ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_SINGLETON] THEN
  REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY] THEN
  ASM_MESON_TAC[AXIOM_1]);;

let COLLINEAR_TRIPLE = prove
 (`!a b c. COLLINEAR{a,b,c} <=> ?l. a on l /\ b on l /\ c on l`,
  REWRITE_TAC[COLLINEAR; FORALL_IN_INSERT; NOT_IN_EMPTY]);;

let COLLINEAR_BRACKET = prove
 (`!p1 p2 p3. COLLINEAR {p1,p2,p3} <=> bracket[p1;p2;p3] = &0`,
  let lemma = prove
   (`!a b c x y.
          x cross y = vec 0 /\ ~(x = vec 0) /\
          orthogonal a x /\ orthogonal b x /\ orthogonal c x
          ==> orthogonal a y /\ orthogonal b y /\ orthogonal c y`,
    REWRITE_TAC[orthogonal] THEN VEC3_TAC) in
  REPEAT GEN_TAC THEN EQ_TAC THENL
   [REWRITE_TAC[COLLINEAR_TRIPLE; bracket; ON_HOMOL; LEFT_IMP_EXISTS_THM] THEN
    MP_TAC homol THEN MATCH_MP_TAC MONO_FORALL THEN
    GEN_TAC THEN DISCH_THEN(MP_TAC o CONJUNCT1) THEN
    REWRITE_TAC[DET_3; orthogonal; DOT_3; VECTOR_3; CART_EQ;
              DIMINDEX_3; FORALL_3; VEC_COMPONENT] THEN
    CONV_TAC REAL_RING;
    ASM_CASES_TAC `p1:point = p2` THENL
     [ASM_REWRITE_TAC[INSERT_AC; COLLINEAR_PAIR]; ALL_TAC] THEN
    POP_ASSUM MP_TAC THEN
    REWRITE_TAC[parallel; COLLINEAR_TRIPLE; bracket; EQ_HOMOP; ON_HOMOL] THEN
    REPEAT STRIP_TAC THEN
    EXISTS_TAC `mk_line((||) (mk_dir(homop p1 cross homop p2)))` THEN
    MATCH_MP_TAC lemma THEN EXISTS_TAC `homop p1 cross homop p2` THEN
    ASM_REWRITE_TAC[ORTHOGONAL_CROSS] THEN
    REWRITE_TAC[orthogonal] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
    ONCE_REWRITE_TAC[CROSS_TRIPLE] THEN ONCE_REWRITE_TAC[DOT_SYM] THEN
    ASM_REWRITE_TAC[DOT_CROSS_DET] THEN
    REWRITE_TAC[GSYM projl; GSYM parallel; PARALLEL_PROJL_HOMOL]]);;

(* ------------------------------------------------------------------------- *)
(* Rather crude shuffling of bracket triple into canonical order.            *)
(* ------------------------------------------------------------------------- *)

let BRACKET_SWAP,BRACKET_SHUFFLE = (CONJ_PAIR o prove)
 (`bracket[x;y;z] = --bracket[x;z;y] /\
   bracket[x;y;z] = bracket[y;z;x] /\
   bracket[x;y;z] = bracket[z;x;y]`,
  REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING);;

let BRACKET_SWAP_CONV =
  let conv = GEN_REWRITE_CONV I [BRACKET_SWAP] in
  fun tm -> let th = conv tm in
            let tm' = rand(rand(concl th)) in
            if term_order tm tm' then th else failwith "BRACKET_SWAP_CONV";;

(* ------------------------------------------------------------------------- *)
(* Direct proof following Richter-Gebert's "Meditations on Ceva's Theorem",  *)
(* except for a change of variable names. The degenerate conditions here are *)
(* just those that naturally get used in the proof.                          *)
(* ------------------------------------------------------------------------- *)

