Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 43,370 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 |
(* ========================================================================= *)
(* Theorems about representations as sums of 2 and 4 squares. *)
(* ========================================================================= *)
needs "Library/prime.ml";;
needs "Library/analysis.ml";; (*** only for REAL_ARCH_LEAST! ***)
prioritize_num();;
(* ------------------------------------------------------------------------- *)
(* Definition of involution and various basic lemmas. *)
(* ------------------------------------------------------------------------- *)
let involution = new_definition
`involution f s = !x. x IN s ==> f(x) IN s /\ (f(f(x)) = x)`;;
let INVOLUTION_IMAGE = prove
(`!f s. involution f s ==> (IMAGE f s = s)`,
REWRITE_TAC[involution; EXTENSION; IN_IMAGE] THEN MESON_TAC[]);;
let INVOLUTION_DELETE = prove
(`involution f s /\ a IN s /\ (f a = a) ==> involution f (s DELETE a)`,
REWRITE_TAC[involution; IN_DELETE] THEN MESON_TAC[]);;
let INVOLUTION_STEPDOWN = prove
(`involution f s /\ a IN s ==> involution f (s DIFF {a, (f a)})`,
REWRITE_TAC[involution; IN_DIFF; IN_INSERT; NOT_IN_EMPTY] THEN MESON_TAC[]);;
let INVOLUTION_NOFIXES = prove
(`involution f s ==> involution f {x | x IN s /\ ~(f x = x)}`,
REWRITE_TAC[involution; IN_ELIM_THM] THEN MESON_TAC[]);;
let INVOLUTION_SUBSET = prove
(`!f s t. involution f s /\ (!x. x IN t ==> f(x) IN t) /\ t SUBSET s
==> involution f t`,
REWRITE_TAC[involution; SUBSET] THEN MESON_TAC[]);;
let INVOLUTION_EVEN = prove
(`!s. FINITE(s) /\ involution f s /\ (!x:A. x IN s ==> ~(f x = x))
==> EVEN(CARD s)`,
REWRITE_TAC[involution] THEN MESON_TAC[INVOLUTION_EVEN_NOFIXPOINTS]);;
(* ------------------------------------------------------------------------- *)
(* So an involution with exactly one fixpoint has odd card domain. *)
(* ------------------------------------------------------------------------- *)
let INVOLUTION_FIX_ODD = prove
(`FINITE(s) /\ involution f s /\ (?!a:A. a IN s /\ (f a = a))
==> ODD(CARD s)`,
REWRITE_TAC[EXISTS_UNIQUE_DEF] THEN STRIP_TAC THEN
SUBGOAL_THEN `s = (a:A) INSERT (s DELETE a)` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_INSERT; IN_DELETE] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_SIMP_TAC[CARD_CLAUSES; FINITE_DELETE; IN_DELETE; ODD; NOT_ODD] THEN
MATCH_MP_TAC INVOLUTION_EVEN THEN
ASM_SIMP_TAC[INVOLUTION_DELETE; FINITE_DELETE; IN_DELETE] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* And an involution on a set of odd finite card must have a fixpoint. *)
(* ------------------------------------------------------------------------- *)
let INVOLUTION_ODD = prove
(`!n s. FINITE(s) /\ involution f s /\ ODD(CARD s)
==> ?a. a IN s /\ (f a = a)`,
REWRITE_TAC[GSYM NOT_EVEN] THEN MESON_TAC[INVOLUTION_EVEN]);;
(* ------------------------------------------------------------------------- *)
(* Consequently, if one involution has a unique fixpoint, other has one. *)
(* ------------------------------------------------------------------------- *)
let INVOLUTION_FIX_FIX = prove
(`!f g s. FINITE(s) /\ involution f s /\ involution g s /\
(?!x. x IN s /\ (f x = x)) ==> ?x. x IN s /\ (g x = x)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC INVOLUTION_ODD THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC INVOLUTION_FIX_ODD THEN
ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Formalization of Zagier's "one-sentence" proof over the natural numbers. *)
(* ------------------------------------------------------------------------- *)
let zset = new_definition
`zset(a) = {(x,y,z) | x EXP 2 + 4 * y * z = a}`;;
let zag = new_definition
`zag(x,y,z) =
if x + z < y then (x + 2 * z,z,y - (x + z))
else if x < 2 * y then (2 * y - x, y, (x + z) - y)
else (x - 2 * y,(x + z) - y, y)`;;
let tag = new_definition
`tag((x,y,z):num#num#num) = (x,z,y)`;;
let ZAG_INVOLUTION_GENERAL = prove
(`0 < x /\ 0 < y /\ 0 < z ==> (zag(zag(x,y,z)) = (x,y,z))`,
REWRITE_TAC[zag] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
REWRITE_TAC[zag] THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[]) THEN
REWRITE_TAC[PAIR_EQ] THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);;
let IN_TRIPLE = prove
(`(a,b,c) IN {(x,y,z) | P x y z} <=> P a b c`,
REWRITE_TAC[IN_ELIM_THM; PAIR_EQ] THEN MESON_TAC[]);;
let PRIME_SQUARE = prove
(`!n. ~prime(n * n)`,
GEN_TAC THEN ASM_CASES_TAC `n = 0` THEN
ASM_REWRITE_TAC[PRIME_0; MULT_CLAUSES] THEN
REWRITE_TAC[prime; NOT_FORALL_THM; DE_MORGAN_THM] THEN
ASM_CASES_TAC `n = 1` THEN ASM_REWRITE_TAC[ARITH] THEN
DISJ2_TAC THEN EXISTS_TAC `n:num` THEN
ASM_SIMP_TAC[DIVIDES_LMUL; DIVIDES_REFL] THEN
GEN_REWRITE_TAC (RAND_CONV o LAND_CONV) [ARITH_RULE `n = n * 1`] THEN
ASM_SIMP_TAC[EQ_MULT_LCANCEL]);;
let PRIME_4X = prove
(`!n. ~prime(4 * n)`,
GEN_TAC THEN REWRITE_TAC[prime; NOT_FORALL_THM; DE_MORGAN_THM] THEN
DISJ2_TAC THEN EXISTS_TAC `2` THEN
SUBST1_TAC(SYM(NUM_REDUCE_CONV `2 * 2`)) THEN
ASM_SIMP_TAC[GSYM MULT_ASSOC; DIVIDES_RMUL; DIVIDES_REFL; ARITH_EQ] THEN
