Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 41,637 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 |
(* ========================================================================= *)
(* Independence of the parallel postulate. The statement and some ideas are *)
(* taken from Tim Makarios's MSc thesis "A mechanical verification of the *)
(* independence of Tarski's Euclidean axiom". *)
(* *)
(* In the file Multivariate/tarski.ml it is shown that all 11 of Tarski's *)
(* axioms for geometry hold for the Euclidean plane `:real^2`, with *)
(* betweenness and congruence of segments as: *)
(* *)
(* B x y z <=> between y (x,z) *)
(* ab == pq <=> dist(a,b) = dist(p,q) *)
(* *)
(* The present file shows that the Klein model of the hyperbolic plane (type *)
(* `:plane`) satisfies all Tarski's axioms except that it satisfies the *)
(* negation of the Euclidean axiom (10), with betweenness and congruence of *)
(* segments as: *)
(* *)
(* B x y z <=> pbetween y (x,z) *)
(* ab == pq <=> pdist(a,b) = pdist(p,q) *)
(* *)
(* Collectively, these two results show that the Euclidean axiom is *)
(* independent of the others. For more references regarding Tarski's axioms *)
(* for geometry see "http://en.wikipedia.org/wiki/Tarski's_axioms". *)
(* ========================================================================= *)
needs "Multivariate/cauchy.ml";;
needs "Multivariate/tarski.ml";;
(* ------------------------------------------------------------------------- *)
(* The semimetric we will use, directly on real^N first. Choose a sensible *)
(* default outside unit ball so some handy theorems become unconditional. *)
(* ------------------------------------------------------------------------- *)
let ddist = new_definition
`ddist(x:real^N,y:real^N) =
if norm(x) < &1 /\ norm(y) < &1 then
(&1 - x dot y) pow 2 / ((&1 - norm(x) pow 2) * (&1 - norm(y) pow 2)) - &1
else dist(x,y)`;;
let DDIST_INCREASES_ONLINE = prove
(`!a b x:real^N.
norm a < &1 /\ norm b < &1 /\ norm x < &1 /\ between x (a,b) /\ ~(x = b)
==> ddist(a,x) < ddist(a,b)`,
REPEAT STRIP_TAC THEN ASM_CASES_TAC `b:real^N = a` THENL
[ASM_MESON_TAC[BETWEEN_REFL_EQ]; ALL_TAC] THEN
ASM_SIMP_TAC[ddist; real_div; REAL_INV_MUL] THEN
SUBGOAL_THEN
`norm(a:real^N) pow 2 < &1 /\ norm(b:real^N) pow 2 < &1 /\
norm(x:real^N) pow 2 < &1`
MP_TAC THENL [ASM_SIMP_TAC[ABS_SQUARE_LT_1; REAL_ABS_NORM]; ALL_TAC] THEN
REWRITE_TAC[REAL_ARITH `a * inv x * inv b - &1 < c * inv x * d - &1 <=>
(a / b) / x < (c * d) / x`] THEN
SIMP_TAC[REAL_LT_DIV2_EQ; REAL_LT_LDIV_EQ; REAL_SUB_LT] THEN
ONCE_REWRITE_TAC[REAL_ARITH `(a * inv b) * c:real = (a * c) / b`] THEN
SIMP_TAC[REAL_LT_RDIV_EQ; REAL_SUB_LT] THEN
SUBGOAL_THEN `(a:real^N) dot b < &1 /\ (a:real^N) dot x < &1` MP_TAC THENL
[CONJ_TAC THEN MATCH_MP_TAC(MESON[REAL_LET_TRANS; NORM_CAUCHY_SCHWARZ]
`norm(x) * norm(y) < &1 ==> (x:real^N) dot y < &1`) THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_REWRITE_TAC[NORM_POS_LE];
ALL_TAC] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BETWEEN_IN_SEGMENT]) THEN
REWRITE_TAC[IN_SEGMENT; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:real` THEN
ASM_CASES_TAC `u = &1` THEN
ASM_SIMP_TAC[VECTOR_ARITH `(&1 - &1) % a + &1 % b:real^N = b`] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[VECTOR_ARITH `(&1 - u) % a + u % b:real^N = a + u % (b - a)`] THEN
ABBREV_TAC `c:real^N = b - a` THEN
SUBGOAL_THEN `b:real^N = a + c` SUBST_ALL_TAC THENL
[EXPAND_TAC "c" THEN VECTOR_ARITH_TAC; ALL_TAC] THEN
RULE_ASSUM_TAC(SIMP_RULE[VECTOR_ARITH `a + c:real^N = a <=> c = vec 0`]) THEN
REWRITE_TAC[NORM_POW_2; VECTOR_ARITH
`(a + b:real^N) dot (a + b) = a dot a + &2 * a dot b + b dot b`] THEN
REWRITE_TAC[DOT_RADD; DOT_RMUL] THEN REWRITE_TAC[DOT_LMUL] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH
`(&1 - (a + x * b)) pow 2 * (&1 - (a + &2 * b + c)) <
(&1 - (a + b)) pow 2 * (&1 - (a + &2 * x * b + x * x * c)) <=>
&0 < (&1 - a - b * x) * ((&1 - a) * c + b pow 2) * (&1 - x) +
(&1 - a - b) * ((&1 - a) * c + b pow 2) * (&1 - x) * x`] THEN
MATCH_MP_TAC REAL_LTE_ADD THEN CONJ_TAC THENL
[REPEAT(MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC);
REPEAT(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC)] THEN
TRY ASM_REAL_ARITH_TAC THEN TRY(MATCH_MP_TAC REAL_LT_IMP_LE) THEN
MATCH_MP_TAC REAL_LTE_ADD THEN REWRITE_TAC[REAL_LE_POW_2] THEN
MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[DOT_POS_LT; REAL_SUB_LT]);;
let DDIST_REFL = prove
(`!x:real^N. ddist(x,x) = &0`,
GEN_TAC THEN REWRITE_TAC[ddist; DIST_REFL; NORM_POW_2; NORM_LT_SQUARE] THEN
CONV_TAC REAL_FIELD);;
let DDIST_SYM = prove
(`!x y:real^N. ddist(x,y) = ddist(y,x)`,
REWRITE_TAC[ddist; CONJ_ACI; REAL_MUL_AC; DIST_SYM; DOT_SYM]);;
let DDIST_POS_LT = prove
(`!x y:real^N. ~(x = y) ==> &0 < ddist(x,y)`,
REPEAT STRIP_TAC THEN
ASM_CASES_TAC `norm(x:real^N) < &1 /\ norm(y:real^N) < &1` THENL
[ASM_MESON_TAC[DDIST_INCREASES_ONLINE; DDIST_REFL; BETWEEN_REFL];
ASM_SIMP_TAC[ddist; DIST_POS_LT]]);;
let DDIST_POS_LE = prove
(`!x y:real^N. &0 <= ddist(x,y)`,
REPEAT GEN_TAC THEN ASM_CASES_TAC `x:real^N = y` THEN
ASM_SIMP_TAC[DDIST_REFL; DDIST_POS_LT; REAL_LE_LT]);;
let DDIST_EQ_0 = prove
(`!x y:real^N. ddist(x,y) = &0 <=> x = y`,
MESON_TAC[DDIST_REFL; DDIST_POS_LT; REAL_LT_REFL]);;
let BETWEEN_COLLINEAR_DDIST_EQ = prove
(`!a b x:real^N.