let DESARGUES_DIRECT = prove
 (`~COLLINEAR {A',B,S} /\
   ~COLLINEAR {A,P,C} /\
   ~COLLINEAR {A,P,R} /\
   ~COLLINEAR {A,C,B} /\
   ~COLLINEAR {A,B,R} /\
   ~COLLINEAR {C',P,A'} /\
   ~COLLINEAR {C',P,B} /\
   ~COLLINEAR {C',P,B'} /\
   ~COLLINEAR {C',A',S} /\
   ~COLLINEAR {C',A',B'} /\
   ~COLLINEAR {P,C,A'} /\
   ~COLLINEAR {P,C,B} /\
   ~COLLINEAR {P,A',R} /\
   ~COLLINEAR {P,B,Q} /\
   ~COLLINEAR {P,Q,B'} /\
   ~COLLINEAR {C,B,S} /\
   ~COLLINEAR {A',Q,B'}
   ==> COLLINEAR {P,A',A} /\
       COLLINEAR {P,B,B'} /\
       COLLINEAR {P,C',C} /\
       COLLINEAR {B,C,Q} /\
       COLLINEAR {B',C',Q} /\
       COLLINEAR {A,R,C} /\
       COLLINEAR {A',C',R} /\
       COLLINEAR {B,S,A} /\
       COLLINEAR {A',S,B'}
       ==> COLLINEAR {Q,S,R}`,
  REPEAT GEN_TAC THEN REWRITE_TAC[COLLINEAR_BRACKET] THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `(bracket[P;A';A] = &0
     ==> bracket[P;A';R] * bracket[P;A;C] =
         bracket[P;A';C] * bracket[P;A;R]) /\
    (bracket[P;B;B'] = &0
     ==> bracket[P;B;Q] * bracket[P;B';C'] =
         bracket[P;B;C'] * bracket[P;B';Q]) /\
    (bracket[P;C';C] = &0
     ==> bracket[P;C';B] * bracket[P;C;A'] =
         bracket[P;C';A'] * bracket[P;C;B]) /\
    (bracket[B;C;Q] = &0
     ==> bracket[B;C;P] * bracket[B;Q;S] =
         bracket[B;C;S] * bracket[B;Q;P]) /\
    (bracket[B';C';Q] = &0
     ==> bracket[B';C';A'] * bracket[B';Q;P] =
         bracket[B';C';P] * bracket[B';Q;A']) /\
    (bracket[A;R;C] = &0
     ==> bracket[A;R;P] * bracket[A;C;B] =
         bracket[A;R;B] * bracket[A;C;P]) /\
    (bracket[A';C';R] = &0
     ==> bracket[A';C';P] * bracket[A';R;S] =
         bracket[A';C';S] * bracket[A';R;P]) /\
    (bracket[B;S;A] = &0
     ==> bracket[B;S;C] * bracket[B;A;R] =
         bracket[B;S;R] * bracket[B;A;C]) /\
    (bracket[A';S;B'] = &0
     ==> bracket[A';S;C'] * bracket[A';B';Q] =
         bracket[A';S;Q] * bracket[A';B';C'])`
  MP_TAC THENL
   [REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING;
    ALL_TAC] THEN
  REPEAT(MATCH_MP_TAC(TAUT
   `(c ==> d ==> b ==> e) ==> ((a ==> b) /\ c ==> a /\ d ==> e)`)) THEN
  DISCH_THEN(fun th -> DISCH_THEN(MP_TAC o MATCH_MP th)) THEN
  REPEAT(ONCE_REWRITE_TAC[IMP_IMP] THEN
         DISCH_THEN(MP_TAC o MATCH_MP (REAL_RING
          `a = b /\ x:real = y ==> a * x = b * y`))) THEN
  POP_ASSUM MP_TAC THEN REWRITE_TAC[BRACKET_SHUFFLE] THEN
  CONV_TAC(ONCE_DEPTH_CONV BRACKET_SWAP_CONV) THEN
  REWRITE_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LNEG; REAL_MUL_RNEG] THEN
  REWRITE_TAC[REAL_NEG_NEG; REAL_NEG_EQ_0] THEN DISCH_TAC THEN
  MATCH_MP_TAC(TAUT `!b. (a ==> b) /\ (b ==> c) ==> a ==> c`) THEN
  EXISTS_TAC `bracket[B;Q;S] * bracket[A';R;S] =
              bracket[B;R;S] * bracket[A';Q;S]` THEN
  CONJ_TAC THENL [POP_ASSUM MP_TAC THEN CONV_TAC REAL_RING; ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o CONJUNCT1) THEN
  REWRITE_TAC[bracket; DET_3; VECTOR_3] THEN CONV_TAC REAL_RING);;