ASM_CASES_TAC `n = 0` THEN POP_ASSUM MP_TAC THEN ARITH_TAC);;
let PRIME_XYZ_NONZERO = prove
(`prime(x EXP 2 + 4 * y * z) ==> 0 < x /\ 0 < y /\ 0 < z`,
CONV_TAC CONTRAPOS_CONV THEN
REWRITE_TAC[DE_MORGAN_THM; ARITH_RULE `~(0 < x) = (x = 0)`] THEN
DISCH_THEN(REPEAT_TCL DISJ_CASES_THEN SUBST1_TAC) THEN
REWRITE_TAC[EXP_2; MULT_CLAUSES; ADD_CLAUSES; PRIME_SQUARE; PRIME_4X]);;
let ZAG_INVOLUTION = prove
(`!p. prime(p) ==> involution zag (zset(p))`,
REPEAT STRIP_TAC THEN REWRITE_TAC[involution; FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `y:num`; `z:num`] THEN
REWRITE_TAC[zset; IN_TRIPLE] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
CONJ_TAC THENL
[REWRITE_TAC[zag] THEN REPEAT COND_CASES_TAC THEN
ASM_REWRITE_TAC[IN_TRIPLE] THEN
RULE_ASSUM_TAC(REWRITE_RULE[NOT_LT]) THEN
ASM_SIMP_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_ADD; EXP_2;
GSYM INT_OF_NUM_MUL; GSYM INT_OF_NUM_SUB; LT_IMP_LE] THEN
INT_ARITH_TAC;
MATCH_MP_TAC ZAG_INVOLUTION_GENERAL THEN
ASM_MESON_TAC[PRIME_XYZ_NONZERO]]);;
let TAG_INVOLUTION = prove
(`!a. involution tag (zset a)`,
REWRITE_TAC[involution; tag; zset; FORALL_PAIR_THM] THEN
REWRITE_TAC[IN_TRIPLE] THEN REWRITE_TAC[MULT_AC]);;
let ZAG_LEMMA = prove
(`(zag(x,y,z) = (x,y,z)) ==> (y = x)`,
REWRITE_TAC[zag; INT_POW_2] THEN
REPEAT(COND_CASES_TAC THEN ASM_SIMP_TAC[PAIR_EQ]) THEN
POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN ARITH_TAC);;
let ZSET_BOUND = prove
(`0 < y /\ 0 < z /\ (x EXP 2 + 4 * y * z = p)
==> x <= p /\ y <= p /\ z <= p`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
FIRST_X_ASSUM(SUBST1_TAC o SYM) THEN CONJ_TAC THENL
[MESON_TAC[EXP_2; LE_SQUARE_REFL; ARITH_RULE `(a <= b ==> a <= b + c)`];
CONJ_TAC THEN MATCH_MP_TAC(ARITH_RULE `y <= z ==> y <= x + z`) THENL
[GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [MULT_SYM]; ALL_TAC] THEN
REWRITE_TAC[ARITH_RULE `y <= 4 * a * y <=> 1 * y <= (4 * a) * y`] THEN
ASM_REWRITE_TAC[LE_MULT_RCANCEL] THEN
ASM_SIMP_TAC[ARITH_RULE `0 < a ==> 1 <= 4 * a`]]);;
let ZSET_FINITE = prove
(`!p. prime(p) ==> FINITE(zset p)`,
GEN_TAC THEN DISCH_TAC THEN
MP_TAC(SPEC `p + 1` FINITE_NUMSEG_LT) THEN
DISCH_THEN(fun th ->
MP_TAC(funpow 2 (MATCH_MP FINITE_PRODUCT o CONJ th) th)) THEN
MATCH_MP_TAC(REWRITE_RULE[TAUT `a /\ b ==> c <=> b ==> a ==> c`]
FINITE_SUBSET) THEN
REWRITE_TAC[zset; SUBSET; FORALL_PAIR_THM; IN_TRIPLE] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `y:num`; `z:num`] THEN
REWRITE_TAC[IN_ELIM_THM; EXISTS_PAIR_THM; PAIR_EQ] THEN
REWRITE_TAC[ARITH_RULE `x < p + 1 <=> x <= p`; PAIR_EQ] THEN
DISCH_TAC THEN MAP_EVERY EXISTS_TAC [`x:num`; `y:num`; `z:num`] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[RIGHT_AND_EXISTS_THM] THEN
MAP_EVERY EXISTS_TAC [`y:num`; `z:num`] THEN REWRITE_TAC[] THEN
ASM_MESON_TAC[ZSET_BOUND; PRIME_XYZ_NONZERO]);;
let SUM_OF_TWO_SQUARES = prove
(`!p k. prime(p) /\ (p = 4 * k + 1) ==> ?x y. p = x EXP 2 + y EXP 2`,
SIMP_TAC[] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `?t. t IN zset(p) /\ (tag(t) = t)` MP_TAC THENL
[ALL_TAC;
REWRITE_TAC[LEFT_IMP_EXISTS_THM; FORALL_PAIR_THM; tag; PAIR_EQ] THEN
REWRITE_TAC[zset; IN_TRIPLE; EXP_2] THEN
ASM_MESON_TAC[ARITH_RULE `4 * x * y = (2 * x) * (2 * y)`]] THEN
MATCH_MP_TAC INVOLUTION_FIX_FIX THEN EXISTS_TAC `zag` THEN
ASM_SIMP_TAC[ZAG_INVOLUTION; TAG_INVOLUTION; ZSET_FINITE] THEN
REWRITE_TAC[EXISTS_UNIQUE_ALT] THEN EXISTS_TAC `1,1,k:num` THEN
REWRITE_TAC[FORALL_PAIR_THM] THEN
MAP_EVERY X_GEN_TAC [`x:num`; `y:num`; `z:num`] THEN EQ_TAC THENL
[ALL_TAC;
DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[zset; zag; IN_TRIPLE; ARITH] THEN
REWRITE_TAC[MULT_CLAUSES; ARITH_RULE `~(1 + k < 1)`; PAIR_EQ] THEN
ARITH_TAC] THEN
REWRITE_TAC[zset; IN_TRIPLE] THEN STRIP_TAC THEN
FIRST_ASSUM(SUBST_ALL_TAC o MATCH_MP ZAG_LEMMA) THEN
UNDISCH_TAC `x EXP 2 + 4 * x * z = 4 * k + 1` THEN
REWRITE_TAC[EXP_2; ARITH_RULE `x * x + 4 * x * z = x * (4 * z + x)`] THEN
DISCH_THEN(ASSUME_TAC o SYM) THEN UNDISCH_TAC `prime p` THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[prime] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `x:num`)) THEN
SIMP_TAC[DIVIDES_RMUL; DIVIDES_REFL] THEN
DISCH_THEN(DISJ_CASES_THEN2 SUBST_ALL_TAC MP_TAC) THENL
[UNDISCH_TAC `4 * k + 1 = 1 * (4 * z + 1)` THEN
REWRITE_TAC[MULT_CLAUSES; PAIR_EQ] THEN ARITH_TAC;
ONCE_REWRITE_TAC[ARITH_RULE `(a = a * b) = (a * b = a * 1)`] THEN
ASM_SIMP_TAC[EQ_MULT_LCANCEL] THEN STRIP_TAC THENL
[UNDISCH_TAC `4 * k + 1 = x * (4 * z + x)` THEN
ASM_REWRITE_TAC[MULT_CLAUSES; ADD_EQ_0; ARITH_EQ];
UNDISCH_TAC `4 * z + x = 1` THEN REWRITE_TAC[PAIR_EQ] THEN
ASM_CASES_TAC `z = 0` THENL
[ALL_TAC; UNDISCH_TAC `~(z = 0)` THEN ARITH_TAC] THEN
UNDISCH_TAC `4 * k + 1 = x * (4 * z + x)` THEN
ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES] THEN
ASM_CASES_TAC `x = 1` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[MULT_CLAUSES] THEN ARITH_TAC]]);;
(* ------------------------------------------------------------------------- *)
(* General pigeonhole lemma. *)
(* ------------------------------------------------------------------------- *)
let PIGEONHOLE_LEMMA = prove
(`!f:A->B g s t.
