Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 43,370 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
(* ========================================================================= *)
(* Theorems about representations as sums of 2 and 4 squares.                *)
(* ========================================================================= *)

needs "Library/prime.ml";;
needs "Library/analysis.ml";; (*** only for REAL_ARCH_LEAST! ***)

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* Definition of involution and various basic lemmas.                        *)
(* ------------------------------------------------------------------------- *)

let involution = new_definition
  `involution f s = !x. x IN s ==> f(x) IN s /\ (f(f(x)) = x)`;;

let INVOLUTION_IMAGE = prove
 (`!f s. involution f s ==> (IMAGE f s = s)`,
  REWRITE_TAC[involution; EXTENSION; IN_IMAGE] THEN MESON_TAC[]);;

let INVOLUTION_DELETE = prove
 (`involution f s /\ a IN s /\ (f a = a) ==> involution f (s DELETE a)`,
  REWRITE_TAC[involution; IN_DELETE] THEN MESON_TAC[]);;

let INVOLUTION_STEPDOWN = prove
 (`involution f s /\ a IN s ==> involution f (s DIFF {a, (f a)})`,
  REWRITE_TAC[involution; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);;

let INVOLUTION_NOFIXES = prove
 (`involution f s ==> involution f {x | x IN s /\ ~(f x = x)}`,
  REWRITE_TAC[involution; IN_ELIM_THM] THEN MESON_TAC[]);;

let INVOLUTION_SUBSET = prove
 (`!f s t. involution f s /\ (!x. x IN t ==> f(x) IN t) /\ t SUBSET s
           ==> involution f t`,
  REWRITE_TAC[involution; SUBSET] THEN MESON_TAC[]);;

let INVOLUTION_EVEN = prove
 (`!s. FINITE(s) /\ involution f s /\ (!x:A. x IN s ==> ~(f x = x))
       ==> EVEN(CARD s)`,
  REWRITE_TAC[involution] THEN MESON_TAC[INVOLUTION_EVEN_NOFIXPOINTS]);;

(* ------------------------------------------------------------------------- *)
(* So an involution with exactly one fixpoint has odd card domain.           *)
(* ------------------------------------------------------------------------- *)

let INVOLUTION_FIX_ODD = prove
 (`FINITE(s) /\ involution f s /\ (?!a:A. a IN s /\ (f a = a))
   ==> ODD(CARD s)`,
  REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN STRIP_TAC THEN
  SUBGOAL_THEN `s = (a:A) INSERT (s DELETE a)` SUBST1_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_INSERT; IN_DELETE] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  ASM_SIMP_TAC[CARD_CLAUSES; FINITE_DELETE; IN_DELETE; ODD; NOT_ODD] THEN
  MATCH_MP_TAC INVOLUTION_EVEN THEN
  ASM_SIMP_TAC[INVOLUTION_DELETE; FINITE_DELETE; IN_DELETE] THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* And an involution on a set of odd finite card must have a fixpoint.       *)
(* ------------------------------------------------------------------------- *)

let INVOLUTION_ODD = prove
 (`!n s. FINITE(s) /\ involution f s /\ ODD(CARD s)
         ==> ?a. a IN s /\ (f a = a)`,
  REWRITE_TAC[GSYM NOT_EVEN] THEN MESON_TAC[INVOLUTION_EVEN]);;

(* ------------------------------------------------------------------------- *)
(* Consequently, if one involution has a unique fixpoint, other has one.     *)
(* ------------------------------------------------------------------------- *)

let INVOLUTION_FIX_FIX = prove
 (`!f g s. FINITE(s) /\ involution f s /\ involution g s /\
           (?!x. x IN s /\ (f x = x)) ==> ?x. x IN s /\ (g x = x)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC INVOLUTION_ODD THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INVOLUTION_FIX_ODD THEN
  ASM_REWRITE_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Formalization of Zagier's "one-sentence" proof over the natural numbers.  *)
(* ------------------------------------------------------------------------- *)

let zset = new_definition
  `zset(a) = {(x,y,z) | x EXP 2 + 4 * y * z = a}`;;

let zag = new_definition
  `zag(x,y,z) =
        if x + z < y then (x + 2 * z,z,y - (x + z))
        else if x < 2 * y then (2 * y - x, y, (x + z) - y)
        else (x - 2 * y,(x + z) - y, y)`;;

let tag = new_definition
  `tag((x,y,z):num#num#num) = (x,z,y)`;;

let ZAG_INVOLUTION_GENERAL = prove
 (`0 < x /\ 0 < y /\ 0 < z ==> (zag(zag(x,y,z)) = (x,y,z))`,
  REWRITE_TAC[zag] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
  REWRITE_TAC[zag] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
  REWRITE_TAC[PAIR_EQ] THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);;

let IN_TRIPLE = prove
 (`(a,b,c) IN {(x,y,z) | P x y z} <=> P a b c`,
  REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN MESON_TAC[]);;

let PRIME_SQUARE = prove
 (`!n. ~prime(n * n)`,
  GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
  ASM_REWRITE_TAC[PRIME_0; MULT_CLAUSES] THEN
  REWRITE_TAC[prime; NOT_FORALL_THM; DE_MORGAN_THM] THEN
  ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[ARITH] THEN
  DISJ2_TAC THEN EXISTS_TAC `n:num` THEN
  ASM_SIMP_TAC[DIVIDES_LMUL; DIVIDES_REFL] THEN
  GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [ARITH_RULE `n = n * 1`] THEN
  ASM_SIMP_TAC[EQ_MULT_LCANCEL]);;

let PRIME_4X = prove
 (`!n. ~prime(4 * n)`,
  GEN_TAC THEN REWRITE_TAC[prime; NOT_FORALL_THM; DE_MORGAN_THM] THEN
  DISJ2_TAC THEN EXISTS_TAC `2` THEN
  SUBST1_TAC(SYM(NUM_REDUCE_CONV `2 * 2`)) THEN
  ASM_SIMP_TAC[GSYM MULT_ASSOC; DIVIDES_RMUL; DIVIDES_REFL; ARITH_EQ] THEN
  ASM_CASES_TAC `n = 0` THEN POP_ASSUM MP_TAC THEN ARITH_TAC);;

let PRIME_XYZ_NONZERO = prove
 (`prime(x EXP 2 + 4 * y * z) ==> 0 < x /\ 0 < y /\ 0 < z`,
  CONV_TAC CONTRAPOS_CONV THEN
  REWRITE_TAC[DE_MORGAN_THM; ARITH_RULE `~(0 < x) = (x = 0)`] THEN
  DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST1_TAC) THEN
  REWRITE_TAC[EXP_2; MULT_CLAUSES; ADD_CLAUSES; PRIME_SQUARE; PRIME_4X]);;

let ZAG_INVOLUTION = prove
 (`!p. prime(p) ==> involution zag (zset(p))`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[involution; FORALL_PAIR_THM] THEN
  MAP_EVERY X_GEN_TAC [`x:num`; `y:num`; `z:num`] THEN
  REWRITE_TAC[zset; IN_TRIPLE] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[zag] THEN REPEAT COND_CASES_TAC THEN
    ASM_REWRITE_TAC[IN_TRIPLE] THEN
    RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN
    ASM_SIMP_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_ADD; EXP_2;
                 GSYM INT_OF_NUM_MUL; GSYM INT_OF_NUM_SUB; LT_IMP_LE] THEN
    INT_ARITH_TAC;
    MATCH_MP_TAC ZAG_INVOLUTION_GENERAL THEN
    ASM_MESON_TAC[PRIME_XYZ_NONZERO]]);;