norm(a) < &1 /\ norm(b) < &1 /\ norm(x) < &1
==> (between x (a,b) <=>
collinear {a, x, b} /\
ddist(x,a) <= ddist (a,b) /\ ddist(x,b) <= ddist(a,b))`,
REPEAT GEN_TAC THEN STRIP_TAC THEN EQ_TAC THENL
[SIMP_TAC[BETWEEN_IMP_COLLINEAR];
REWRITE_TAC[COLLINEAR_BETWEEN_CASES]] THEN
ASM_MESON_TAC[DDIST_INCREASES_ONLINE; DDIST_SYM; REAL_LT_IMP_LE;
REAL_LE_REFL; BETWEEN_SYM; REAL_NOT_LE; BETWEEN_REFL]);;
let CONTINUOUS_AT_LIFT_DDIST = prove
(`!a x:real^N.
norm(a) < &1 /\ norm(x) < &1 ==> (\x. lift(ddist(a,x))) continuous at x`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_TRANSFORM_AT THEN EXISTS_TAC
`\x:real^N. lift((&1 - a dot x) pow 2 /
((&1 - norm a pow 2) * (&1 - norm x pow 2)) - &1)` THEN
EXISTS_TAC `&1 - norm(x:real^N)` THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN
CONJ_TAC THENL
[X_GEN_TAC `y:real^N` THEN DISCH_THEN(MP_TAC o MATCH_MP (NORM_ARITH
`dist(y,x) < &1 - norm x ==> norm y < &1`)) THEN ASM_SIMP_TAC[ddist];
REWRITE_TAC[LIFT_SUB; real_div; LIFT_CMUL; REAL_INV_MUL] THEN
MATCH_MP_TAC CONTINUOUS_SUB THEN SIMP_TAC[CONTINUOUS_CONST] THEN
REPEAT(MATCH_MP_TAC CONTINUOUS_MUL THEN CONJ_TAC) THEN
SIMP_TAC[CONTINUOUS_CONST; o_DEF; REAL_POW_2; LIFT_CMUL] THENL
[MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_MUL);
MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_AT_INV)] THEN
ASM_SIMP_TAC[REAL_ARITH `x < &1 * &1 ==> ~(&1 - x = &0)`; REAL_LT_MUL2;
NORM_POS_LE; LIFT_SUB] THEN
SIMP_TAC[GSYM REAL_POW_2; NORM_POW_2; CONTINUOUS_CONST; CONTINUOUS_AT_ID;
CONTINUOUS_SUB; CONTINUOUS_LIFT_DOT2]]);;
let HYPERBOLIC_MIDPOINT = prove
(`!a b:real^N.
norm a < &1 /\ norm b < &1
==> ?x. between x (a,b) /\ ddist(x,a) = ddist(x,b)`,
REPEAT STRIP_TAC THEN MP_TAC(ISPECL
[`\x:real^N. lift(ddist(x,a) - ddist(x,b))`; `segment[a:real^N,b]`]
CONNECTED_CONTINUOUS_IMAGE) THEN
ANTS_TAC THENL
[REWRITE_TAC[CONNECTED_SEGMENT; LIFT_SUB] THEN
MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC CONTINUOUS_SUB THEN ONCE_REWRITE_TAC[DDIST_SYM] THEN
CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_LIFT_DDIST THEN
ASM_MESON_TAC[BETWEEN_NORM_LT; BETWEEN_IN_SEGMENT];
REWRITE_TAC[GSYM IS_INTERVAL_CONNECTED_1; IS_INTERVAL_1] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM; LIFT_DROP] THEN
DISCH_THEN(MP_TAC o SPECL [`a:real^N`; `b:real^N`; `lift(&0)`]) THEN
ASM_SIMP_TAC[DDIST_REFL; LIFT_DROP; ENDS_IN_SEGMENT; IN_IMAGE] THEN
REWRITE_TAC[REAL_SUB_RZERO; REAL_ARITH `&0 - x <= &0 <=> &0 <= x`] THEN
ASM_SIMP_TAC[DDIST_POS_LE; LIFT_EQ; BETWEEN_IN_SEGMENT] THEN
ASM_MESON_TAC[REAL_SUB_0; DDIST_SYM]]);;
let DDIST_EQ_ORIGIN = prove
(`!x:real^N y:real^N.
norm x < &1 /\ norm y < &1
==> (ddist(vec 0,x) = ddist(vec 0,y) <=> norm x = norm y)`,
REPEAT STRIP_TAC THEN ASM_SIMP_TAC[ddist; NORM_0; REAL_LT_01] THEN
REWRITE_TAC[DOT_LZERO] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_EQ_INV2;
REAL_ARITH `x - &1 = y - &1 <=> x = y`] THEN
REWRITE_TAC[REAL_ARITH `&1 - x = &1 - y <=> x = y`;
GSYM REAL_EQ_SQUARE_ABS; REAL_ABS_NORM]);;
let DDIST_CONGRUENT_TRIPLES_0 = prove
(`!a b:real^N a' b':real^N.