FINITE(s) /\ FINITE(t) /\
(!x. x IN s ==> f(x) IN t) /\
(!x y. x IN s /\ y IN s /\ (f x = f y) ==> (x = y)) /\
(!x. x IN s ==> g(x) IN t) /\
(!x y. x IN s /\ y IN s /\ (g x = g y) ==> (x = y)) /\
CARD(t) < 2 * CARD(s)
==> ?x y. x IN s /\ y IN s /\ (f x = g y)`,
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`IMAGE (f:A->B) s`; `IMAGE (g:A->B) s`] CARD_UNION) THEN
SUBGOAL_THEN `(CARD(IMAGE (f:A->B) s) = CARD s) /\
(CARD(IMAGE (g:A->B) s) = CARD s)`
STRIP_ASSUME_TAC THENL [ASM_MESON_TAC[CARD_IMAGE_INJ]; ALL_TAC] THEN
ASM_SIMP_TAC[FINITE_IMAGE] THEN
MATCH_MP_TAC(TAUT `(~a ==> c) /\ ~b ==> (a ==> b) ==> c`) THEN CONJ_TAC THENL
[REWRITE_TAC[EXTENSION; IN_INSERT; IN_INTER; IN_IMAGE; NOT_IN_EMPTY] THEN
MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(ARITH_RULE `!t. t < 2 * s /\ p <= t ==> ~(p = s + s)`) THEN
EXISTS_TAC `CARD(t:B->bool)` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC CARD_SUBSET THEN REWRITE_TAC[SUBSET; IN_UNION; IN_IMAGE] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* In particular, consider functions out of 0...(p-1)/2, mod p. *)
(* ------------------------------------------------------------------------- *)
let PIGEONHOLE_LEMMA_P12 = prove
(`!f g p.
ODD(p) /\
(!x. 2 * x < p ==> f(x) < p) /\
(!x y. 2 * x < p /\ 2 * y < p /\ (f x = f y) ==> (x = y)) /\
(!x. 2 * x < p ==> g(x) < p) /\
(!x y. 2 * x < p /\ 2 * y < p /\ (g x = g y) ==> (x = y))
==> ?x y. 2 * x < p /\ 2 * y < p /\ (f x = g y)`,
REPEAT GEN_TAC THEN REWRITE_TAC[ODD_EXISTS] THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
FIRST_X_ASSUM(X_CHOOSE_THEN `k:num` SUBST1_TAC) THEN
MP_TAC(ISPECL [`f:num->num`; `g:num->num`;
`{x:num | 2 * x < 2 * k + 1}`; `{x:num | x < 2 * k + 1}`]
PIGEONHOLE_LEMMA) THEN
REWRITE_TAC[ADD1; ARITH_RULE `2 * x < 2 * k + 1 <=> x < k + 1`] THEN
REWRITE_TAC[FINITE_NUMSEG_LT; CARD_NUMSEG_LT] THEN
REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `2 * k + 1 < 2 * (k + 1)`]);;
(* ------------------------------------------------------------------------- *)
(* Show that \x. x^2 + a (mod p) satisfies the conditions. *)
(* ------------------------------------------------------------------------- *)
let SQUAREMOD_INJ_LEMMA = prove
(`!p x d. prime(p) /\ 2 * (x + d) < p /\
((x + d) * (x + d) + m * p = x * x + n * p)
==> (d = 0)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `p divides d \/ p divides (2 * x + d)` MP_TAC THENL
[MATCH_MP_TAC PRIME_DIVPROD THEN ASM_REWRITE_TAC[divides] THEN
EXISTS_TAC `n - m:num` THEN REWRITE_TAC[LEFT_SUB_DISTRIB] THEN
MATCH_MP_TAC(ARITH_RULE `!a:num. (a + b + d = a + c) ==> (b = c - d)`) THEN
EXISTS_TAC `x * x:num` THEN ONCE_REWRITE_TAC[MULT_SYM] THEN
FIRST_ASSUM(SUBST1_TAC o SYM) THEN ARITH_TAC;
DISCH_THEN(DISJ_CASES_THEN(MP_TAC o MATCH_MP DIVIDES_LE)) THEN
SIMP_TAC[ADD_EQ_0] THEN UNDISCH_TAC `2 * (x + d) < p` THEN ARITH_TAC]);;
let SQUAREMOD_INJ = prove
(`!p. prime(p)
==> (!x. 2 * x < p ==> (x EXP 2 + a) MOD p < p) /\
(!x y. 2 * x < p /\ 2 * y < p /\
((x EXP 2 + a) MOD p = (y EXP 2 + a) MOD p)
==> (x = y))`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(ASSUME_TAC o MATCH_MP(ARITH_RULE `x < a ==> ~(a = 0)`)) THEN
ASM_SIMP_TAC[DIVISION] THEN
SUBGOAL_THEN
`(x EXP 2 + a = (x EXP 2 + a) DIV p * p + (x EXP 2 + a) MOD p) /\
(y EXP 2 + a = (y EXP 2 + a) DIV p * p + (y EXP 2 + a) MOD p)`
MP_TAC THENL [ASM_SIMP_TAC[DIVISION]; ALL_TAC] THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN(MP_TAC o MATCH_MP (ARITH_RULE
`(x2 + a = xp + b:num) /\ (y2 + a = yp + b)
==> (x2 + yp = y2 + xp)`)) THEN
DISJ_CASES_THEN MP_TAC (SPECL [`x:num`; `y:num`] LE_CASES) THEN
DISCH_THEN(X_CHOOSE_THEN `d:num` SUBST_ALL_TAC o
REWRITE_RULE[LE_EXISTS])
THENL [ONCE_REWRITE_TAC[EQ_SYM_EQ]; ALL_TAC] THEN
REWRITE_TAC[EXP_2; ARITH_RULE `(x + d = x) = (d = 0)`] THEN
ASM_MESON_TAC[SQUAREMOD_INJ_LEMMA]);;
(* ------------------------------------------------------------------------- *)
(* Show that also a reflection mod p retains this property. *)
(* ------------------------------------------------------------------------- *)
let REFLECT_INJ = prove
(`(!x. 2 * x < p ==> f(x) < p) /\
(!x y. 2 * x < p /\ 2 * y < p /\ (f x = f y) ==> (x = y))
==> (!x. 2 * x < p ==> p - 1 - f(x) < p) /\
(!x y. 2 * x < p /\ 2 * y < p /\ (p - 1 - f(x) = p - 1 - f(y))
==> (x = y))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
REWRITE_TAC[ARITH_RULE `2 * x < p ==> p - 1 - y < p`] THEN
REPEAT STRIP_TAC THEN FIRST_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC(ARITH_RULE
`x < p /\ y < p /\ (p - 1 - x = p - 1 - y) ==> (x = y)`) THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Hence the main result. *)
(* ------------------------------------------------------------------------- *)
let LAGRANGE_LEMMA_ODD = prove
(`!a p. prime(p) /\ ODD(p)
==> ?n x y. 2 * x < p /\ 2 * y < p /\
(n * p = x EXP 2 + y EXP 2 + a + 1)`,
REPEAT STRIP_TAC THEN
SUBGOAL_THEN `~(p = 0)` ASSUME_TAC THENL [ASM_MESON_TAC[ODD]; ALL_TAC] THEN
MP_TAC(ISPECL [`\x. (x EXP 2 + a) MOD p`;
`\x. p - 1 - (x EXP 2 + 0) MOD p`; `p:num`]
PIGEONHOLE_LEMMA_P12) THEN
REWRITE_TAC[] THEN ANTS_TAC THENL
[ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT
`(a /\ b) /\ (c /\ d) ==> a /\ b /\ c /\ d`) THEN
CONJ_TAC THENL
[ALL_TAC; MATCH_MP_TAC REFLECT_INJ] THEN
ASM_MESON_TAC[SQUAREMOD_INJ]; ALL_TAC] THEN
STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (ARITH_RULE
`(x = p - 1 - y) ==> y < p ==> (x + y + 1 = p)`)) THEN
ANTS_TAC THENL [ASM_MESON_TAC[DIVISION]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o C AP_THM `p:num` o AP_TERM `(MOD)`) THEN
SUBGOAL_THEN
`((x EXP 2 + a) MOD p + (y EXP 2 + 0) MOD p + 1) MOD p =
(x EXP 2 + y EXP 2 + a + 1) MOD p`
SUBST1_TAC THENL
[CONV_TAC SYM_CONV THEN MATCH_MP_TAC MOD_EQ THEN
EXISTS_TAC `(x EXP 2 + a) DIV p + (y EXP 2) DIV p` THEN
REWRITE_TAC[ADD_CLAUSES] THEN
MATCH_MP_TAC(ARITH_RULE
`(x2 + a = xd * p + xm) /\ (y2 = yd * p + ym)
==> (x2 + y2 + a + 1 = (xm + ym + 1) + (xd + yd) * p)`) THEN
ASM_MESON_TAC[DIVISION]; ALL_TAC] THEN
SUBGOAL_THEN `p MOD p = 0` SUBST1_TAC THENL
[MATCH_MP_TAC MOD_UNIQ THEN EXISTS_TAC `1` THEN
UNDISCH_TAC `~(p = 0)` THEN ARITH_TAC; ALL_TAC] THEN
DISCH_TAC THEN MAP_EVERY EXISTS_TAC
[`(x EXP 2 + y EXP 2 + a + 1) DIV p`; `x:num`; `y:num`] THEN
ASM_REWRITE_TAC[] THEN
FIRST_ASSUM(MP_TAC o SPEC `x EXP 2 + y EXP 2 + a + 1` o
MATCH_MP DIVISION) THEN
ASM_REWRITE_TAC[ADD_CLAUSES; MULT_CLAUSES] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Avoid the additional conditions. *)
(* ------------------------------------------------------------------------- *)
let LAGRANGE_LEMMA = prove
(`!a p. prime(p)
==> ?n x y. 2 * x <= p /\ 2 * y <= p /\
(n * p = x EXP 2 + y EXP 2 + a)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `EVEN(p)` THENL
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [prime]) THEN
DISCH_THEN(MP_TAC o SPEC `2` o CONJUNCT2) THEN
ANTS_TAC THENL [ASM_MESON_TAC[EVEN_EXISTS; divides]; ALL_TAC] THEN
REWRITE_TAC[ARITH_EQ] THEN DISCH_THEN(SUBST_ALL_TAC o SYM) THEN
ASM_CASES_TAC `EVEN(a)` THENL
[UNDISCH_TAC `EVEN a` THEN REWRITE_TAC[EVEN_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST_ALL_TAC) THEN
MAP_EVERY EXISTS_TAC [`k:num`; `0`; `0`] THEN
REWRITE_TAC[ARITH; ADD_CLAUSES] THEN ARITH_TAC;
UNDISCH_TAC `~(EVEN(a))` THEN REWRITE_TAC[NOT_EVEN; ODD_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` SUBST_ALL_TAC) THEN
MAP_EVERY EXISTS_TAC [`k + 1`; `1`; `0`] THEN
REWRITE_TAC[ARITH; ADD_CLAUSES] THEN ARITH_TAC];
ASM_CASES_TAC `a = 0` THENL
[MAP_EVERY EXISTS_TAC [`0`; `0`; `0`] THEN
ASM_REWRITE_TAC[LE_0; ADD_CLAUSES; MULT_CLAUSES; EXP_2]; ALL_TAC] THEN
FIRST_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
`~(a = 0) ==> (a = (a - 1) + 1)`)) THEN
MP_TAC(SPECL [`a - 1`; `p:num`] LAGRANGE_LEMMA_ODD) THEN
ASM_REWRITE_TAC[GSYM NOT_EVEN] THEN MESON_TAC[LT_IMP_LE]]);;
(* ------------------------------------------------------------------------- *)
(* Aubrey's lemma showing that rationals suffice for sums of 4 squares. *)
(* ------------------------------------------------------------------------- *)
prioritize_real();;
let REAL_INTEGER_CLOSURES = prove
(`(!n. ?p. abs(&n) = &p) /\
(!x y. (?m. abs(x) = &m) /\ (?n. abs(y) = &n) ==> ?p. abs(x + y) = &p) /\
(!x y. (?m. abs(x) = &m) /\ (?n. abs(y) = &n) ==> ?p. abs(x - y) = &p) /\
(!x y. (?m. abs(x) = &m) /\ (?n. abs(y) = &n) ==> ?p. abs(x * y) = &p) /\
(!x r. (?n. abs(x) = &n) ==> ?p. abs(x pow r) = &p) /\
(!x. (?n. abs(x) = &n) ==> ?p. abs(--x) = &p) /\
(!x. (?n. abs(x) = &n) ==> ?p. abs(abs x) = &p)`,
MATCH_MP_TAC(TAUT
`x /\ c /\ d /\ e /\ f /\ (a /\ e ==> b) /\ a
==> x /\ a /\ b /\ c /\ d /\ e /\ f`) THEN
REPEAT CONJ_TAC THENL
[REWRITE_TAC[REAL_ABS_NUM] THEN MESON_TAC[];
REWRITE_TAC[REAL_ABS_MUL] THEN MESON_TAC[REAL_OF_NUM_MUL];
REWRITE_TAC[REAL_ABS_POW] THEN MESON_TAC[REAL_OF_NUM_POW];
REWRITE_TAC[REAL_ABS_NEG]; REWRITE_TAC[REAL_ABS_ABS];
REWRITE_TAC[real_sub] THEN MESON_TAC[]; ALL_TAC] THEN
SIMP_TAC[REAL_ARITH `&0 <= a ==> ((abs(x) = a) <=> (x = a) \/ (x = --a))`;
REAL_POS] THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC[GSYM REAL_NEG_ADD; REAL_OF_NUM_ADD] THENL
[MESON_TAC[]; ALL_TAC; ALL_TAC; MESON_TAC[]] THEN
REWRITE_TAC[REAL_ARITH `(--a + b = c) <=> (a + c = b)`;
REAL_ARITH `(a + --b = c) <=> (b + c = a)`] THEN
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
MESON_TAC[LE_EXISTS; ADD_SYM; LE_CASES]);;
let REAL_NUM_ROUND = prove
(`!x. &0 <= x ==> ?n. abs(x - &n) <= &1 / &2`,
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP (MATCH_MP REAL_ARCH_LEAST REAL_LT_01)) THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; REAL_MUL_RID] THEN
DISCH_THEN(CHOOSE_THEN MP_TAC) THEN
DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
`a <= x /\ x < a + &1
==> abs(x - a) * &2 <= &1 \/ abs(x - (a + &1)) * &2 <= &1`)) THEN
SIMP_TAC[REAL_LE_RDIV_EQ; REAL_OF_NUM_LT; ARITH] THEN
MESON_TAC[REAL_OF_NUM_ADD]);;
let REAL_POS_ABS_MIDDLE = prove
(`!x n. &0 <= x /\ (abs(x - &n) = &1 / &2)
==> (x = &(n - 1) + &1 / &2) \/ (x = &n + &1 / &2)`,
REPEAT GEN_TAC THEN
MP_TAC(SPECL [`1`; `n:num`] REAL_OF_NUM_SUB) THEN
DISJ_CASES_TAC(ARITH_RULE `(n = 0) \/ 1 <= n`) THEN
ASM_REWRITE_TAC[ARITH] THENL
[MP_TAC(REAL_RAT_REDUCE_CONV `&0 <= &1 / &2`) THEN REAL_ARITH_TAC;
DISCH_THEN(SUBST1_TAC o SYM) THEN
REWRITE_TAC[REAL_ARITH `n - &1 + a = n - (&1 - a)`] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REAL_ARITH_TAC]);;
let REAL_RAT_ABS_MIDDLE = prove
(`!m n p. (abs(&m / &p - &n) = &1 / &2)
==> (&m / &p = &(n - 1) + &1 / &2) \/ (&m / &p = &n + &1 / &2)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_POS_ABS_MIDDLE THEN
ASM_SIMP_TAC[REAL_LE_DIV; REAL_POS]);;
let AUBREY_LEMMA_4 = prove
(`!m n p q r.
