Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 106,107 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
(* ========================================================================= *)
(* Dirichlet's theorem.                                                      *)
(* ========================================================================= *)

needs "Library/products.ml";;
needs "Library/agm.ml";;
needs "Multivariate/transcendentals.ml";;
needs "Library/pocklington.ml";;
needs "Library/multiplicative.ml";;
needs "Examples/mangoldt.ml";;

prioritize_real();;
prioritize_complex();;

(* ------------------------------------------------------------------------- *)
(* Rearranging a certain kind of double sum.                                 *)
(* ------------------------------------------------------------------------- *)

let VSUM_VSUM_DIVISORS = prove
 (`!f x. vsum (1..x) (\n. vsum {d | d divides n} (f n)) =
         vsum (1..x) (\n. vsum (1..(x DIV n)) (\k. f (k * n) n))`,
  SIMP_TAC[VSUM; FINITE_DIVISORS; LE_1] THEN
  SIMP_TAC[VSUM; FINITE_NUMSEG; ITERATE_ITERATE_DIVISORS;
           MONOIDAL_VECTOR_ADD]);;

(* ------------------------------------------------------------------------- *)
(* Useful approximation lemmas.                                              *)
(* ------------------------------------------------------------------------- *)

let REAL_EXP_1_LE_4 = prove
 (`exp(&1) <= &4`,
  ONCE_REWRITE_TAC[ARITH_RULE `&1 = &1 / &2 + &1 / &2`; REAL_EXP_ADD] THEN
  REWRITE_TAC[REAL_ARITH `&4 = &2 * &2`; REAL_EXP_ADD] THEN
  MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[REAL_EXP_POS_LE] THEN
  MP_TAC(SPEC `&1 / &2` REAL_EXP_BOUND_LEMMA) THEN REAL_ARITH_TAC);;

let DECREASING_LOG_OVER_N = prove
 (`!n. 4 <= n ==> log(&n + &1) / (&n + &1) <= log(&n) / &n`,
  REWRITE_TAC[GSYM REAL_OF_NUM_LE] THEN REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`\z. clog z / z`; `\z. (Cx(&1) - clog(z)) / z pow 2`;
                 `Cx(&n)`; `Cx(&n + &1)`] COMPLEX_MVT_LINE) THEN
  REWRITE_TAC[IN_SEGMENT_CX_GEN] THEN
  REWRITE_TAC[REAL_ARITH `~(n + &1 <= x /\ x <= n)`] THEN ANTS_TAC THENL
   [X_GEN_TAC `w:complex` THEN STRIP_TAC THEN COMPLEX_DIFF_TAC THEN
    SUBGOAL_THEN `&0 < Re w` MP_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ASM_CASES_TAC `w = Cx(&0)` THEN ASM_SIMP_TAC[RE_CX; REAL_LT_REFL] THEN
    DISCH_TAC THEN UNDISCH_TAC `~(w = Cx(&0))` THEN CONV_TAC COMPLEX_FIELD;
    DISCH_THEN(X_CHOOSE_THEN `z:complex`
     (CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
    SUBGOAL_THEN `&0 < &n /\ &0 < &n + &1` STRIP_ASSUME_TAC THENL
     [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ASM_SIMP_TAC[GSYM CX_LOG; GSYM CX_DIV; RE_CX; GSYM CX_SUB] THEN
    MATCH_MP_TAC(REAL_ARITH `&0 <= --x ==> a - b = x ==> a <= b`) THEN
    REWRITE_TAC[RE_MUL_CX; GSYM REAL_MUL_LNEG] THEN
    MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC THENL [ALL_TAC; REAL_ARITH_TAC] THEN
    SUBGOAL_THEN `?u. z = Cx(u)` (CHOOSE_THEN SUBST_ALL_TAC) THENL
     [ASM_MESON_TAC[REAL; real]; ALL_TAC] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[IM_CX; RE_CX]) THEN
    UNDISCH_THEN `T` (K ALL_TAC) THEN
    SUBGOAL_THEN `&0 < u` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ASM_SIMP_TAC[GSYM CX_LOG; GSYM CX_SUB; GSYM CX_POW; GSYM CX_DIV; RE_CX;
      real_div; GSYM REAL_MUL_LNEG; REAL_NEG_SUB; GSYM REAL_POW_INV] THEN
    MATCH_MP_TAC REAL_LE_MUL THEN REWRITE_TAC[REAL_POW_2; REAL_LE_SQUARE] THEN
    REWRITE_TAC[REAL_SUB_LE] THEN
    GEN_REWRITE_TAC LAND_CONV [GSYM LOG_EXP] THEN
    MATCH_MP_TAC LOG_MONO_LE_IMP THEN REWRITE_TAC[REAL_EXP_POS_LT] THEN
    MP_TAC REAL_EXP_1_LE_4 THEN ASM_REAL_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* An ad-hoc fact about complex n'th roots.                                  *)
(* ------------------------------------------------------------------------- *)

let EXISTS_COMPLEX_ROOT_NONTRIVIAL = prove
 (`!a n. 2 <= n ==> ?z. z pow n = a /\ ~(z = Cx(&1))`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `2 <= n ==> ~(n = 0)`)) THEN
  ASM_CASES_TAC  `a = Cx(&0)` THENL
   [EXISTS_TAC `Cx(&0)` THEN ASM_REWRITE_TAC[COMPLEX_POW_ZERO] THEN
    CONV_TAC COMPLEX_RING;
    ALL_TAC] THEN
  ASM_CASES_TAC `a = Cx(&1)` THENL
   [EXISTS_TAC `cexp(Cx(&2) * Cx pi * ii * Cx(&1 / &n))` THEN
    ASM_SIMP_TAC[COMPLEX_ROOT_UNITY_EQ_1; DIVIDES_ONE;
                 ARITH_RULE `2 <= n ==> ~(n = 1)`; COMPLEX_ROOT_UNITY];
    MATCH_MP_TAC(MESON[]
     `(!x. ~Q x ==> ~P x) /\ (?x. P x) ==> (?x. P x /\ Q x)`) THEN
    ASM_SIMP_TAC[COMPLEX_POW_ONE] THEN EXISTS_TAC `cexp(clog a / Cx(&n))` THEN
    ASM_SIMP_TAC[GSYM CEXP_N; COMPLEX_DIV_LMUL; CX_INJ; REAL_OF_NUM_EQ] THEN
    ASM_SIMP_TAC[CEXP_CLOG]]);;

(* ------------------------------------------------------------------------- *)
(* Definition of a Dirichlet character mod d.                                *)
(* ------------------------------------------------------------------------- *)

let dirichlet_character = new_definition
 `dirichlet_character d (c:num->complex) <=>
        (!n. c(n + d) = c(n)) /\
        (!n. c(n) = Cx(&0) <=> ~coprime(n,d)) /\
        (!m n. c(m * n) = c(m) * c(n))`;;

let DIRICHLET_CHARACTER_PERIODIC = prove
 (`!d c n. dirichlet_character d c ==> c(n + d) = c(n)`,
  SIMP_TAC[dirichlet_character]);;

let DIRICHLET_CHARACTER_EQ_0 = prove
 (`!d c n. dirichlet_character d c ==> (c(n) = Cx(&0) <=> ~coprime(n,d))`,
  SIMP_TAC[dirichlet_character]);;

let DIRICHLET_CHARACTER_MUL = prove
 (`!d c m n. dirichlet_character d c ==> c(m * n) = c(m) * c(n)`,
  SIMP_TAC[dirichlet_character]);;

let DIRICHLET_CHARACTER_EQ_1 = prove
 (`!d c. dirichlet_character d c ==> c(1) = Cx(&1)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP DIRICHLET_CHARACTER_MUL) THEN
  DISCH_THEN(MP_TAC o repeat (SPEC `1`)) THEN CONV_TAC NUM_REDUCE_CONV THEN
  REWRITE_TAC[COMPLEX_FIELD `a = a * a <=> a = Cx(&0) \/ a = Cx(&1)`] THEN
  ASM_SIMP_TAC[DIRICHLET_CHARACTER_EQ_0] THEN
  MESON_TAC[COPRIME_1; COPRIME_SYM]);;

let DIRICHLET_CHARACTER_POW = prove
 (`!d c m n. dirichlet_character d c ==> c(m EXP n) = c(m) pow n`,
  REPLICATE_TAC 3 GEN_TAC THEN REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  DISCH_TAC THEN INDUCT_TAC THEN ASM_SIMP_TAC[EXP; complex_pow] THENL
   [ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_1]; ALL_TAC] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP DIRICHLET_CHARACTER_MUL th]) THEN
  ASM_REWRITE_TAC[]);;

let DIRICHLET_CHARACTER_PERIODIC_GEN = prove
 (`!d c m n. dirichlet_character d c ==> c(m * d + n) = c(n)`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  INDUCT_TAC THEN REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN
  GEN_TAC THEN
  FIRST_X_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [GSYM th]) THEN
  ONCE_REWRITE_TAC[ARITH_RULE `(mk + d) + n:num = (mk + n) + d`] THEN
  ASM_SIMP_TAC[DIRICHLET_CHARACTER_PERIODIC]);;

let DIRICHLET_CHARACTER_CONG = prove
 (`!d c m n.
        dirichlet_character d c /\ (m == n) (mod d) ==> c(m) = c(n)`,
  REWRITE_TAC[CONG_CASES] THEN REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[DIRICHLET_CHARACTER_PERIODIC_GEN]);;

let DIRICHLET_CHARACTER_ROOT = prove
 (`!d c n. dirichlet_character d c /\ coprime(d,n)
           ==> c(n) pow phi(d) = Cx(&1)`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(SUBST1_TAC o GSYM o MATCH_MP DIRICHLET_CHARACTER_EQ_1) THEN
  FIRST_ASSUM(fun th ->
    REWRITE_TAC[GSYM(MATCH_MP DIRICHLET_CHARACTER_POW th)]) THEN
  MATCH_MP_TAC DIRICHLET_CHARACTER_CONG THEN
  EXISTS_TAC `d:num` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC FERMAT_LITTLE THEN ASM_MESON_TAC[COPRIME_SYM]);;

let DIRICHLET_CHARACTER_NORM = prove
 (`!d c n. dirichlet_character d c
           ==> norm(c n) = if coprime(d,n) then &1 else &0`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[COMPLEX_NORM_ZERO] THEN
    ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_0; COPRIME_SYM]] THEN
  ASM_CASES_TAC `d = 0` THENL
   [ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_1; COMPLEX_NORM_CX; REAL_ABS_NUM;
                  COPRIME_0; COPRIME_SYM];
    ALL_TAC] THEN
  MP_TAC(SPECL [`d:num`; `c:num->complex`; `n:num`]
    DIRICHLET_CHARACTER_ROOT) THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(MP_TAC o AP_TERM `norm:complex->real`) THEN
  REWRITE_TAC[COMPLEX_NORM_POW; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
  DISCH_TAC THEN
  MP_TAC(SPECL [`norm((c:num->complex) n)`; `phi d`] REAL_POW_EQ_1_IMP) THEN
  ASM_REWRITE_TAC[REAL_ABS_NORM] THEN
  ASM_MESON_TAC[PHI_LOWERBOUND_1_STRONG; LE_1]);;

(* ------------------------------------------------------------------------- *)
(* The principal character mod d.                                            *)
(* ------------------------------------------------------------------------- *)

let chi_0 = new_definition
 `chi_0 d n = if coprime(n,d) then Cx(&1) else Cx(&0)`;;

let DIRICHLET_CHARACTER_CHI_0 = prove
 (`dirichlet_character d (chi_0 d)`,
  REWRITE_TAC[dirichlet_character; chi_0] THEN
  REWRITE_TAC[NUMBER_RULE `coprime(n + d,d) <=> coprime(n,d)`;
          NUMBER_RULE `coprime(m * n,d) <=> coprime(m,d) /\ coprime(n,d)`] THEN
  CONV_TAC COMPLEX_RING);;

let DIRICHLET_CHARACTER_EQ_PRINCIPAL = prove
 (`!d c. dirichlet_character d c
         ==> (c = chi_0 d <=> !n. coprime(n,d) ==> c(n) = Cx(&1))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[FUN_EQ_THM; chi_0] THEN
  ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_0]);;

let DIRICHLET_CHARACTER_NONPRINCIPAL = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> ?n. coprime(n,d) /\ ~(c n = Cx(&0)) /\ ~(c n = Cx(&1))`,
  MESON_TAC[DIRICHLET_CHARACTER_EQ_PRINCIPAL; DIRICHLET_CHARACTER_EQ_0]);;

let DIRICHLET_CHARACTER_0 = prove
 (`!c. dirichlet_character 0 c <=> c = chi_0 0`,
  GEN_TAC THEN EQ_TAC THEN SIMP_TAC[DIRICHLET_CHARACTER_CHI_0] THEN
  DISCH_TAC THEN REWRITE_TAC[chi_0; FUN_EQ_THM; COPRIME_0] THEN
  X_GEN_TAC `n:num` THEN COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_1; DIRICHLET_CHARACTER_EQ_0;
                COPRIME_0]);;

let DIRICHLET_CHARACTER_1 = prove
 (`!c. dirichlet_character 1 c <=> !n. c n = Cx(&1)`,
  GEN_TAC THEN REWRITE_TAC[dirichlet_character; COPRIME_1] THEN EQ_TAC THENL
   [STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`1`; `1`]) THEN
    ASM_REWRITE_TAC[ARITH; COMPLEX_RING
     `x = x * x <=> x = Cx(&0) \/ x = Cx(&1)`] THEN
    DISCH_TAC THEN INDUCT_TAC THEN ASM_REWRITE_TAC[ADD1] THEN
    REPEAT(FIRST_X_ASSUM(MP_TAC o SPEC `0`)) THEN ASM_REWRITE_TAC[ARITH] THEN
    CONV_TAC COMPLEX_RING;
    DISCH_TAC THEN ASM_REWRITE_TAC[] THEN CONV_TAC COMPLEX_RING]);;

let DIRICHLET_CHARACTER_NONPRINCIPAL_NONTRIVIAL = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> ~(d = 0) /\ ~(d = 1)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `d = 0` THEN
  ASM_REWRITE_TAC[DIRICHLET_CHARACTER_0; TAUT `~(p /\ ~p)`] THEN
  ASM_CASES_TAC `d = 1` THEN
  ASM_REWRITE_TAC[DIRICHLET_CHARACTER_1; chi_0; FUN_EQ_THM; COPRIME_1] THEN
  CONV_TAC TAUT);;

let DIRICHLET_CHARACTER_ZEROSUM = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> vsum(1..d) c = Cx(&0)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(STRIP_ASSUME_TAC o
    MATCH_MP DIRICHLET_CHARACTER_NONPRINCIPAL_NONTRIVIAL) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP DIRICHLET_CHARACTER_NONPRINCIPAL) THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` STRIP_ASSUME_TAC) THEN
  MATCH_MP_TAC(COMPLEX_RING
   `!x. x * c = c /\ ~(x = Cx(&1)) ==> c = Cx(&0)`) THEN
  EXISTS_TAC `(c:num->complex) m` THEN
  ASM_SIMP_TAC[GSYM VSUM_COMPLEX_LMUL; FINITE_NUMSEG] THEN
  MATCH_MP_TAC(MESON[]
   `!t. vsum t f = vsum s f /\ vsum t g = vsum s g /\ vsum t f = vsum t g
        ==> vsum s f = vsum s g`) THEN
  EXISTS_TAC `{n | coprime(n,d) /\ n < d}` THEN
  REPEAT(CONJ_TAC THENL
   [CONV_TAC SYM_CONV THEN MATCH_MP_TAC VSUM_SUPERSET THEN
    SIMP_TAC[SUBSET; IN_NUMSEG; LT_IMP_LE; IN_ELIM_THM] THEN CONJ_TAC THEN
    X_GEN_TAC `r:num` THENL
     [ASM_CASES_TAC `r = 0` THENL [ALL_TAC; ASM_ARITH_TAC] THEN
      ONCE_REWRITE_TAC[COPRIME_SYM] THEN ASM_REWRITE_TAC[COPRIME_0];
      ASM_CASES_TAC `coprime(r,d)` THEN ASM_REWRITE_TAC[] THENL
       [ASM_CASES_TAC `r:num = d` THEN ASM_REWRITE_TAC[LT_REFL] THENL
         [ASM_MESON_TAC[COPRIME_REFL]; ASM_ARITH_TAC];
        REWRITE_TAC[COMPLEX_VEC_0] THEN
        ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_0; COMPLEX_MUL_RZERO]]];
    ALL_TAC]) THEN
  FIRST_ASSUM(fun th ->
    REWRITE_TAC[GSYM(MATCH_MP DIRICHLET_CHARACTER_MUL (CONJUNCT1 th))]) THEN
  SIMP_TAC[VSUM; PHI_FINITE_LEMMA] THEN
  MATCH_MP_TAC ITERATE_OVER_COPRIME THEN SIMP_TAC[MONOIDAL_VECTOR_ADD] THEN
  ASM_MESON_TAC[DIRICHLET_CHARACTER_CONG]);;

let DIRICHLET_CHARACTER_ZEROSUM_MUL = prove
 (`!d c n. dirichlet_character d c /\ ~(c = chi_0 d)
           ==> vsum(1..d*n) c = Cx(&0)`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN
  INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; VSUM_CLAUSES_NUMSEG] THEN
  REWRITE_TAC[ARITH; COMPLEX_VEC_0] THEN ONCE_REWRITE_TAC[ADD_SYM] THEN
  ASM_SIMP_TAC[VSUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`; COMPLEX_ADD_LID] THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[VSUM_OFFSET] THEN
  FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP DIRICHLET_CHARACTER_ZEROSUM) THEN
  MATCH_MP_TAC VSUM_EQ THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN
  MATCH_MP_TAC DIRICHLET_CHARACTER_CONG THEN EXISTS_TAC `d:num` THEN
  ASM_REWRITE_TAC[] THEN NUMBER_TAC);;

let DIRICHLET_CHARACTER_SUM_MOD = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> vsum(1..n) c = vsum(1..(n MOD d)) c`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(STRIP_ASSUME_TAC o MATCH_MP
    DIRICHLET_CHARACTER_NONPRINCIPAL_NONTRIVIAL) THEN
  FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIVISION) THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(fun th -> GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THEN
  SIMP_TAC[VSUM_ADD_SPLIT; ARITH_RULE `1 <= n + 1`] THEN
  ONCE_REWRITE_TAC[MULT_SYM] THEN
  ASM_SIMP_TAC[DIRICHLET_CHARACTER_ZEROSUM_MUL; COMPLEX_ADD_LID] THEN
  ONCE_REWRITE_TAC[ADD_SYM] THEN REWRITE_TAC[VSUM_OFFSET] THEN
  FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP DIRICHLET_CHARACTER_ZEROSUM) THEN
  MATCH_MP_TAC VSUM_EQ THEN REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN
  MATCH_MP_TAC DIRICHLET_CHARACTER_CONG THEN EXISTS_TAC `d:num` THEN
  ASM_REWRITE_TAC[] THEN CONV_TAC NUMBER_RULE);;