norm a < &1 /\ norm b < &1 /\ norm a' < &1 /\ norm b' < &1
==> (ddist(vec 0,a) = ddist(vec 0,a') /\ ddist(a,b) = ddist(a',b') /\
ddist(b,vec 0) = ddist(b',vec 0) <=>
dist(vec 0,a) = dist(vec 0,a') /\ dist(a,b) = dist(a',b') /\
dist(b,vec 0) = dist(b',vec 0))`,
REPEAT STRIP_TAC THEN
ASM_SIMP_TAC[DDIST_EQ_ORIGIN; REWRITE_RULE[DDIST_SYM] DDIST_EQ_ORIGIN] THEN
REWRITE_TAC[DIST_0; NORM_0; REAL_LT_01] THEN MATCH_MP_TAC(TAUT
`(a /\ b ==> (x <=> y)) ==> (a /\ x /\ b <=> a /\ y /\ b)`) THEN
STRIP_TAC THEN ASM_SIMP_TAC[ddist; DIST_EQ; real_div; REAL_INV_MUL; REAL_RING
`x * a * b - &1 = y * a * b - &1 <=> x = y \/ a = &0 \/ b = &0`] THEN
REWRITE_TAC[dist; NORM_POW_2; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN
REWRITE_TAC[GSYM REAL_EQ_SQUARE_ABS; NORM_POW_2] THEN
ASM_SIMP_TAC[REAL_INV_EQ_0; real_abs; REAL_SUB_LE; REAL_SUB_0] THEN
ASM_SIMP_TAC[ABS_SQUARE_LT_1; REAL_ABS_NORM; REAL_LT_IMP_NE; REAL_LT_IMP_LE;
MESON[NORM_CAUCHY_SCHWARZ; REAL_LET_TRANS; NORM_POS_LE;
REAL_LT_MUL2; REAL_MUL_RID; REAL_LT_IMP_LE]
`norm x < &1 /\ norm y < &1 ==> x dot y < &1`] THEN
RULE_ASSUM_TAC(REWRITE_RULE[NORM_EQ]) THEN ASM_REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Deduce existence of hyperbolic translations via the Poincare disc model. *)
(* Use orthogonal projection onto a hemisphere touching the unit disc, *)
(* then stereographic projection back from the other pole of the sphere plus *)
(* scaling. See Greenberg's "Euclidean & Non-Euclidean Geometries" fig 7.13. *)
(* ------------------------------------------------------------------------- *)
let kleinify = new_definition
`kleinify z = Cx(&2 / (&1 + norm(z) pow 2)) * z`;;
let poincarify = new_definition
`poincarify x = Cx((&1 - sqrt(&1 - norm(x) pow 2)) / norm(x) pow 2) * x`;;
let KLEINIFY_0,POINCARIFY_0 = (CONJ_PAIR o prove)
(`kleinify (Cx(&0)) = Cx(&0) /\ poincarify (Cx(&0)) = Cx(&0)`,
REWRITE_TAC[kleinify; poincarify; COMPLEX_MUL_RZERO]);;
let NORM_KLEINIFY = prove
(`!z. norm(kleinify z) = (&2 * norm(z)) / (&1 + norm(z) pow 2)`,
REWRITE_TAC[kleinify; COMPLEX_NORM_MUL; COMPLEX_NORM_CX; REAL_ABS_DIV] THEN
SIMP_TAC[REAL_LE_POW_2; REAL_ARITH `&0 <= x ==> abs(&1 + x) = &1 + x`] THEN
REAL_ARITH_TAC);;
let NORM_KLEINIFY_LT = prove
(`!z. norm(kleinify z) < &1 <=> ~(norm z = &1)`,
ASM_SIMP_TAC[NORM_KLEINIFY; REAL_LE_POW_2; REAL_LT_LDIV_EQ; REAL_MUL_LID;
REAL_ARITH `&0 <= x ==> &0 < &1 + x`] THEN
SIMP_TAC[REAL_ARITH `&2 * z < (&1 + z pow 2) <=> &0 < (z - &1) pow 2`] THEN
REWRITE_TAC[REAL_POW_2; REAL_LT_SQUARE] THEN REAL_ARITH_TAC);;
let NORM_POINCARIFY_LT = prove
(`!x. norm(x) < &1 ==> norm(poincarify x) < &1`,
REPEAT STRIP_TAC THEN REWRITE_TAC[poincarify; COMPLEX_NORM_MUL] THEN
MATCH_MP_TAC(REAL_ARITH `x * y <= &1 * y /\ y < &1 ==> x * y < &1`) THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
REWRITE_TAC[NORM_POS_LE; COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_NORM; REAL_ABS_POW] THEN
ASM_CASES_TAC `x:real^2 = vec 0` THEN
ASM_SIMP_TAC[REAL_LE_LDIV_EQ; NORM_POS_LT; REAL_POW_LT; NORM_0] THENL
[REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LID]] THEN
MATCH_MP_TAC(REAL_ARITH `s <= &1 /\ &1 - x <= s ==> abs(&1 - s) <= x`) THEN
CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_LSQRT; MATCH_MP_TAC REAL_LE_RSQRT] THEN
REWRITE_TAC[REAL_SUB_LE; REAL_POS; REAL_MUL_LID; REAL_POW_ONE] THEN
ASM_SIMP_TAC[REAL_ARITH `(&1 - x) pow 2 <= &1 - x <=> &0 <= x * (&1 - x)`;
REAL_ARITH `&1 - x <= &1 <=> &0 <= x`; REAL_LE_MUL; REAL_POW_LE;
REAL_SUB_LE; ABS_SQUARE_LE_1; REAL_LT_IMP_LE; REAL_ABS_NORM; NORM_POS_LE]);;
let KLEINIFY_POINCARIFY = prove
(`!x. norm(x) < &1 ==> kleinify(poincarify x) = x`,
REPEAT STRIP_TAC THEN REWRITE_TAC[kleinify; poincarify] THEN MATCH_MP_TAC
(COMPLEX_RING `(~(x = Cx(&0)) ==> w * z = Cx(&1)) ==> w * z * x = x`) THEN
DISCH_TAC THEN REWRITE_TAC[GSYM CX_MUL; CX_INJ; COMPLEX_NORM_MUL] THEN
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_DIV; REAL_ABS_NORM; REAL_ABS_POW] THEN
ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
`~(y = &0)
==> (&1 + (a / y pow 2 * y) pow 2) = (y pow 2 + a pow 2) / y pow 2`] THEN
REWRITE_TAC[REAL_POW2_ABS; real_div; REAL_INV_MUL; REAL_INV_INV] THEN
ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