~(m = 0) /\ ~(m = 1) /\
((&n / &m) pow 2 + (&p / &m) pow 2 +
(&q / &m) pow 2 + (&r / &m) pow 2 = &N)
==> ?m' n' p' q' r'.
~(m' = 0) /\ m' < m /\
((&n' / &m') pow 2 + (&p' / &m') pow 2 +
(&q' / &m') pow 2 + (&r' / &m') pow 2 = &N)`,
REPEAT STRIP_TAC THEN
MATCH_MP_TAC(TAUT `(~p ==> p) ==> p`) THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN DISCH_TAC THEN
SUBGOAL_THEN
`?n' p' q' r'.
(&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 < &1 \/
(((&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 = &1) /\
(m = 2) /\ (EVEN(n' + p' + q' + r') = EVEN(N)))`
MP_TAC THENL
[ASM_CASES_TAC
`?n' p' q' r'. (&n / &m = &n' + &1 / &2) /\
(&p / &m = &p' + &1 / &2) /\
(&q / &m = &q' + &1 / &2) /\
(&r / &m = &r' + &1 / &2)` THENL
[FIRST_X_ASSUM(CHOOSE_THEN STRIP_ASSUME_TAC) THEN
MAP_EVERY EXISTS_TAC [`n':num`; `p':num`; `q':num`] THEN
SUBGOAL_THEN `m = 2` SUBST_ALL_TAC THENL
[FIRST_X_ASSUM(MP_TAC o SPECL
[`2`; `2 * n' + 1`; `2 * p' + 1`; `2 * q' + 1`; `2 * r' + 1`]) THEN
REWRITE_TAC[ARITH_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[real_div; REAL_ADD_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN
REWRITE_TAC[GSYM real_div] THEN
SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ; ARITH_EQ] THEN
REPEAT(FIRST_X_ASSUM(SUBST1_TAC o SYM)) THEN
REWRITE_TAC[] THEN POP_ASSUM_LIST(MP_TAC o end_itlist CONJ) THEN
ARITH_TAC; ALL_TAC] THEN
SUBGOAL_THEN `(EVEN(n' + p' + q' + r') <=> EVEN(N)) \/
(EVEN(n' + p' + q' + r' + 1) <=> EVEN(N))`
DISJ_CASES_TAC THENL
[REWRITE_TAC[EVEN_ADD; ARITH_EVEN] THEN CONV_TAC TAUT;
EXISTS_TAC `r':num` THEN DISJ2_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[REAL_ARITH `(a + b) - a = b`] THEN
CONV_TAC REAL_RAT_REDUCE_CONV;
EXISTS_TAC `r' + 1` THEN DISJ2_TAC THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[REAL_ARITH `(a + b) - a = b`] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD] THEN
REWRITE_TAC[REAL_ARITH `(a + b) - (a + c) = b - c`] THEN
CONV_TAC REAL_RAT_REDUCE_CONV];
ALL_TAC] THEN
MAP_EVERY (fun t -> MP_TAC(SPEC t REAL_NUM_ROUND))
[`&n / &m`; `&p / &m`; `&q / &m`; `&r / &m`] THEN
SIMP_TAC[REAL_LE_DIV; REAL_POS] THEN
MAP_EVERY (fun t -> DISCH_THEN(X_CHOOSE_TAC t))
[`r':num`; `q':num`; `p':num`; `n':num`] THEN
MAP_EVERY EXISTS_TAC [`n':num`; `p':num`; `q':num`; `r':num`] THEN
DISJ1_TAC THEN
MATCH_MP_TAC(REAL_ARITH
`!m. a <= m /\ b <= m /\ c <= m /\ d <= m /\
~((a = m) /\ (b = m) /\ (c = m) /\ (d = m)) /\
&4 * m <= &1
==> a + b + c + d < &1`) THEN
EXISTS_TAC `(&1 / &2) pow 2` THEN
ONCE_REWRITE_TAC[SYM(SPEC `a - b` REAL_POW2_ABS)] THEN
ASM_SIMP_TAC[REAL_POW_LE2; REAL_ABS_POS; REAL_LE_DIV; REAL_POS] THEN
CONV_TAC(RAND_CONV REAL_RAT_REDUCE_CONV) THEN REWRITE_TAC[] THEN
REWRITE_TAC[REAL_POW_2; REAL_ARITH
`(a * a = b * b) <=> ((a + b) * (a - b) = &0)`] THEN
REWRITE_TAC[REAL_ENTIRE] THEN
SIMP_TAC[REAL_ARITH `&0 <= x /\ &0 < y ==> ~(x + y = &0)`;
REAL_ABS_POS; REAL_LT_DIV; REAL_OF_NUM_LT; ARITH] THEN
REWRITE_TAC[REAL_SUB_0] THEN
FIRST_ASSUM(MP_TAC o check (is_neg o concl)) THEN
REWRITE_TAC[TAUT `~b ==> ~a <=> a ==> b`] THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN
(MP_TAC o MATCH_MP REAL_RAT_ABS_MIDDLE)) THEN MESON_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM(K ALL_TAC o check (is_forall o concl)) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`n':num`; `p':num`; `q':num`; `r':num`] THEN
DISCH_TAC THEN
ABBREV_TAC `s = &n - &m * &n'` THEN
ABBREV_TAC `t = &p - &m * &p'` THEN
ABBREV_TAC `u = &q - &m * &q'` THEN
ABBREV_TAC `v = &r - &m * &r'` THEN
ABBREV_TAC `N' = n' EXP 2 + p' EXP 2 + q' EXP 2 + r' EXP 2` THEN
UNDISCH_TAC `n' EXP 2 + p' EXP 2 + q' EXP 2 + r' EXP 2 = N'` THEN
DISCH_THEN(ASSUME_TAC o REWRITE_RULE
[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_POW]) THEN
ABBREV_TAC `M = 2 * (n * n' + p * p' + q * q' + r * r')` THEN
UNDISCH_TAC `2 * (n * n' + p * p' + q * q' + r * r') = M` THEN
DISCH_THEN(ASSUME_TAC o REWRITE_RULE
[GSYM REAL_OF_NUM_EQ; GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_MUL;
GSYM REAL_OF_NUM_POW]) THEN
ASM_CASES_TAC `(&n / &m = &n') /\ (&p / &m = &p') /\
(&q / &m = &q') /\ (&r / &m = &r')` THENL
[MAP_EVERY EXISTS_TAC [`1`; `n':num`; `p':num`; `q':num`; `r':num`] THEN
REWRITE_TAC[ARITH_EQ; REAL_DIV_1] THEN CONJ_TAC THENL
[UNDISCH_TAC `~(m = 0)` THEN UNDISCH_TAC `~(m = 1)` THEN ARITH_TAC;
UNDISCH_THEN
`(&n / &m) pow 2 + (&p / &m) pow 2 +
(&q / &m) pow 2 + (&r / &m) pow 2 = &N`
(SUBST1_TAC o SYM) THEN
ASM_REWRITE_TAC[]];
ALL_TAC] THEN
SUBGOAL_THEN `&0 < (&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2`
MP_TAC THENL
[MATCH_MP_TAC(REAL_ARITH
`&0 <= w /\ &0 <= x /\ &0 <= y /\ &0 <= z /\
~((w = &0) /\ (x = &0) /\ (y = &0) /\ (z = &0))
==> &0 < w + x + y + z`) THEN
REWRITE_TAC[REAL_POW_2; REAL_ENTIRE; REAL_LE_SQUARE] THEN
ASM_REWRITE_TAC[REAL_SUB_0];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o check (is_disj o concl)) THEN