let TAG_INVOLUTION = prove
 (`!a. involution tag (zset a)`,
  REWRITE_TAC[involution; tag; zset; FORALL_PAIR_THM] THEN
  REWRITE_TAC[IN_TRIPLE] THEN REWRITE_TAC[MULT_AC]);;

let ZAG_LEMMA = prove
 (`(zag(x,y,z) = (x,y,z)) ==> (y = x)`,
  REWRITE_TAC[zag; INT_POW_2] THEN
  REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[PAIR_EQ]) THEN
  POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);;

let ZSET_BOUND = prove
 (`0 < y /\ 0 < z /\ (x EXP 2 + 4 * y * z = p)
   ==> x <= p /\ y <= p /\ z <= p`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN CONJ_TAC THENL
   [MESON_TAC[EXP_2; LE_SQUARE_REFL; ARITH_RULE `(a <= b ==> a <= b + c)`];
    CONJ_TAC THEN MATCH_MP_TAC(ARITH_RULE `y <= z ==> y <= x + z`) THENL
     [GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [MULT_SYM]; ALL_TAC] THEN
    REWRITE_TAC[ARITH_RULE `y <= 4 * a * y <=> 1 * y <= (4 * a) * y`] THEN
    ASM_REWRITE_TAC[LE_MULT_RCANCEL] THEN
    ASM_SIMP_TAC[ARITH_RULE `0 < a ==> 1 <= 4 * a`]]);;

let ZSET_FINITE = prove
 (`!p. prime(p) ==> FINITE(zset p)`,
  GEN_TAC THEN DISCH_TAC THEN
  MP_TAC(SPEC `p + 1` FINITE_NUMSEG_LT) THEN
  DISCH_THEN(fun th ->
    MP_TAC(funpow 2 (MATCH_MP FINITE_PRODUCT o CONJ th) th)) THEN
  MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b ==> c <=> b ==> a ==> c`]
    FINITE_SUBSET) THEN
  REWRITE_TAC[zset; SUBSET; FORALL_PAIR_THM; IN_TRIPLE] THEN
  MAP_EVERY X_GEN_TAC [`x:num`; `y:num`; `z:num`] THEN
  REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; PAIR_EQ] THEN
  REWRITE_TAC[ARITH_RULE `x < p + 1 <=> x <= p`; PAIR_EQ] THEN
  DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`x:num`; `y:num`; `z:num`] THEN
  ASM_REWRITE_TAC[] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
  MAP_EVERY EXISTS_TAC [`y:num`; `z:num`] THEN REWRITE_TAC[] THEN
  ASM_MESON_TAC[ZSET_BOUND; PRIME_XYZ_NONZERO]);;

let SUM_OF_TWO_SQUARES = prove
 (`!p k. prime(p) /\ (p = 4 * k + 1) ==> ?x y. p = x EXP 2 + y EXP 2`,
  SIMP_TAC[] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `?t. t IN zset(p) /\ (tag(t) = t)` MP_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_PAIR_THM; tag; PAIR_EQ] THEN
    REWRITE_TAC[zset; IN_TRIPLE; EXP_2] THEN
    ASM_MESON_TAC[ARITH_RULE `4 * x * y = (2 * x) * (2 * y)`]] THEN
  MATCH_MP_TAC INVOLUTION_FIX_FIX THEN EXISTS_TAC `zag` THEN
  ASM_SIMP_TAC[ZAG_INVOLUTION; TAG_INVOLUTION; ZSET_FINITE] THEN
  REWRITE_TAC[EXISTS_UNIQUE_ALT] THEN EXISTS_TAC `1,1,k:num` THEN
  REWRITE_TAC[FORALL_PAIR_THM] THEN
  MAP_EVERY X_GEN_TAC [`x:num`; `y:num`; `z:num`] THEN EQ_TAC THENL
   [ALL_TAC;
    DISCH_THEN(SUBST1_TAC o SYM) THEN
    REWRITE_TAC[zset; zag; IN_TRIPLE; ARITH] THEN
    REWRITE_TAC[MULT_CLAUSES; ARITH_RULE `~(1 + k < 1)`; PAIR_EQ] THEN
    ARITH_TAC] THEN
  REWRITE_TAC[zset; IN_TRIPLE] THEN STRIP_TAC THEN
  FIRST_ASSUM(SUBST_ALL_TAC o MATCH_MP ZAG_LEMMA) THEN
  UNDISCH_TAC `x EXP 2 + 4 * x * z = 4 * k + 1` THEN
  REWRITE_TAC[EXP_2; ARITH_RULE `x * x + 4 * x * z = x * (4 * z + x)`] THEN
  DISCH_THEN(ASSUME_TAC o SYM) THEN UNDISCH_TAC `prime p` THEN
  ASM_REWRITE_TAC[] THEN REWRITE_TAC[prime] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:num`)) THEN
  SIMP_TAC[DIVIDES_RMUL; DIVIDES_REFL] THEN
  DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
   [UNDISCH_TAC `4 * k + 1 = 1 * (4 * z + 1)` THEN
    REWRITE_TAC[MULT_CLAUSES; PAIR_EQ] THEN ARITH_TAC;
    ONCE_REWRITE_TAC[ARITH_RULE `(a = a * b) = (a * b = a * 1)`] THEN
    ASM_SIMP_TAC[EQ_MULT_LCANCEL] THEN STRIP_TAC THENL
     [UNDISCH_TAC `4 * k + 1 = x * (4 * z + x)` THEN
      ASM_REWRITE_TAC[MULT_CLAUSES; ADD_EQ_0; ARITH_EQ];
      UNDISCH_TAC `4 * z + x = 1` THEN REWRITE_TAC[PAIR_EQ] THEN
      ASM_CASES_TAC `z = 0` THENL
       [ALL_TAC; UNDISCH_TAC `~(z = 0)` THEN ARITH_TAC] THEN
      UNDISCH_TAC `4 * k + 1 = x * (4 * z + x)` THEN
      ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
      ASM_CASES_TAC `x = 1` THEN ASM_REWRITE_TAC[] THEN
      REWRITE_TAC[MULT_CLAUSES] THEN ARITH_TAC]]);;