(* ------------------------------------------------------------------------- *)
(* Finiteness of the set of characters (later we could get size =  phi(d)).  *)
(* ------------------------------------------------------------------------- *)

let FINITE_DIRICHLET_CHARACTERS = prove
 (`!d. FINITE {c | dirichlet_character d c}`,
  GEN_TAC THEN ASM_CASES_TAC `d = 0` THENL
   [ASM_SIMP_TAC[DIRICHLET_CHARACTER_0; SET_RULE `{x | x = a} = {a}`] THEN
    SIMP_TAC[FINITE_RULES];
    ALL_TAC] THEN
  MATCH_MP_TAC FINITE_SUBSET THEN
  EXISTS_TAC `IMAGE (\c n. c(n MOD d))
                    {c | (!m. m IN {m | m < d}
                             ==> c(m) IN (Cx(&0) INSERT
                                          {z | z pow (phi d) = Cx(&1)})) /\
                         (!m. ~(m IN {m | m < d})
                              ==> c(m) = Cx(&0))}` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC FINITE_IMAGE THEN MATCH_MP_TAC FINITE_FUNSPACE THEN
    ASM_SIMP_TAC[FINITE_NUMSEG_LT; FINITE_INSERT] THEN
    MATCH_MP_TAC FINITE_COMPLEX_ROOTS_UNITY THEN
    ASM_SIMP_TAC[PHI_LOWERBOUND_1_STRONG; LE_1];
    ALL_TAC] THEN
  REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `c:num->complex` THEN
  DISCH_TAC THEN REWRITE_TAC[IN_IMAGE; IN_ELIM_THM; IN_INSERT] THEN
  EXISTS_TAC `\n:num. if n < d then c(n) else Cx(&0)` THEN
  ASM_SIMP_TAC[DIVISION; FUN_EQ_THM] THEN CONJ_TAC THEN X_GEN_TAC `m:num` THENL
   [MATCH_MP_TAC DIRICHLET_CHARACTER_CONG THEN EXISTS_TAC `d:num` THEN
    ASM_MESON_TAC[CONG_MOD; CONG_SYM];
    ASM_MESON_TAC[DIRICHLET_CHARACTER_ROOT; COPRIME_SYM;
                  DIRICHLET_CHARACTER_EQ_0]]);;

(* ------------------------------------------------------------------------- *)
(* Very basic group structure.                                               *)
(* ------------------------------------------------------------------------- *)

let DIRICHLET_CHARACTER_MUL_CNJ = prove
 (`!d c n. dirichlet_character d c /\ ~(c n = Cx(&0))
           ==> cnj(c n) * c n = Cx(&1) /\ c n * cnj(c n) = Cx(&1)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  MATCH_MP_TAC(COMPLEX_FIELD
   `inv z = w /\ ~(z = Cx(&0)) ==> w * z = Cx(&1) /\ z * w = Cx(&1)`) THEN
  ASM_REWRITE_TAC[COMPLEX_INV_CNJ] THEN
  FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM COMPLEX_NORM_NZ]) THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP DIRICHLET_CHARACTER_NORM th]) THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[REAL_LT_REFL; COMPLEX_POW_ONE] THEN
  REWRITE_TAC[COMPLEX_DIV_1]);;

let DIRICHLET_CHARACTER_CNJ = prove
 (`!d c. dirichlet_character d c ==> dirichlet_character d (\n. cnj(c n))`,
  SIMP_TAC[dirichlet_character; CNJ_MUL; CNJ_EQ_CX]);;

let DIRICHLET_CHARACTER_GROUPMUL = prove
 (`!d c1 c2. dirichlet_character d c1 /\ dirichlet_character d c2
             ==> dirichlet_character d (\n. c1(n) * c2(n))`,
  SIMP_TAC[dirichlet_character; COMPLEX_ENTIRE] THEN
  REWRITE_TAC[COMPLEX_MUL_AC]);;

let DIRICHLET_CHARACTER_GROUPINV = prove
 (`!d c. dirichlet_character d c ==> (\n. cnj(c n) * c n) = chi_0 d`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[chi_0; FUN_EQ_THM] THEN
  REPEAT STRIP_TAC THEN COND_CASES_TAC THENL
   [ASM_MESON_TAC[DIRICHLET_CHARACTER_MUL_CNJ; DIRICHLET_CHARACTER_EQ_0];
    ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_0; COMPLEX_MUL_RZERO]]);;

(* ------------------------------------------------------------------------- *)
(* Orthogonality relations, a weak version of one first.                     *)
(* ------------------------------------------------------------------------- *)

let DIRICHLET_CHARACTER_SUM_OVER_NUMBERS = prove
 (`!d c. dirichlet_character d c
         ==> vsum (1..d) c = if c = chi_0 d then Cx(&(phi d)) else Cx(&0)`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[DIRICHLET_CHARACTER_ZEROSUM] THEN
  FIRST_X_ASSUM SUBST1_TAC THEN POP_ASSUM(K ALL_TAC) THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM ETA_AX] THEN
  REWRITE_TAC[chi_0] THEN
  SIMP_TAC[GSYM VSUM_RESTRICT_SET; FINITE_NUMSEG; GSYM COMPLEX_VEC_0] THEN
  SIMP_TAC[phi; VSUM_CONST; FINITE_RESTRICT; FINITE_NUMSEG] THEN
  REWRITE_TAC[COMPLEX_CMUL; COMPLEX_MUL_RID] THEN
  AP_TERM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN
  X_GEN_TAC `x:num` THEN ASM_CASES_TAC `coprime(x,d)` THEN
  ASM_REWRITE_TAC[] THEN ARITH_TAC);;

let DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS_WEAK = prove
 (`!d n. vsum {c | dirichlet_character d c} (\x. x n) = Cx(&0) \/
         coprime(n,d) /\ !c. dirichlet_character d c ==> c(n) = Cx(&1)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `coprime(n,d)` THENL
   [ALL_TAC;
    DISJ1_TAC THEN REWRITE_TAC[GSYM COMPLEX_VEC_0] THEN
    MATCH_MP_TAC VSUM_EQ_0 THEN
    ASM_SIMP_TAC[IN_ELIM_THM; COMPLEX_VEC_0; DIRICHLET_CHARACTER_EQ_0]] THEN
  SUBGOAL_THEN
    `!c'. dirichlet_character d c'
          ==> vsum {c | dirichlet_character d c}
                   ((\c. c(n)) o (\c n. c'(n) * c(n))) =
              vsum {c | dirichlet_character d c} (\c. c(n))`
  MP_TAC THENL
   [ALL_TAC;
    SIMP_TAC[o_DEF; FINITE_DIRICHLET_CHARACTERS; VSUM_COMPLEX_LMUL] THEN
    REWRITE_TAC[COMPLEX_RING `a * x = x <=> a = Cx(&1) \/ x = Cx(&0)`] THEN
    ASM_MESON_TAC[]] THEN
  REPEAT STRIP_TAC THEN MATCH_MP_TAC VSUM_INJECTION THEN
  REWRITE_TAC[FINITE_DIRICHLET_CHARACTERS; IN_ELIM_THM] THEN
  ASM_SIMP_TAC[DIRICHLET_CHARACTER_GROUPMUL] THEN
  REPEAT STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o AP_TERM `(\c n. cnj(c'(n:num)) * c n)`) THEN
  REWRITE_TAC[FUN_EQ_THM] THEN DISCH_TAC THEN X_GEN_TAC `m:num` THEN
  ASM_CASES_TAC `coprime(m,d)` THENL
   [ALL_TAC; ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_0]] THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
  MATCH_MP_TAC(COMPLEX_RING
    `a * b = Cx(&1) ==> a * b * x = a * b * y ==> x = y`) THEN
  ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_0; DIRICHLET_CHARACTER_MUL_CNJ]);;

let DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS_POS = prove
 (`!d n. real(vsum {c | dirichlet_character d c} (\c. c n)) /\
         &0 <= Re(vsum {c | dirichlet_character d c} (\c. c n))`,
  MP_TAC DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS_WEAK THEN
  REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[REAL_CX; RE_CX; REAL_LE_REFL] THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC REAL_VSUM;
    SIMP_TAC[FINITE_DIRICHLET_CHARACTERS; RE_VSUM] THEN
    MATCH_MP_TAC SUM_POS_LE] THEN
  ASM_SIMP_TAC[FINITE_DIRICHLET_CHARACTERS; IN_ELIM_THM; REAL_CX; RE_CX] THEN
  REWRITE_TAC[REAL_POS]);;

(* ------------------------------------------------------------------------- *)
(* A somewhat gruesome lemma about extending a character from a subgroup.    *)
(* ------------------------------------------------------------------------- *)

let CHARACTER_EXTEND_FROM_SUBGROUP = prove
 (`!f h a d.
        h SUBSET {x | x < d /\ coprime(x,d)} /\
        (1 IN h) /\
        (!x y. x IN h /\ y IN h ==> ((x * y) MOD d) IN h) /\
        (!x. x IN h ==> ?y. y IN h /\ (x * y == 1) (mod d)) /\
        (!x. x IN h ==> ~(f x = Cx(&0))) /\
        (!x y. x IN h /\ y IN h
                 ==> f((x * y) MOD d) = f(x) * f(y)) /\
        a IN {x | x < d /\ coprime(x,d)} DIFF h
        ==> ?f' h'. (a INSERT h) SUBSET h' /\
                    h' SUBSET {x | x < d /\ coprime(x,d)} /\
                    (!x. x IN h ==> f'(x) = f(x)) /\
                    ~(f' a = Cx(&1)) /\
                    1 IN h' /\
                    (!x y. x IN h' /\ y IN h' ==> ((x * y) MOD d) IN h') /\
                    (!x. x IN h' ==> ?y. y IN h' /\ (x * y == 1) (mod d)) /\
                    (!x. x IN h' ==> ~(f' x = Cx(&0))) /\
                    (!x y. x IN h' /\ y IN h'
                           ==> f'((x * y) MOD d) = f'(x) * f'(y))`,
  REWRITE_TAC[IN_ELIM_THM; IN_DIFF; SUBSET] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `1 < d` ASSUME_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP LT_IMP_LE) THEN
  SUBGOAL_THEN `?m x. 0 < m /\ x IN h /\ (a EXP m == x) (mod d)` MP_TAC THENL
   [MAP_EVERY EXISTS_TAC [`phi d`; `1`] THEN ASM_REWRITE_TAC[] THEN
    CONJ_TAC THENL [ASM_MESON_TAC[PHI_LOWERBOUND_1_STRONG; LE_1]; ALL_TAC] THEN
    MATCH_MP_TAC FERMAT_LITTLE THEN ASM SET_TAC[];
    ALL_TAC] THEN
  SUBGOAL_THEN `!x s. x IN h ==> ((x EXP s) MOD d) IN h` ASSUME_TAC THENL
   [REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
    INDUCT_TAC THEN ASM_SIMP_TAC[EXP; MOD_LT] THEN
    SUBGOAL_THEN `((x * (x EXP s) MOD d) MOD d) IN h` MP_TAC THEN
    ASM_MESON_TAC[MOD_MULT_RMOD; ASSUME `1 <= d`; LE_1];
    ALL_TAC] THEN
  GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN
  DISCH_THEN(CONJUNCTS_THEN2
   (X_CHOOSE_THEN `am:num` STRIP_ASSUME_TAC) MP_TAC) THEN
  FIRST_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
   `0 < m ==> m = 1 \/ 2 <= m`))
  THENL
   [FIRST_X_ASSUM SUBST_ALL_TAC THEN UNDISCH_TAC `(a EXP 1 == am) (mod d)` THEN
    ASM_SIMP_TAC[EXP_1; GSYM CONG_MOD_LT; MOD_LT] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o GEN `r:num` o SPEC `r MOD m`) THEN
  ASM_SIMP_TAC[DIVISION; LE_1; NOT_EXISTS_THM] THEN
  REWRITE_TAC[TAUT `~(a /\ b /\ c) <=> b /\ c ==> ~a`] THEN DISCH_TAC THEN
  SUBGOAL_THEN `!r x. x IN h /\ (a EXP r == x) (mod d) ==> m divides r`
  ASSUME_TAC THENL
   [REPEAT STRIP_TAC THEN ASM_SIMP_TAC[DIVIDES_MOD; LE_1] THEN
    REWRITE_TAC[ARITH_RULE `n = 0 <=> ~(0 < n)`] THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN
    EXISTS_TAC `(a EXP (r MOD m)) MOD d` THEN
    ASM_SIMP_TAC[CONG_RMOD; LE_1; CONG_REFL] THEN
    UNDISCH_TAC `!x. x IN h ==> (?y. y IN h /\ (x * y == 1) (mod d))` THEN
    DISCH_THEN(MP_TAC o SPEC `(a EXP (m * r DIV m)) MOD d`) THEN ANTS_TAC THENL
     [REWRITE_TAC[GSYM EXP_EXP] THEN
      SUBGOAL_THEN
       `(a EXP m) EXP (r DIV m) MOD d = (am EXP (r DIV m)) MOD d`
       (fun th -> ASM_SIMP_TAC[th]) THEN
      ASM_SIMP_TAC[GSYM CONG; LE_1] THEN
      ASM_SIMP_TAC[CONG_LMOD; CONG_EXP; LE_1];
      ALL_TAC] THEN
    DISCH_THEN(X_CHOOSE_THEN `y:num` STRIP_ASSUME_TAC) THEN
    UNDISCH_TAC `(a EXP r == x) (mod d)` THEN
    MP_TAC(SPECL [`r:num`; `m:num`] DIVISION) THEN ASM_SIMP_TAC[LE_1] THEN
    DISCH_THEN(fun th ->
      GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [th]) THEN
    ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[EXP_ADD] THEN
    DISCH_THEN(MP_TAC o SPEC `y:num` o MATCH_MP
    (NUMBER_RULE `!a. (x:num == y) (mod n) ==> (a * x == a * y) (mod n)`)) THEN
    DISCH_THEN(MP_TAC o MATCH_MP (NUMBER_RULE
     `(y * e * a == z) (mod n)
      ==> (e * y == 1) (mod n) ==> (a == z) (mod n)`)) THEN
    ANTS_TAC THENL
     [MATCH_MP_TAC CONG_TRANS THEN
      EXISTS_TAC `a EXP (m * r DIV m) MOD d * y` THEN
      ASM_SIMP_TAC[CONG_MULT; CONG_REFL; CONG_RMOD; LE_1];
      ALL_TAC] THEN
    ASM_SIMP_TAC[CONG; LE_1];
    ALL_TAC] THEN
  MP_TAC(SPECL [`(f:num->complex) am`; `m:num`]
               EXISTS_COMPLEX_ROOT_NONTRIVIAL) THEN ASM_SIMP_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `z:complex` STRIP_ASSUME_TAC) THEN
  SUBGOAL_THEN
   `?g. !x k. x IN h ==> g((x * a EXP k) MOD d) = f(x) * z pow k`
  MP_TAC THENL
   [REWRITE_TAC[MESON[] `(?g. !x a. p x ==> g(f a x) = h a x) <=>
                         (?g. !y x a. p x /\ f a x = y ==> g y = h a x)`] THEN
    REWRITE_TAC[GSYM SKOLEM_THM] THEN
    REWRITE_TAC[MESON[]
     `(!y. ?z. !x k. p x /\ f x k = y ==> z = g x k) <=>
      (!x k x' k'. p x /\ p x' /\ f x k = f x' k' ==> g x k = g x' k')`] THEN
    ONCE_REWRITE_TAC[MESON[]
     `(!x k y j. P x k y j) <=> (!k j x y. P x k y j)`] THEN
    MATCH_MP_TAC WLOG_LE THEN CONJ_TAC THENL [MESON_TAC[]; ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`k:num`; `j:num`] THEN DISCH_TAC THEN
    MAP_EVERY X_GEN_TAC [`x:num`; `y:num`] THEN
    ASM_SIMP_TAC[GSYM CONG; LE_1] THEN STRIP_TAC THEN
    UNDISCH_TAC `k:num <= j` THEN REWRITE_TAC[LE_EXISTS] THEN
    DISCH_THEN(X_CHOOSE_THEN `i:num` SUBST_ALL_TAC) THEN
    ONCE_REWRITE_TAC[ADD_SYM] THEN
    REWRITE_TAC[COMPLEX_POW_ADD; COMPLEX_MUL_ASSOC] THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN
    SUBGOAL_THEN `m divides i` MP_TAC THENL
     [FIRST_X_ASSUM MATCH_MP_TAC THEN
      UNDISCH_TAC `!x. x IN h ==> (?y. y IN h /\ (x * y == 1) (mod d))` THEN
      DISCH_THEN(MP_TAC o SPEC `y:num`) THEN ASM_REWRITE_TAC[] THEN
      DISCH_THEN(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN
      EXISTS_TAC `(z * x) MOD d` THEN ASM_SIMP_TAC[CONG_RMOD; LE_1] THEN
      MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `y * a EXP k` THEN
      REWRITE_TAC[COPRIME_LMUL] THEN
      CONJ_TAC THENL [ASM_MESON_TAC[COPRIME_EXP; COPRIME_SYM]; ALL_TAC] THEN
      UNDISCH_TAC `(x * a EXP k == y * a EXP (k + i)) (mod d)` THEN
      REWRITE_TAC[EXP_ADD] THEN UNDISCH_TAC `(y * z == 1) (mod d)` THEN
      CONV_TAC NUMBER_RULE;
      ALL_TAC] THEN
    REWRITE_TAC[divides] THEN
    DISCH_THEN(X_CHOOSE_THEN `r:num` SUBST_ALL_TAC) THEN
    ASM_REWRITE_TAC[GSYM COMPLEX_POW_POW] THEN MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `f((y * (am EXP r) MOD d) MOD d):complex` THEN CONJ_TAC THENL
     [AP_TERM_TAC THEN CONV_TAC SYM_CONV THEN ASM_SIMP_TAC[CONG_MOD_LT] THEN
      MATCH_MP_TAC CONG_TRANS THEN
      EXISTS_TAC `y * (a EXP m) EXP r` THEN CONJ_TAC THENL
       [MATCH_MP_TAC CONG_MULT THEN
        ASM_SIMP_TAC[CONG_MULT; CONG_LMOD; CONG_REFL; LE_1] THEN
        MATCH_MP_TAC CONG_EXP THEN ASM_MESON_TAC[CONG_SYM];
        ALL_TAC] THEN
      MATCH_MP_TAC CONG_MULT_LCANCEL THEN EXISTS_TAC `a EXP k` THEN
      CONJ_TAC THENL [ASM_MESON_TAC[COPRIME_EXP; COPRIME_SYM]; ALL_TAC] THEN
      UNDISCH_TAC `(x * a EXP k == y * a EXP (k + m * r)) (mod d)` THEN
      REWRITE_TAC[EXP_ADD; EXP_EXP] THEN CONV_TAC NUMBER_RULE;
      ALL_TAC] THEN
    ASM_SIMP_TAC[] THEN AP_TERM_TAC THEN
    SPEC_TAC(`r:num`,`s:num`) THEN INDUCT_TAC THEN
    ASM_SIMP_TAC[EXP; MOD_LT; complex_pow; COMPLEX_MUL_RID] THENL
     [UNDISCH_TAC
       `!x y. x IN h /\ y IN h ==> f ((x * y) MOD d):complex = f x * f y` THEN
      DISCH_THEN(MP_TAC o SPECL [`1`; `1`]) THEN
      ASM_SIMP_TAC[MULT_CLAUSES; MOD_LT] THEN
      UNDISCH_TAC `!x:num. x IN h ==> ~(f x = Cx (&0))` THEN
      DISCH_THEN(MP_TAC o SPEC `1`) THEN ASM_REWRITE_TAC[] THEN
      CONV_TAC COMPLEX_RING;
      ALL_TAC] THEN
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `f((am * (am EXP s) MOD d) MOD d):complex` THEN CONJ_TAC THENL
     [ALL_TAC; ASM_SIMP_TAC[]] THEN
    AP_TERM_TAC THEN ASM_SIMP_TAC[MOD_MULT_RMOD; ASSUME `1 <= d`; LE_1];
    ALL_TAC] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:num->complex` THEN
  DISCH_THEN (LABEL_TAC "*") THEN
  EXISTS_TAC `{(x * a EXP k) MOD d | x IN h /\ k IN (:num)}` THEN
  REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL
   [REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; IN_UNIV] THEN
    X_GEN_TAC `x:num` THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THENL
     [MAP_EVERY EXISTS_TAC [`1`; `1`];
      MAP_EVERY EXISTS_TAC [`x:num`; `0`]] THEN
    ASM_SIMP_TAC[EXP_1; MULT_CLAUSES; EXP; MOD_LT];
    REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`y:num`; `x:num`; `k:num`] THEN
    STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
    ASM_SIMP_TAC[DIVISION; LE_1; COPRIME_LMOD; COPRIME_LMUL] THEN
    ASM_MESON_TAC[COPRIME_EXP; COPRIME_SYM];
    X_GEN_TAC `x:num` THEN DISCH_TAC THEN
    REMOVE_THEN "*" (MP_TAC o SPECL [`x:num`; `0`]) THEN
    ASM_SIMP_TAC[MOD_LT; EXP; MULT_CLAUSES; complex_pow; COMPLEX_MUL_RID];
    REMOVE_THEN "*" (MP_TAC o SPECL [`1`; `1`]) THEN
    ASM_SIMP_TAC[EXP_1; MULT_CLAUSES; MOD_LT; COMPLEX_POW_1] THEN
    UNDISCH_TAC `!x y. x IN h /\ y IN h ==> f ((x * y) MOD d) = f x * f y` THEN
    DISCH_THEN(MP_TAC o SPECL [`1`; `1`]) THEN
    ASM_SIMP_TAC[MULT_CLAUSES; MOD_LT] THEN
    UNDISCH_TAC `~(z = Cx(&1))` THEN CONV_TAC COMPLEX_RING;
    REWRITE_TAC[IN_ELIM_THM; IN_UNIV] THEN
    MAP_EVERY EXISTS_TAC [`1`; `0`] THEN
    ASM_SIMP_TAC[EXP; MULT_CLAUSES; MOD_LT];
    REWRITE_TAC[IN_ELIM_THM; IN_UNIV; LEFT_AND_EXISTS_THM] THEN
    REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC
     [`r:num`; `s:num`; `x:num`; `k:num`; `y:num`; `j:num`] THEN
    STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
    MAP_EVERY EXISTS_TAC [`(x * y) MOD d`; `j + k:num`] THEN
    ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD; LE_1] THEN
    REWRITE_TAC[EXP_ADD; MULT_AC];
    REWRITE_TAC[IN_ELIM_THM; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`y:num`; `x:num`; `k:num`] THEN
    STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
    UNDISCH_TAC `!x. x IN h ==> (?y. y IN h /\ (x * y == 1) (mod d))` THEN
    DISCH_THEN(MP_TAC o SPEC `x:num`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `z:num` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `(z * a EXP ((phi d - 1) * k)) MOD d` THEN
    REWRITE_TAC[LEFT_EXISTS_AND_THM] THEN
    CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    MATCH_MP_TAC CONG_TRANS THEN
    EXISTS_TAC `(x * a EXP k) * (z * a EXP ((phi d - 1) * k))` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC CONG_MULT THEN ASM_SIMP_TAC[CONG_MOD; LE_1]; ALL_TAC] THEN
    ONCE_REWRITE_TAC[ARITH_RULE
     `(x * a) * (z * ak):num = (x * z) * (a * ak)`] THEN
    GEN_REWRITE_TAC (LAND_CONV) [ARITH_RULE `1 = 1 * 1`] THEN
    MATCH_MP_TAC CONG_MULT THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[GSYM EXP_ADD] THEN
    SUBGOAL_THEN `k + (phi d - 1) * k = phi(d) * k` SUBST1_TAC THENL
     [REWRITE_TAC[ARITH_RULE `k + a * k = (a + 1) * k`] THEN
      AP_THM_TAC THEN AP_TERM_TAC THEN
      ASM_SIMP_TAC[SUB_ADD; PHI_LOWERBOUND_1_STRONG];
      ALL_TAC] THEN
    REWRITE_TAC[GSYM EXP_EXP] THEN SUBST1_TAC(SYM(SPEC `k:num` EXP_ONE)) THEN
    MATCH_MP_TAC CONG_EXP THEN ASM_SIMP_TAC[FERMAT_LITTLE];
    REWRITE_TAC[IN_ELIM_THM; IN_UNIV] THEN REPEAT GEN_TAC THEN STRIP_TAC THEN
    ASM_SIMP_TAC[COMPLEX_ENTIRE; COMPLEX_POW_EQ_0] THEN
    UNDISCH_TAC `!x:num. x IN h ==> ~(f x = Cx (&0))` THEN
    DISCH_THEN(MP_TAC o SPEC `am:num`) THEN ASM_REWRITE_TAC[] THEN
    SUBST1_TAC(SYM(ASSUME `z pow m = f(am:num)`)) THEN
    REWRITE_TAC[COMPLEX_POW_EQ_0] THEN ASM_SIMP_TAC[LE_1];
    REWRITE_TAC[IN_ELIM_THM; IN_UNIV; LEFT_AND_EXISTS_THM] THEN
    REWRITE_TAC[RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC
     [`r:num`; `s:num`; `x:num`; `k:num`; `y:num`; `j:num`] THEN
    STRIP_TAC THEN REPEAT(FIRST_X_ASSUM SUBST_ALL_TAC) THEN
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `g(((x * y) MOD d * a EXP (k + j)) MOD d):complex` THEN
    CONJ_TAC THENL
     [AP_TERM_TAC THEN ASM_SIMP_TAC[MOD_MULT_LMOD; MOD_MULT_RMOD; LE_1] THEN
      REWRITE_TAC[EXP_ADD; MULT_AC];
      ALL_TAC] THEN
    ASM_SIMP_TAC[] THEN REWRITE_TAC[COMPLEX_POW_ADD; COMPLEX_MUL_AC]]);;