SUBGOAL_THEN
`(&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 =
(s pow 2 + t pow 2 + u pow 2 + v pow 2) / &m pow 2`
MP_TAC THENL
[MATCH_MP_TAC REAL_EQ_RCANCEL_IMP THEN EXISTS_TAC `&m pow 2` THEN
ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_DIV_RMUL; REAL_OF_NUM_EQ] THEN
REWRITE_TAC[REAL_ADD_RDISTRIB; GSYM REAL_POW_MUL; REAL_SUB_RDISTRIB] THEN
ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_DIV_RMUL; REAL_OF_NUM_EQ] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `(&n / &m - &n') pow 2 + (&p / &m - &p') pow 2 +
(&q / &m - &q') pow 2 + (&r / &m - &r') pow 2 =
(&N + &N') - &M / &m`
ASSUME_TAC THENL
[MATCH_MP_TAC REAL_EQ_RCANCEL_IMP THEN EXISTS_TAC `&m pow 2` THEN
ASM_SIMP_TAC[REAL_POW_EQ_0; REAL_DIV_RMUL; REAL_OF_NUM_EQ] THEN
REWRITE_TAC[GSYM(ASSUME `(&n / &m) pow 2 + (&p / &m) pow 2 +
(&q / &m) pow 2 + (&r / &m) pow 2 = &N`);
GSYM(ASSUME `&n' pow 2 + &p' pow 2 + &q' pow 2 + &r' pow 2 = &N'`);
GSYM(ASSUME
`&2 * (&n * &n' + &p * &p' + &q * &q' + &r * &r') = &M`)] THEN
REWRITE_TAC[REAL_ADD_RDISTRIB; GSYM REAL_POW_MUL; REAL_SUB_RDISTRIB] THEN
REWRITE_TAC[REAL_POW_2; REAL_MUL_ASSOC] THEN
SIMP_TAC[REAL_DIV_RMUL; REAL_OF_NUM_EQ; ASSUME `~(m = 0)`] THEN
REWRITE_TAC[GSYM REAL_MUL_ASSOC] THEN
SIMP_TAC[REAL_DIV_RMUL; REAL_OF_NUM_EQ; ASSUME `~(m = 0)`] THEN
REAL_ARITH_TAC; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[REAL_ARITH `(a + b) - c < &1 <=> (a + b) - &1 < c`;
REAL_ARITH `((a + b) - c = &1) <=> ((a + b) - &1 = c)`;
REAL_ARITH `&0 < a - b <=> b < a`] THEN
SIMP_TAC[REAL_LT_LDIV_EQ; REAL_LT_RDIV_EQ; REAL_EQ_RDIV_EQ; REAL_OF_NUM_LT;
ARITH_RULE `0 < n <=> ~(n = 0)`; ASSUME `~(m = 0)`] THEN
REWRITE_TAC[REAL_ARITH `(a - &1) * m < M <=> a * m - M < m`;
REAL_ARITH `((a - &1) * m = M) <=> (a * m - M = m)`] THEN
REPEAT DISCH_TAC THEN
UNDISCH_TAC `(&N + &N') - &M / &m =
(s pow 2 + t pow 2 + u pow 2 + v pow 2) / &m pow 2` THEN
ASM_SIMP_TAC[REAL_EQ_RDIV_EQ; REAL_POW_LT; REAL_OF_NUM_LT;
ARITH_RULE `0 < a <=> ~(a = 0)`] THEN
REWRITE_TAC[REAL_POW_2; REAL_SUB_RDISTRIB; REAL_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_OF_NUM_EQ; GSYM REAL_POW_2] THEN
ABBREV_TAC `m':num = (N + N') * m - M` THEN
SUBGOAL_THEN `(&N + &N') * &m - &M = &m'`
(fun th -> SUBST_ALL_TAC th THEN ASSUME_TAC th)
THENL
[EXPAND_TAC "m'" THEN
REWRITE_TAC[REAL_OF_NUM_ADD; REAL_OF_NUM_MUL] THEN
MATCH_MP_TAC REAL_OF_NUM_SUB THEN
REWRITE_TAC[GSYM REAL_OF_NUM_LE; GSYM REAL_OF_NUM_ADD; GSYM
REAL_OF_NUM_MUL] THEN
ASM_SIMP_TAC[REAL_LT_IMP_LE]; ALL_TAC] THEN
ASM_REWRITE_TAC[GSYM REAL_SUB_RDISTRIB] THEN
DISCH_THEN(ASSUME_TAC o GSYM) THEN
SUBGOAL_THEN `~(m' = 0)` ASSUME_TAC THENL
[REWRITE_TAC[GSYM REAL_OF_NUM_EQ] THEN
REWRITE_TAC[GSYM(ASSUME `(&N + &N') * &m - &M = &m'`)] THEN
MATCH_MP_TAC(REAL_ARITH `b < a ==> ~(a - b = &0)`) THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN
`!z. (&n' + s * z) pow 2 + (&p' + t * z) pow 2 +
(&q' + u * z) pow 2 + (&r' + v * z) pow 2 - &N =
(&m * z - &1) * (&m' * z + &N - &N')`
ASSUME_TAC THENL
[GEN_TAC THEN MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `&m * &m' * z pow 2 + (&M - &2 * &m * &N') * z + &N' - &N` THEN
CONJ_TAC THENL
[REWRITE_TAC[REAL_POW_2; REAL_ARITH
`(n + s * z) * (n + s * z) + (p + t * z) * (p + t * z) +
(q + u * z) * (q + u * z) + (r + v * z) * (r + v * z) - N =
(s * s + t * t + u * u + v * v) * (z * z) +
(&2 * (n * s + p * t + q * u + r * v)) * z +
((n * n + p * p + q * q + r * r) - N)`] THEN
ASM_REWRITE_TAC[GSYM REAL_POW_2] THEN
MATCH_MP_TAC(REAL_ARITH
`(a = c) /\ (b = d) ==> (a + b + n - m = c + d + n - m)`) THEN
CONJ_TAC THENL [REWRITE_TAC[REAL_MUL_AC]; ALL_TAC] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM(ASSUME
`&n' pow 2 + &p' pow 2 + &q' pow 2 + &r' pow 2 = &N'`);
GSYM(ASSUME
`&2 * (&n * &n' + &p * &p' + &q * &q' + &r * &r') = &M`)] THEN
MAP_EVERY EXPAND_TAC ["s"; "t"; "u"; "v"] THEN
REWRITE_TAC[REAL_POW_2] THEN REAL_ARITH_TAC;
REWRITE_TAC[REAL_POW_2; REAL_ARITH
`(m * z - &1) * (m' * z + nn) = m * m' * z * z +
(m * z * nn - m' * z) - nn`] THEN
REWRITE_TAC[REAL_EQ_ADD_LCANCEL] THEN
REWRITE_TAC[REAL_ARITH `(a + n' - n = b - (n - n')) <=> (a = b)`] THEN
REWRITE_TAC[REAL_ARITH `a * z * b - c * z = (a * b - c) * z`] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[GSYM(ASSUME `(&N + &N') * &m - &M = &m'`)] THEN
REAL_ARITH_TAC];
ALL_TAC] THEN
ABBREV_TAC `w = &n' + s * (&N' - &N) / &m'` THEN
ABBREV_TAC `x = &p' + t * (&N' - &N) / &m'` THEN
ABBREV_TAC `y = &q' + u * (&N' - &N) / &m'` THEN
ABBREV_TAC `z = &r' + v * (&N' - &N) / &m'` THEN
SUBGOAL_THEN `w pow 2 + x pow 2 + y pow 2 + z pow 2 = &N`
(SUBST1_TAC o SYM) THENL
[MAP_EVERY EXPAND_TAC ["w"; "x"; "y"; "z"] THEN
ONCE_REWRITE_TAC[REAL_ARITH
`(a + b + c + d = e) <=> (a + b + c + d - e = &0)`] THEN
FIRST_ASSUM(SUBST1_TAC o SPEC `(&N' - &N) / &m'`) THEN
REWRITE_TAC[REAL_ENTIRE] THEN DISJ2_TAC THEN