`~(y = &0) ==> (&2 * x * y pow 2) * z * inv(y pow 2) = &2 * x * z`] THEN
MATCH_MP_TAC(REAL_FIELD `&0 < y /\ &2 * y = x ==> &2 * inv(x) * y = &1`) THEN
CONJ_TAC THENL
[REWRITE_TAC[REAL_SUB_LT] THEN MATCH_MP_TAC REAL_LT_LSQRT THEN
REWRITE_TAC[REAL_POS; REAL_ARITH `&1 - x < &1 pow 2 <=> &0 < x`] THEN
ASM_SIMP_TAC[REAL_POW_LT; COMPLEX_NORM_NZ];
SUBGOAL_THEN `sqrt(&1 - norm(x:real^2) pow 2) pow 2 = &1 - norm x pow 2`
MP_TAC THENL [MATCH_MP_TAC SQRT_POW_2; CONV_TAC REAL_FIELD]] THEN
ASM_SIMP_TAC[REAL_SUB_LE; ABS_SQUARE_LE_1; REAL_ABS_NORM; REAL_LT_IMP_LE]);;
let POINCARIFY_KLEINIFY = prove
(`!x. norm(x) < &1 ==> poincarify(kleinify x) = x`,
REPEAT STRIP_TAC THEN REWRITE_TAC[kleinify; poincarify] THEN
MATCH_MP_TAC(COMPLEX_RING
`(~(x = Cx(&0)) ==> w * z = Cx(&1)) ==> w * z * x = x`) THEN
DISCH_TAC THEN REWRITE_TAC[GSYM CX_MUL; CX_INJ] THEN
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_NORM; REAL_ABS_POW; REAL_ABS_NUM] THEN
REWRITE_TAC[real_div; REAL_INV_MUL; REAL_INV_INV; GSYM REAL_MUL_ASSOC;
REAL_INV_POW; REAL_POW_MUL] THEN
MATCH_MP_TAC(REAL_FIELD
`~(c = &0) /\ abs d < &1 /\ a * b = &2 * c pow 2 * (&1 + d)
==> a * inv(&2) pow 2 * b * inv(c) pow 2 * &2 * inv(&1 + d) = &1`) THEN
ASM_REWRITE_TAC[REAL_ABS_POW; COMPLEX_NORM_ZERO; ABS_SQUARE_LT_1] THEN
ASM_SIMP_TAC[REAL_ABS_NORM; REAL_POW_LE; NORM_POS_LE; REAL_ARITH
`&0 <= x ==> abs(&1 + x) = &1 + x`] THEN
MATCH_MP_TAC(REAL_FIELD
`~(x = &0) /\ abs x < &1 /\ a = &2 * x / (&1 + x)
==> a * (&1 + x) pow 2 = &2 * x * (&1 + x)`) THEN
ASM_REWRITE_TAC[REAL_ABS_NORM; COMPLEX_NORM_ZERO; REAL_ABS_POW;
ABS_SQUARE_LT_1; REAL_POW_EQ_0] THEN
MATCH_MP_TAC(REAL_ARITH `x = &1 - y ==> &1 - x = y`) THEN
MATCH_MP_TAC SQRT_UNIQUE THEN
REWRITE_TAC[REAL_ARITH `&0 <= &1 - &2 * x / y <=> (&2 * x) / y <= &1`] THEN
SIMP_TAC[REAL_LE_LDIV_EQ; REAL_POW_LE; NORM_POS_LE; REAL_ARITH
`&0 <= x ==> &0 < &1 + x`] THEN
REWRITE_TAC[REAL_ARITH `&2 * x <= &1 * (&1 + x) <=> x <= &1`] THEN
ASM_SIMP_TAC[ABS_SQUARE_LE_1; REAL_ABS_NORM; REAL_LT_IMP_LE] THEN
SUBGOAL_THEN `~(&1 + norm(x:complex) pow 2 = &0)` MP_TAC THENL
[ALL_TAC; CONV_TAC REAL_FIELD] THEN
MATCH_MP_TAC(REAL_ARITH `abs(x) < &1 ==> ~(&1 + x = &0)`) THEN
ASM_REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NORM; ABS_SQUARE_LT_1]);;
let DDIST_KLEINIFY = prove
(`!w z. ~(norm w = &1) /\ ~(norm z = &1)
==> ddist(kleinify w,kleinify z) =
&4 * (&1 / &2 + norm(w - z) pow 2 /
((&1 - norm w pow 2) * (&1 - norm z pow 2))) pow 2
- &1`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
`(&4 * norm(w - z:real^2) pow 2 *
((&1 - norm w pow 2) * (&1 - norm z pow 2) + norm(w - z) pow 2)) /
((&1 - norm w pow 2) pow 2 * (&1 - norm z pow 2) pow 2)` THEN
CONJ_TAC THENL
[ASM_SIMP_TAC[ddist; NORM_KLEINIFY_LT] THEN MATCH_MP_TAC(REAL_FIELD
`~(y = &0) /\ z = (w + &1) * y ==> z / y - &1 = w`) THEN
CONJ_TAC THENL
[REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THEN
MATCH_MP_TAC (REAL_ARITH `x < &1 ==> ~(&1 - x = &0)`) THEN
ASM_SIMP_TAC[REAL_POW_1_LT; NORM_KLEINIFY_LT; NORM_POS_LE; ARITH];
REWRITE_TAC[kleinify; COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
REWRITE_TAC[GSYM COMPLEX_CMUL; DOT_LMUL] THEN REWRITE_TAC[DOT_RMUL] THEN
SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NUM; REAL_POW_LE; NORM_POS_LE;
REAL_ARITH `&0 <= x ==> abs(&1 + x) = &1 + x`] THEN
MATCH_MP_TAC(REAL_FIELD
`(~(y' = &0) /\ ~(y = &0)) /\
(y * y' - &4 * d) pow 2 =
b * (y pow 2 - &4 * x pow 2) * (y' pow 2 - &4 * x' pow 2)
==> (&1 - &2 / y * &2 / y' * d) pow 2 =
b * (&1 - (&2 / y * x) pow 2) * (&1 - (&2 / y' * x') pow 2)`) THEN
CONJ_TAC THENL
[CONJ_TAC THEN
MATCH_MP_TAC(REAL_ARITH `~(abs x = &1) ==> ~(&1 + x = &0)`) THEN
ASM_SIMP_TAC[REAL_ABS_POW; REAL_POW_EQ_1; REAL_ABS_NORM] THEN ARITH_TAC;
REWRITE_TAC[REAL_RING `(&1 + x) pow 2 - &4 * x = (&1 - x) pow 2`] THEN
MATCH_MP_TAC(REAL_FIELD
`(~(y = &0) /\ ~(y' = &0)) /\ a - y * y' = b
==> a = (b / (y * y') + &1) * y * y'`) THEN
CONJ_TAC THENL
[ASM_REWRITE_TAC[REAL_POW_EQ_0; REAL_POW_EQ_1; REAL_ABS_NORM; ARITH;
REAL_ARITH `&1 - x = &0 <=> x = &1`];
REWRITE_TAC[NORM_POW_2; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN
REAL_ARITH_TAC]]];
REPEAT(POP_ASSUM MP_TAC) THEN
REWRITE_TAC[NORM_EQ_SQUARE; GSYM NORM_POW_2] THEN CONV_TAC REAL_FIELD]);;
let DDIST_KLEINIFY_EQ = prove
(`!w z w' z'.