(* ------------------------------------------------------------------------- *)
(* Hence the key result that we can find a distinguishing character.         *)
(* ------------------------------------------------------------------------- *)

let DIRICHLET_CHARACTER_DISCRIMINATOR = prove
 (`!d n. 1 < d /\ ~((n == 1) (mod d))
          ==> ?c. dirichlet_character d c /\ ~(c n = Cx(&1))`,
  REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP LT_IMP_LE) THEN
  ASM_CASES_TAC `coprime(n,d)` THENL
   [ALL_TAC;
    EXISTS_TAC `chi_0 d` THEN
    ASM_REWRITE_TAC[DIRICHLET_CHARACTER_CHI_0; chi_0] THEN
    CONV_TAC COMPLEX_RING] THEN
  MP_TAC(ISPECL [`\n:num. Cx(&1)`; `{1}`; `n MOD d`; `d:num`]
                CHARACTER_EXTEND_FROM_SUBGROUP) THEN
  ASM_SIMP_TAC[IN_SING; IN_ELIM_THM; IN_DIFF] THEN ANTS_TAC THENL
   [ASM_SIMP_TAC[SUBSET; MULT_CLAUSES; MOD_LT; LE_1; IN_SING;
                 IN_ELIM_THM; DIVISION; COPRIME_LMOD; CONG_MOD_LT;
                 COMPLEX_MUL_LID; CX_INJ; REAL_OF_NUM_EQ; ARITH] THEN
    ASM_MESON_TAC[COPRIME_1; COPRIME_SYM; CONG_REFL];
    ALL_TAC] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`f0:num->complex`; `h0:num->bool`] THEN
  STRIP_TAC THEN
  SUBGOAL_THEN
   `!m. m <= CARD {x | x < d /\ coprime(x,d)}
        ==> ?f h. h SUBSET {x | x < d /\ coprime(x,d)} /\
                 (1 IN h) /\ (n MOD d) IN h /\
                 (!x y. x IN h /\ y IN h ==> ((x * y) MOD d) IN h) /\
                 (!x. x IN h ==> ?y. y IN h /\ (x * y == 1) (mod d)) /\
                 ~(f(n MOD d) = Cx(&1)) /\
                 (!x. x IN h ==> ~(f x = Cx(&0))) /\
                 (!x y. x IN h /\ y IN h
                          ==> f((x * y) MOD d) = f(x) * f(y)) /\
                 m <= CARD h`
  MP_TAC THENL
   [MATCH_MP_TAC num_WF THEN X_GEN_TAC `m:num` THEN
    DISCH_THEN(LABEL_TAC "*") THEN DISCH_TAC THEN
    ASM_CASES_TAC `m = 0` THENL
     [MAP_EVERY EXISTS_TAC [`f0:num->complex`; `h0:num->bool`] THEN
      ASM_REWRITE_TAC[LE_0] THEN ASM SET_TAC[];
      ALL_TAC] THEN
    FIRST_ASSUM(MP_TAC o C MATCH_MP
     (MATCH_MP (ARITH_RULE `~(m = 0) ==> m - 1 < m`) (ASSUME `~(m = 0)`))) THEN
    ASM_SIMP_TAC[ARITH_RULE `x <= n ==> x - 1 <= n`; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`f:num->complex`; `h:num->bool`] THEN STRIP_TAC THEN
    ASM_CASES_TAC `m <= CARD(h:num->bool)` THENL
     [MAP_EVERY EXISTS_TAC [`f:num->complex`; `h:num->bool`] THEN
      ASM_REWRITE_TAC[];
      ALL_TAC] THEN
    MP_TAC(ASSUME `h SUBSET {x | x < d /\ coprime (x,d)}`) THEN
    DISCH_THEN(MP_TAC o MATCH_MP (SET_RULE
     `s SUBSET t ==> ~(s = t) ==> ?a. a IN t /\ ~(a IN s)`)) THEN
    ANTS_TAC THENL [ASM_MESON_TAC[]; REWRITE_TAC[IN_ELIM_THM]] THEN
    DISCH_THEN(X_CHOOSE_THEN `a:num` STRIP_ASSUME_TAC) THEN
    MP_TAC(ISPECL [`f:num->complex`; `h:num->bool`; `a:num`; `d:num`]
                CHARACTER_EXTEND_FROM_SUBGROUP) THEN
    ASM_REWRITE_TAC[IN_DIFF; IN_ELIM_THM] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `ff:num->complex` THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `hh:num->bool` THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    REPEAT(CONJ_TAC THENL [ASM SET_TAC[]; ALL_TAC]) THEN
    MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `CARD((a:num) INSERT h)` THEN
    SUBGOAL_THEN `FINITE(h:num->bool)` ASSUME_TAC THENL
     [MATCH_MP_TAC FINITE_SUBSET THEN
      EXISTS_TAC `{x | x IN {x | x < d} /\ coprime(x,d)}` THEN
      SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG_LT] THEN
      ASM_REWRITE_TAC[IN_ELIM_THM];
      ALL_TAC] THEN
    CONJ_TAC THENL
     [ASM_SIMP_TAC[CARD_CLAUSES] THEN
      UNDISCH_TAC `m - 1 <= CARD(h:num->bool)` THEN ARITH_TAC;
      MATCH_MP_TAC CARD_SUBSET THEN ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC FINITE_SUBSET THEN
      EXISTS_TAC `{x | x IN {x | x < d} /\ coprime(x,d)}` THEN
      SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG_LT] THEN
      ASM_REWRITE_TAC[IN_ELIM_THM]];
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o SPEC `CARD {x | x < d /\ coprime(x,d)}`) THEN
  REWRITE_TAC[LE_REFL] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`f:num->complex`; `h:num->bool`] THEN
  ASM_CASES_TAC `h = {x | x < d /\ coprime (x,d)}` THENL
   [ALL_TAC;
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    REWRITE_TAC[CONJ_ASSOC] THEN MATCH_MP_TAC(TAUT `~b ==> a /\ b ==> c`) THEN
    REWRITE_TAC[NOT_LE] THEN MATCH_MP_TAC CARD_PSUBSET THEN
    ASM_REWRITE_TAC[PSUBSET] THEN
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{x:num | x < d}` THEN
    SIMP_TAC[FINITE_RESTRICT; FINITE_NUMSEG_LT] THEN SET_TAC[]] THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN
  REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[GSYM CONJ_ASSOC] THEN
  STRIP_TAC THEN
  EXISTS_TAC `\n. if coprime(n,d) then f(n MOD d) else Cx(&0)` THEN
  ASM_REWRITE_TAC[] THEN REWRITE_TAC[dirichlet_character] THEN
  REPEAT CONJ_TAC THEN X_GEN_TAC `x:num` THENL
   [REWRITE_TAC[NUMBER_RULE `coprime(x + d:num,d) <=> coprime(x,d)`] THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN
    ASM_SIMP_TAC[GSYM CONG; LE_1] THEN CONV_TAC NUMBER_RULE;
    COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
    FIRST_X_ASSUM MATCH_MP_TAC THEN
    ASM_SIMP_TAC[COPRIME_LMOD; DIVISION; LE_1];
    X_GEN_TAC `y:num` THEN REWRITE_TAC[COPRIME_LMUL] THEN
    MAP_EVERY ASM_CASES_TAC [`coprime(x,d)`; `coprime(y,d)`] THEN
    ASM_REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THEN
    MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `f(((x MOD d) * (y MOD d)) MOD d):complex` THEN CONJ_TAC THENL
     [AP_TERM_TAC THEN ASM_SIMP_TAC[MOD_MULT_MOD2; LE_1];
      FIRST_X_ASSUM MATCH_MP_TAC THEN
      ASM_SIMP_TAC[DIVISION; COPRIME_LMOD; LE_1]]]);;

(* ------------------------------------------------------------------------- *)
(* Hence we get the full second orthogonality relation.                      *)
(* ------------------------------------------------------------------------- *)

let DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS_INEXPLICIT = prove
 (`!d n. vsum {c | dirichlet_character d c} (\c. c n) =
                if (n == 1) (mod d)
                then Cx(&(CARD {c | dirichlet_character d c}))
                else Cx(&0)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `d = 0` THENL
   [ASM_REWRITE_TAC[CONG_MOD_0; DIRICHLET_CHARACTER_0; SET_RULE
     `{x | x = a} = {a}`] THEN
    SIMP_TAC[VSUM_CLAUSES; CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY] THEN
    REWRITE_TAC[chi_0; COPRIME_0; VECTOR_ADD_RID] THEN REWRITE_TAC[ARITH];
    ALL_TAC] THEN
  ASM_CASES_TAC `d = 1` THENL
   [ASM_REWRITE_TAC[CONG_MOD_1; DIRICHLET_CHARACTER_1] THEN
    REWRITE_TAC[GSYM FUN_EQ_THM; ETA_AX] THEN
    ASM_REWRITE_TAC[SET_RULE `{x | x = a} = {a}`] THEN
    SIMP_TAC[VSUM_CLAUSES; CARD_CLAUSES; FINITE_RULES; NOT_IN_EMPTY] THEN
    REWRITE_TAC[VECTOR_ADD_RID; ARITH];
    ALL_TAC] THEN
  COND_CASES_TAC THENL
   [MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `vsum {c | dirichlet_character d c} (\c. Cx(&1))` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC VSUM_EQ THEN REWRITE_TAC[IN_ELIM_THM] THEN
      ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_1; DIRICHLET_CHARACTER_CONG];
      SIMP_TAC[FINITE_DIRICHLET_CHARACTERS; VSUM_CONST] THEN
      REWRITE_TAC[COMPLEX_CMUL; COMPLEX_MUL_RID]];
    MP_TAC(SPECL [`d:num`; `n:num`]
      DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS_WEAK) THEN
    ASM_MESON_TAC[DIRICHLET_CHARACTER_DISCRIMINATOR;
                  ARITH_RULE `~(d = 0) /\ ~(d = 1) ==> 1 < d`]]);;

let DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS = prove
 (`!d n. 1 <= d
         ==> vsum {c | dirichlet_character d c} (\c. c(n)) =
                if (n == 1) (mod d) then Cx(&(phi d)) else Cx(&0)`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS_INEXPLICIT] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
  MP_TAC(ISPECL [`\c n. (c:num->complex) n`; `{c | dirichlet_character d c}`;
                 `1..d`;] VSUM_SWAP) THEN
  SIMP_TAC[DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS_INEXPLICIT;
           DIRICHLET_CHARACTER_SUM_OVER_NUMBERS; FINITE_NUMSEG;
           FINITE_DIRICHLET_CHARACTERS; ETA_AX] THEN
  REWRITE_TAC[VSUM_DELTA; GSYM COMPLEX_VEC_0] THEN
  REWRITE_TAC[IN_ELIM_THM; DIRICHLET_CHARACTER_CHI_0] THEN
  DISCH_THEN SUBST1_TAC THEN
  SIMP_TAC[GSYM VSUM_RESTRICT_SET; FINITE_NUMSEG] THEN
  SUBGOAL_THEN `{j | j IN 1..d /\ (j == 1) (mod d)} = {1}`
   (fun th -> SIMP_TAC[th; VSUM_SING]) THEN
  REWRITE_TAC[EXTENSION; IN_SING; IN_ELIM_THM; IN_NUMSEG] THEN
  X_GEN_TAC `k:num` THEN EQ_TAC THEN ASM_SIMP_TAC[LE_REFL; CONG_REFL] THEN
  ASM_CASES_TAC `d = 1` THEN ASM_SIMP_TAC[CONG_MOD_1; LE_ANTISYM] THEN
  ASM_CASES_TAC `k:num = d` THENL
   [ASM_REWRITE_TAC[NUMBER_RULE `(d == 1) (mod d) <=> d divides 1`] THEN
    ASM_REWRITE_TAC[DIVIDES_ONE];
    STRIP_TAC THEN MATCH_MP_TAC CONG_IMP_EQ THEN EXISTS_TAC `d:num` THEN
    ASM_REWRITE_TAC[LT_LE]]);;

