Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 8,348 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
(* ========================================================================= *)
(* The fundamental theorem of arithmetic (unique prime factorization).       *)
(* ========================================================================= *)

needs "Library/prime.ml";;

prioritize_num();;

(* ------------------------------------------------------------------------- *)
(* Definition of iterated product.                                           *)
(* ------------------------------------------------------------------------- *)

let nproduct = new_definition `nproduct = iterate ( * )`;;

let NPRODUCT_CLAUSES = prove
 (`(!f. nproduct {} f = 1) /\
   (!x f s. FINITE(s)
            ==> (nproduct (x INSERT s) f =
                 if x IN s then nproduct s f else f(x) * nproduct s f))`,
  REWRITE_TAC[nproduct; GSYM NEUTRAL_MUL] THEN
  ONCE_REWRITE_TAC[SWAP_FORALL_THM] THEN
  MATCH_MP_TAC ITERATE_CLAUSES THEN REWRITE_TAC[MONOIDAL_MUL]);;

let NPRODUCT_EQ_1_EQ = prove
 (`!s f. FINITE s ==> (nproduct s f = 1 <=> !x. x IN s ==> f(x) = 1)`,
  REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  ASM_SIMP_TAC[NPRODUCT_CLAUSES; IN_INSERT; MULT_EQ_1; NOT_IN_EMPTY] THEN
  ASM_MESON_TAC[]);;

let NPRODUCT_SPLITOFF = prove
 (`!x:A f s. FINITE s
             ==> nproduct s f =
                 (if x IN s then f(x) else 1) * nproduct (s DELETE x) f`,
  REPEAT STRIP_TAC THEN COND_CASES_TAC THEN
  ASM_SIMP_TAC[MULT_CLAUSES; SET_RULE `~(x IN s) ==> s DELETE x = s`] THEN
  SUBGOAL_THEN `s = (x:A) INSERT (s DELETE x)`
   (fun th -> GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [th] THEN
              ASM_SIMP_TAC[NPRODUCT_CLAUSES; FINITE_DELETE; IN_DELETE]) THEN
  REPEAT(POP_ASSUM MP_TAC) THEN SET_TAC[]);;

let NPRODUCT_SPLITOFF_HACK = prove
 (`!x:A f s. nproduct s f =
             if FINITE s then
               (if x IN s then f(x) else 1) * nproduct (s DELETE x) f
             else nproduct s f`,
  REPEAT STRIP_TAC THEN MESON_TAC[NPRODUCT_SPLITOFF]);;

let NPRODUCT_EQ = prove
 (`!f g s. FINITE s /\ (!x. x IN s ==> f x = g x)
           ==> nproduct s f = nproduct s g`,
  GEN_TAC THEN GEN_TAC THEN REWRITE_TAC[IMP_CONJ] THEN
  MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NPRODUCT_CLAUSES; IN_INSERT]);;

let NPRODUCT_EQ_GEN = prove
 (`!f g s t. FINITE s /\ s = t /\ (!x. x IN s ==> f x = g x)
             ==> nproduct s f = nproduct t g`,
  MESON_TAC[NPRODUCT_EQ]);;

let PRIME_DIVIDES_NPRODUCT = prove
 (`!p s f. prime p /\ FINITE s /\ p divides (nproduct s f)
           ==> ?x. x IN s /\ p divides (f x)`,
  GEN_TAC THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN
  DISCH_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN
  SIMP_TAC[NPRODUCT_CLAUSES; IN_INSERT; NOT_IN_EMPTY] THEN
  ASM_MESON_TAC[PRIME_DIVPROD; DIVIDES_ONE; PRIME_1]);;