~(norm w = &1) /\ ~(norm z = &1) /\ ~(norm w' = &1) /\ ~(norm z' = &1) /\
norm(w - z) pow 2 * (&1 - norm w' pow 2) * (&1 - norm z' pow 2) =
norm(w' - z') pow 2 * (&1 - norm w pow 2) * (&1 - norm z pow 2)
==> ddist(kleinify w,kleinify z) = ddist(kleinify w',kleinify z')`,
SIMP_TAC[DDIST_KLEINIFY; NORM_EQ_SQUARE; GSYM NORM_POW_2; REAL_POS] THEN
CONV_TAC REAL_FIELD);;
let NORM_KLEINIFY_MOEBIUS_LT = prove
(`!w x. norm w < &1 /\ norm x < &1
==> norm(kleinify(moebius_function (&0) w x)) < &1`,
SIMP_TAC[MOEBIUS_FUNCTION_NORM_LT_1; NORM_KLEINIFY_LT; REAL_LT_IMP_NE]);;
let DDIST_KLEINIFY_MOEBIUS = prove
(`!w x y. norm w < &1 /\ norm x < &1 /\ norm y < &1
==> ddist(kleinify(moebius_function (&0) w x),
kleinify(moebius_function (&0) w y)) =
ddist(kleinify x,kleinify y)`,
REPEAT STRIP_TAC THEN MATCH_MP_TAC DDIST_KLEINIFY_EQ THEN
ASM_SIMP_TAC[MOEBIUS_FUNCTION_NORM_LT_1; REAL_LT_IMP_NE] THEN
REWRITE_TAC[MOEBIUS_FUNCTION_SIMPLE] THEN
SUBGOAL_THEN
`~(Cx(&1) - cnj w * x = Cx(&0)) /\ ~(Cx(&1) - cnj w * y = Cx(&0))`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[COMPLEX_SUB_0] THEN CONJ_TAC THEN
MATCH_MP_TAC(MESON[REAL_LT_REFL] `norm(x) < norm(y) ==> ~(y = x)`) THEN
REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM; COMPLEX_NORM_MUL] THEN
GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
MATCH_MP_TAC REAL_LT_MUL2 THEN REWRITE_TAC[NORM_POS_LE] THEN
ASM_REWRITE_TAC[COMPLEX_NORM_CNJ];
ASM_SIMP_TAC[COMPLEX_FIELD
`~(Cx(&1) - cnj w * x = Cx(&0)) /\ ~(Cx(&1) - cnj w * y = Cx(&0))
==> (x - w) / (Cx (&1) - cnj w * x) - (y - w) / (Cx (&1) - cnj w * y) =
((Cx(&1) - w * cnj w) * (x - y)) /
((Cx (&1) - cnj w * x) * (Cx (&1) - cnj w * y))`] THEN
REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_POW] THEN
ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
`~(y = &0) /\ ~(y' = &0)
==> (&1 - (x / y) pow 2) * (&1 - (x' / y') pow 2) =
((y pow 2 - x pow 2) * (y' pow 2 - x' pow 2)) / (y * y') pow 2`] THEN
REWRITE_TAC[REAL_POW_DIV; COMPLEX_NORM_MUL] THEN REWRITE_TAC[real_div] THEN
MATCH_MP_TAC(REAL_RING
`x * y:real = w * z ==> (x * i) * y = w * z * i`) THEN
REWRITE_TAC[GSYM COMPLEX_NORM_MUL] THEN REWRITE_TAC[NORM_POW_2; DOT_2] THEN
REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; complex_sub; complex_mul; CX_DEF;
complex_add; RE; IM; cnj; complex_neg] THEN REAL_ARITH_TAC]);;
let COLLINEAR_KLEINIFY_MOEBIUS = prove
(`!w x y z. norm w < &1 /\ norm x < &1 /\ norm y < &1 /\ norm z < &1
==> (collinear {kleinify(moebius_function (&0) w x),
kleinify(moebius_function (&0) w y),
kleinify(moebius_function (&0) w z)} <=>
collinear {kleinify x,kleinify y,kleinify z})`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[COLLINEAR_3_2D; kleinify; GSYM RE_DEF; GSYM IM_DEF] THEN
REWRITE_TAC[RE_MUL_CX; IM_MUL_CX] THEN
SIMP_TAC[NORM_POS_LE; REAL_POW_LE; REAL_ARITH `&0 <= x ==> ~(&1 + x = &0)`;
REAL_FIELD
`~(nx = &0) /\ ~(ny = &0) /\ ~(nz = &0)
==> ((&2 / nz * rz - &2 / nx * rx) * (&2 / ny * iy - &2 / nx * ix) =
(&2 / ny * ry - &2 / nx * rx) * (&2 / nz * iz - &2 / nx * ix) <=>
(nx * rz - nz * rx) * (nx * iy - ny * ix) =
(nx * ry - ny * rx) * (nx * iz - nz * ix))`] THEN
REWRITE_TAC[COMPLEX_NORM_DIV; MOEBIUS_FUNCTION_SIMPLE] THEN
ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN
REWRITE_TAC[RE_DIV_CX; GSYM CX_POW; IM_DIV_CX] THEN
SUBGOAL_THEN
`~(Cx (&1) - cnj w * x = Cx(&0)) /\ ~(Cx (&1) - cnj w * y = Cx(&0)) /\
~(Cx (&1) - cnj w * z = Cx(&0))`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[COMPLEX_SUB_0] THEN REPEAT CONJ_TAC THEN
MATCH_MP_TAC(MESON[REAL_LT_REFL] `norm x < norm y ==> ~(y = x)`) THEN
REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CNJ; COMPLEX_NORM_CX] THEN
ONCE_REWRITE_TAC[REAL_ARITH `abs(&1) = &1 * &1`] THEN
MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_REWRITE_TAC[NORM_POS_LE];
ALL_TAC] THEN
ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
`~(nx = &0) /\ ~(ny = &0) /\ ~(nz = &0)
==>(((&1 + (nxw / nx) pow 2) * rz / nz pow 2 -
(&1 + (nzw / nz) pow 2) * rx / nx pow 2) *
((&1 + (nxw / nx) pow 2) * iy / ny pow 2 -
(&1 + (nyw / ny) pow 2) * ix / nx pow 2) =
((&1 + (nxw / nx) pow 2) * ry / ny pow 2 -
(&1 + (nyw / ny) pow 2) * rx / nx pow 2) *
((&1 + (nxw / nx) pow 2) * iz / nz pow 2 -
(&1 + (nzw / nz) pow 2) * ix / nx pow 2) <=>
((nx pow 2 + nxw pow 2) * rz - (nz pow 2 + nzw pow 2) * rx) *
((nx pow 2 + nxw pow 2) * iy - (ny pow 2 + nyw pow 2) * ix) =
((nx pow 2 + nxw pow 2) * ry - (ny pow 2 + nyw pow 2) * rx) *
((nx pow 2 + nxw pow 2) * iz - (nz pow 2 + nzw pow 2) * ix))`] THEN
REWRITE_TAC[COMPLEX_SQNORM; complex_sub; complex_mul; complex_add;
complex_neg; cnj; CX_DEF; RE; IM] THEN
ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN MATCH_MP_TAC(REAL_RING
`!a b. a * lhs = b * rhs /\ ~(a = &0) /\ ~(b = &0)
==> (lhs = &0 <=> rhs = &0)`) THEN
EXISTS_TAC `Re x pow 2 + Im x pow 2 + &1` THEN
EXISTS_TAC `--(Re w pow 2 + Im w pow 2 - &1) pow 3 *
((&1 - Re(x) pow 2 - Im(x) pow 2) *
(&1 - Re(w) pow 2 - Im(w) pow 2) +
&2 * (Re w - Re x) pow 2 + &2 * (Im w - Im x) pow 2)` THEN
REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM; REAL_POW_EQ_0; ARITH_EQ] THEN
REPEAT CONJ_TAC THENL
[REAL_ARITH_TAC;
MATCH_MP_TAC(REAL_ARITH `&0 <= x + y ==> ~(x + y + &1 = &0)`) THEN
ASM_SIMP_TAC[GSYM COMPLEX_SQNORM; REAL_LE_POW_2];
MATCH_MP_TAC(REAL_ARITH `x + y < &1 ==> ~(--(x + y - &1) = &0)`) THEN
ASM_SIMP_TAC[GSYM COMPLEX_SQNORM; REAL_POW_1_LT; NORM_POS_LE; ARITH];
MATCH_MP_TAC(REAL_ARITH `&0 < x /\ &0 <= y ==> ~(x + y = &0)`) THEN
SIMP_TAC[REAL_LE_ADD; REAL_LE_MUL; REAL_POS; REAL_LE_POW_2] THEN
MATCH_MP_TAC REAL_LT_MUL THEN
ASM_REWRITE_TAC[REAL_ARITH `&0 < &1 - x - y <=> x + y < &1`] THEN
ASM_SIMP_TAC[GSYM COMPLEX_SQNORM; REAL_POW_1_LT; NORM_POS_LE; ARITH]]);;
let BETWEEN_KLEINIFY_MOEBIUS = prove
(`!w x y z. norm w < &1 /\ norm x < &1 /\ norm y < &1 /\ norm z < &1
==> (between (kleinify(moebius_function (&0) w x))
(kleinify(moebius_function (&0) w y),
kleinify(moebius_function (&0) w z)) <=>
between (kleinify x) (kleinify y,kleinify z))`,
SIMP_TAC[BETWEEN_COLLINEAR_DDIST_EQ; NORM_KLEINIFY_MOEBIUS_LT;
NORM_KLEINIFY_LT; REAL_LT_IMP_NE;
COLLINEAR_KLEINIFY_MOEBIUS; DDIST_KLEINIFY_MOEBIUS]);;
let hyperbolic_isometry = new_definition
`hyperbolic_isometry (f:real^2->real^2) <=>
(!x. norm x < &1 ==> norm(f x) < &1) /\
(!x y. norm x < &1 /\ norm y < &1 ==> ddist(f x,f y) = ddist(x,y)) /\
(!x y z. norm x < &1 /\ norm y < &1 /\ norm z < &1
==> (between (f x) (f y,f z) <=> between x (y,z)))`;;
let HYPERBOLIC_TRANSLATION = prove
(`!w. norm w < &1
==> ?f:real^2->real^2 g:real^2->real^2.