(* ------------------------------------------------------------------------- *)
(* L-series, just at the point s = 1.                                        *)
(* ------------------------------------------------------------------------- *)

let Lfunction_DEF = new_definition
 `Lfunction c = infsum (from 1) (\n. c(n) / Cx(&n))`;;

let BOUNDED_LFUNCTION_PARTIAL_SUMS = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> bounded {vsum (1..n) c | n IN (:num)}`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(fun th ->
    ONCE_REWRITE_TAC[MATCH_MP DIRICHLET_CHARACTER_SUM_MOD th]) THEN
  MATCH_MP_TAC BOUNDED_SUBSET THEN
  EXISTS_TAC `IMAGE (\n. vsum(1..n) c:complex) (0..d)` THEN
  SIMP_TAC[FINITE_IMP_BOUNDED; FINITE_IMAGE; FINITE_NUMSEG] THEN
  REWRITE_TAC[SIMPLE_IMAGE; SUBSET; FORALL_IN_IMAGE] THEN
  X_GEN_TAC `n:num` THEN REWRITE_TAC[IN_UNIV; IN_IMAGE] THEN
  EXISTS_TAC `n MOD d` THEN REWRITE_TAC[IN_NUMSEG; LE_0] THEN
  ASM_MESON_TAC[LT_IMP_LE; DIVISION;
                DIRICHLET_CHARACTER_NONPRINCIPAL_NONTRIVIAL]);;

let LFUNCTION = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> ((\n. c(n) / Cx(&n)) sums (Lfunction c)) (from 1)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN SIMP_TAC[Lfunction_DEF; SUMS_INFSUM] THEN
  REWRITE_TAC[complex_div] THEN MATCH_MP_TAC SERIES_DIRICHLET_COMPLEX THEN
  REPEAT(EXISTS_TAC `1`) THEN FIRST_ASSUM(fun th ->
    REWRITE_TAC[MATCH_MP BOUNDED_LFUNCTION_PARTIAL_SUMS th]) THEN
  REWRITE_TAC[LIM_INV_N; GSYM CX_INV; REAL_CX; RE_CX] THEN
  SIMP_TAC[REAL_LE_INV2; REAL_OF_NUM_LE; REAL_OF_NUM_LT; LE_1; LE_ADD]);;

(* ------------------------------------------------------------------------- *)
(* Other properties of conjugate characters.                                 *)
(* ------------------------------------------------------------------------- *)

let CNJ_CHI_0 = prove
 (`!d n. cnj(chi_0 d n) = chi_0 d n`,
  REPEAT GEN_TAC THEN REWRITE_TAC[chi_0] THEN
  COND_CASES_TAC THEN ASM_REWRITE_TAC[CNJ_CX]);;

let LFUNCTION_CNJ = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> Lfunction (\n. cnj(c n)) = cnj(Lfunction c)`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[Lfunction_DEF] THEN
  MATCH_MP_TAC INFSUM_UNIQUE THEN
  ONCE_REWRITE_TAC[GSYM CNJ_CX] THEN
  REWRITE_TAC[GSYM CNJ_DIV] THEN
  REWRITE_TAC[SUMS_CNJ; CNJ_CX; GSYM Lfunction_DEF] THEN
  ASM_MESON_TAC[LFUNCTION]);;

(* ------------------------------------------------------------------------- *)
(* Explicit bound on truncating the Lseries.                                 *)
(* ------------------------------------------------------------------------- *)

let LFUNCTION_PARTIAL_SUM = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> ?B. &0 < B /\
                 !n. 1 <= n
                     ==> norm(Lfunction c - vsum(1..n) (\n. c(n) / Cx(&n)))
                          <= B / (&n + &1)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  MP_TAC(ISPECL [`c:num->complex`; `\n. inv(Cx(&n))`; `1`; `1`]
                SERIES_DIRICHLET_COMPLEX_EXPLICIT) THEN
  REWRITE_TAC[LE_REFL] THEN FIRST_ASSUM(fun th ->
    REWRITE_TAC[MATCH_MP BOUNDED_LFUNCTION_PARTIAL_SUMS th]) THEN
  REWRITE_TAC[LIM_INV_N; GSYM CX_INV; REAL_CX; RE_CX] THEN
  SIMP_TAC[REAL_LE_INV2; REAL_OF_NUM_LE; REAL_OF_NUM_LT; LE_1; LE_ADD] THEN
  REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN
  REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_INV; REAL_ABS_NUM] THEN
  REWRITE_TAC[CX_INV; GSYM complex_div; GSYM real_div] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `B:real` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN X_GEN_TAC `k:num` THEN DISCH_TAC THEN
  MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN
  EXISTS_TAC `\n. vsum(k+1..n) (\n. c(n) / Cx(&n))` THEN
  REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN CONJ_TAC THENL
   [FIRST_ASSUM(MP_TAC o MATCH_MP LFUNCTION) THEN
    MP_TAC(ISPECL [`sequentially`; `vsum (1..k) (\n. c n / Cx (&n))`]
                LIM_CONST) THEN
    REWRITE_TAC[GSYM IMP_CONJ_ALT; sums; FROM_INTER_NUMSEG] THEN
    DISCH_THEN(MP_TAC o MATCH_MP LIM_SUB) THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM) THEN
    REWRITE_TAC[] THEN MATCH_MP_TAC LIM_EVENTUALLY THEN
    REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `k + 1` THEN
    X_GEN_TAC `m:num` THEN DISCH_TAC THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE `k + 1 <= m ==> k <= m`)) THEN
    SIMP_TAC[LE_EXISTS; LEFT_IMP_EXISTS_THM] THEN
    ASM_SIMP_TAC[VSUM_ADD_SPLIT; ARITH_RULE `1 <= k ==> 1 <= k + 1`] THEN
    REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC;
    MATCH_MP_TAC ALWAYS_EVENTUALLY THEN
    ASM_SIMP_TAC[ARITH_RULE `1 <= k + 1`; REAL_OF_NUM_ADD]]);;

let LFUNCTION_PARTIAL_SUM_STRONG = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> ?B. &0 < B /\
                 !n. norm(Lfunction c - vsum(1..n) (\n. c(n) / Cx(&n)))
                         <= B / (&n + &1)`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP LFUNCTION_PARTIAL_SUM) THEN
  DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `max B (norm(Lfunction c))` THEN
  ASM_SIMP_TAC[REAL_LT_MAX] THEN X_GEN_TAC `n:num` THEN
  ASM_CASES_TAC `n = 0` THENL
   [ASM_REWRITE_TAC[VSUM_CLAUSES_NUMSEG; VECTOR_SUB_RZERO; ARITH] THEN
    REAL_ARITH_TAC;
    FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN ASM_SIMP_TAC[LE_1] THEN
    MATCH_MP_TAC(REAL_ARITH `a <= b ==> x <= a ==> x <= b`) THEN
    ASM_SIMP_TAC[REAL_LE_DIV2_EQ; REAL_ARITH `&0 < &n + &1`] THEN
    REAL_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* First key bound, when the Lfunction is not zero (as indeed it isn't).     *)
(* ------------------------------------------------------------------------- *)

let BOUNDED_LFUNCTION_DIRICHLET_MANGOLDT_LEMMA = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> bounded
              { Lfunction(c) *
                vsum(1..x) (\n. c(n) * Cx(mangoldt n / &n)) -
                vsum(1..x) (\n. c(n) * Cx(log(&n) / &n)) | x IN (:num)}`,
  REWRITE_TAC[BOUNDED_POS; SIMPLE_IMAGE; FORALL_IN_IMAGE; IN_UNIV] THEN
  REPEAT STRIP_TAC THEN
  SIMP_TAC[LOG_MANGOLDT_SUM; real_div; CX_MUL;  GSYM VSUM_CX; FINITE_DIVISORS;
           LE_1; GSYM VSUM_COMPLEX_LMUL; GSYM VSUM_COMPLEX_RMUL] THEN
  REWRITE_TAC[VSUM_VSUM_DIVISORS] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP DIRICHLET_CHARACTER_MUL th]) THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_MUL; COMPLEX_INV_MUL; CX_MUL; CX_INV] THEN
  ONCE_REWRITE_TAC[COMPLEX_RING
   `(ck * cn) * cm * k * n:complex = (ck * k) * (cn * cm * n)`] THEN
  SIMP_TAC[VSUM_COMPLEX_RMUL; FINITE_NUMSEG] THEN
  SIMP_TAC[GSYM VSUM_COMPLEX_LMUL; FINITE_NUMSEG] THEN
  SIMP_TAC[GSYM VSUM_SUB; FINITE_NUMSEG] THEN
  REWRITE_TAC[GSYM COMPLEX_SUB_RDISTRIB] THEN
  MP_TAC(SPECL [`d:num`; `c:num->complex`] LFUNCTION_PARTIAL_SUM_STRONG) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `&18 * B` THEN
  ASM_SIMP_TAC[REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN
  X_GEN_TAC `x:num` THEN MATCH_MP_TAC VSUM_NORM_TRIANGLE THEN
  REWRITE_TAC[FINITE_NUMSEG; COMPLEX_NORM_MUL] THEN
  REWRITE_TAC[COMPLEX_NORM_INV; COMPLEX_NORM_CX; REAL_ABS_NUM] THEN
  REWRITE_TAC[GSYM real_div] THEN REWRITE_TAC[REAL_MUL_ASSOC] THEN
  REWRITE_TAC[real_abs; MANGOLDT_POS_LE] THEN ASM_CASES_TAC `x = 0` THEN
  ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; ARITH; REAL_LE_MUL; REAL_LT_IMP_LE;
               REAL_OF_NUM_LT; ARITH] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum(1..x) (\n. B / &x * mangoldt n)` THEN CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[SUM_LMUL] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `B / &x * &18 * &x` THEN CONJ_TAC THENL
     [MATCH_MP_TAC REAL_LE_LMUL THEN
      ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS; REAL_LT_IMP_LE] THEN
      REWRITE_TAC[REWRITE_RULE[ETA_AX] PSI_BOUND];
      ASM_SIMP_TAC[REAL_FIELD `~(x = &0) ==> B / x * &18 * x = &18 * B`;
                   REAL_OF_NUM_EQ; REAL_LE_REFL]]] THEN
  MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `n:num` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP DIRICHLET_CHARACTER_NORM th]) THEN
  COND_CASES_TAC THEN
  ASM_SIMP_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_MUL_RID; REAL_LE_MUL;
               REAL_LE_DIV; REAL_POS; REAL_LT_IMP_LE; MANGOLDT_POS_LE] THEN
  REWRITE_TAC[real_div; REAL_ARITH `a * b * c <= d <=> (a * c) * b <= d`] THEN
  MATCH_MP_TAC REAL_LE_RMUL THEN REWRITE_TAC[MANGOLDT_POS_LE] THEN
  ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `B / (&(x DIV n) + &1)` THEN
  ASM_REWRITE_TAC[GSYM complex_div] THEN
  REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
  ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_INV_INV] THEN
  ONCE_REWRITE_TAC[GSYM REAL_INV_MUL] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
  SUBGOAL_THEN `1 <= x` ASSUME_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
  ASM_SIMP_TAC[GSYM real_div; REAL_LT_DIV; REAL_OF_NUM_LT; LE_1] THEN
  ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN
  MP_TAC(SPECL [`x:num`; `n:num`] DIVISION) THEN ASM_ARITH_TAC);;

let SUMMABLE_CHARACTER_LOG_OVER_N = prove
 (`!c d. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> summable (from 1) (\n. c(n) * Cx(log(&n) / &n))`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN MATCH_MP_TAC SERIES_DIRICHLET_COMPLEX THEN
  MAP_EVERY EXISTS_TAC [`4`; `1`] THEN REWRITE_TAC[REAL_CX] THEN
  FIRST_ASSUM(fun th ->
    REWRITE_TAC[MATCH_MP BOUNDED_LFUNCTION_PARTIAL_SUMS th]) THEN
  CONJ_TAC THENL
   [SIMP_TAC[DECREASING_LOG_OVER_N; GSYM REAL_OF_NUM_ADD; RE_CX];
    MP_TAC LIM_LOG_OVER_N THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM_EVENTUALLY) THEN
    REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `1` THEN
    ASM_SIMP_TAC[CX_LOG; CX_DIV; LE_1; REAL_OF_NUM_LT]]);;

let BOUNDED_LFUNCTION_DIRICHLET_MANGOLDT = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> bounded
              { Lfunction(c) *
                vsum(1..x) (\n. c(n) * Cx(mangoldt n / &n)) | x IN (:num)}`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o
    MATCH_MP BOUNDED_LFUNCTION_DIRICHLET_MANGOLDT_LEMMA) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP SUMMABLE_CHARACTER_LOG_OVER_N) THEN
  DISCH_THEN(MP_TAC o MATCH_MP SUMMABLE_IMP_SUMS_BOUNDED) THEN
  REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP BOUNDED_SUMS) THEN
  MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] BOUNDED_SUBSET) THEN
  REWRITE_TAC[SIMPLE_IMAGE; SUBSET; FORALL_IN_IMAGE] THEN
  REWRITE_TAC[IN_UNIV; IN_ELIM_THM; RIGHT_EXISTS_AND_THM; EXISTS_IN_IMAGE;
              GSYM CONJ_ASSOC] THEN
  X_GEN_TAC `n:num` THEN REPEAT(EXISTS_TAC `n:num`) THEN VECTOR_ARITH_TAC);;

let BOUNDED_DIRICHLET_MANGOLDT_NONZERO = prove
 (`!d c.
      dirichlet_character d c /\ ~(c = chi_0 d) /\ ~(Lfunction c = Cx(&0))
      ==> bounded { vsum(1..x) (\n. c n * Cx(mangoldt n / &n)) | x IN (:num)}`,
  REPEAT GEN_TAC THEN REWRITE_TAC[CONJ_ASSOC] THEN
  DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN
  DISCH_THEN(MP_TAC o MATCH_MP BOUNDED_LFUNCTION_DIRICHLET_MANGOLDT) THEN
  REWRITE_TAC[BOUNDED_POS; SIMPLE_IMAGE; FORALL_IN_IMAGE; IN_UNIV] THEN
  REWRITE_TAC[COMPLEX_NORM_MUL] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; COMPLEX_NORM_NZ] THEN
  ASM_MESON_TAC[COMPLEX_NORM_NZ; REAL_LT_DIV]);;

(* ------------------------------------------------------------------------- *)
(* Now a bound when the Lfunction is zero (hypothetically).                  *)
(* ------------------------------------------------------------------------- *)

let MANGOLDT_LOG_SUM = prove
 (`!n. 1 <= n
       ==> mangoldt(n) = --(sum {d | d divides n} (\d. mobius(d) * log(&d)))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`\n. mangoldt n`; `\n. log(&n)`] MOBIUS_INVERSION) THEN
  ASM_SIMP_TAC[LOG_MANGOLDT_SUM; LE_1] THEN DISCH_THEN(K ALL_TAC) THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `sum {d | d divides n} (\x. mobius x * (log(&n) - log(&x)))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_EQ THEN X_GEN_TAC `d:num` THEN
    REWRITE_TAC[IN_ELIM_THM; DIVIDES_DIV_MULT] THEN
    ABBREV_TAC `q = n DIV d` THEN
    MAP_EVERY ASM_CASES_TAC [`q = 0`; `d = 0`] THEN
    ASM_SIMP_TAC[MULT_CLAUSES; LE_1] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
    ASM_SIMP_TAC[GSYM REAL_OF_NUM_MUL; LOG_MUL; REAL_OF_NUM_LT; LE_1] THEN
    REAL_ARITH_TAC;
    ASM_SIMP_TAC[REAL_SUB_LDISTRIB; SUM_SUB; FINITE_DIVISORS; LE_1] THEN
    ASM_SIMP_TAC[SUM_RMUL; REWRITE_RULE[ETA_AX] DIVISORSUM_MOBIUS] THEN
    MATCH_MP_TAC(REAL_ARITH `a = &0 ==> a - b = --b`) THEN
    COND_CASES_TAC THEN ASM_REWRITE_TAC[LOG_1] THEN REAL_ARITH_TAC]);;

let BOUNDED_DIRICHLET_MANGOLDT_LEMMA = prove
 (`!d c x.
        dirichlet_character d c /\ ~(c = chi_0 d) /\ 1 <= x
        ==> Cx(log(&x)) + vsum (1..x) (\n. c(n) * Cx(mangoldt n / &n)) =
            vsum (1..x) (\n. c(n) / Cx(&n) *
                             vsum {d | d divides n}
                                  (\d. Cx(mobius(d) * log(&x / &d))))`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MANGOLDT_LOG_SUM] THEN
  MATCH_MP_TAC(COMPLEX_RING `c - b = a ==> (a:complex) + b = c`) THEN
  SIMP_TAC[GSYM VSUM_SUB; FINITE_NUMSEG] THEN
  SIMP_TAC[CX_NEG; CX_DIV; GSYM VSUM_CX; FINITE_NUMSEG; FINITE_DIVISORS;
           LE_1] THEN
  REWRITE_TAC[SIMPLE_COMPLEX_ARITH
   `c / d * x - c * --y / d:complex = c / d * (x + y)`] THEN
  SIMP_TAC[GSYM VSUM_ADD; FINITE_DIVISORS; LE_1] THEN
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   `vsum (1..x)
         (\n. c n / Cx(&n) * vsum {d | d divides n}
               (\d. Cx(mobius d * log(&x))))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC VSUM_EQ_NUMSEG THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN
    REWRITE_TAC[] THEN AP_TERM_TAC THEN MATCH_MP_TAC VSUM_EQ THEN
    X_GEN_TAC `m:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN DISCH_TAC THEN
    REWRITE_TAC[CX_MUL; GSYM COMPLEX_ADD_LDISTRIB] THEN AP_TERM_TAC THEN
    REWRITE_TAC[GSYM CX_ADD; CX_INJ] THEN
    ASM_CASES_TAC `m = 0` THENL
     [ASM_MESON_TAC[DIVIDES_ZERO; LE_1]; ALL_TAC] THEN
    ASM_SIMP_TAC[LOG_DIV; REAL_OF_NUM_LT; LE_1] THEN REAL_ARITH_TAC;
    SIMP_TAC[FINITE_DIVISORS; CX_MUL; SUM_RMUL; LE_1; VSUM_CX] THEN
    SIMP_TAC[REWRITE_RULE[ETA_AX] DIVISORSUM_MOBIUS] THEN
    SIMP_TAC[COND_RAND; COND_RATOR; COMPLEX_MUL_LZERO; COMPLEX_MUL_RZERO] THEN
    ASM_SIMP_TAC[VSUM_DELTA; GSYM COMPLEX_VEC_0; IN_NUMSEG; LE_REFL] THEN
    MP_TAC(SPECL [`d:num`; `c:num->complex`] DIRICHLET_CHARACTER_EQ_1) THEN
    ASM_SIMP_TAC[COMPLEX_MUL_LID; COMPLEX_DIV_1]]);;