let NPRODUCT_CANCEL_PRIME = prove
 (`!s p m f j.
        p EXP j * nproduct (s DELETE p) (\p. p EXP (f p)) = p * m
        ==> prime p /\ FINITE s /\ (!x. x IN s ==> prime x)
            ==> ~(j = 0) /\
                p EXP (j - 1) * nproduct (s DELETE p) (\p. p EXP (f p)) = m`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `j = 0` THEN ASM_REWRITE_TAC[] THENL
   [ALL_TAC;
    FIRST_X_ASSUM(SUBST1_TAC o MATCH_MP (ARITH_RULE
     `~(j = 0) ==> j = SUC(j - 1)`)) THEN
    REWRITE_TAC[SUC_SUB1; EXP; GSYM MULT_ASSOC; EQ_MULT_LCANCEL] THEN
    MESON_TAC[PRIME_0]] THEN
  ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
  REWRITE_TAC[EXP; MULT_CLAUSES] THEN REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`p:num`; `s DELETE (p:num)`; `\p. p EXP (f p)`]
                 PRIME_DIVIDES_NPRODUCT) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[divides; FINITE_DELETE]; ALL_TAC] THEN
  REWRITE_TAC[IN_DELETE] THEN ASM_MESON_TAC[PRIME_1; prime; PRIME_DIVEXP]);;

(* ------------------------------------------------------------------------- *)
(* Fundamental Theorem of Arithmetic.                                        *)
(* ------------------------------------------------------------------------- *)