hyperbolic_isometry f /\ hyperbolic_isometry g /\
f(w) = vec 0 /\ g(vec 0) = w /\
(!x. norm x < &1 ==> f(g x) = x) /\
(!x. norm x < &1 ==> g(f x) = x)`,
REPEAT STRIP_TAC THEN SIMP_TAC[hyperbolic_isometry] THEN MAP_EVERY EXISTS_TAC
[`\x. kleinify(moebius_function(&0) (poincarify w) (poincarify x))`;
`\x. kleinify(moebius_function(&0) (--(poincarify w)) (poincarify x))`] THEN
ASM_SIMP_TAC[NORM_KLEINIFY_MOEBIUS_LT; NORM_POINCARIFY_LT;
DDIST_KLEINIFY_MOEBIUS; KLEINIFY_POINCARIFY; VECTOR_NEG_NEG;
BETWEEN_KLEINIFY_MOEBIUS; NORM_NEG; MOEBIUS_FUNCTION_COMPOSE;
POINCARIFY_KLEINIFY; MOEBIUS_FUNCTION_NORM_LT_1] THEN
ASM_SIMP_TAC[MOEBIUS_FUNCTION_SIMPLE; COMPLEX_SUB_REFL; complex_div;
COMPLEX_VEC_0; KLEINIFY_0; POINCARIFY_0; COMPLEX_MUL_LZERO;
COMPLEX_MUL_RZERO; COMPLEX_SUB_LZERO; COMPLEX_NEG_NEG;
COMPLEX_SUB_RZERO; COMPLEX_INV_1; COMPLEX_MUL_RID;
KLEINIFY_POINCARIFY]);;
(* ------------------------------------------------------------------------- *)
(* Our model. *)
(* ------------------------------------------------------------------------- *)
let plane_tybij =
let th = prove
(`?x:real^2. norm x < &1`,
EXISTS_TAC `vec 0:real^2` THEN NORM_ARITH_TAC) in
new_type_definition "plane" ("mk_plane","dest_plane") th;;
let pbetween = new_definition
`pbetween y (x,z) <=> between (dest_plane y) (dest_plane x,dest_plane z)`;;
let pdist = new_definition
`pdist(x,y) = ddist(dest_plane x,dest_plane y)`;;
let DEST_PLANE_NORM_LT = prove
(`!x. norm(dest_plane x) < &1`,
MESON_TAC[plane_tybij]);;
let DEST_PLANE_EQ = prove
(`!x y. dest_plane x = dest_plane y <=> x = y`,
MESON_TAC[plane_tybij]);;
let FORALL_DEST_PLANE = prove
(`!P. (!x. P(dest_plane x)) <=> (!x. norm x < &1 ==> P x)`,
MESON_TAC[plane_tybij]);;
let EXISTS_DEST_PLANE = prove
(`!P. (?x. P(dest_plane x)) <=> (?x. norm x < &1 /\ P x)`,
MESON_TAC[plane_tybij]);;
(* ------------------------------------------------------------------------- *)
(* Axiom 1 (reflexivity for equidistance). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_1_NONEUCLIDEAN = prove
(`!a b. pdist(a,b) = pdist(b,a)`,
REWRITE_TAC[pdist; DDIST_SYM]);;
(* ------------------------------------------------------------------------- *)
(* Axiom 2 (transitivity for equidistance). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_2_NONEUCLIDEAN = prove
(`!a b p q r s.
pdist(a,b) = pdist(p,q) /\ pdist(a,b) = pdist(r,s)
==> pdist(p,q) = pdist(r,s)`,
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Axiom 3 (identity for equidistance). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_3_NONEUCLIDEAN = prove
(`!a b c. pdist(a,b) = pdist(c,c) ==> a = b`,
SIMP_TAC[FORALL_DEST_PLANE; pdist; DDIST_REFL; DDIST_EQ_0; DEST_PLANE_EQ]);;
(* ------------------------------------------------------------------------- *)
(* Axiom 4 (segment construction). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_4_NONEUCLIDEAN = prove
(`!a q b c. ?x. pbetween a (q,x) /\ pdist(a,x) = pdist(b,c)`,
REWRITE_TAC[pbetween; pdist; FORALL_DEST_PLANE; EXISTS_DEST_PLANE] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN
SUBGOAL_THEN `?d:real^2. norm d < &1 /\ ddist(b:real^2,c) = ddist(vec 0,d)`
STRIP_ASSUME_TAC THENL
[MP_TAC(SPEC `b:real^2` HYPERBOLIC_TRANSLATION) THEN
ASM_REWRITE_TAC[hyperbolic_isometry] THEN ASM_MESON_TAC[];
ASM_REWRITE_TAC[]] THEN
SUBGOAL_THEN
`norm(a:real^2) < &1 /\ norm(q:real^2) < &1 /\ norm(d:real^2) < &1`
MP_TAC THENL [ASM_REWRITE_TAC[]; REPEAT(POP_ASSUM(K ALL_TAC))] THEN
MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`d:real^2`; `q:real^2`; `a:real^2`] THEN
MATCH_MP_TAC(MESON[] `P(vec 0) /\ (P(vec 0) ==> !x. P x) ==> !x. P x`) THEN
REWRITE_TAC[NORM_0; REAL_LT_01] THEN CONJ_TAC THENL
[MP_TAC(ISPEC `vec 0:real^2` TARSKI_AXIOM_4_EUCLIDEAN) THEN
MESON_TAC[DIST_0; DDIST_EQ_ORIGIN];
DISCH_THEN(LABEL_TAC "*") THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `a:real^2` HYPERBOLIC_TRANSLATION) THEN
ASM_REWRITE_TAC[hyperbolic_isometry; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`f:real^2->real^2`; `g:real^2->real^2`] THEN
STRIP_TAC THEN
REMOVE_THEN "*" (MP_TAC o SPECL [`(f:real^2->real^2) q`; `d:real^2`]) THEN
ASM_SIMP_TAC[] THEN
DISCH_THEN(X_CHOOSE_THEN `x:real^2` STRIP_ASSUME_TAC) THEN
EXISTS_TAC `(g:real^2->real^2) x` THEN ASM_MESON_TAC[]]);;
(* ------------------------------------------------------------------------- *)
(* Axiom 5 (five-segments axiom). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_5_NONEUCLIDEAN = prove
(`!a b c x a' b' c' x'.