(* ------------------------------------------------------------------------- *)
(* General pigeonhole lemma.                                                 *)
(* ------------------------------------------------------------------------- *)

let PIGEONHOLE_LEMMA = prove
 (`!f:A->B g s t.
        FINITE(s) /\ FINITE(t) /\
        (!x. x IN s ==> f(x) IN t) /\
        (!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)) /\
        (!x. x IN s ==> g(x) IN t) /\
        (!x y. x IN s /\ y IN s /\ (g x = g y) ==> (x = y)) /\
        CARD(t) < 2 * CARD(s)
        ==> ?x y. x IN s /\ y IN s /\ (f x = g y)`,
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`IMAGE (f:A->B) s`; `IMAGE (g:A->B) s`] CARD_UNION) THEN
  SUBGOAL_THEN `(CARD(IMAGE (f:A->B) s) = CARD s) /\
                (CARD(IMAGE (g:A->B) s) = CARD s)`
  STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[CARD_IMAGE_INJ]; ALL_TAC] THEN
  ASM_SIMP_TAC[FINITE_IMAGE] THEN
  MATCH_MP_TAC(TAUT `(~a ==> c) /\ ~b ==> (a ==> b) ==> c`) THEN CONJ_TAC THENL
   [REWRITE_TAC[EXTENSION; IN_INSERT; IN_INTER; IN_IMAGE; NOT_IN_EMPTY] THEN
    MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC(ARITH_RULE `!t. t < 2 * s /\ p <= t ==> ~(p = s + s)`) THEN
  EXISTS_TAC `CARD(t:B->bool)` THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[SUBSET; IN_UNION; IN_IMAGE] THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* In particular, consider functions out of 0...(p-1)/2, mod p.              *)
(* ------------------------------------------------------------------------- *)

let PIGEONHOLE_LEMMA_P12 = prove
 (`!f g p.
        ODD(p) /\
        (!x. 2 * x < p ==> f(x) < p) /\
        (!x y. 2 * x < p /\ 2 * y < p /\ (f x = f y) ==> (x = y)) /\
        (!x. 2 * x < p ==> g(x) < p) /\
        (!x y. 2 * x < p /\ 2 * y < p /\ (g x = g y) ==> (x = y))
        ==> ?x y. 2 * x < p /\ 2 * y < p /\ (f x = g y)`,
  REPEAT GEN_TAC THEN REWRITE_TAC[ODD_EXISTS] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
  FIRST_X_ASSUM(X_CHOOSE_THEN `k:num` SUBST1_TAC) THEN
  MP_TAC(ISPECL [`f:num->num`; `g:num->num`;
                 `{x:num | 2 * x < 2 * k + 1}`; `{x:num | x < 2 * k + 1}`]
         PIGEONHOLE_LEMMA) THEN
  REWRITE_TAC[ADD1; ARITH_RULE `2 * x < 2 * k + 1 <=> x < k + 1`] THEN
  REWRITE_TAC[FINITE_NUMSEG_LT; CARD_NUMSEG_LT] THEN
  REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `2 * k + 1 < 2 * (k + 1)`]);;

(* ------------------------------------------------------------------------- *)
(* Show that \x. x^2 + a (mod p) satisfies the conditions.                   *)
(* ------------------------------------------------------------------------- *)

let SQUAREMOD_INJ_LEMMA = prove
 (`!p x d. prime(p) /\ 2 * (x + d) < p /\
           ((x + d) * (x + d) + m * p = x * x + n * p)
           ==> (d = 0)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `p divides d \/ p divides (2 * x + d)` MP_TAC THENL
   [MATCH_MP_TAC PRIME_DIVPROD THEN ASM_REWRITE_TAC[divides] THEN
    EXISTS_TAC `n - m:num` THEN REWRITE_TAC[LEFT_SUB_DISTRIB] THEN
    MATCH_MP_TAC(ARITH_RULE `!a:num. (a + b + d = a + c) ==> (b = c - d)`) THEN
    EXISTS_TAC `x * x:num` THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
    FIRST_ASSUM(SUBST1_TAC o SYM) THEN ARITH_TAC;
    DISCH_THEN(DISJ_CASES_THEN(MP_TAC o MATCH_MP DIVIDES_LE)) THEN
    SIMP_TAC[ADD_EQ_0] THEN UNDISCH_TAC `2 * (x + d) < p` THEN ARITH_TAC]);;

let SQUAREMOD_INJ = prove
 (`!p. prime(p)
   ==> (!x. 2 * x < p ==> (x EXP 2 + a) MOD p < p) /\
       (!x y. 2 * x < p /\ 2 * y < p /\
              ((x EXP 2 + a) MOD p = (y EXP 2 + a) MOD p)
              ==> (x = y))`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `x < a ==> ~(a = 0)`)) THEN
  ASM_SIMP_TAC[DIVISION] THEN
  SUBGOAL_THEN
   `(x EXP 2 + a = (x EXP 2 + a) DIV p * p + (x EXP 2 + a) MOD p) /\
    (y EXP 2 + a = (y EXP 2 + a) DIV p * p + (y EXP 2 + a) MOD p)`
  MP_TAC THENL [ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN
  DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
   `(x2 + a = xp + b:num) /\ (y2 + a = yp + b)
    ==> (x2 + yp = y2 + xp)`)) THEN
  DISJ_CASES_THEN MP_TAC (SPECL [`x:num`; `y:num`] LE_CASES) THEN
  DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC o
    REWRITE_RULE[LE_EXISTS])
  THENL [ONCE_REWRITE_TAC[EQ_SYM_EQ]; ALL_TAC] THEN
  REWRITE_TAC[EXP_2; ARITH_RULE `(x + d = x) = (d = 0)`] THEN
  ASM_MESON_TAC[SQUAREMOD_INJ_LEMMA]);;

(* ------------------------------------------------------------------------- *)
(* Show that also a reflection mod p retains this property.                  *)
(* ------------------------------------------------------------------------- *)

let REFLECT_INJ = prove
 (`(!x. 2 * x < p ==> f(x) < p) /\
   (!x y. 2 * x < p /\ 2 * y < p /\ (f x = f y) ==> (x = y))
   ==> (!x. 2 * x < p ==> p - 1 - f(x) < p) /\
       (!x y. 2 * x < p /\ 2 * y < p /\ (p - 1 - f(x) = p - 1 - f(y))
              ==> (x = y))`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN
  REWRITE_TAC[ARITH_RULE `2 * x < p ==> p - 1 - y < p`] THEN
  REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC(ARITH_RULE
   `x < p /\ y < p /\ (p - 1 - x = p - 1 - y) ==> (x = y)`) THEN
  ASM_MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Hence the main result.                                                    *)
(* ------------------------------------------------------------------------- *)

let LAGRANGE_LEMMA_ODD = prove
 (`!a p. prime(p) /\ ODD(p)
         ==> ?n x y. 2 * x < p /\ 2 * y < p /\
                     (n * p = x EXP 2 + y EXP 2 + a + 1)`,
  REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL [ASM_MESON_TAC[ODD]; ALL_TAC] THEN
  MP_TAC(ISPECL [`\x. (x EXP 2 + a) MOD p`;
                 `\x. p - 1 - (x EXP 2 + 0) MOD p`; `p:num`]
                PIGEONHOLE_LEMMA_P12) THEN
  REWRITE_TAC[] THEN ANTS_TAC THENL
   [ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT
     `(a /\ b) /\ (c /\ d) ==> a /\ b /\ c /\ d`) THEN
    CONJ_TAC THENL
     [ALL_TAC; MATCH_MP_TAC REFLECT_INJ] THEN
    ASM_MESON_TAC[SQUAREMOD_INJ]; ALL_TAC] THEN
  STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
   `(x = p - 1 - y) ==> y < p ==> (x + y + 1 = p)`)) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[DIVISION]; ALL_TAC] THEN
  DISCH_THEN(MP_TAC o C AP_THM `p:num` o AP_TERM `(MOD)`) THEN
  SUBGOAL_THEN
   `((x EXP 2 + a) MOD p + (y EXP 2 + 0) MOD p + 1) MOD p =
    (x EXP 2 + y EXP 2 + a + 1) MOD p`
  SUBST1_TAC THENL
   [CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_EQ THEN
    EXISTS_TAC `(x EXP 2 + a) DIV p + (y EXP 2) DIV p` THEN
    REWRITE_TAC[ADD_CLAUSES] THEN
    MATCH_MP_TAC(ARITH_RULE
      `(x2 + a = xd * p + xm) /\ (y2 = yd * p + ym)
       ==> (x2 + y2 + a + 1 = (xm + ym + 1) + (xd + yd) * p)`) THEN
    ASM_MESON_TAC[DIVISION]; ALL_TAC] THEN
  SUBGOAL_THEN `p MOD p = 0` SUBST1_TAC THENL
   [MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `1` THEN
    UNDISCH_TAC `~(p = 0)` THEN ARITH_TAC; ALL_TAC] THEN
  DISCH_TAC THEN MAP_EVERY EXISTS_TAC
   [`(x EXP 2 + y EXP 2 + a + 1) DIV p`; `x:num`; `y:num`] THEN
  ASM_REWRITE_TAC[] THEN
  FIRST_ASSUM(MP_TAC o SPEC `x EXP 2 + y EXP 2 + a + 1` o
    MATCH_MP DIVISION) THEN
 ASM_REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN MESON_TAC[]);;