let SUM_LOG_OVER_X_BOUND = prove
 (`!x. abs(sum(1..x) (\n. log(&x / &n) / &x)) <= &4`,
  X_GEN_TAC `x:num` THEN ASM_CASES_TAC `x = 0` THENL
   [ASM_SIMP_TAC[SUM_CLAUSES_NUMSEG; ARITH_EQ; REAL_ABS_NUM; REAL_POS];
    ALL_TAC] THEN
  SIMP_TAC[real_div; SUM_RMUL; REAL_ABS_MUL; REAL_ABS_INV; REAL_ABS_NUM] THEN
  ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum (1..x) (\n. abs(log(&x / &n)))` THEN
  REWRITE_TAC[SUM_ABS_NUMSEG] THEN
  ASM_SIMP_TAC[real_abs; LOG_POS; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT;
               LE_1; REAL_MUL_LID; REAL_OF_NUM_LE; LOG_DIV] THEN
  REWRITE_TAC[SUM_SUB_NUMSEG; GSYM LOG_FACT] THEN
  REWRITE_TAC[SUM_CONST_NUMSEG; ADD_SUB] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP LOG_FACT_BOUNDS) THEN
  MATCH_MP_TAC(REAL_ARITH
   `&2 * l + abs(x) + &1 <= b
    ==> abs(lf - (xl - x + &1)) <= &2 * l
        ==> xl - lf <= b`) THEN
 MATCH_MP_TAC(REAL_ARITH
   `&1 <= x /\ l <= x ==> &2 * l + abs(x) + &1 <= &4 * x`) THEN
  ASM_SIMP_TAC[REAL_OF_NUM_LE; LE_1; LOG_LE_REFL]);;

let BOUNDED_DIRICHLET_MANGOLDT_ZERO = prove
 (`!d c.
      dirichlet_character d c /\ ~(c = chi_0 d) /\ Lfunction c = Cx(&0)
      ==> bounded { vsum(1..x) (\n. c n * Cx(mangoldt n / &n)) +
                    Cx(log(&x)) | x IN (:num)}`,
  ONCE_REWRITE_TAC[COMPLEX_ADD_SYM] THEN REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`d:num`; `c:num->complex`] LFUNCTION_PARTIAL_SUM_STRONG) THEN
  ASM_REWRITE_TAC[COMPLEX_SUB_LZERO; NORM_NEG] THEN
  DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
  SIMP_TAC[SET_RULE `{f x | x IN (:num)} = f 0 INSERT {f x | ~(x = 0)}`] THEN
  REWRITE_TAC[BOUNDED_INSERT; ARITH_RULE `~(n = 0) <=> 1 <= n`] THEN
  ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
  REWRITE_TAC[BOUNDED_POS; FORALL_IN_IMAGE; IN_ELIM_THM] THEN
  MP_TAC(SPECL [`d:num`; `c:num->complex`]
    BOUNDED_DIRICHLET_MANGOLDT_LEMMA) THEN
  ASM_SIMP_TAC[] THEN DISCH_THEN(K ALL_TAC) THEN
  SIMP_TAC[GSYM VSUM_COMPLEX_LMUL; FINITE_DIVISORS; LE_1] THEN
  REWRITE_TAC[VSUM_VSUM_DIVISORS] THEN
  FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP DIRICHLET_CHARACTER_MUL th]) THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_MUL; CX_MUL; complex_div; COMPLEX_INV_MUL] THEN
  ONCE_REWRITE_TAC[COMPLEX_RING
   `((ck * cn) * k' * n') * m * l = (cn * m * n') * l * (ck * k')`] THEN
  REWRITE_TAC[GSYM complex_div] THEN
  SIMP_TAC[VSUM_COMPLEX_LMUL; FINITE_NUMSEG] THEN
  EXISTS_TAC `&4 * B` THEN
  ASM_SIMP_TAC[REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN
  X_GEN_TAC `x:num` THEN DISCH_TAC THEN MATCH_MP_TAC VSUM_NORM_TRIANGLE THEN
  REWRITE_TAC[FINITE_NUMSEG] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC
   `sum(1..x) (\n. inv(&n) * log(&x / &n) * B / (&(x DIV n) + &1))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `n:num` THEN
    STRIP_TAC THEN REWRITE_TAC[] THEN ONCE_REWRITE_TAC[COMPLEX_NORM_MUL] THEN
    MATCH_MP_TAC REAL_LE_MUL2 THEN REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL
     [REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_DIV; COMPLEX_NORM_CX] THEN
      FIRST_ASSUM(fun t -> SIMP_TAC[MATCH_MP DIRICHLET_CHARACTER_NORM t]) THEN
      COND_CASES_TAC THEN
      REWRITE_TAC[REAL_MUL_LZERO; REAL_LE_INV_EQ; REAL_POS] THEN
      REWRITE_TAC[REAL_MUL_LID; REAL_ABS_NUM] THEN
      ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
      ASM_SIMP_TAC[REAL_FIELD `&1 <= n ==> inv(n) * n = &1`; REAL_OF_NUM_LE;
                   REAL_ABS_MOBIUS];
      SIMP_TAC[CX_LOG; REAL_LT_DIV; REAL_OF_NUM_LT; LE_1] THEN
      SIMP_TAC[COMPLEX_NORM_CX; COMPLEX_NORM_MUL] THEN
      MATCH_MP_TAC REAL_LE_MUL2 THEN SIMP_TAC[REAL_ABS_POS; NORM_POS_LE] THEN
      ASM_REWRITE_TAC[] THEN SIMP_TAC[REAL_ARITH `abs x <= x <=> &0 <= x`] THEN
      ASM_SIMP_TAC[LOG_POS; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1;
                   REAL_MUL_LID; REAL_OF_NUM_LE]];
    ALL_TAC] THEN
  SIMP_TAC[real_div; REAL_RING `a * l * B * i:real = ((l * i) * a) * B`] THEN
  REWRITE_TAC[SUM_RMUL] THEN ASM_SIMP_TAC[REAL_LE_RMUL_EQ] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum(1..x) (\n. log(&x / &n) / &x)` THEN
  ASM_SIMP_TAC[REAL_ARITH `abs x <= a ==> x <= a`; SUM_LOG_OVER_X_BOUND] THEN
  MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `n:num` THEN STRIP_TAC THEN
  REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
  MATCH_MP_TAC REAL_LE_LMUL THEN
  ASM_SIMP_TAC[GSYM real_div; LOG_POS; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT;
               LE_1; REAL_MUL_LID; REAL_OF_NUM_LE] THEN
  ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM REAL_INV_INV] THEN
  REWRITE_TAC[GSYM REAL_INV_MUL] THEN MATCH_MP_TAC REAL_LE_INV2 THEN
  ASM_SIMP_TAC[GSYM real_div; REAL_LT_DIV; REAL_OF_NUM_LT; LE_1] THEN
  ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
  REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_MUL; REAL_OF_NUM_LE] THEN
  MP_TAC(SPECL [`x:num`; `n:num`] DIVISION) THEN ASM_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Now the analogous result for the principal character.                     *)
(* ------------------------------------------------------------------------- *)

let BOUNDED_DIRICHLET_MANGOLDT_PRINCIPAL_LEMMA = prove
 (`!d. 1 <= d
       ==> norm(vsum(1..x) (\n. (chi_0 d n - Cx(&1)) * Cx(mangoldt n / &n)))
            <= sum {p | prime p /\ p divides d} (\p. log(&p))`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `sum {p | prime p /\ p divides d}
                  (\p. sum {k | 1 <= k /\ p EXP k <= x}
                           (\k. log(&p) / &p pow k))` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC SUM_LE THEN ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; LE_1] THEN
    X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
    SUBGOAL_THEN `2 <= p /\ 1 <= p /\ 1 < p` ASSUME_TAC THENL
     [ASM_MESON_TAC[PRIME_GE_2; ARITH_RULE `2 <= p ==> 1 < p /\ 1 <= p`];
      ALL_TAC] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum(1..x) (\k. log(&p) / &p pow k)` THEN CONJ_TAC THENL
     [MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN REWRITE_TAC[FINITE_NUMSEG] THEN
      ASM_SIMP_TAC[IN_DIFF; IN_NUMSEG; IN_ELIM_THM; SUBSET; REAL_POW_LE;
                   REAL_POS; REAL_LE_DIV; LOG_POS; REAL_OF_NUM_LE;
                   PRIME_GE_2; ARITH_RULE `2 <= p ==> 1 <= p`] THEN
      X_GEN_TAC `k:num` THEN STRIP_TAC THEN
      MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `p EXP k` THEN
      ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `2 EXP k` THEN
      ASM_SIMP_TAC[LT_POW2_REFL; LT_IMP_LE; EXP_MONO_LE];
      REWRITE_TAC[real_div; SUM_LMUL] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_RID] THEN
      ASM_SIMP_TAC[REAL_LE_LMUL_EQ; LOG_POS_LT; REAL_OF_NUM_LT] THEN
      SIMP_TAC[GSYM REAL_POW_INV; SUM_GP; REAL_INV_EQ_1; REAL_OF_NUM_EQ] THEN
      COND_CASES_TAC THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
      COND_CASES_TAC THENL [ASM_ARITH_TAC; ALL_TAC] THEN
      ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_SUB_LT; REAL_LT_LDIV_EQ;
                   REAL_MUL_LID; REAL_OF_NUM_LT; LE_1] THEN
      REWRITE_TAC[real_pow] THEN
      MATCH_MP_TAC(REAL_ARITH `&0 <= x * y /\ &2 * x <= &1
                                ==> x pow 1 - x * y <= &1 - x`) THEN
      ASM_SIMP_TAC[REAL_LE_DIV; REAL_POW_LE; REAL_POS; REAL_LE_MUL] THEN
      REWRITE_TAC[real_div; REAL_MUL_LID] THEN REWRITE_TAC[GSYM real_div] THEN
      ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_MUL_LID; REAL_OF_NUM_LT;
                   REAL_OF_NUM_LE; LE_1]]] THEN
   W(MP_TAC o PART_MATCH (lhs o rand) SUM_SUM_PRODUCT o rand o snd) THEN
    ANTS_TAC THENL
     [ASM_SIMP_TAC[FINITE_SPECIAL_DIVISORS; LE_1] THEN
      X_GEN_TAC `p:num` THEN REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN
      MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `1..x` THEN
      SIMP_TAC[SUBSET; FINITE_NUMSEG; IN_NUMSEG; IN_ELIM_THM] THEN
      X_GEN_TAC `k:num` THEN STRIP_TAC THEN
      MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `p EXP k` THEN
      ASM_REWRITE_TAC[] THEN
      MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `2 EXP k` THEN
      ASM_SIMP_TAC[LT_POW2_REFL; LT_IMP_LE; EXP_MONO_LE; PRIME_GE_2];
      ALL_TAC] THEN
    DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC VSUM_NORM_TRIANGLE THEN
    REWRITE_TAC[FINITE_NUMSEG; COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
    REWRITE_TAC[chi_0; COND_RAND; COND_RATOR] THEN
    REWRITE_TAC[COMPLEX_SUB_REFL; COMPLEX_SUB_LZERO] THEN
    REWRITE_TAC[COMPLEX_NORM_CX; NORM_NEG; REAL_ABS_NUM] THEN
    REWRITE_TAC[REAL_MUL_LZERO; REAL_MUL_LID] THEN
    REWRITE_TAC[mangoldt; COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN
    REWRITE_TAC[real_div; REAL_MUL_LZERO; REAL_ABS_NUM] THEN
    REWRITE_TAC[TAUT `(if a then &0 else if b then x else &0) =
                      (if ~a /\ b then x else &0)`] THEN
    SIMP_TAC[GSYM real_div; GSYM SUM_RESTRICT_SET; FINITE_NUMSEG] THEN
    MATCH_MP_TAC REAL_EQ_IMP_LE THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC SUM_EQ_GENERAL THEN EXISTS_TAC `\(p,k). p EXP k` THEN
    REWRITE_TAC[EXISTS_UNIQUE; EXISTS_PAIR_THM; FORALL_PAIR_THM] THEN
    REWRITE_TAC[IN_ELIM_PAIR_THM] THEN
    REWRITE_TAC[IN_ELIM_THM; IN_NUMSEG; PAIR_EQ] THEN CONJ_TAC THENL
     [X_GEN_TAC `y:num` THEN
      REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `p:num` THEN
      MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:num` THEN
      STRIP_TAC THEN FIRST_X_ASSUM SUBST_ALL_TAC THEN
      UNDISCH_TAC `~(coprime(p EXP k,d))` THEN
      ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_PRIMEPOW; LE_1] THEN
      DISCH_TAC THEN MAP_EVERY X_GEN_TAC [`q:num`; `j:num`] THEN
      REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
      ASM_SIMP_TAC[EQ_PRIME_EXP] THEN ASM_ARITH_TAC;
      ALL_TAC] THEN
    MAP_EVERY X_GEN_TAC [`p:num`; `k:num`]  THEN
    ASM_SIMP_TAC[ONCE_REWRITE_RULE[COPRIME_SYM] COPRIME_PRIMEPOW; LE_1] THEN
    REPEAT STRIP_TAC THENL
     [ASM_MESON_TAC[EXP_EQ_0; LE_1; PRIME_0]; ASM_MESON_TAC[]; ALL_TAC] THEN
    REWRITE_TAC[GSYM REAL_OF_NUM_POW; REAL_ABS_DIV; REAL_ABS_POW;
                REAL_ABS_NUM] THEN
    AP_THM_TAC THEN AP_TERM_TAC THEN
    MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ x = y ==> abs x = y`) THEN
    ASM_SIMP_TAC[LOG_POS; REAL_OF_NUM_LE; PRIME_IMP_NZ; LE_1] THEN
    AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC SELECT_UNIQUE THEN
    X_GEN_TAC `q:num` THEN REWRITE_TAC[] THEN EQ_TAC THENL
     [ASM_MESON_TAC[PRIME_DIVEXP; DIVIDES_PRIME_PRIME];
      DISCH_THEN SUBST1_TAC THEN ASM_REWRITE_TAC[] THEN
      SUBGOAL_THEN `k = SUC(k - 1)` SUBST1_TAC THENL
       [ASM_ARITH_TAC; SIMP_TAC[EXP; DIVIDES_RMUL; DIVIDES_REFL]]]);;

let BOUNDED_DIRICHLET_MANGOLDT_PRINCIPAL = prove
 (`!d. 1 <= d
       ==> bounded { vsum(1..x) (\n. chi_0 d n * Cx(mangoldt n / &n)) -
                     Cx(log(&x)) | x IN (:num)}`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[bounded; SIMPLE_IMAGE; FORALL_IN_IMAGE; IN_UNIV] THEN
  EXISTS_TAC
   `abs(sum {p | prime p /\ p divides d} (\p. log(&p))) +
    abs(log(&0)) + &21` THEN
  X_GEN_TAC `x:num` THEN ASM_CASES_TAC `x = 0` THENL
   [ASM_SIMP_TAC[VSUM_CLAUSES_NUMSEG; ARITH; VECTOR_SUB_LZERO] THEN
    REWRITE_TAC[NORM_NEG; COMPLEX_NORM_CX] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  MATCH_MP_TAC(REAL_ARITH `x <= a + b ==> x <= a + abs y + b`) THEN
  MATCH_MP_TAC(NORM_ARITH
   `!s'. norm(s') <= p /\ norm(s - s' - l) <= &21
        ==> norm(s - l) <= abs p + &21`) THEN
  EXISTS_TAC `vsum(1..x) (\n. (chi_0 d n - Cx(&1)) * Cx(mangoldt n / &n))` THEN
  ASM_SIMP_TAC[BOUNDED_DIRICHLET_MANGOLDT_PRINCIPAL_LEMMA] THEN
  SIMP_TAC[GSYM VSUM_SUB; FINITE_NUMSEG] THEN
  REWRITE_TAC[COMPLEX_RING `c * x - (c - Cx(&1)) * x = x`] THEN
  SIMP_TAC[GSYM CX_SUB; VSUM_CX; FINITE_NUMSEG; COMPLEX_NORM_CX] THEN
  MATCH_MP_TAC MERTENS_LEMMA THEN ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* The arithmetic-geometric mean that we want.                               *)
(* ------------------------------------------------------------------------- *)

let SUM_OF_NUMBERS = prove
 (`!n. nsum(0..n) (\i. i) = (n * (n + 1)) DIV 2`,
  INDUCT_TAC THEN ASM_REWRITE_TAC[NSUM_CLAUSES_NUMSEG] THEN ARITH_TAC);;

let PRODUCT_POW_NSUM = prove
 (`!s. FINITE s ==> product s (\i. z pow (f i)) = z pow (nsum s f)`,
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[PRODUCT_CLAUSES; NSUM_CLAUSES; real_pow; REAL_POW_ADD]);;

let PRODUCT_SPECIAL = prove
 (`!z i. product (0..n) (\i. z pow i) = z pow ((n * (n + 1)) DIV 2)`,
  SIMP_TAC[PRODUCT_POW_NSUM; FINITE_NUMSEG; SUM_OF_NUMBERS]);;

let AGM_SPECIAL = prove
 (`!n t. &0 <= t
         ==> (&n + &1) pow 2 * t pow n <= (sum(0..n) (\k. t pow k)) pow 2`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`n + 1`; `\k. (t:real) pow (k - 1)`] AGM) THEN
  ASM_SIMP_TAC[REAL_POW_LE; ARITH_RULE `1 <= n + 1`] THEN
  SUBGOAL_THEN `1..n+1 = 0+1..n+1` SUBST1_TAC THENL
   [REWRITE_TAC[ADD_CLAUSES]; ALL_TAC] THEN
  REWRITE_TAC[SUM_OFFSET; PRODUCT_OFFSET; ADD_SUB] THEN
  REWRITE_TAC[PRODUCT_SPECIAL] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ_ALT] REAL_POW_LE2)) THEN
  DISCH_THEN(MP_TAC o SPEC `2`) THEN
  ASM_SIMP_TAC[PRODUCT_POS_LE_NUMSEG; REAL_POW_LE] THEN
  REWRITE_TAC[REAL_POW_POW] THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
  SUBGOAL_THEN `2 * (n * (n + 1)) DIV 2 = n * (n + 1)` SUBST1_TAC THENL
   [SUBGOAL_THEN `EVEN(n * (n + 1))` MP_TAC THENL
     [REWRITE_TAC[EVEN_ADD; EVEN_MULT; ARITH_EVEN] THEN CONV_TAC TAUT;
      SIMP_TAC[EVEN_EXISTS; LEFT_IMP_EXISTS_THM; DIV_MULT; ARITH]];
    REWRITE_TAC[GSYM REAL_POW_POW] THEN DISCH_THEN(MP_TAC o MATCH_MP
     (REWRITE_RULE[IMP_CONJ_ALT] REAL_POW_LE2_REV)) THEN
    REWRITE_TAC[ADD_EQ_0; ARITH_EQ; REAL_POW_2; REAL_LE_SQUARE] THEN
    REWRITE_TAC[GSYM REAL_POW_2; GSYM REAL_OF_NUM_ADD] THEN
    ASM_SIMP_TAC[REAL_POW_DIV; REAL_LE_RDIV_EQ; REAL_POW_LT;
                 REAL_ARITH `&0 < &n + &1`] THEN
    REWRITE_TAC[REAL_MUL_AC]]);;