~(a = b) /\
pdist(a,b) = pdist(a',b') /\
pdist(a,c) = pdist(a',c') /\
pdist(b,c) = pdist(b',c') /\
pbetween b (a,x) /\ pbetween b' (a',x') /\ pdist(b,x) = pdist(b',x')
==> pdist(c,x) = pdist(c',x')`,
REWRITE_TAC[FORALL_DEST_PLANE; pdist; pbetween; GSYM DEST_PLANE_EQ] THEN
REPEAT STRIP_TAC THEN MP_TAC(ISPEC `b':real^2` HYPERBOLIC_TRANSLATION) THEN
MP_TAC(ISPEC `b:real^2` HYPERBOLIC_TRANSLATION) THEN
ASM_REWRITE_TAC[RIGHT_IMP_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN
REWRITE_TAC[hyperbolic_isometry] THEN MAP_EVERY X_GEN_TAC
[`f:real^2->real^2`; `f':real^2->real^2`; `g:real^2->real^2`;
`g':real^2->real^2`] THEN REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`(f:real^2->real^2) x`; `(f:real^2->real^2) c`;
`(g:real^2->real^2) x'`; `(g:real^2->real^2) c'`]
DDIST_CONGRUENT_TRIPLES_0) THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(TAUT `(p ==> r) /\ q ==> (p <=> q) ==> r`) THEN
CONJ_TAC THENL [ASM_MESON_TAC[DDIST_SYM]; ALL_TAC] THEN
MP_TAC(ISPECL [`(f:real^2->real^2) a`; `(f:real^2->real^2) c`;
`(g:real^2->real^2) a'`; `(g:real^2->real^2) c'`]
DDIST_CONGRUENT_TRIPLES_0) THEN
ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC(TAUT `p /\ (q ==> r) ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL
[ASM_SIMP_TAC[GSYM DDIST_CONGRUENT_TRIPLES_0] THEN CONJ_TAC THEN
GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
[SYM(ASSUME `(f:complex->complex) b = vec 0`)] THEN
GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)
[SYM(ASSUME `(g:complex->complex) b' = vec 0`)] THEN
ASM_SIMP_TAC[] THEN ASM_MESON_TAC[DDIST_SYM];
STRIP_TAC THEN MP_TAC(ISPECL
[`(f:real^2->real^2) a`; `(f:real^2->real^2) b`; `(f:real^2->real^2) c`;
`(f:real^2->real^2) x`;`(g:real^2->real^2) a'`; `(g:real^2->real^2) b'`;
`(g:real^2->real^2) c'`; `(g:real^2->real^2) x'`]
TARSKI_AXIOM_5_EUCLIDEAN) THEN
SUBGOAL_THEN
`ddist((f:real^2->real^2) b,f x) = ddist((g:real^2->real^2) b',g x')`
MP_TAC THENL
[ASM_SIMP_TAC[];
ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[DDIST_EQ_ORIGIN] THEN DISCH_TAC] THEN
ASM_MESON_TAC[DIST_SYM; DIST_0]]);;
(* ------------------------------------------------------------------------- *)
(* Axiom 6 (identity for between-ness). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_6_NONEUCLIDEAN = prove
(`!a b. pbetween b (a,a) ==> a = b`,
REWRITE_TAC[pbetween; FORALL_DEST_PLANE; GSYM DEST_PLANE_EQ] THEN
MESON_TAC[TARSKI_AXIOM_6_EUCLIDEAN]);;
(* ------------------------------------------------------------------------- *)
(* Axiom 7 (Pasch's axiom). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_7_NONEUCLIDEAN = prove
(`!a b c p q.
pbetween p (a,c) /\ pbetween q (b,c)
==> ?x. pbetween x (p,b) /\ pbetween x (q,a)`,
REWRITE_TAC[pbetween; FORALL_DEST_PLANE; EXISTS_DEST_PLANE] THEN
MESON_TAC[BETWEEN_NORM_LT; TARSKI_AXIOM_7_EUCLIDEAN]);;
(* ------------------------------------------------------------------------- *)
(* Axiom 8 (lower 2-dimensional axiom). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_8_NONEUCLIDEAN = prove
(`?a b c. ~pbetween b (a,c) /\ ~pbetween c (b,a) /\ ~pbetween a (c,b)`,
REWRITE_TAC[pbetween; EXISTS_DEST_PLANE; NORM_LT_SQUARE; NORM_POW_2] THEN
MAP_EVERY (fun t -> EXISTS_TAC t THEN
SIMP_TAC[DOT_LMUL; DOT_RMUL; DOT_BASIS_BASIS; DIMINDEX_2; ARITH] THEN
REWRITE_TAC[DOT_LZERO] THEN CONV_TAC REAL_RAT_REDUCE_CONV)
[`vec 0:real^2`; `(&1 / &2) % basis 1:real^2`;
`(&1 / &2) % basis 2:real^2`] THEN
REPEAT CONJ_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP BETWEEN_IMP_COLLINEAR) THEN
SIMP_TAC[COLLINEAR_3_2D; VECTOR_MUL_COMPONENT; VEC_COMPONENT; ARITH;
BASIS_COMPONENT; DIMINDEX_2] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* Axiom 9 (upper 2-dimensional axiom). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_9_NONEUCLIDEAN = prove
(`!p q a b c.