(* ------------------------------------------------------------------------- *)
(* Avoid the additional conditions.                                          *)
(* ------------------------------------------------------------------------- *)

let LAGRANGE_LEMMA = prove
 (`!a p. prime(p)
         ==> ?n x y. 2 * x <= p /\ 2 * y <= p /\
                     (n * p = x EXP 2 + y EXP 2 + a)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `EVEN(p)` THENL
   [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [prime]) THEN
    DISCH_THEN(MP_TAC o SPEC `2` o CONJUNCT2) THEN
    ANTS_TAC THENL [ASM_MESON_TAC[EVEN_EXISTS; divides]; ALL_TAC] THEN
    REWRITE_TAC[ARITH_EQ] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
    ASM_CASES_TAC `EVEN(a)` THENL
     [UNDISCH_TAC `EVEN a` THEN REWRITE_TAC[EVEN_EXISTS] THEN
      DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST_ALL_TAC) THEN
      MAP_EVERY EXISTS_TAC [`k:num`; `0`; `0`] THEN
      REWRITE_TAC[ARITH; ADD_CLAUSES] THEN ARITH_TAC;
      UNDISCH_TAC `~(EVEN(a))` THEN REWRITE_TAC[NOT_EVEN; ODD_EXISTS] THEN
      DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST_ALL_TAC) THEN
      MAP_EVERY EXISTS_TAC [`k + 1`; `1`; `0`] THEN
      REWRITE_TAC[ARITH; ADD_CLAUSES] THEN ARITH_TAC];
    ASM_CASES_TAC `a = 0` THENL
     [MAP_EVERY EXISTS_TAC [`0`; `0`; `0`] THEN
      ASM_REWRITE_TAC[LE_0; ADD_CLAUSES; MULT_CLAUSES; EXP_2]; ALL_TAC] THEN
    FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
     `~(a = 0) ==> (a = (a - 1) + 1)`)) THEN
    MP_TAC(SPECL [`a - 1`; `p:num`] LAGRANGE_LEMMA_ODD) THEN
    ASM_REWRITE_TAC[GSYM NOT_EVEN] THEN MESON_TAC[LT_IMP_LE]]);;

(* ------------------------------------------------------------------------- *)
(* Aubrey's lemma showing that rationals suffice for sums of 4 squares.      *)
(* ------------------------------------------------------------------------- *)

prioritize_real();;

let REAL_INTEGER_CLOSURES = prove
 (`(!n. ?p. abs(&n) = &p) /\
   (!x y. (?m. abs(x) = &m) /\ (?n. abs(y) = &n) ==> ?p. abs(x + y) = &p) /\
   (!x y. (?m. abs(x) = &m) /\ (?n. abs(y) = &n) ==> ?p. abs(x - y) = &p) /\
   (!x y. (?m. abs(x) = &m) /\ (?n. abs(y) = &n) ==> ?p. abs(x * y) = &p) /\
   (!x r. (?n. abs(x) = &n) ==> ?p. abs(x pow r) = &p) /\
   (!x. (?n. abs(x) = &n) ==> ?p. abs(--x) = &p) /\
   (!x. (?n. abs(x) = &n) ==> ?p. abs(abs x) = &p)`,
  MATCH_MP_TAC(TAUT
   `x /\ c /\ d /\ e /\ f /\ (a /\ e ==> b) /\ a
    ==> x /\ a /\ b /\ c /\ d /\ e /\ f`) THEN
  REPEAT CONJ_TAC THENL
   [REWRITE_TAC[REAL_ABS_NUM] THEN MESON_TAC[];
    REWRITE_TAC[REAL_ABS_MUL] THEN MESON_TAC[REAL_OF_NUM_MUL];
    REWRITE_TAC[REAL_ABS_POW] THEN MESON_TAC[REAL_OF_NUM_POW];
    REWRITE_TAC[REAL_ABS_NEG]; REWRITE_TAC[REAL_ABS_ABS];
    REWRITE_TAC[real_sub] THEN MESON_TAC[]; ALL_TAC] THEN
  SIMP_TAC[REAL_ARITH `&0 <= a ==> ((abs(x) = a) <=> (x = a) \/ (x = --a))`;
           REAL_POS] THEN
  REPEAT STRIP_TAC THEN
  ASM_REWRITE_TAC[GSYM REAL_NEG_ADD; REAL_OF_NUM_ADD] THENL
   [MESON_TAC[]; ALL_TAC; ALL_TAC; MESON_TAC[]] THEN
  REWRITE_TAC[REAL_ARITH `(--a + b = c) <=> (a + c = b)`;
              REAL_ARITH `(a + --b = c) <=> (b + c = a)`] THEN
  REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
  MESON_TAC[LE_EXISTS; ADD_SYM; LE_CASES]);;

let REAL_NUM_ROUND = prove
 (`!x. &0 <= x ==> ?n. abs(x - &n) <= &1 / &2`,
  REPEAT STRIP_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP (MATCH_MP REAL_ARCH_LEAST REAL_LT_01)) THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_MUL_RID] THEN
  DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
  DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
    `a <= x /\ x < a + &1
     ==> abs(x - a) * &2 <= &1 \/ abs(x - (a + &1)) * &2 <= &1`)) THEN
  SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
  MESON_TAC[REAL_OF_NUM_ADD]);;

let REAL_POS_ABS_MIDDLE = prove
 (`!x n. &0 <= x /\ (abs(x - &n) = &1 / &2)
         ==> (x = &(n - 1) + &1 / &2) \/ (x = &n + &1 / &2)`,
  REPEAT GEN_TAC THEN
  MP_TAC(SPECL [`1`; `n:num`] REAL_OF_NUM_SUB) THEN
  DISJ_CASES_TAC(ARITH_RULE `(n = 0) \/ 1 <= n`) THEN
  ASM_REWRITE_TAC[ARITH] THENL
   [MP_TAC(REAL_RAT_REDUCE_CONV `&0 <= &1 / &2`) THEN REAL_ARITH_TAC;
    DISCH_THEN(SUBST1_TAC o SYM) THEN
    REWRITE_TAC[REAL_ARITH `n - &1 + a = n - (&1 - a)`] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN REAL_ARITH_TAC]);;