ASM_SIMP_TAC[REAL_DIV_LMUL; REAL_OF_NUM_EQ] THEN REAL_ARITH_TAC;
ALL_TAC] THEN
FIRST_X_ASSUM(DISJ_CASES_THEN2 ASSUME_TAC MP_TAC) THENL
[EXISTS_TAC `m':num` THEN
SUBGOAL_THEN
`?a b c d. (abs(&n' * &m' + s * (&N' - &N)) = &a) /\
(abs(&p' * &m' + t * (&N' - &N)) = &b) /\
(abs(&q' * &m' + u * (&N' - &N)) = &c) /\
(abs(&r' * &m' + v * (&N' - &N)) = &d)`
MP_TAC THENL
[MAP_EVERY EXPAND_TAC ["s"; "t"; "u"; "v"] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM] THEN
MESON_TAC[REAL_INTEGER_CLOSURES]; ALL_TAC] THEN
MAP_EVERY (fun t -> MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC t)
[`a:num`; `b:num`; `c:num`; `d:num`] THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
RULE_ASSUM_TAC(REWRITE_RULE[REAL_OF_NUM_LT]) THEN
REWRITE_TAC[REAL_POW_DIV; REAL_POW2_ABS] THEN
REWRITE_TAC[GSYM REAL_POW_DIV] THEN
REWRITE_TAC[real_div; REAL_ADD_RDISTRIB; GSYM REAL_MUL_ASSOC] THEN
ASM_SIMP_TAC[REAL_MUL_RINV; REAL_OF_NUM_EQ] THEN
REWRITE_TAC[GSYM real_div; REAL_MUL_RID] THEN
ASM_REWRITE_TAC[]; ALL_TAC] THEN
REWRITE_TAC[REAL_OF_NUM_EQ] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 SUBST_ALL_TAC MP_TAC)) THEN
DISCH_TAC THEN
SUBGOAL_THEN `?n. abs((&N' - &N) / &2) = &n` ASSUME_TAC THENL
[REWRITE_TAC[GSYM(ASSUME
`&n' pow 2 + &p' pow 2 + &q' pow 2 + &r' pow 2 = &N'`)] THEN
REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_ADD] THEN
SUBGOAL_THEN `EVEN(n' EXP 2 + p' EXP 2 + q' EXP 2 + r' EXP 2) =
EVEN N`
MP_TAC THENL
[FIRST_ASSUM(fun th -> GEN_REWRITE_TAC RAND_CONV [SYM th]) THEN
REWRITE_TAC[EVEN_ADD; EVEN_EXP; ARITH_EQ];
ALL_TAC] THEN
DISJ_CASES_THEN MP_TAC (TAUT `EVEN(N) \/ ~EVEN(N)`) THEN SIMP_TAC[] THEN
REWRITE_TAC[NOT_EVEN; EVEN_EXISTS; ODD_EXISTS] THEN
REPEAT(DISCH_THEN(CHOOSE_THEN SUBST1_TAC)) THEN
REWRITE_TAC[GSYM REAL_OF_NUM_SUC; GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[REAL_ARITH `(&2 * x + &1) - (&2 * y + &1) = &2 * (x - y)`] THEN
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[real_div; GSYM REAL_MUL_ASSOC] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_MUL_RID] THEN MESON_TAC[REAL_INTEGER_CLOSURES];
ALL_TAC] THEN
EXISTS_TAC `1` THEN REWRITE_TAC[ARITH_EQ] THEN
SUBGOAL_THEN
`?a b c d. (abs(&n' + s * (&N' - &N) / &2) = &a) /\
(abs(&p' + t * (&N' - &N) / &2) = &b) /\
(abs(&q' + u * (&N' - &N) / &2) = &c) /\
(abs(&r' + v * (&N' - &N) / &2) = &d)`
MP_TAC THENL
[MAP_EVERY EXPAND_TAC ["s"; "t"; "u"; "v"] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; LEFT_EXISTS_AND_THM] THEN
UNDISCH_TAC `?n. abs ((&N' - &N) / &2) = &n` THEN
MESON_TAC[REAL_INTEGER_CLOSURES]; ALL_TAC] THEN
REWRITE_TAC[ARITH; REAL_DIV_1] THEN
MAP_EVERY (fun t -> MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC t)
[`a:num`; `b:num`; `c:num`; `d:num`] THEN
DISCH_THEN(REPEAT_TCL CONJUNCTS_THEN (SUBST1_TAC o SYM)) THEN
ASM_REWRITE_TAC[REAL_POW2_ABS]);;
(* ------------------------------------------------------------------------- *)
(* Hence the main result. *)
(* ------------------------------------------------------------------------- *)
let AUBREY_THM_4 = prove
(`(?q. ~(q = 0) /\
?a b c d.
(&a / &q) pow 2 + (&b / &q) pow 2 +
(&c / &q) pow 2 + (&d / &q) pow 2 = &N)
==> ?a b c d. &a pow 2 + &b pow 2 + &c pow 2 + &d pow 2 = &N`,
GEN_REWRITE_TAC LAND_CONV [num_WOP] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN
ASM_CASES_TAC `m = 1` THENL
[ASM_REWRITE_TAC[REAL_DIV_1; ARITH_EQ] THEN MESON_TAC[];
STRIP_TAC THEN MP_TAC(SPEC `m:num` AUBREY_LEMMA_4) THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* The algebraic lemma. *)
(* ------------------------------------------------------------------------- *)
let LAGRANGE_IDENTITY = REAL_ARITH
`(w1 pow 2 + x1 pow 2 + y1 pow 2 + z1 pow 2) *
(w2 pow 2 + x2 pow 2 + y2 pow 2 + z2 pow 2) =
(w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2) pow 2 +
(w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2) pow 2 +
(w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2) pow 2 +
(w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2) pow 2`;;
(* ------------------------------------------------------------------------- *)
(* Now sum of 4 squares. *)
(* ------------------------------------------------------------------------- *)
let LAGRANGE_REAL_NUM = prove
(`!n. ?w x y z. &n = &w pow 2 + &x pow 2 + &y pow 2 + &z pow 2`,
let lemma = prove
(`(?a. abs(w) = &a) /\ (?b. abs(x) = &b) /\
(?c. abs(y) = &c) /\ (?d. abs(z) = &d)
==> ?a b c d. w pow 2 + x pow 2 + y pow 2 + z pow 2 =
&a pow 2 + &b pow 2 + &c pow 2 + &d pow 2`,
STRIP_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_POW2_ABS] THEN
ASM_REWRITE_TAC[] THEN REWRITE_TAC[REAL_ABS_NUM] THEN
MESON_TAC[]) in
MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN
ASM_CASES_TAC `n = 0` THENL
[REPEAT(EXISTS_TAC `0`) THEN ASM_REWRITE_TAC[] THEN
CONV_TAC REAL_RAT_REDUCE_CONV;
ALL_TAC] THEN
ASM_CASES_TAC `n = 1` THENL
[EXISTS_TAC `1` THEN REPEAT(EXISTS_TAC `0`) THEN