(* ------------------------------------------------------------------------- *)
(* The trickiest part: the nonvanishing of L-series for real character.      *)
(* Proof from Monsky's article (AMM 1993, pp. 861-2).                        *)
(* ------------------------------------------------------------------------- *)

let DIVISORSUM_PRIMEPOW = prove
 (`!f p k. prime p
           ==> sum {m | m divides (p EXP k)} c = sum(0..k) (\i. c(p EXP i))`,
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[DIVIDES_PRIMEPOW; SET_RULE
   `{m | ?i. P i /\ m = f i} = IMAGE f {i | P i}`] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN
  REWRITE_TAC[GSYM NUMSEG_LE] THEN MATCH_MP_TAC SUM_IMAGE THEN
  ASM_SIMP_TAC[IN_ELIM_THM; EQ_EXP; FINITE_NUMSEG_LE] THEN
  ASM_MESON_TAC[PRIME_0; PRIME_1]);;

let DIVISORVSUM_PRIMEPOW = prove
 (`!f p k. prime p
           ==> vsum {m | m divides (p EXP k)} c = vsum(0..k) (\i. c(p EXP i))`,
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[DIVIDES_PRIMEPOW; SET_RULE
   `{m | ?i. P i /\ m = f i} = IMAGE f {i | P i}`] THEN
  GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM o_DEF] THEN
  REWRITE_TAC[GSYM NUMSEG_LE] THEN MATCH_MP_TAC VSUM_IMAGE THEN
  ASM_SIMP_TAC[IN_ELIM_THM; EQ_EXP; FINITE_NUMSEG_LE] THEN
  ASM_MESON_TAC[PRIME_0; PRIME_1]);;

let DIRICHLET_CHARACTER_DIVISORSUM_EQ_1 = prove
 (`!d c p k. dirichlet_character d c /\ prime p /\ p divides d
             ==> vsum {m | m divides (p EXP k)} c = Cx(&1)`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `vsum {1} c : complex` THEN
  CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[VSUM_SING] THEN ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_1]] THEN
  MATCH_MP_TAC VSUM_SUPERSET THEN
  SIMP_TAC[SUBSET; IN_SING; IN_ELIM_THM; DIVIDES_1] THEN
  ASM_SIMP_TAC[DIVIDES_PRIMEPOW; LEFT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`y:num`; `i:num`] THEN
  DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC) THEN
  FIRST_X_ASSUM SUBST_ALL_TAC THEN REWRITE_TAC[COMPLEX_VEC_0] THEN
  FIRST_ASSUM(fun th -> SIMP_TAC[MATCH_MP DIRICHLET_CHARACTER_EQ_0 th]) THEN
  ONCE_REWRITE_TAC[COPRIME_SYM] THEN REWRITE_TAC[COPRIME_REXP] THEN
  ASM_CASES_TAC `i = 0` THEN ASM_REWRITE_TAC[EXP] THEN
  ASM_MESON_TAC[COPRIME_SYM; PRIME_COPRIME_EQ]);;

let DIRICHLET_CHARACTER_REAL_CASES = prove
 (`!d c. dirichlet_character d c /\ (!n. real(c n))
         ==> !n. c n = --Cx(&1) \/ c n = Cx(&0) \/ c n = Cx(&1)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN X_GEN_TAC `n:num` THEN
  FIRST_ASSUM(MP_TAC o SPEC `n:num` o MATCH_MP DIRICHLET_CHARACTER_NORM) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN REWRITE_TAC[REAL_EXISTS] THEN
  DISCH_THEN(X_CHOOSE_THEN `t:real` SUBST1_TAC) THEN
  REWRITE_TAC[COMPLEX_NORM_CX; GSYM CX_NEG; CX_INJ] THEN REAL_ARITH_TAC);;

let DIRICHLET_CHARACTER_DIVISORSUM_PRIMEPOW_POS = prove
 (`!d c p k. dirichlet_character d c /\ (!n. real(c n)) /\ prime p
             ==> &0 <= Re(vsum {m | m divides (p EXP k)} c)`,
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[RE_VSUM; FINITE_DIVISORS; EXP_EQ_0; PRIME_IMP_NZ] THEN
  ASM_SIMP_TAC[DIVISORSUM_PRIMEPOW] THEN
  FIRST_ASSUM(fun th -> SIMP_TAC[MATCH_MP DIRICHLET_CHARACTER_POW th]) THEN
  MP_TAC(SPECL [`d:num`; `c:num->complex`] DIRICHLET_CHARACTER_REAL_CASES) THEN
  ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o SPEC `p:num`) THEN STRIP_TAC THEN
  ASM_SIMP_TAC[GSYM CX_POW; RE_CX; SUM_POS_LE_NUMSEG;
               REAL_POW_LE; REAL_POS] THEN
  MATCH_MP_TAC(REAL_ARITH `(s = if EVEN k then &1 else &0) ==> &0 <= s`) THEN
  SPEC_TAC(`k:num`,`r:num`) THEN
  INDUCT_TAC THEN REWRITE_TAC[EVEN; SUM_CLAUSES_NUMSEG] THEN
  ASM_REWRITE_TAC[complex_pow; RE_CX; LE_0] THEN COND_CASES_TAC THEN
  ASM_REWRITE_TAC[COMPLEX_POW_NEG; COMPLEX_POW_ONE; COMPLEX_MUL_LNEG;
                  COMPLEX_MUL_RNEG; COMPLEX_NEG_NEG; COMPLEX_MUL_LID;
                  RE_NEG; RE_CX] THEN
  REAL_ARITH_TAC);;

let DIRICHLET_CHARACTER_DIVISORSUM_POS = prove
 (`!d c n. dirichlet_character d c /\ (!n. real(c n)) /\ ~(n = 0)
           ==> &0 <= Re(vsum {m | m divides n} c)`,
  REPEAT STRIP_TAC THEN FIRST_X_ASSUM(DISJ_CASES_TAC o MATCH_MP (ARITH_RULE
   `~(n = 0) ==> n = 1 \/ 1 < n`))
  THENL
   [ASM_SIMP_TAC[DIVIDES_ONE; SING_GSPEC; VSUM_SING] THEN
    ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_1; RE_CX; REAL_POS];
    ALL_TAC] THEN
  UNDISCH_TAC `1 < n` THEN SPEC_TAC(`n:num`,`n:num`) THEN
  MATCH_MP_TAC INDUCT_COPRIME_STRONG THEN CONJ_TAC THENL
   [ALL_TAC; ASM_MESON_TAC[DIRICHLET_CHARACTER_DIVISORSUM_PRIMEPOW_POS]] THEN
  MAP_EVERY X_GEN_TAC [`a:num`; `b:num`] THEN STRIP_TAC THEN
  MP_TAC(ISPEC `\m:num. Re(c m)` REAL_MULTIPLICATIVE_DIVISORSUM) THEN
  REWRITE_TAC[real_multiplicative] THEN ANTS_TAC THENL
   [FIRST_ASSUM(fun th -> REWRITE_TAC[MATCH_MP DIRICHLET_CHARACTER_MUL th]) THEN
    ASM_MESON_TAC[DIRICHLET_CHARACTER_EQ_1; RE_CX; REAL; CX_MUL];
  DISCH_THEN(MP_TAC o SPECL [`a:num`; `b:num`] o CONJUNCT2) THEN
  ASM_SIMP_TAC[GSYM RE_VSUM; FINITE_DIVISORS; MULT_EQ_0;
               ARITH_RULE `1 < n ==> ~(n = 0)`; REAL_LE_MUL]]);;

let lemma = prove
 (`!x n. &0 <= x /\ x <= &1 ==> &1 - &n * x <= (&1 - x) pow n`,
  REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN GEN_TAC THEN DISCH_TAC THEN
  INDUCT_TAC THEN REWRITE_TAC[real_pow] THENL [REAL_ARITH_TAC; ALL_TAC] THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&1 - x) * (&1 - &n * x)` THEN
  ASM_SIMP_TAC[REAL_LE_LMUL; REAL_SUB_LE; GSYM REAL_OF_NUM_SUC] THEN
  MATCH_MP_TAC(REAL_ARITH
   `&0 <= n * x * x ==> &1 - (n + &1) * x <= (&1 - x) * (&1 - n * x)`) THEN
  SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_LE_SQUARE]);;