let REAL_RAT_ABS_MIDDLE = prove
 (`!m n p. (abs(&m / &p - &n) = &1 / &2)
         ==> (&m / &p = &(n - 1) + &1 / &2) \/ (&m / &p = &n + &1 / &2)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POS_ABS_MIDDLE THEN
  ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS]);;

let AUBREY_LEMMA_4 = prove
 (`!m n p q r.
        ~(m = 0) /\ ~(m = 1) /\
        ((&n / &m) pow 2 + (&p / &m) pow 2 +
         (&q / &m) pow 2 + (&r / &m) pow 2 = &N)
        ==> ?m' n' p' q' r'.
               ~(m' = 0) /\ m' < m /\
               ((&n' / &m') pow 2 + (&p' / &m') pow 2 +
                (&q' / &m') pow 2 + (&r' / &m') pow 2 = &N)`,
  REPEAT STRIP_TAC THEN
  MATCH_MP_TAC(TAUT `(~p ==> p) ==> p`) THEN
  REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN
  SUBGOAL_THEN
   `?n' p' q' r'.
        (&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
        (&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 < &1 \/
        (((&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
          (&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 = &1) /\
         (m = 2) /\ (EVEN(n' + p' + q' + r') = EVEN(N)))`
  MP_TAC THENL
   [ASM_CASES_TAC
     `?n' p' q' r'. (&n / &m = &n' + &1 / &2) /\
                    (&p / &m = &p' + &1 / &2) /\
                    (&q / &m = &q' + &1 / &2) /\
                    (&r / &m = &r' + &1 / &2)` THENL
     [FIRST_X_ASSUM(CHOOSE_THEN STRIP_ASSUME_TAC) THEN
      MAP_EVERY EXISTS_TAC [`n':num`; `p':num`; `q':num`] THEN
      SUBGOAL_THEN `m = 2` SUBST_ALL_TAC THENL
       [FIRST_X_ASSUM(MP_TAC o SPECL
         [`2`; `2 * n' + 1`; `2 * p' + 1`; `2 * q' + 1`; `2 * r' + 1`]) THEN
        REWRITE_TAC[ARITH_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
        REWRITE_TAC[real_div; REAL_ADD_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN
        REWRITE_TAC[GSYM real_div] THEN
        SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH_EQ] THEN
        REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN
        REWRITE_TAC[] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
        ARITH_TAC; ALL_TAC] THEN
      SUBGOAL_THEN `(EVEN(n' + p' + q' + r') <=> EVEN(N)) \/
                    (EVEN(n' + p' + q' + r' + 1) <=> EVEN(N))`
      DISJ_CASES_TAC THENL
       [REWRITE_TAC[EVEN_ADD; ARITH_EVEN] THEN CONV_TAC TAUT;
        EXISTS_TAC `r':num` THEN DISJ2_TAC THEN ASM_REWRITE_TAC[] THEN
        REWRITE_TAC[REAL_ARITH `(a + b) - a = b`] THEN
        CONV_TAC REAL_RAT_REDUCE_CONV;
        EXISTS_TAC `r' + 1` THEN DISJ2_TAC THEN ASM_REWRITE_TAC[] THEN
        REWRITE_TAC[REAL_ARITH `(a + b) - a = b`] THEN
        REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
        REWRITE_TAC[REAL_ARITH `(a + b) - (a + c) = b - c`] THEN
        CONV_TAC REAL_RAT_REDUCE_CONV];
      ALL_TAC] THEN
    MAP_EVERY (fun t -> MP_TAC(SPEC t REAL_NUM_ROUND))
     [`&n / &m`; `&p / &m`; `&q / &m`; `&r / &m`] THEN
    SIMP_TAC[REAL_LE_DIV; REAL_POS] THEN
    MAP_EVERY (fun t -> DISCH_THEN(X_CHOOSE_TAC t))
     [`r':num`; `q':num`; `p':num`; `n':num`] THEN
    MAP_EVERY EXISTS_TAC [`n':num`; `p':num`; `q':num`; `r':num`] THEN
    DISJ1_TAC THEN
    MATCH_MP_TAC(REAL_ARITH
     `!m. a <= m /\ b <= m /\ c <= m /\ d <= m /\
          ~((a = m) /\ (b = m) /\ (c = m) /\ (d = m)) /\
          &4 * m <= &1
          ==> a + b + c + d < &1`) THEN
    EXISTS_TAC `(&1 / &2) pow 2` THEN
    ONCE_REWRITE_TAC[SYM(SPEC `a - b` REAL_POW2_ABS)] THEN
    ASM_SIMP_TAC[REAL_POW_LE2; REAL_ABS_POS; REAL_LE_DIV; REAL_POS] THEN
    CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN
    REWRITE_TAC[REAL_POW_2; REAL_ARITH
     `(a * a = b * b) <=> ((a + b) * (a - b) = &0)`] THEN
    REWRITE_TAC[REAL_ENTIRE] THEN
    SIMP_TAC[REAL_ARITH `&0 <= x /\ &0 < y ==> ~(x + y = &0)`;
             REAL_ABS_POS; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
    REWRITE_TAC[REAL_SUB_0] THEN
    FIRST_ASSUM(MP_TAC o check (is_neg o concl)) THEN
    REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`] THEN
    DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN
     (MP_TAC o MATCH_MP REAL_RAT_ABS_MIDDLE)) THEN MESON_TAC[];
    ALL_TAC] THEN
  FIRST_X_ASSUM(K ALL_TAC o check (is_forall o concl)) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`n':num`; `p':num`; `q':num`; `r':num`] THEN
  DISCH_TAC THEN
  ABBREV_TAC `s = &n - &m * &n'` THEN
  ABBREV_TAC `t = &p - &m * &p'` THEN
  ABBREV_TAC `u = &q - &m * &q'` THEN
  ABBREV_TAC `v = &r - &m * &r'` THEN
  ABBREV_TAC `N' = n' EXP 2 + p' EXP 2 + q' EXP 2 + r' EXP 2` THEN
  UNDISCH_TAC `n' EXP 2 + p' EXP 2 + q' EXP 2 + r' EXP 2 = N'` THEN
  DISCH_THEN(ASSUME_TAC o REWRITE_RULE
   [GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_POW]) THEN
  ABBREV_TAC `M = 2 * (n * n' + p * p' + q * q' + r * r')` THEN
  UNDISCH_TAC `2 * (n * n' + p * p' + q * q' + r * r') = M` THEN
  DISCH_THEN(ASSUME_TAC o REWRITE_RULE
   [GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL;
    GSYM REAL_OF_NUM_POW]) THEN
  ASM_CASES_TAC `(&n / &m = &n') /\ (&p / &m = &p') /\
                 (&q / &m = &q') /\ (&r / &m = &r')` THENL
   [MAP_EVERY EXISTS_TAC [`1`; `n':num`; `p':num`; `q':num`; `r':num`] THEN
    REWRITE_TAC[ARITH_EQ; REAL_DIV_1] THEN CONJ_TAC THENL
     [UNDISCH_TAC `~(m = 0)` THEN UNDISCH_TAC `~(m = 1)` THEN ARITH_TAC;
      UNDISCH_THEN
        `(&n / &m) pow 2 + (&p / &m) pow 2 +
         (&q / &m) pow 2 + (&r / &m) pow 2 = &N`
        (SUBST1_TAC o SYM) THEN
      ASM_REWRITE_TAC[]];
    ALL_TAC] THEN
  SUBGOAL_THEN `&0 < (&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
                     (&q / &m - &q') pow 2 + (&r / &m - &r') pow 2`
  MP_TAC THENL
   [MATCH_MP_TAC(REAL_ARITH
     `&0 <= w /\ &0 <= x /\ &0 <= y /\ &0 <= z /\
      ~((w = &0) /\ (x = &0) /\ (y = &0) /\ (z = &0))
      ==> &0 < w + x + y + z`) THEN
    REWRITE_TAC[REAL_POW_2; REAL_ENTIRE; REAL_LE_SQUARE] THEN
    ASM_REWRITE_TAC[REAL_SUB_0];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o check (is_disj o concl)) THEN
  SUBGOAL_THEN
   `(&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
    (&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 =
    (s pow 2 + t pow 2 + u pow 2 + v pow 2) / &m pow 2`
  MP_TAC THENL
   [MATCH_MP_TAC REAL_EQ_RCANCEL_IMP THEN EXISTS_TAC `&m pow 2` THEN
    ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_DIV_RMUL; REAL_OF_NUM_EQ] THEN
    REWRITE_TAC[REAL_ADD_RDISTRIB; GSYM REAL_POW_MUL; REAL_SUB_RDISTRIB] THEN
    ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_DIV_RMUL; REAL_OF_NUM_EQ] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `(&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
                (&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 =
                (&N + &N') - &M / &m`
  ASSUME_TAC THENL
   [MATCH_MP_TAC REAL_EQ_RCANCEL_IMP THEN EXISTS_TAC `&m pow 2` THEN
    ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_DIV_RMUL; REAL_OF_NUM_EQ] THEN
    REWRITE_TAC[GSYM(ASSUME `(&n / &m) pow 2 + (&p / &m) pow 2 +
                             (&q / &m) pow 2 + (&r / &m) pow 2 = &N`);
           GSYM(ASSUME `&n' pow 2 + &p' pow 2 + &q' pow 2 + &r' pow 2 = &N'`);
           GSYM(ASSUME
            `&2 * (&n * &n' + &p * &p' + &q * &q' + &r * &r') = &M`)] THEN
    REWRITE_TAC[REAL_ADD_RDISTRIB; GSYM REAL_POW_MUL; REAL_SUB_RDISTRIB] THEN