let FTA = prove
 (`!n. ~(n = 0)
       ==> ?!i. FINITE {p | ~(i p = 0)} /\
                (!p. ~(i p = 0) ==> prime p) /\
                n = nproduct {p | ~(i p = 0)} (\p. p EXP (i p))`,
  ONCE_REWRITE_TAC[ARITH_RULE `n = nproduct s f <=> nproduct s f = n`] THEN
  REWRITE_TAC[EXISTS_UNIQUE_THM] THEN
  MATCH_MP_TAC num_WF THEN X_GEN_TAC `n:num` THEN REPEAT DISCH_TAC THEN
  ASM_CASES_TAC `n = 1` THENL
   [ASM_REWRITE_TAC[TAUT `a /\ b <=> ~(a ==> ~b)`] THEN
    SIMP_TAC[NPRODUCT_EQ_1_EQ; EXP_EQ_1; IN_ELIM_THM] THEN
    REWRITE_TAC[FUN_EQ_THM; NOT_IMP; GSYM CONJ_ASSOC] THEN CONJ_TAC THENL
     [EXISTS_TAC `\n:num. 0` THEN
      REWRITE_TAC[SET_RULE `{p | F} = {}`; FINITE_RULES];
      REPEAT GEN_TAC THEN STRIP_TAC THEN
      X_GEN_TAC `q:num` THEN ASM_CASES_TAC `q = 1` THEN
      ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[PRIME_1]];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o MATCH_MP PRIME_FACTOR) THEN
  REWRITE_TAC[divides; RIGHT_AND_EXISTS_THM; LEFT_IMP_EXISTS_THM] THEN
  MAP_EVERY X_GEN_TAC [`p:num`; `m:num`] THEN
  DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC SUBST_ALL_TAC) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `m:num`) THEN ANTS_TAC THENL
   [ASM_MESON_TAC[PRIME_FACTOR_LT]; ALL_TAC] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[MULT_EQ_0; DE_MORGAN_THM]) THEN
  FIRST_X_ASSUM(CONJUNCTS_THEN ASSUME_TAC) THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC MONO_AND THEN CONJ_TAC THENL
   [DISCH_THEN(X_CHOOSE_THEN `i:num->num` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `\q:num. if q = p then i(q) + 1 else i(q)` THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC FINITE_SUBSET THEN
      EXISTS_TAC `p INSERT {p:num | ~(i p = 0)}` THEN
      ASM_SIMP_TAC[SUBSET; FINITE_INSERT; IN_INSERT; IN_ELIM_THM] THEN
      MESON_TAC[];
      ALL_TAC] THEN
    DISCH_TAC THEN CONJ_TAC THEN ASM_REWRITE_TAC[] THENL
     [ASM_MESON_TAC[ADD_EQ_0; ARITH_EQ]; ALL_TAC] THEN
    FIRST_X_ASSUM(SUBST_ALL_TAC o SYM) THEN
    MP_TAC(ISPEC `p:num` NPRODUCT_SPLITOFF_HACK) THEN
    DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN
    ASM_REWRITE_TAC[IN_ELIM_THM; ADD_EQ_0; ARITH] THEN
    REWRITE_TAC[MULT_ASSOC] THEN BINOP_TAC THENL
     [ASM_CASES_TAC `(i:num->num) p = 0` THEN
      ASM_REWRITE_TAC[EXP_ADD; EXP_1; EXP; MULT_AC];
      ALL_TAC] THEN
    MATCH_MP_TAC NPRODUCT_EQ_GEN THEN RULE_ASSUM_TAC(SIMP_RULE[]) THEN
    ASM_SIMP_TAC[FINITE_DELETE; IN_DELETE; EXTENSION; IN_ELIM_THM] THEN
    ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
    REWRITE_TAC[ADD_EQ_0; ARITH] THEN MESON_TAC[];
    ALL_TAC] THEN
  MP_TAC(ISPEC `p:num` NPRODUCT_SPLITOFF_HACK) THEN
  DISCH_THEN(fun th -> ONCE_REWRITE_TAC[th]) THEN
  REWRITE_TAC[TAUT
   `p /\ q /\ ((if p then x else y) = z) <=> p /\ q /\ x = z`] THEN
  REWRITE_TAC[IN_ELIM_THM] THEN
  REWRITE_TAC[MESON[EXP] `(if ~(x = 0) then p EXP x else 1) = p EXP x`] THEN
  REWRITE_TAC[FUN_EQ_THM] THEN DISCH_TAC THEN
  MAP_EVERY X_GEN_TAC [`j:num->num`; `k:num->num`] THEN STRIP_TAC THEN
  FIRST_X_ASSUM(MP_TAC o SPECL
   [`\i:num. if i = p then j(i) - 1 else j(i)`;
    `\i:num. if i = p then k(i) - 1 else k(i)`]) THEN
  REWRITE_TAC[] THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP NPRODUCT_CANCEL_PRIME)) THEN
  ASM_REWRITE_TAC[IN_ELIM_THM] THEN STRIP_TAC THEN STRIP_TAC THEN
  REWRITE_TAC[SET_RULE
   `!j k. {q | ~((if q = p then j q else k q) = 0)} DELETE p =
          {q | ~(k q = 0)} DELETE p`] THEN
  ANTS_TAC THENL
   [ALL_TAC;
    MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN COND_CASES_TAC THEN
    ASM_REWRITE_TAC[] THEN MAP_EVERY UNDISCH_TAC
     [`~(j(p:num) = 0)`; `~(k(p:num) = 0)`] THEN ARITH_TAC] THEN
  ONCE_REWRITE_TAC[COND_RAND] THEN ONCE_REWRITE_TAC[COND_RATOR] THEN
  REPEAT CONJ_TAC THENL
   [MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{p:num | ~(j p = 0)}` THEN
    ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ARITH_TAC;
    ASM_MESON_TAC[SUB_0];
    FIRST_X_ASSUM(fun th -> SUBST1_TAC(SYM th) THEN AP_TERM_TAC) THEN
    MATCH_MP_TAC NPRODUCT_EQ_GEN THEN ASM_REWRITE_TAC[FINITE_DELETE] THEN
    SIMP_TAC[IN_DELETE; IN_ELIM_THM];
    MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `{p:num | ~(k p = 0)}` THEN
    ASM_REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN ARITH_TAC;
    ASM_MESON_TAC[SUB_0];
    FIRST_X_ASSUM(fun th -> SUBST1_TAC(SYM th) THEN AP_TERM_TAC) THEN
    MATCH_MP_TAC NPRODUCT_EQ_GEN THEN ASM_REWRITE_TAC[FINITE_DELETE] THEN
    SIMP_TAC[IN_DELETE; IN_ELIM_THM]]);;