let LFUNCTION_NONZERO_REAL = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d) /\ (!n. real(c n))
         ==> ~(Lfunction c = Cx(&0))`,
  REPEAT STRIP_TAC THEN
  MP_TAC(SPECL [`d:num`; `c:num->complex`]
   DIRICHLET_CHARACTER_NONPRINCIPAL_NONTRIVIAL) THEN
  ASM_REWRITE_TAC[] THEN STRIP_TAC THEN
  SUBGOAL_THEN
   `!z. norm(z) < &1
        ==> summable (from 1) (\n. c(n) * z pow n / (Cx(&1) - z pow n))`
  MP_TAC THENL
   [GEN_TAC THEN DISCH_TAC THEN ASM_CASES_TAC `z = Cx(&0)` THENL
     [MATCH_MP_TAC SUMMABLE_FROM_ELSEWHERE THEN EXISTS_TAC `2` THEN
      MATCH_MP_TAC SUMMABLE_EQ THEN EXISTS_TAC `\n:num. Cx(&0)` THEN
      REWRITE_TAC[GSYM COMPLEX_VEC_0; SUMMABLE_0] THEN
      ASM_SIMP_TAC[COMPLEX_VEC_0; COMPLEX_POW_ZERO; IN_FROM;
                   ARITH_RULE `2 <= n ==> ~(n = 0)`] THEN
      CONV_TAC COMPLEX_RING;
      ALL_TAC] THEN
    MATCH_MP_TAC SERIES_COMPARISON_COMPLEX THEN
    EXISTS_TAC `\n. Cx(&2 * norm(z:complex) pow n)` THEN
    REWRITE_TAC[REAL_CX; RE_CX] THEN
    SIMP_TAC[REAL_LE_MUL; REAL_POS; REAL_POW_LE; NORM_POS_LE] THEN
    ASM_SIMP_TAC[CX_MUL; CX_POW; SUMMABLE_COMPLEX_LMUL; COMPLEX_NORM_CX;
                 REAL_ABS_NORM; SUMMABLE_GP] THEN
    REWRITE_TAC[COMPLEX_NORM_MUL] THEN
    FIRST_ASSUM(fun th -> SIMP_TAC[MATCH_MP DIRICHLET_CHARACTER_NORM th]) THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
    SIMP_TAC[REAL_MUL_LZERO; REAL_MUL_LID; REAL_ABS_POS; REAL_LE_MUL] THEN
    REWRITE_TAC[TAUT `(p ==> (if q then x else T)) <=> p /\ q ==> x`] THEN
    MP_TAC(SPECL [`norm(z:complex)`; `&1 / &2`] REAL_ARCH_POW_INV) THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN ASM_REWRITE_TAC[] THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN DISCH_TAC THEN
    X_GEN_TAC `n:num` THEN REWRITE_TAC[GE] THEN STRIP_TAC THEN
    REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_NORM; REAL_ABS_NUM; REAL_ABS_POW] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    REWRITE_TAC[complex_div; COMPLEX_NORM_MUL; COMPLEX_NORM_POW] THEN
    MATCH_MP_TAC REAL_LE_LMUL THEN SIMP_TAC[REAL_POW_LE; NORM_POS_LE] THEN
    REWRITE_TAC[COMPLEX_NORM_INV] THEN
    SUBST1_TAC(REAL_ARITH `&2 = inv(&1 / &2)`) THEN
    MATCH_MP_TAC REAL_LE_INV2 THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
    MATCH_MP_TAC(NORM_ARITH
     `norm(z) <= norm(w) - h ==> h <= norm(w - z)`) THEN
    REWRITE_TAC[COMPLEX_NORM_CX] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `norm(z:complex) pow N` THEN
    ASM_SIMP_TAC[REAL_LT_IMP_LE] THEN REWRITE_TAC[COMPLEX_NORM_POW] THEN
    MATCH_MP_TAC REAL_POW_MONO_INV THEN
    ASM_SIMP_TAC[REAL_LT_IMP_LE; NORM_POS_LE];
    ALL_TAC] THEN
  REWRITE_TAC[summable; RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
  DISCH_THEN(X_CHOOSE_THEN `f:complex->complex` (LABEL_TAC "+")) THEN
  ABBREV_TAC `b = \z n. inv(Cx(&n) * (Cx(&1) - z)) -
                        z pow n / (Cx(&1) - z pow n)` THEN
  SUBGOAL_THEN
   `!z:complex. norm(z) < &1 ==> ((\n. c(n) * b z n) sums --(f z)) (from 1)`
   (LABEL_TAC "*")
  THENL
   [REPEAT STRIP_TAC THEN EXPAND_TAC "b" THEN
    REWRITE_TAC[COMPLEX_SUB_LDISTRIB; GSYM COMPLEX_SUB_LZERO] THEN
    MATCH_MP_TAC SERIES_SUB THEN ASM_SIMP_TAC[GSYM COMPLEX_SUB_LDISTRIB] THEN
    REWRITE_TAC[COMPLEX_INV_MUL; COMPLEX_MUL_ASSOC] THEN
    SUBST1_TAC(COMPLEX_RING `Cx(&0) = Cx(&0) * inv(Cx(&1) - z)`) THEN
    MATCH_MP_TAC SERIES_COMPLEX_RMUL THEN
    MP_TAC(SPECL [`d:num`; `c:num->complex`] LFUNCTION) THEN
    ASM_REWRITE_TAC[complex_div];
    ALL_TAC] THEN
  SUBGOAL_THEN `!z. norm(z) < &1
                    ==> ((\n. vsum {d | d divides n} (\d. c d) * z pow n) sums
                         f(z)) (from 1)`
  (LABEL_TAC "+") THENL
   [REPEAT STRIP_TAC THEN REWRITE_TAC[sums; FROM_INTER_NUMSEG] THEN
    SIMP_TAC[GSYM VSUM_COMPLEX_RMUL; FINITE_DIVISORS; LE_1] THEN
    REWRITE_TAC[VSUM_VSUM_DIVISORS] THEN
    REMOVE_THEN "+" (MP_TAC o SPEC `z:complex`) THEN
    ASM_REWRITE_TAC[] THEN
    SIMP_TAC[VSUM_COMPLEX_LMUL; FINITE_NUMSEG; sums; FROM_INTER_NUMSEG] THEN
    MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM) THEN
    SIMP_TAC[GSYM VSUM_SUB; FINITE_NUMSEG] THEN
    REWRITE_TAC[GSYM COMPLEX_SUB_LDISTRIB] THEN
    ONCE_REWRITE_TAC[MULT_SYM] THEN REWRITE_TAC[GSYM COMPLEX_POW_POW] THEN
    REWRITE_TAC[VSUM_GP; ARITH_RULE `n < 1 <=> n = 0`] THEN
    SIMP_TAC[DIV_EQ_0; LE_1] THEN SIMP_TAC[GSYM NOT_LE] THEN
    SUBGOAL_THEN `!k. 1 <= k ==> ~(z pow k = Cx(&1))` (fun th -> SIMP_TAC[th])
    THENL [ASM_MESON_TAC[COMPLEX_POW_EQ_1; LE_1; REAL_LT_REFL]; ALL_TAC] THEN
    REWRITE_TAC[COMPLEX_POW_1; complex_div] THEN
    REWRITE_TAC[COMPLEX_RING `(zx * i - (zx - w) * i) = w * i`] THEN
    SIMP_TAC[COMPLEX_POW_POW] THEN MATCH_MP_TAC LIM_TRANSFORM_EVENTUALLY THEN
    EXISTS_TAC `\x. vsum (1..x)
                       (\n. z pow x * c n *
                            z pow (n - x MOD n) / (Cx(&1) - z pow n))` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC ALWAYS_EVENTUALLY THEN X_GEN_TAC `x:num` THEN
      REWRITE_TAC[] THEN MATCH_MP_TAC VSUM_EQ_NUMSEG THEN
      X_GEN_TAC `n:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN
      REWRITE_TAC[complex_div; COMPLEX_INV_MUL; COMPLEX_MUL_ASSOC] THEN
      AP_THM_TAC THEN AP_TERM_TAC THEN
      ONCE_REWRITE_TAC[COMPLEX_RING `(zx * cn) * zn = cn * zx * zn`] THEN
      AP_TERM_TAC THEN REWRITE_TAC[GSYM COMPLEX_POW_ADD] THEN
      AP_TERM_TAC THEN REWRITE_TAC[MULT_CLAUSES] THEN
      MP_TAC(SPECL [`x:num`; `n:num`] DIVISION) THEN ASM_SIMP_TAC[LE_1] THEN
      ARITH_TAC;
      ALL_TAC] THEN
    REWRITE_TAC[COMPLEX_VEC_0] THEN
    MATCH_MP_TAC LIM_NULL_COMPARISON_COMPLEX THEN
    EXISTS_TAC `\x. Cx(norm(z) / (&1 - norm z)) * Cx(&x) * z pow x` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC ALWAYS_EVENTUALLY THEN X_GEN_TAC `x:num` THEN
      REWRITE_TAC[] THEN MATCH_MP_TAC VSUM_NORM_TRIANGLE THEN
      REWRITE_TAC[FINITE_NUMSEG; COMPLEX_NORM_MUL; COMPLEX_NORM_CX;
                  REAL_ABS_DIV; REAL_ABS_NUM] THEN
      GEN_REWRITE_TAC RAND_CONV [REAL_ARITH `a * &x * b = &x * a * b`] THEN
      GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV)
       [GSYM CARD_NUMSEG_1] THEN
      MATCH_MP_TAC SUM_BOUND THEN REWRITE_TAC[FINITE_NUMSEG] THEN
      X_GEN_TAC `n:num` THEN REWRITE_TAC[IN_NUMSEG] THEN STRIP_TAC THEN
      FIRST_ASSUM(fun t -> SIMP_TAC[MATCH_MP DIRICHLET_CHARACTER_NORM t]) THEN
      COND_CASES_TAC THEN
      ASM_SIMP_TAC[REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_LE_DIV; REAL_ABS_POS;
                   NORM_POS_LE; REAL_LE_MUL; REAL_MUL_LID; REAL_ABS_NORM] THEN
      GEN_REWRITE_TAC RAND_CONV [REAL_MUL_SYM] THEN
      MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[NORM_POS_LE] THEN
      SIMP_TAC[complex_div; real_div; COMPLEX_NORM_MUL; COMPLEX_NORM_INV] THEN
      MATCH_MP_TAC REAL_LE_MUL2 THEN SIMP_TAC[NORM_POS_LE; REAL_LE_INV_EQ] THEN
      CONJ_TAC THENL
       [REWRITE_TAC[COMPLEX_NORM_POW] THEN
        GEN_REWRITE_TAC RAND_CONV [GSYM REAL_POW_1] THEN
        MATCH_MP_TAC REAL_POW_MONO_INV THEN
        ASM_SIMP_TAC[REAL_LT_IMP_LE; NORM_POS_LE] THEN
        MATCH_MP_TAC(ARITH_RULE `m < r ==> 1 <= r - m`) THEN
        ASM_SIMP_TAC[DIVISION; LE_1];
        ALL_TAC] THEN
      MATCH_MP_TAC REAL_LE_INV2 THEN
      REWRITE_TAC[REAL_ARITH `&0 < abs(x - a) <=> ~(a = x)`] THEN
      CONJ_TAC THENL [ASM_MESON_TAC[REAL_LT_REFL]; ALL_TAC] THEN
      MATCH_MP_TAC(NORM_ARITH
       `norm(w) = &1 /\ norm(z) < &1 /\ norm(zn) <= norm(z)
        ==> abs(&1 - norm(z)) <= norm(w - zn)`) THEN
      ASM_REWRITE_TAC[COMPLEX_NORM_NUM; COMPLEX_NORM_POW] THEN
      GEN_REWRITE_TAC RAND_CONV [GSYM REAL_POW_1] THEN
      MATCH_MP_TAC REAL_POW_MONO_INV THEN
      ASM_SIMP_TAC[REAL_LT_IMP_LE; NORM_POS_LE];
      ALL_TAC] THEN
    MATCH_MP_TAC LIM_NULL_COMPLEX_LMUL THEN ASM_SIMP_TAC[LIM_N_TIMES_POWN];
    ALL_TAC] THEN
  SUBGOAL_THEN
   `~(bounded
       { (f:complex->complex)(t) | real t /\ &0 <= Re t /\ norm(t) < &1 })`
  MP_TAC THENL
   [REWRITE_TAC[BOUNDED_POS] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
    REWRITE_TAC[FORALL_IN_IMAGE; IN_ELIM_THM] THEN
    REWRITE_TAC[IMP_CONJ; FORALL_REAL] THEN
    REWRITE_TAC[COMPLEX_NORM_CX; RE_CX; IMP_IMP] THEN
    REWRITE_TAC[REAL_ARITH `&0 <= x /\ abs x < &1 <=> &0 <= x /\ x < &1`] THEN
    DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
    FIRST_ASSUM(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC o
      MATCH_MP PRIME_FACTOR) THEN
    X_CHOOSE_TAC `N:num` (SPEC `&2 * (B + &1)` REAL_ARCH_SIMPLE) THEN
    SUBGOAL_THEN `0 < N` ASSUME_TAC THENL
     [REWRITE_TAC[GSYM REAL_OF_NUM_LT] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    ABBREV_TAC `t = &1 - inv(&(p EXP N)) / &2` THEN
    SUBGOAL_THEN `&0 <= t /\ t < &1` STRIP_ASSUME_TAC THENL
     [EXPAND_TAC "t" THEN
      MATCH_MP_TAC(REAL_ARITH
       `&0 < y /\ y <= &1 ==> &0 <= &1 - y / &2 /\ &1 - y / &2 < &1`) THEN
      ASM_SIMP_TAC[REAL_INV_LE_1; REAL_LT_INV_EQ; REAL_OF_NUM_LE;
                           REAL_OF_NUM_LT; LE_1; EXP_EQ_0; PRIME_IMP_NZ];
      ALL_TAC] THEN
    REMOVE_THEN "+" (MP_TAC o SPEC `Cx t`) THEN
    REWRITE_TAC[COMPLEX_NORM_CX; NOT_IMP] THEN
    CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `t:real`) THEN ASM_REWRITE_TAC[] THEN
    DISCH_TAC THEN REWRITE_TAC[SERIES_FROM; LIM_SEQUENTIALLY] THEN
    DISCH_THEN(MP_TAC o SPEC `&1`) THEN REWRITE_TAC[REAL_LT_01] THEN
    DISCH_THEN(X_CHOOSE_THEN `M:num` MP_TAC) THEN
    SUBGOAL_THEN `?n. M <= n /\ 1 <= n /\ p EXP N <= n` STRIP_ASSUME_TAC THENL
     [EXISTS_TAC `p EXP N + M + 1` THEN ARITH_TAC; ALL_TAC] THEN
    DISCH_THEN(MP_TAC o SPEC `n:num`) THEN ASM_REWRITE_TAC[] THEN
    UNDISCH_TAC `norm (f (Cx t):complex) <= B` THEN
    MATCH_MP_TAC(NORM_ARITH
     `B + &1 <= norm(x) ==> norm(y) <= B ==> ~(dist(x,y) < &1)`) THEN
    MATCH_MP_TAC(REAL_ARITH
     `a <= Re z /\ abs(Re z) <= norm z ==> a <= norm z`) THEN
    REWRITE_TAC[COMPLEX_NORM_GE_RE_IM] THEN
    SIMP_TAC[RE_VSUM; FINITE_NUMSEG; RE_MUL_CX; GSYM CX_POW] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum (IMAGE (\k. p EXP k) (0..N))
                    (\x. Re (vsum {d | d divides x} (\d. c d)) * t pow x)` THEN
    CONJ_TAC THENL
     [ALL_TAC;
      MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN
      REWRITE_TAC[FINITE_NUMSEG; IN_NUMSEG; IN_DIFF; SUBSET; IN_ELIM_THM;
                  FORALL_IN_IMAGE] THEN
      MP_TAC(SPECL [`d:num`; `c:num->complex`]
        DIRICHLET_CHARACTER_DIVISORSUM_POS) THEN
      ASM_SIMP_TAC[REAL_POW_LE; REAL_LE_MUL; LE_1; ETA_AX] THEN
      DISCH_THEN(K ALL_TAC) THEN
      REWRITE_TAC[ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
      ASM_SIMP_TAC[EXP_EQ_0; PRIME_IMP_NZ] THEN
      X_GEN_TAC `k:num` THEN STRIP_TAC THEN
      MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `p EXP N` THEN
      ASM_SIMP_TAC[LE_EXP; PRIME_IMP_NZ]] THEN
    W(MP_TAC o PART_MATCH (lhs o rand) SUM_IMAGE o rand o snd) THEN
    ANTS_TAC THENL
     [REWRITE_TAC[EQ_EXP] THEN ASM_MESON_TAC[PRIME_0; PRIME_1]; ALL_TAC] THEN
    DISCH_THEN SUBST1_TAC THEN REWRITE_TAC[o_DEF] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum (0..N) (\k. &1 * &1 / &2)` THEN CONJ_TAC THENL
     [REWRITE_TAC[SUM_CONST_NUMSEG; SUB_0; GSYM REAL_OF_NUM_ADD] THEN
      ASM_REAL_ARITH_TAC;
      ALL_TAC] THEN
    MATCH_MP_TAC SUM_LE_NUMSEG THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN
    REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_MUL2 THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN CONJ_TAC THENL
     [MP_TAC(SPECL [`d:num`; `c:num->complex`; `p:num`; `k:num`]
                DIRICHLET_CHARACTER_DIVISORSUM_EQ_1) THEN
      ASM_SIMP_TAC[ETA_AX; RE_CX; REAL_LE_REFL];
      ALL_TAC] THEN
    MP_TAC(ISPECL [`inv(&(p EXP N)) / &2`; `p EXP k`] lemma) THEN
    ASM_REWRITE_TAC[] THEN ANTS_TAC THENL
     [REWRITE_TAC[real_div; GSYM REAL_INV_MUL; REAL_OF_NUM_MUL] THEN
      REWRITE_TAC[REAL_LE_INV_EQ; REAL_POS] THEN
      MATCH_MP_TAC REAL_INV_LE_1 THEN
      REWRITE_TAC[REAL_OF_NUM_LE; ARITH_RULE `1 <= n <=> ~(n = 0)`] THEN
      ASM_SIMP_TAC[EXP_EQ_0; MULT_EQ_0; ARITH; PRIME_IMP_NZ];
      ALL_TAC] THEN
    MATCH_MP_TAC(REAL_ARITH `b <= a ==> a <= x ==> b <= x`) THEN
    MATCH_MP_TAC(REAL_ARITH `x * y <= &1 ==> &1 / &2 <= &1 - x * y / &2`) THEN
    ASM_SIMP_TAC[GSYM real_div; REAL_LE_LDIV_EQ; REAL_OF_NUM_LT; LE_1;
                 EXP_EQ_0; PRIME_IMP_NZ] THEN
    ASM_REWRITE_TAC[REAL_MUL_LID; REAL_OF_NUM_LE; LE_EXP] THEN
    ASM_MESON_TAC[PRIME_0];
    ALL_TAC] THEN
  MP_TAC(SPECL [`d:num`; `c:num->complex`]
    BOUNDED_LFUNCTION_PARTIAL_SUMS) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(MP_TAC o MATCH_MP BOUNDED_PARTIAL_SUMS) THEN
  REWRITE_TAC[BOUNDED_POS] THEN ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
  REWRITE_TAC[FORALL_IN_IMAGE] THEN
  SIMP_TAC[IN_ELIM_THM; IN_UNIV; LEFT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[MESON[] `(!x a b. x = f a b ==> p a b) <=> (!a b. p a b)`] THEN
  X_GEN_TAC `B:real` THEN STRIP_TAC THEN EXISTS_TAC `&2 * B` THEN
  ASM_SIMP_TAC[REAL_LT_MUL; REAL_OF_NUM_LT; ARITH] THEN
  X_GEN_TAC `z:complex` THEN STRIP_TAC THEN
  ONCE_REWRITE_TAC[GSYM NORM_NEG] THEN
  MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN
  EXISTS_TAC
   `\n. vsum(from 1 INTER (0..n)) (\k. c k * b (z:complex) k :complex)` THEN
  ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; GSYM sums] THEN
  REWRITE_TAC[FROM_INTER_NUMSEG] THEN
  MATCH_MP_TAC ALWAYS_EVENTUALLY THEN X_GEN_TAC `n:num` THEN
  MP_TAC(ISPECL [`c:num->complex`; `(b:complex->num->complex) z`;
                 `B:real`; `1`] SERIES_DIRICHLET_COMPLEX_VERY_EXPLICIT) THEN
  ASM_REWRITE_TAC[LE_REFL] THEN ANTS_TAC THENL
   [ALL_TAC;
    DISCH_THEN(MP_TAC o SPEC `1`) THEN
    SUBGOAL_THEN `(b:complex->num->complex) z 1 = Cx(&1)` SUBST1_TAC THENL
     [EXPAND_TAC "b" THEN
      REWRITE_TAC[COMPLEX_POW_1; COMPLEX_INV_MUL; complex_div] THEN
      REWRITE_TAC[GSYM COMPLEX_SUB_RDISTRIB; COMPLEX_INV_1] THEN
      MATCH_MP_TAC COMPLEX_MUL_RINV THEN REWRITE_TAC[COMPLEX_SUB_0] THEN
      DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
      UNDISCH_TAC `norm(Cx(&1)) < &1` THEN
      REWRITE_TAC[COMPLEX_NORM_CX; REAL_LT_REFL; REAL_ABS_NUM];
      ALL_TAC] THEN
    REWRITE_TAC[COMPLEX_NORM_NUM; REAL_MUL_RID] THEN
    DISCH_THEN MATCH_MP_TAC THEN REWRITE_TAC[LE_REFL]] THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `t:real` SUBST_ALL_TAC o
                GEN_REWRITE_RULE I [REAL_EXISTS]) THEN
  RULE_ASSUM_TAC(REWRITE_RULE[RE_CX; COMPLEX_NORM_CX]) THEN
  SUBGOAL_THEN `!n. &0 < sum(0..n) (\m. t pow m)` ASSUME_TAC THENL
   [GEN_TAC THEN SIMP_TAC[LE_0; SUM_CLAUSES_LEFT; real_pow] THEN
    MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> &0 < &1 + x`) THEN
    ASM_SIMP_TAC[SUM_POS_LE_NUMSEG; REAL_POW_LE];
    ALL_TAC] THEN
  CONJ_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN EXPAND_TAC "b" THEN
  REWRITE_TAC[GSYM CX_SUB; GSYM CX_POW; GSYM CX_DIV; GSYM CX_MUL;
              GSYM CX_INV; REAL_CX; RE_CX]
  THENL
   [ASM_SIMP_TAC[REAL_SUB_POW_L1; REAL_SUB_LE] THEN
    ASM_REWRITE_TAC[real_div; REAL_INV_MUL] THEN
    ASM_SIMP_TAC[GSYM real_div; REAL_LE_RDIV_EQ; REAL_LT_MUL; REAL_OF_NUM_LT;
                 LE_1; REAL_ARITH `abs t < &1 ==> &0 < &1 - t`] THEN
    ASM_SIMP_TAC[real_div; REAL_FIELD
     `abs(t) < &1 ==> (x * inv(&1 - t) * y) * (&1 - t) = x * y`] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    ASM_SIMP_TAC[GSYM real_div; REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; LE_1] THEN
    ONCE_REWRITE_TAC[REAL_ARITH `x / y * &n = (&n * x) / y`] THEN
    ASM_SIMP_TAC[REAL_LE_LDIV_EQ] THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `sum(0..n-1) (\m. t pow n)` THEN CONJ_TAC THENL
     [ASM_SIMP_TAC[SUM_CONST_NUMSEG; ARITH_RULE `1 <= n ==> n - 1 + 1 = n`;
                   SUB_0; REAL_LE_REFL];
      REWRITE_TAC[REAL_MUL_LID] THEN MATCH_MP_TAC SUM_LE_NUMSEG THEN
      GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[] THEN
      MATCH_MP_TAC REAL_POW_MONO_INV THEN REPEAT CONJ_TAC THEN
      TRY ASM_REAL_ARITH_TAC THEN ASM_ARITH_TAC];
    ALL_TAC] THEN
  ASM_SIMP_TAC[REAL_SUB_POW_L1; ARITH_RULE `1 <= n + 1`] THEN
  REWRITE_TAC[ADD_SUB; REAL_INV_MUL; real_div] THEN
  REWRITE_TAC[REAL_ARITH `x * t - y * t * z <= u * t - v * t * w <=>
                          t * (v * w - y * z) <= t * (u - x)`] THEN
  MATCH_MP_TAC REAL_LE_LMUL THEN REWRITE_TAC[REAL_LE_INV_EQ] THEN
  CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  ASM_SIMP_TAC[GSYM real_div; REAL_FIELD
   `&0 < y /\ &0 < z ==> x / y - w / z = (x * z - w * y) / (y * z)`] THEN
  SUBGOAL_THEN `t pow n * sum (0..n) (\m. t pow m) -
                t pow (n + 1) * sum (0..n - 1) (\m. t pow m) = t pow n`
  SUBST1_TAC THENL
   [REWRITE_TAC[GSYM SUM_LMUL; GSYM REAL_POW_ADD] THEN
    ONCE_REWRITE_TAC[ARITH_RULE `(n + 1) + x = n + x + 1`] THEN
    REWRITE_TAC[GSYM(SPEC `1` SUM_OFFSET); SUB_ADD; ADD_CLAUSES] THEN
    SIMP_TAC[SUM_CLAUSES_LEFT; LE_0; GSYM SUM_LMUL; ADD_CLAUSES] THEN
    ASM_SIMP_TAC[SUB_ADD; REAL_POW_ADD] THEN
    REWRITE_TAC[REAL_ARITH `(x + y) - y:real = x`];
    ALL_TAC] THEN
  ASM_SIMP_TAC[REAL_LE_LDIV_EQ; REAL_LT_MUL; GSYM REAL_OF_NUM_ADD;
               REAL_OF_NUM_LE;
       REAL_FIELD `&1 <= n ==> inv(n) - inv(n + &1) = inv(n * (n + &1))`] THEN
  MATCH_MP_TAC REAL_POW_LE2_REV THEN EXISTS_TAC `2` THEN
  REWRITE_TAC[ARITH] THEN CONJ_TAC THENL
   [REPEAT(MATCH_MP_TAC REAL_LE_MUL THEN
           CONJ_TAC THEN REWRITE_TAC[REAL_LE_INV_EQ]) THEN
    ASM_SIMP_TAC[REAL_POW_LE; SUM_POS_LE_NUMSEG] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  MP_TAC(SPECL [`n:num`; `t:real`] AGM_SPECIAL) THEN
  MP_TAC(SPECL [`n - 1`; `t:real`] AGM_SPECIAL) THEN
  ASM_SIMP_TAC[GSYM REAL_OF_NUM_SUB; REAL_SUB_ADD] THEN
  REWRITE_TAC[IMP_IMP] THEN
  GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [REAL_MUL_SYM] THEN
  ASM_SIMP_TAC[GSYM REAL_LE_RDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT;
               LE_1; REAL_ARITH `&0 < &n + &1`] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE
   [TAUT `a /\ b /\ c /\ d ==> e <=> b /\ d ==> a /\ c ==> e`]
   REAL_LE_MUL2)) THEN
  ASM_SIMP_TAC[REAL_POW_LE; REAL_LE_MUL; REAL_ARITH `&0 <= &n + &1`] THEN
  MATCH_MP_TAC(REAL_ARITH `x = y /\ a <= b ==> b <= x ==> a <= y`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[REAL_POW_2; real_div; REAL_INV_MUL; REAL_POW_MUL] THEN
    REWRITE_TAC[REAL_MUL_AC];
    REWRITE_TAC[GSYM REAL_POW_ADD; REAL_POW_POW] THEN
    MATCH_MP_TAC REAL_POW_MONO_INV THEN ASM_REWRITE_TAC[] THEN
    CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ARITH_TAC]]);;