    REWRITE_TAC[REAL_POW_2;  REAL_MUL_ASSOC] THEN
    SIMP_TAC[REAL_DIV_RMUL; REAL_OF_NUM_EQ; ASSUME `~(m = 0)`] THEN
    REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
    SIMP_TAC[REAL_DIV_RMUL; REAL_OF_NUM_EQ; ASSUME `~(m = 0)`] THEN
    REAL_ARITH_TAC; ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[REAL_ARITH `(a + b) - c < &1 <=> (a + b) - &1 < c`;
              REAL_ARITH `((a + b) - c = &1) <=> ((a + b) - &1 = c)`;
              REAL_ARITH `&0 < a - b <=> b < a`] THEN
  SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_EQ_RDIV_EQ; REAL_OF_NUM_LT;
           ARITH_RULE `0 < n <=> ~(n = 0)`; ASSUME `~(m = 0)`] THEN
  REWRITE_TAC[REAL_ARITH `(a - &1) * m < M <=> a * m - M < m`;
              REAL_ARITH `((a - &1) * m = M) <=> (a * m - M = m)`] THEN
  REPEAT DISCH_TAC THEN
  UNDISCH_TAC `(&N + &N') - &M / &m =
               (s pow 2 + t pow 2 + u pow 2 + v pow 2) / &m pow 2` THEN
  ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT;
               ARITH_RULE `0 < a <=> ~(a = 0)`] THEN
  REWRITE_TAC[REAL_POW_2; REAL_SUB_RDISTRIB; REAL_MUL_ASSOC] THEN
  ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_OF_NUM_EQ; GSYM REAL_POW_2] THEN
  ABBREV_TAC `m':num = (N + N') * m - M` THEN
  SUBGOAL_THEN `(&N + &N') * &m - &M = &m'`
   (fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th)
  THENL
   [EXPAND_TAC "m'" THEN
    REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_MUL] THEN
    MATCH_MP_TAC REAL_OF_NUM_SUB THEN
    REWRITE_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_ADD; GSYM
                REAL_OF_NUM_MUL] THEN
    ASM_SIMP_TAC[REAL_LT_IMP_LE]; ALL_TAC] THEN
  ASM_REWRITE_TAC[GSYM REAL_SUB_RDISTRIB] THEN
  DISCH_THEN(ASSUME_TAC o GSYM) THEN
  SUBGOAL_THEN `~(m' = 0)` ASSUME_TAC THENL
   [REWRITE_TAC[GSYM REAL_OF_NUM_EQ] THEN
    REWRITE_TAC[GSYM(ASSUME `(&N + &N') * &m - &M = &m'`)] THEN
    MATCH_MP_TAC(REAL_ARITH `b < a ==> ~(a - b = &0)`) THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN
   `!z. (&n' + s * z) pow 2 + (&p' + t * z) pow 2 +
        (&q' + u * z) pow 2 + (&r' + v * z) pow 2 - &N =
        (&m * z - &1) * (&m' * z + &N - &N')`
  ASSUME_TAC THENL
   [GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
    EXISTS_TAC `&m * &m' * z pow 2 + (&M - &2 * &m * &N') * z + &N' - &N` THEN
    CONJ_TAC THENL
     [REWRITE_TAC[REAL_POW_2; REAL_ARITH
       `(n + s * z) * (n + s * z) + (p + t * z) * (p + t * z) +
        (q + u * z) * (q + u * z) + (r + v * z) * (r + v * z) - N =
        (s * s + t * t + u * u + v * v) * (z * z) +
        (&2 * (n * s + p * t + q * u + r * v)) * z +
        ((n * n + p * p + q * q + r * r) - N)`] THEN
      ASM_REWRITE_TAC[GSYM REAL_POW_2] THEN
      MATCH_MP_TAC(REAL_ARITH
       `(a = c) /\ (b = d) ==> (a + b + n - m = c + d + n - m)`) THEN
      CONJ_TAC THENL [REWRITE_TAC[REAL_MUL_AC]; ALL_TAC] THEN
      AP_THM_TAC THEN AP_TERM_TAC THEN
      REWRITE_TAC[GSYM(ASSUME
       `&n' pow 2 + &p' pow 2 + &q' pow 2 + &r' pow 2 = &N'`);
                  GSYM(ASSUME
       `&2 * (&n * &n' + &p * &p' + &q * &q' + &r * &r') = &M`)] THEN
      MAP_EVERY EXPAND_TAC ["s"; "t"; "u"; "v"] THEN
      REWRITE_TAC[REAL_POW_2] THEN REAL_ARITH_TAC;
      REWRITE_TAC[REAL_POW_2; REAL_ARITH
        `(m * z - &1) * (m' * z + nn) = m * m' * z * z +
                                        (m * z * nn - m' * z) - nn`] THEN
      REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN
      REWRITE_TAC[REAL_ARITH `(a + n' - n = b - (n - n')) <=> (a = b)`] THEN
      REWRITE_TAC[REAL_ARITH `a * z * b - c * z = (a * b - c) * z`] THEN
      AP_THM_TAC THEN AP_TERM_TAC THEN
      REWRITE_TAC[GSYM(ASSUME `(&N + &N') * &m - &M = &m'`)] THEN
      REAL_ARITH_TAC];
    ALL_TAC] THEN
  ABBREV_TAC `w = &n' + s * (&N' - &N) / &m'` THEN
  ABBREV_TAC `x = &p' + t * (&N' - &N) / &m'` THEN
  ABBREV_TAC `y = &q' + u * (&N' - &N) / &m'` THEN
  ABBREV_TAC `z = &r' + v * (&N' - &N) / &m'` THEN
  SUBGOAL_THEN `w pow 2 + x pow 2 + y pow 2 + z pow 2 = &N`
  (SUBST1_TAC o SYM) THENL
   [MAP_EVERY EXPAND_TAC ["w"; "x"; "y"; "z"] THEN
    ONCE_REWRITE_TAC[REAL_ARITH
      `(a + b + c + d = e) <=> (a + b + c + d - e = &0)`] THEN
    FIRST_ASSUM(SUBST1_TAC o SPEC `(&N' - &N) / &m'`) THEN
    REWRITE_TAC[REAL_ENTIRE] THEN DISJ2_TAC THEN
    ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ] THEN REAL_ARITH_TAC;
    ALL_TAC] THEN
  FIRST_X_ASSUM(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
   [EXISTS_TAC `m':num` THEN
    SUBGOAL_THEN
     `?a b c d. (abs(&n' * &m' + s * (&N' - &N)) = &a) /\
                (abs(&p' * &m' + t * (&N' - &N)) = &b) /\
                (abs(&q' * &m' + u * (&N' - &N)) = &c) /\
                (abs(&r' * &m' + v * (&N' - &N)) = &d)`
    MP_TAC THENL
     [MAP_EVERY EXPAND_TAC ["s"; "t"; "u"; "v"] THEN
      REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM] THEN
      MESON_TAC[REAL_INTEGER_CLOSURES]; ALL_TAC] THEN
    MAP_EVERY (fun t -> MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC t)
     [`a:num`; `b:num`; `c:num`; `d:num`] THEN
    DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
    RULE_ASSUM_TAC(REWRITE_RULE[REAL_OF_NUM_LT]) THEN
    REWRITE_TAC[REAL_POW_DIV; REAL_POW2_ABS] THEN
    REWRITE_TAC[GSYM REAL_POW_DIV] THEN
    REWRITE_TAC[real_div; REAL_ADD_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN
    ASM_SIMP_TAC[REAL_MUL_RINV; REAL_OF_NUM_EQ] THEN
    REWRITE_TAC[GSYM real_div; REAL_MUL_RID] THEN
    ASM_REWRITE_TAC[]; ALL_TAC] THEN
  REWRITE_TAC[REAL_OF_NUM_EQ] THEN
  REPEAT(DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC)) THEN
  DISCH_TAC THEN
  SUBGOAL_THEN `?n. abs((&N' - &N) / &2) = &n` ASSUME_TAC THENL
   [REWRITE_TAC[GSYM(ASSUME
     `&n' pow 2 + &p' pow 2 + &q' pow 2 + &r' pow 2 = &N'`)] THEN
    REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_ADD] THEN
    SUBGOAL_THEN `EVEN(n' EXP 2 + p' EXP 2 + q' EXP 2 + r' EXP 2) =
                  EVEN N`
    MP_TAC THENL
     [FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
      REWRITE_TAC[EVEN_ADD; EVEN_EXP; ARITH_EQ];
      ALL_TAC] THEN
    DISJ_CASES_THEN MP_TAC (TAUT `EVEN(N) \/ ~EVEN(N)`) THEN SIMP_TAC[] THEN
    REWRITE_TAC[NOT_EVEN; EVEN_EXISTS; ODD_EXISTS] THEN
    REPEAT(DISCH_THEN(CHOOSE_THEN SUBST1_TAC)) THEN
    REWRITE_TAC[GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_MUL] THEN
    REWRITE_TAC[REAL_ARITH `(&2 * x + &1) - (&2 * y + &1) = &2 * (x - y)`] THEN
    REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[REAL_MUL_RID] THEN MESON_TAC[REAL_INTEGER_CLOSURES];
    ALL_TAC] THEN
  EXISTS_TAC `1` THEN REWRITE_TAC[ARITH_EQ] THEN
  SUBGOAL_THEN
    `?a b c d. (abs(&n' + s * (&N' - &N) / &2) = &a) /\
               (abs(&p' + t * (&N' - &N) / &2) = &b) /\
               (abs(&q' + u * (&N' - &N) / &2) = &c) /\
               (abs(&r' + v * (&N' - &N) / &2) = &d)`
  MP_TAC THENL
   [MAP_EVERY EXPAND_TAC ["s"; "t"; "u"; "v"] THEN
    REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM] THEN
    UNDISCH_TAC `?n. abs ((&N' - &N) / &2) = &n` THEN
    MESON_TAC[REAL_INTEGER_CLOSURES]; ALL_TAC] THEN
  REWRITE_TAC[ARITH; REAL_DIV_1] THEN
  MAP_EVERY (fun t -> MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC t)
     [`a:num`; `b:num`; `c:num`; `d:num`] THEN
  DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
  ASM_REWRITE_TAC[REAL_POW2_ABS]);;