~(p = q) /\
pdist(a,p) = pdist(a,q) /\ pdist(b,p) = pdist(b,q) /\
pdist(c,p) = pdist(c,q)
==> pbetween b (a,c) \/ pbetween c (b,a) \/ pbetween a (c,b)`,
REWRITE_TAC[pdist; pbetween; FORALL_DEST_PLANE; GSYM DEST_PLANE_EQ] THEN
REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`p:real^2`; `q:real^2`] HYPERBOLIC_MIDPOINT) THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:real^2` THEN
STRIP_TAC THEN MP_TAC(ISPEC `x:real^2` HYPERBOLIC_TRANSLATION) THEN
SUBGOAL_THEN `norm(x:real^2) < &1` ASSUME_TAC THENL
[ASM_MESON_TAC[BETWEEN_NORM_LT]; ONCE_REWRITE_TAC[BETWEEN_SYM]] THEN
ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; hyperbolic_isometry] THEN
REWRITE_TAC[GSYM COLLINEAR_BETWEEN_CASES] THEN REPEAT STRIP_TAC THEN
SUBGOAL_THEN `collinear{(f:real^2->real^2) b,f c,f a}` MP_TAC THENL
[ALL_TAC; ASM_SIMP_TAC[COLLINEAR_BETWEEN_CASES]] THEN
SUBGOAL_THEN `ddist(f a,f p) = ddist(f a,f q) /\
ddist(f b,f p) = ddist(f b,f q) /\
ddist(f c,f p) = ddist(f c,f q) /\
~((f:real^2->real^2) q = f p)`
MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
SUBGOAL_THEN `(f:real^2->real^2) q = --(f p)` SUBST1_TAC THENL
[SUBGOAL_THEN `between ((f:real^2->real^2) x) (f p,f q) /\
ddist(f x,f p) = ddist(f x,f q)`
MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[DDIST_EQ_ORIGIN] THEN
REWRITE_TAC[GSYM MIDPOINT_BETWEEN; midpoint; NORM_ARITH
`norm(a:real^N) = norm b <=> dist(a,vec 0) = dist(vec 0,b)`] THEN
VECTOR_ARITH_TAC;
REWRITE_TAC[ddist] THEN ASM_SIMP_TAC[NORM_NEG; real_div; REAL_INV_MUL] THEN
ASM_SIMP_TAC[REAL_SUB_LT; ABS_SQUARE_LT_1; REAL_ABS_NORM; REAL_FIELD
`&0 < x /\ &0 < y
==> (a * inv x * inv y - &1 = b * inv x * inv y - &1 <=> a = b)`] THEN
ONCE_REWRITE_TAC[VECTOR_ARITH `--x:real^N = x <=> x = vec 0`] THEN
REWRITE_TAC[COLLINEAR_3_2D; VECTOR_SUB_COMPONENT; DOT_2; GSYM DOT_EQ_0;
VECTOR_NEG_COMPONENT] THEN CONV_TAC REAL_RING]);;
(* ------------------------------------------------------------------------- *)
(* Axiom 10 (Euclidean axiom). *)
(* ------------------------------------------------------------------------- *)
let NOT_TARSKI_AXIOM_10_NONEUCLIDEAN = prove
(`~(!a b c d t.
pbetween d (a,t) /\ pbetween d (b,c) /\ ~(a = d)
==> ?x y. pbetween b (a,x) /\ pbetween c (a,y) /\ pbetween t (x,y))`,
REWRITE_TAC[pbetween; FORALL_DEST_PLANE; EXISTS_DEST_PLANE;
GSYM DEST_PLANE_EQ; RIGHT_IMP_FORALL_THM; IMP_IMP] THEN
DISCH_THEN(MP_TAC o SPECL
[`vec 0:real^2`; `&1 / &2 % basis 1:real^2`; `&1 / &2 % basis 2:real^2`;
`&1 / &4 % basis 1 + &1 / &4 % basis 2:real^2`;
`&3 / &5 % basis 1 + &3 / &5 % basis 2:real^2`]) THEN
REWRITE_TAC[NOT_IMP; CONJ_ASSOC] THEN CONJ_TAC THENL
[ALL_TAC;
REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(p /\ q) <=> p ==> ~q`] THEN
REWRITE_TAC[IMP_CONJ] THEN REPEAT(GEN_TAC THEN DISCH_TAC) THEN
REWRITE_TAC[IMP_IMP] THEN
DISCH_THEN(CONJUNCTS_THEN (MP_TAC o MATCH_MP BETWEEN_IMP_COLLINEAR)) THEN
SIMP_TAC[COLLINEAR_3_2D; BASIS_COMPONENT; DIMINDEX_2; ARITH; VEC_COMPONENT;
VECTOR_MUL_COMPONENT] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[REAL_SUB_LZERO; REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_SUB_RZERO;
REAL_ARITH `&0 = &1 / &2 * x <=> x = &0`] THEN
REWRITE_TAC[REAL_ENTIRE] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
MP_TAC(ISPECL [`x:real^2`; `1`] COMPONENT_LE_NORM) THEN
MP_TAC(ISPECL [`y:real^2`; `2`] COMPONENT_LE_NORM) THEN
SIMP_TAC[DIMINDEX_2; ARITH; BETWEEN_IN_SEGMENT; IN_SEGMENT] THEN
REPEAT STRIP_TAC THEN SUBGOAL_THEN
`norm(&3 / &5 % basis 1 + &3 / &5 % basis 2:real^2) pow 2 <= &1 / &2`
MP_TAC THENL
[SUBGOAL_THEN `(&3 / &5 % basis 1 + &3 / &5 % basis 2:real^2)$2 =
(&3 / &5 % basis 1 + &3 / &5 % basis 2:real^2)$1`
MP_TAC THENL
[SIMP_TAC[CART_EQ; DIMINDEX_2; FORALL_2; ARITH; BASIS_COMPONENT;
VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VEC_COMPONENT] THEN
REAL_ARITH_TAC;
ASM_REWRITE_TAC[]] THEN
REWRITE_TAC[NORM_POW_2; DOT_LADD; DOT_RADD; DOT_LMUL; DOT_RMUL] THEN
ASM_SIMP_TAC[DIMINDEX_2; FORALL_2; DOT_2; VECTOR_ADD_COMPONENT; ARITH;
VECTOR_MUL_COMPONENT; BASIS_COMPONENT; DIMINDEX_2] THEN
DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
`a * &0 + y = x + b * &0 ==> abs x + abs y <= (&1 - u) * &1 + u * &1
==> abs x <= abs(&1 / &2) /\ abs y <= abs(&1 / &2)`)) THEN
ANTS_TAC THENL
[REWRITE_TAC[REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LE_ADD2 THEN
CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REAL_ARITH_TAC;
REWRITE_TAC[REAL_LE_SQUARE_ABS] THEN REAL_ARITH_TAC];
ALL_TAC]] THEN
SIMP_TAC[NORM_LT_SQUARE; NORM_POW_2; DOT_LADD; DOT_RADD; DOT_LZERO;
DOT_LMUL; DOT_RMUL; DOT_BASIS_BASIS; DIMINDEX_2; ARITH] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN
REWRITE_TAC[BETWEEN_IN_SEGMENT; IN_SEGMENT] THEN REPEAT CONJ_TAC THENL
[EXISTS_TAC `&5 / &12`; EXISTS_TAC `&1 / &2`; ALL_TAC] THEN
SIMP_TAC[CART_EQ; DIMINDEX_2; FORALL_2; ARITH; BASIS_COMPONENT;
VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VEC_COMPONENT] THEN
CONV_TAC REAL_RAT_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* Axiom 11 (Continuity). *)
(* ------------------------------------------------------------------------- *)
let TARSKI_AXIOM_11_NONEUCLIDEAN = prove
(`!X Y. (?a. !x y. x IN X /\ y IN Y ==> pbetween x (a,y))
==> (?b. !x y. x IN X /\ y IN Y ==> pbetween b (x,y))`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `X:plane->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
ASM_CASES_TAC `Y:plane->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
REWRITE_TAC[pbetween; EXISTS_DEST_PLANE] THEN
DISCH_THEN(X_CHOOSE_THEN `a:real^2` STRIP_ASSUME_TAC) THEN
MP_TAC(ISPECL [`IMAGE dest_plane X`; `IMAGE dest_plane Y`]
TARSKI_AXIOM_11_EUCLIDEAN) THEN REWRITE_TAC[IN_IMAGE] THEN
ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN
ASM_MESON_TAC[MEMBER_NOT_EMPTY; DEST_PLANE_NORM_LT; BETWEEN_NORM_LT]);;
|