(* ------------------------------------------------------------------------- *)
(* Deduce nonvanishing of all the nonprincipal characters.                   *)
(* ------------------------------------------------------------------------- *)

let BOUNDED_DIFF_LOGMUL = prove
 (`!f a. bounded {f x - Cx(log(&x)) * a | x IN (:num)}
         ==> (!x. &0 <= Re(f x)) ==> &0 <= Re a`,
  REPEAT GEN_TAC THEN
  REWRITE_TAC[BOUNDED_POS; SIMPLE_IMAGE; FORALL_IN_IMAGE; IN_UNIV] THEN
  DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN DISCH_TAC THEN
  ONCE_REWRITE_TAC[GSYM REAL_NOT_LT] THEN DISCH_TAC THEN
  MP_TAC(ISPEC `exp((B + &1) / --(Re a))` REAL_ARCH_SIMPLE) THEN
  DISCH_THEN(X_CHOOSE_TAC `n:num`) THEN
  SUBGOAL_THEN `abs(Re(f n - Cx(log(&n)) * a)) <= B` MP_TAC THENL
   [ASM_MESON_TAC[COMPLEX_NORM_GE_RE_IM; REAL_LE_TRANS]; ALL_TAC] THEN
  REWRITE_TAC[RE_SUB; RE_MUL_CX; REAL_NOT_LE] THEN
  MATCH_MP_TAC(REAL_ARITH
   `B < l * --a /\ &0 <= f ==> B < abs(f - l * a)`) THEN
  ASM_SIMP_TAC[GSYM REAL_LT_LDIV_EQ; REAL_NEG_GT0] THEN
  MATCH_MP_TAC REAL_LTE_TRANS THEN
  EXISTS_TAC `log(exp((B + &1) / --Re a))` THEN CONJ_TAC THENL
   [ASM_SIMP_TAC[LOG_EXP; REAL_NEG_GT0; REAL_LT_DIV2_EQ] THEN REAL_ARITH_TAC;
    MATCH_MP_TAC LOG_MONO_LE_IMP THEN ASM_REWRITE_TAC[REAL_EXP_POS_LT]]);;

let LFUNCTION_NONZERO_NONPRINCIPAL = prove
 (`!d c. dirichlet_character d c /\ ~(c = chi_0 d)
         ==> ~(Lfunction c = Cx(&0))`,
  let lemma = prove
   (`{a,b,c} SUBSET s
     ==> FINITE s
         ==> !f. sum s f = sum (s DIFF {a,b,c}) f + sum {a,b,c} f`,
    REPEAT STRIP_TAC THEN CONV_TAC SYM_CONV THEN
    MATCH_MP_TAC SUM_UNION_EQ THEN ASM_REWRITE_TAC[] THEN ASM SET_TAC[]) in
  GEN_TAC THEN ASM_CASES_TAC `d = 0` THENL
   [ASM_MESON_TAC[DIRICHLET_CHARACTER_0]; ALL_TAC] THEN
  MP_TAC(ISPECL
   [`\x c. vsum(1..x) (\n. c n * Cx(mangoldt n / &n)) -
           Cx(log(&x)) *
           (if c = chi_0 d then Cx(&1)
            else if Lfunction c = Cx(&0) then --Cx(&1)
            else Cx(&0))`;
    `(:num)`;
    `{c | dirichlet_character d c}`]
   BOUNDED_SUMS_IMAGES) THEN
  ANTS_TAC THENL
   [REWRITE_TAC[FINITE_DIRICHLET_CHARACTERS; IN_ELIM_THM] THEN
    X_GEN_TAC `c:num->complex` THEN
    ASM_CASES_TAC `c = chi_0 d` THEN
    ASM_SIMP_TAC[COMPLEX_MUL_RID; BOUNDED_DIRICHLET_MANGOLDT_PRINCIPAL;
                 LE_1] THEN
    ASM_CASES_TAC `Lfunction c = Cx(&0)` THEN
    ASM_REWRITE_TAC[COMPLEX_SUB_RZERO; COMPLEX_MUL_RNEG; COMPLEX_MUL_RZERO;
                    COMPLEX_MUL_RID; COMPLEX_SUB_RNEG] THEN
    ASM_MESON_TAC[BOUNDED_DIRICHLET_MANGOLDT_ZERO;
                  BOUNDED_DIRICHLET_MANGOLDT_NONZERO; LE_1];
    ALL_TAC] THEN
  SIMP_TAC[VSUM_SUB; FINITE_DIRICHLET_CHARACTERS; VSUM_COMPLEX_LMUL] THEN
  DISCH_THEN(MP_TAC o MATCH_MP BOUNDED_DIFF_LOGMUL) THEN
  REWRITE_TAC[IN_UNIV] THEN ANTS_TAC THENL
   [X_GEN_TAC `x:num` THEN
    W(MP_TAC o PART_MATCH (lhs o rand) VSUM_SWAP o funpow 2 rand o snd) THEN
    REWRITE_TAC[FINITE_DIRICHLET_CHARACTERS; FINITE_NUMSEG] THEN
    DISCH_THEN SUBST1_TAC THEN
    SIMP_TAC[VSUM_COMPLEX_RMUL; FINITE_DIRICHLET_CHARACTERS] THEN
    SIMP_TAC[RE_VSUM; FINITE_NUMSEG; RE_MUL_CX] THEN
    MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN
    X_GEN_TAC `n:num` THEN STRIP_TAC THEN REWRITE_TAC[] THEN
    MATCH_MP_TAC REAL_LE_MUL THEN
    SIMP_TAC[DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS_POS;
             REAL_LE_DIV; REAL_POS; MANGOLDT_POS_LE];
    ALL_TAC] THEN
  SIMP_TAC[RE_VSUM; FINITE_DIRICHLET_CHARACTERS] THEN
  REPLICATE_TAC 2 (ONCE_REWRITE_TAC[COND_RAND]) THEN
  REWRITE_TAC[RE_NEG; RE_CX] THEN DISCH_TAC THEN
  X_GEN_TAC `c:num->complex` THEN STRIP_TAC THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_NOT_LT]) THEN
  REWRITE_TAC[] THEN
  SUBGOAL_THEN
   `{chi_0 d,c,(\n. cnj(c n))} SUBSET {c | dirichlet_character d c}`
  MP_TAC THENL
   [REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INSERT; NOT_IN_EMPTY] THEN
    REPEAT STRIP_TAC THEN
    ASM_SIMP_TAC[DIRICHLET_CHARACTER_CHI_0; DIRICHLET_CHARACTER_CNJ];
    ALL_TAC] THEN
  DISCH_THEN(MP_TAC o MATCH_MP lemma) THEN
  REWRITE_TAC[FINITE_DIRICHLET_CHARACTERS] THEN
  DISCH_THEN(fun th -> REWRITE_TAC[th]) THEN
  MATCH_MP_TAC(REAL_ARITH `s <= &0 /\ t < &0 ==> s + t < &0`) THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH `&0 <= --x ==> x <= &0`) THEN
    REWRITE_TAC[GSYM SUM_NEG] THEN MATCH_MP_TAC SUM_POS_LE THEN
    SIMP_TAC[FINITE_DIRICHLET_CHARACTERS; FINITE_DIFF] THEN
    SIMP_TAC[IN_DIFF; IN_INSERT; NOT_IN_EMPTY; DE_MORGAN_THM] THEN
    REAL_ARITH_TAC;
    ALL_TAC] THEN
  ASM_SIMP_TAC[SUM_CLAUSES; FINITE_INSERT; IN_INSERT; NOT_IN_EMPTY;
               FINITE_RULES] THEN
  SUBGOAL_THEN `~(chi_0 d = (\n. cnj (c n)))` ASSUME_TAC THENL
   [DISCH_THEN(MP_TAC o AP_TERM `(\c n:num. cnj(c n))`) THEN
    REWRITE_TAC[CNJ_CNJ; FUN_EQ_THM; CNJ_CHI_0] THEN
    ASM_REWRITE_TAC[GSYM FUN_EQ_THM; ETA_AX];
    ALL_TAC] THEN
  SUBGOAL_THEN `~(c = \n:num. cnj(c n))` ASSUME_TAC THENL
   [ONCE_REWRITE_TAC[EQ_SYM_EQ] THEN
    REWRITE_TAC[GSYM REAL_CNJ; FUN_EQ_THM] THEN
    ASM_MESON_TAC[LFUNCTION_NONZERO_REAL];
    ALL_TAC] THEN
  MP_TAC(SPECL [`d:num`; `c:num->complex`] LFUNCTION_CNJ) THEN
  ASM_SIMP_TAC[CNJ_EQ_CX] THEN REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Hence derive our boundedness result for all nonprincipal characters.      *)
(* ------------------------------------------------------------------------- *)

let BOUNDED_DIRICHLET_MANGOLDT_NONPRINCIPAL = prove
 (`!d c.
      dirichlet_character d c /\ ~(c = chi_0 d)
      ==> bounded { vsum(1..x) (\n. c n * Cx(mangoldt n / &n)) | x IN (:num)}`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC BOUNDED_DIRICHLET_MANGOLDT_NONZERO THEN
  EXISTS_TAC `d:num` THEN
  ASM_MESON_TAC[LFUNCTION_NONZERO_NONPRINCIPAL]);;

(* ------------------------------------------------------------------------- *)
(* Hence the main sum result.                                                *)
(* ------------------------------------------------------------------------- *)

let BOUNDED_SUM_OVER_DIRICHLET_CHARACTERS = prove
 (`!d l. 1 <= d /\ coprime(l,d)
         ==> bounded { vsum {c | dirichlet_character d c}
                            (\c. c(l) *
                                 vsum(1..x) (\n. c n * Cx (mangoldt n / &n))) -
                       Cx(log(&x)) | x IN (:num)}`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[] THEN
  SUBGOAL_THEN `!x. Cx(log(&x)) =
                        vsum {c | dirichlet_character d c}
                             (\c. if c = chi_0 d then Cx(log(&x)) else Cx(&0))`
   (fun th -> ONCE_REWRITE_TAC[th])
  THENL
   [SIMP_TAC[VSUM_DELTA; GSYM COMPLEX_VEC_0] THEN
    REWRITE_TAC[IN_ELIM_THM; DIRICHLET_CHARACTER_CHI_0];
    ALL_TAC] THEN
  SIMP_TAC[GSYM VSUM_SUB; FINITE_DIRICHLET_CHARACTERS] THEN
  MATCH_MP_TAC BOUNDED_SUMS_IMAGES THEN
  REWRITE_TAC[FINITE_DIRICHLET_CHARACTERS; IN_ELIM_THM] THEN
  X_GEN_TAC `c:num->complex` THEN DISCH_TAC THEN
  ASM_CASES_TAC `c = chi_0 d` THEN ASM_REWRITE_TAC[] THENL
   [FIRST_ASSUM(MP_TAC o MATCH_MP BOUNDED_DIRICHLET_MANGOLDT_PRINCIPAL) THEN
    ASM_REWRITE_TAC[chi_0; COMPLEX_MUL_LID];
    REWRITE_TAC[COMPLEX_SUB_RZERO] THEN
    MP_TAC(SPECL [`d:num`; `c:num->complex`]
      BOUNDED_DIRICHLET_MANGOLDT_NONPRINCIPAL) THEN
    ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[BOUNDED_POS] THEN MATCH_MP_TAC MONO_EXISTS THEN
    ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
    REWRITE_TAC[FORALL_IN_IMAGE; IN_ELIM_THM; IN_UNIV] THEN
    REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[COMPLEX_NORM_MUL] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REWRITE_TAC[NORM_POS_LE] THEN
    FIRST_ASSUM(fun th -> SIMP_TAC[MATCH_MP DIRICHLET_CHARACTER_NORM th]) THEN
    REAL_ARITH_TAC]);;

let DIRICHLET_MANGOLDT = prove
 (`!d k. 1 <= d /\ coprime(k,d)
         ==> bounded { Cx(&(phi d)) * vsum {n | n IN 1..x /\ (n == k) (mod d)}
                                           (\n. Cx(mangoldt n / &n)) -
                       Cx(log(&x)) | x IN (:num)}`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?l. (k * l == 1) (mod d)` CHOOSE_TAC THENL
   [ASM_MESON_TAC[CONG_SOLVE]; ALL_TAC] THEN
  MP_TAC(SPECL [`d:num`; `l:num`] BOUNDED_SUM_OVER_DIRICHLET_CHARACTERS) THEN
  ANTS_TAC THENL
   [ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(k * l == 1) (mod d)` THEN
    CONV_TAC NUMBER_RULE;
    ALL_TAC] THEN
  MATCH_MP_TAC EQ_IMP THEN AP_TERM_TAC THEN
  MATCH_MP_TAC(SET_RULE
   `(!x. x IN s ==> f x = g x) ==> {f x | x IN s} = {g x | x IN s}`) THEN
  X_GEN_TAC `x:num` THEN DISCH_THEN(K ALL_TAC) THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN
  SIMP_TAC[GSYM VSUM_COMPLEX_LMUL; FINITE_NUMSEG; FINITE_RESTRICT] THEN
  SIMP_TAC[VSUM_RESTRICT_SET; FINITE_NUMSEG] THEN
  W(MP_TAC o PART_MATCH (lhs o rand) VSUM_SWAP o lhand o snd) THEN
  REWRITE_TAC[FINITE_DIRICHLET_CHARACTERS; FINITE_NUMSEG] THEN
  DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC VSUM_EQ_NUMSEG THEN
  X_GEN_TAC `n:num` THEN DISCH_TAC THEN REWRITE_TAC[COMPLEX_MUL_ASSOC] THEN
  MP_TAC(GSYM(SPEC `d:num` DIRICHLET_CHARACTER_MUL)) THEN
  SIMP_TAC[IN_ELIM_THM] THEN DISCH_THEN(K ALL_TAC) THEN
  SIMP_TAC[VSUM_COMPLEX_RMUL; FINITE_DIRICHLET_CHARACTERS] THEN
  ASM_SIMP_TAC[DIRICHLET_CHARACTER_SUM_OVER_CHARACTERS] THEN
  SUBGOAL_THEN `(l * n == 1) (mod d) <=> (n == k) (mod d)` SUBST1_TAC THENL
   [UNDISCH_TAC `(k * l == 1) (mod d)` THEN CONV_TAC NUMBER_RULE;
    COND_CASES_TAC THEN ASM_REWRITE_TAC[COMPLEX_MUL_LZERO; COMPLEX_VEC_0]]);;

let DIRICHLET_MANGOLDT_EXPLICIT = prove
 (`!d k. 1 <= d /\ coprime (k,d)
         ==> ?B. &0 < B /\
                 !x. abs(sum {n | n IN 1..x /\ (n == k) (mod d)}
                             (\n. mangoldt n / &n) -
                         log(&x) / &(phi d)) <= B`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP DIRICHLET_MANGOLDT) THEN
  REWRITE_TAC[BOUNDED_POS] THEN
  SIMP_TAC[SIMPLE_IMAGE; FORALL_IN_IMAGE; IN_UNIV] THEN
  SIMP_TAC[VSUM_CX; FINITE_RESTRICT; FINITE_NUMSEG;
           GSYM CX_SUB; GSYM CX_MUL; COMPLEX_NORM_CX] THEN
  DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
  EXISTS_TAC `B / &(phi d)` THEN
  ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; LE_1; PHI_LOWERBOUND_1_STRONG;
               REAL_LE_RDIV_EQ] THEN
  X_GEN_TAC `n:num` THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_ABS_NUM] THEN
  REWRITE_TAC[GSYM REAL_ABS_MUL] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  ASM_SIMP_TAC[REAL_SUB_LDISTRIB; REAL_DIV_LMUL;
               LE_1; PHI_LOWERBOUND_1_STRONG; REAL_OF_NUM_EQ]);;

let DIRICHLET_STRONG = prove
 (`!d k. 1 <= d /\ coprime(k,d)
         ==> ?B. &0 < B /\
                 !x. abs(sum {p | p IN 1..x /\ prime p /\ (p == k) (mod d)}
                             (\p. log(&p) / &p) -
                         log(&x) / &(phi d)) <= B`,
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  FIRST_ASSUM(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC o
    MATCH_MP DIRICHLET_MANGOLDT_EXPLICIT) THEN
  EXISTS_TAC `B + &3` THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN
  X_GEN_TAC `x:num` THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:num`) THEN
  MATCH_MP_TAC(REAL_ARITH
   `abs(x - y) <= a ==> abs(x - z) <= b ==> abs(y - z) <= b + a`) THEN
  MP_TAC(SPECL [`x:num`; `{n | n IN 1..x /\ (n == k) (mod d)}`]
               MERTENS_MANGOLDT_VERSUS_LOG) THEN
  SIMP_TAC[SUBSET; IN_ELIM_THM] THEN REWRITE_TAC[CONJ_ACI]);;

(* ------------------------------------------------------------------------- *)
(* Ignore the density details and prove the main result.                     *)
(* ------------------------------------------------------------------------- *)

let DIRICHLET = prove
 (`!d k. 1 <= d /\ coprime(k,d)
         ==> INFINITE {p | prime p /\ (p == k) (mod d)}`,
  REWRITE_TAC[INFINITE] THEN REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `\n:num. n` o MATCH_MP UPPER_BOUND_FINITE_SET) THEN
  REWRITE_TAC[IN_ELIM_THM; NOT_EXISTS_THM] THEN X_GEN_TAC `n:num` THEN
  DISCH_TAC THEN MP_TAC(SPECL [`d:num`; `k:num`] DIRICHLET_STRONG) THEN
  ASM_REWRITE_TAC[] THEN
  DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN
  MP_TAC(SPEC
   `max (exp(&(phi d) *
            (&1 + B + sum {p | p IN 1..n /\ prime p /\ (p == k) (mod d)}
                          (\p. log(&p) / &p))))
        (max (&n) (&1))`
   REAL_ARCH_SIMPLE) THEN
  REWRITE_TAC[NOT_EXISTS_THM; REAL_MAX_LE; REAL_OF_NUM_LE] THEN
  X_GEN_TAC `m:num` THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN
  DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
   `abs(x - y) <= b ==> y < &1 + b + x`)) THEN
  ASM_SIMP_TAC[REAL_NOT_LT; REAL_LE_RDIV_EQ; PHI_LOWERBOUND_1_STRONG;
               REAL_OF_NUM_LT; LE_1] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  ONCE_REWRITE_TAC[GSYM REAL_EXP_MONO_LE] THEN
  ASM_SIMP_TAC[EXP_LOG; REAL_OF_NUM_LT; LE_1] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
   `x <= a ==> x = y ==> y <= a`)) THEN
  REPLICATE_TAC 4 AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[EXTENSION; IN_ELIM_THM; IN_NUMSEG] THEN
  GEN_TAC THEN EQ_TAC THEN ASM_SIMP_TAC[] THEN ASM_ARITH_TAC);;