(* ------------------------------------------------------------------------- *)
(* Hence the main result.                                                    *)
(* ------------------------------------------------------------------------- *)

let AUBREY_THM_4 = prove
 (`(?q. ~(q = 0) /\
       ?a b c d.
            (&a / &q) pow 2 + (&b / &q) pow 2 +
            (&c / &q) pow 2 + (&d / &q) pow 2 = &N)
   ==> ?a b c d. &a pow 2 + &b pow 2 + &c pow 2 + &d pow 2 = &N`,
  GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN
  ASM_CASES_TAC `m = 1` THENL
   [ASM_REWRITE_TAC[REAL_DIV_1; ARITH_EQ] THEN MESON_TAC[];
    STRIP_TAC THEN MP_TAC(SPEC `m:num` AUBREY_LEMMA_4) THEN
    ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* The algebraic lemma.                                                      *)
(* ------------------------------------------------------------------------- *)

let LAGRANGE_IDENTITY = REAL_ARITH
  `(w1 pow 2 + x1 pow 2 + y1 pow 2 + z1 pow 2) *
   (w2 pow 2 + x2 pow 2 + y2 pow 2 + z2 pow 2) =
   (w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2) pow 2 +
   (w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2) pow 2 +
   (w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2) pow 2 +
   (w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2) pow 2`;;