ASM_REWRITE_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV;
ALL_TAC] THEN
FIRST_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
DISCH_THEN(X_CHOOSE_THEN `p:num` STRIP_ASSUME_TAC) THEN
UNDISCH_TAC `p divides n` THEN REWRITE_TAC[divides] THEN
DISCH_THEN(X_CHOOSE_THEN `m:num` MP_TAC) THEN
ASM_CASES_TAC `m = 1` THENL
[ALL_TAC;
DISCH_THEN SUBST_ALL_TAC THEN
FIRST_X_ASSUM(fun th ->
MP_TAC(SPEC `p:num` th) THEN MP_TAC(SPEC `m:num` th)) THEN
ONCE_REWRITE_TAC[ARITH_RULE `m < p * m <=> 1 * m < p * m`] THEN
REWRITE_TAC[LT_MULT_RCANCEL] THEN
ONCE_REWRITE_TAC[ARITH_RULE `p < p * m <=> p * 1 < p * m`] THEN
REWRITE_TAC[LT_MULT_LCANCEL] THEN
UNDISCH_TAC `~(p * m = 0)` THEN REWRITE_TAC[MULT_EQ_0] THEN
ASM_CASES_TAC `p = 0` THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC `m = 0` THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN `~(p = 1)` ASSUME_TAC THENL
[ASM_MESON_TAC[PRIME_1]; ALL_TAC] THEN
ASM_REWRITE_TAC[ARITH_RULE `1 < x <=> ~(x = 0) /\ ~(x = 1)`] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`w1:num`; `x1:num`; `y1:num`; `z1:num`] THEN
DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`w2:num`; `x2:num`; `y2:num`; `z2:num`] THEN
DISCH_TAC THEN ASM_REWRITE_TAC[GSYM REAL_OF_NUM_MUL] THEN
REWRITE_TAC[LAGRANGE_IDENTITY] THEN
MATCH_MP_TAC lemma THEN REWRITE_TAC[REAL_OF_NUM_MUL] THEN
MESON_TAC[REAL_INTEGER_CLOSURES]] THEN
UNDISCH_TAC `m = 1` THEN DISCH_THEN SUBST_ALL_TAC THEN
REWRITE_TAC[MULT_CLAUSES] THEN DISCH_THEN SUBST_ALL_TAC THEN
FIRST_ASSUM(MP_TAC o MATCH_MP LAGRANGE_LEMMA) THEN
DISCH_THEN(MP_TAC o SPEC `1 EXP 2 + 0 EXP 2`) THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`q:num`; `x:num`; `y:num`] THEN STRIP_TAC THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN MATCH_MP_TAC AUBREY_THM_4 THEN
SUBGOAL_THEN `q * p < p EXP 2` MP_TAC THENL
[ASM_REWRITE_TAC[EXP_2; MULT_CLAUSES; ADD_CLAUSES] THEN
MATCH_MP_TAC(ARITH_RULE
`(2 * x) * (2 * x) <= p * p /\ (2 * y) * (2 * y) <= p * p /\
2 * 2 <= p * p
==> x * x + y * y + 1 < p * p`) THEN
REPEAT CONJ_TAC THEN MATCH_MP_TAC LE_MULT2 THEN ASM_REWRITE_TAC[] THEN
MAP_EVERY UNDISCH_TAC [`~(p = 0)`; `~(p = 1)`] THEN ARITH_TAC;
ALL_TAC] THEN
REWRITE_TAC[EXP_2; LT_MULT_RCANCEL] THEN ASM_REWRITE_TAC[] THEN
DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `q:num`) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`a:num`; `b:num`; `c:num`; `d:num`] THEN DISCH_TAC THEN
SUBGOAL_THEN `~(q = 0)` ASSUME_TAC THENL
[DISCH_THEN SUBST_ALL_TAC THEN
UNDISCH_TAC `0 * p = x EXP 2 + y EXP 2 + 1 EXP 2 + 0 EXP 2` THEN
DISCH_THEN(MP_TAC o SYM) THEN REWRITE_TAC[MULT_CLAUSES; EXP_2] THEN
REWRITE_TAC[ADD_EQ_0; ARITH_EQ]; ALL_TAC] THEN
SUBGOAL_THEN `&p = &q * &(q * p) / &q pow 2` SUBST1_TAC THENL
[REWRITE_TAC[GSYM REAL_OF_NUM_MUL; REAL_MUL_ASSOC; real_div] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[GSYM REAL_POW_2] THEN
SIMP_TAC[REAL_MUL_ASSOC; REAL_POW_EQ_0; REAL_MUL_LINV; REAL_MUL_LID;
ASSUME `~(q = 0)`; REAL_OF_NUM_EQ];
ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN
REWRITE_TAC[GSYM REAL_OF_NUM_ADD; GSYM REAL_OF_NUM_POW] THEN
REWRITE_TAC[real_div; REAL_MUL_ASSOC; LAGRANGE_IDENTITY] THEN
SUBST1_TAC(SYM(ASSUME
`&q = &a pow 2 + &b pow 2 + &c pow 2 + &d pow 2`)) THEN
REWRITE_TAC[REAL_ADD_RDISTRIB] THEN
REWRITE_TAC[GSYM real_div; GSYM REAL_POW_DIV] THEN
EXISTS_TAC `q:num` THEN REWRITE_TAC[ASSUME `~(q = 0)`] THEN
REWRITE_TAC[REAL_POW_DIV] THEN
REWRITE_TAC[real_div; GSYM REAL_ADD_RDISTRIB] THEN
REWRITE_TAC[REAL_EQ_MUL_RCANCEL] THEN
REWRITE_TAC[REAL_INV_EQ_0; REAL_POW_EQ_0; REAL_OF_NUM_EQ;
ASSUME `~(q = 0)`] THEN
CONV_TAC(ONCE_DEPTH_CONV SYM_CONV) THEN MATCH_MP_TAC lemma THEN
REWRITE_TAC[REAL_OF_NUM_MUL] THEN MESON_TAC[REAL_INTEGER_CLOSURES]);;
(* ------------------------------------------------------------------------- *)
(* Also prove it for the natural numbers. *)
(* ------------------------------------------------------------------------- *)
let LAGRANGE_NUM = prove
(`!n. ?w x y z. n = w EXP 2 + x EXP 2 + y EXP 2 + z EXP 2`,
GEN_TAC THEN MP_TAC(SPEC `n:num` LAGRANGE_REAL_NUM) THEN
REWRITE_TAC[REAL_POS; REAL_OF_NUM_POW; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ]);;
(* ------------------------------------------------------------------------- *)
(* And for the integers. *)
(* ------------------------------------------------------------------------- *)
prioritize_int();;
let LAGRANGE_INT = prove
(`!a. &0 <= a <=> ?w x y z. a = w pow 2 + x pow 2 + y pow 2 + z pow 2`,
GEN_TAC THEN EQ_TAC THENL
[SPEC_TAC(`a:int`,`a:int`) THEN REWRITE_TAC[GSYM INT_FORALL_POS] THEN
X_GEN_TAC `n:num` THEN MP_TAC(SPEC `n:num` LAGRANGE_REAL_NUM) THEN
REWRITE_TAC[REAL_OF_NUM_POW; REAL_OF_NUM_ADD; REAL_OF_NUM_EQ] THEN
SIMP_TAC[GSYM INT_OF_NUM_EQ; GSYM INT_OF_NUM_POW; GSYM INT_OF_NUM_ADD] THEN
MESON_TAC[];
STRIP_TAC THEN ASM_SIMP_TAC[INT_LE_SQUARE; INT_LE_ADD; INT_POW_2]]);;
prioritize_num();;
|