(* ------------------------------------------------------------------------- *)
(* Now sum of 4 squares.                                                     *)
(* ------------------------------------------------------------------------- *)

let LAGRANGE_REAL_NUM = prove
 (`!n. ?w x y z. &n = &w pow 2 + &x pow 2 + &y pow 2 + &z pow 2`,
  let lemma = prove
   (`(?a. abs(w) = &a) /\ (?b. abs(x) = &b) /\
     (?c. abs(y) = &c) /\ (?d. abs(z) = &d)
     ==> ?a b c d. w pow 2 + x pow 2 + y pow 2 + z pow 2 =
                   &a pow 2 + &b pow 2 + &c pow 2 + &d pow 2`,
    STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
    ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_ABS_NUM] THEN
    MESON_TAC[]) in
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
  ASM_CASES_TAC `n = 0` THENL
   [REPEAT(EXISTS_TAC `0`) THEN ASM_REWRITE_TAC[] THEN
    CONV_TAC REAL_RAT_REDUCE_CONV;
    ALL_TAC] THEN
  ASM_CASES_TAC `n = 1` THENL
   [EXISTS_TAC `1` THEN REPEAT(EXISTS_TAC `0`) THEN
    ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV;
    ALL_TAC] THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
  DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
  UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN
  DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN
  ASM_CASES_TAC `m = 1` THENL
   [ALL_TAC;
    DISCH_THEN SUBST_ALL_TAC THEN
    FIRST_X_ASSUM(fun th ->
     MP_TAC(SPEC `p:num` th) THEN MP_TAC(SPEC `m:num` th)) THEN
    ONCE_REWRITE_TAC[ARITH_RULE `m < p * m <=> 1 * m < p * m`] THEN
    REWRITE_TAC[LT_MULT_RCANCEL] THEN
    ONCE_REWRITE_TAC[ARITH_RULE `p < p * m <=> p * 1 < p * m`] THEN
    REWRITE_TAC[LT_MULT_LCANCEL] THEN
    UNDISCH_TAC `~(p * m = 0)` THEN REWRITE_TAC[MULT_EQ_0] THEN
    ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN `~(p = 1)` ASSUME_TAC THENL
     [ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN
    ASM_REWRITE_TAC[ARITH_RULE `1 < x <=> ~(x = 0) /\ ~(x = 1)`] THEN
    REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`w1:num`; `x1:num`; `y1:num`; `z1:num`] THEN
    DISCH_TAC THEN
    MAP_EVERY X_GEN_TAC [`w2:num`; `x2:num`; `y2:num`; `z2:num`] THEN
    DISCH_TAC THEN ASM_REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN
    REWRITE_TAC[LAGRANGE_IDENTITY] THEN
    MATCH_MP_TAC lemma THEN REWRITE_TAC[REAL_OF_NUM_MUL] THEN
    MESON_TAC[REAL_INTEGER_CLOSURES]] THEN
  UNDISCH_TAC `m = 1` THEN DISCH_THEN SUBST_ALL_TAC THEN
  REWRITE_TAC[MULT_CLAUSES] THEN DISCH_THEN SUBST_ALL_TAC THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP LAGRANGE_LEMMA) THEN
  DISCH_THEN(MP_TAC o SPEC `1 EXP 2 + 0 EXP 2`) THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`q:num`; `x:num`; `y:num`] THEN STRIP_TAC THEN
  CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN MATCH_MP_TAC AUBREY_THM_4 THEN
  SUBGOAL_THEN `q * p < p EXP 2` MP_TAC THENL
   [ASM_REWRITE_TAC[EXP_2; MULT_CLAUSES; ADD_CLAUSES] THEN
    MATCH_MP_TAC(ARITH_RULE
     `(2 * x) * (2 * x) <= p * p /\ (2 * y) * (2 * y) <= p * p /\
      2 * 2 <= p * p
      ==> x * x + y * y + 1 < p * p`) THEN
    REPEAT CONJ_TAC THEN MATCH_MP_TAC LE_MULT2 THEN ASM_REWRITE_TAC[] THEN
    MAP_EVERY UNDISCH_TAC [`~(p = 0)`; `~(p = 1)`] THEN ARITH_TAC;
    ALL_TAC] THEN
  REWRITE_TAC[EXP_2; LT_MULT_RCANCEL] THEN ASM_REWRITE_TAC[] THEN
  DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`a:num`; `b:num`; `c:num`; `d:num`] THEN DISCH_TAC THEN
  SUBGOAL_THEN `~(q = 0)` ASSUME_TAC THENL
   [DISCH_THEN SUBST_ALL_TAC THEN
    UNDISCH_TAC `0 * p = x EXP 2 + y EXP 2 + 1 EXP 2 + 0 EXP 2` THEN
    DISCH_THEN(MP_TAC o SYM) THEN REWRITE_TAC[MULT_CLAUSES; EXP_2] THEN
    REWRITE_TAC[ADD_EQ_0; ARITH_EQ]; ALL_TAC] THEN
  SUBGOAL_THEN `&p = &q * &(q * p) / &q pow 2` SUBST1_TAC THENL
   [REWRITE_TAC[GSYM REAL_OF_NUM_MUL; REAL_MUL_ASSOC; real_div] THEN
    ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
    REWRITE_TAC[GSYM REAL_POW_2] THEN
    SIMP_TAC[REAL_MUL_ASSOC; REAL_POW_EQ_0; REAL_MUL_LINV; REAL_MUL_LID;
             ASSUME `~(q = 0)`; REAL_OF_NUM_EQ];
    ALL_TAC] THEN
  ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_POW] THEN
  REWRITE_TAC[real_div; REAL_MUL_ASSOC; LAGRANGE_IDENTITY] THEN
  SUBST1_TAC(SYM(ASSUME
    `&q = &a pow 2 + &b pow 2 + &c pow 2 + &d pow 2`)) THEN
  REWRITE_TAC[REAL_ADD_RDISTRIB] THEN
  REWRITE_TAC[GSYM real_div; GSYM REAL_POW_DIV] THEN
  EXISTS_TAC `q:num` THEN REWRITE_TAC[ASSUME `~(q = 0)`] THEN
  REWRITE_TAC[REAL_POW_DIV] THEN
  REWRITE_TAC[real_div; GSYM REAL_ADD_RDISTRIB] THEN
  REWRITE_TAC[REAL_EQ_MUL_RCANCEL] THEN
  REWRITE_TAC[REAL_INV_EQ_0; REAL_POW_EQ_0; REAL_OF_NUM_EQ;
              ASSUME `~(q = 0)`] THEN
  CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN MATCH_MP_TAC lemma THEN
  REWRITE_TAC[REAL_OF_NUM_MUL] THEN MESON_TAC[REAL_INTEGER_CLOSURES]);;

(* ------------------------------------------------------------------------- *)
(* Also prove it for the natural numbers.                                    *)
(* ------------------------------------------------------------------------- *)

let LAGRANGE_NUM = prove
 (`!n. ?w x y z. n = w EXP 2 + x EXP 2 + y EXP 2 + z EXP 2`,
  GEN_TAC THEN MP_TAC(SPEC `n:num` LAGRANGE_REAL_NUM) THEN
  REWRITE_TAC[REAL_POS; REAL_OF_NUM_POW; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ]);;

(* ------------------------------------------------------------------------- *)
(* And for the integers.                                                     *)
(* ------------------------------------------------------------------------- *)

prioritize_int();;

let LAGRANGE_INT = prove
 (`!a. &0 <= a <=> ?w x y z. a = w pow 2 + x pow 2 + y pow 2 + z pow 2`,
  GEN_TAC THEN EQ_TAC THENL
   [SPEC_TAC(`a:int`,`a:int`) THEN REWRITE_TAC[GSYM INT_FORALL_POS] THEN
    X_GEN_TAC `n:num` THEN MP_TAC(SPEC `n:num` LAGRANGE_REAL_NUM) THEN
    REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
    SIMP_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_POW; GSYM INT_OF_NUM_ADD] THEN
    MESON_TAC[];
    STRIP_TAC THEN ASM_SIMP_TAC[INT_LE_SQUARE; INT_LE_ADD; INT_POW_2]]);;

prioritize_num();;