Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 41,637 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
(* ========================================================================= *)
(* Independence of the parallel postulate. The statement and some ideas are  *)
(* taken from Tim Makarios's MSc thesis "A mechanical verification of the    *)
(* independence of Tarski's Euclidean axiom".                                *)
(*                                                                           *)
(* In the file Multivariate/tarski.ml it is shown that all 11 of Tarski's    *)
(* axioms for geometry hold for the Euclidean plane `:real^2`, with          *)
(* betweenness and congruence of segments as:                                *)
(*                                                                           *)
(*      B x y z  <=> between y (x,z)                                         *)
(*      ab == pq <=> dist(a,b) = dist(p,q)                                   *)
(*                                                                           *)
(* The present file shows that the Klein model of the hyperbolic plane (type *)
(* `:plane`) satisfies all Tarski's axioms except that it satisfies the      *)
(* negation of the Euclidean axiom (10), with betweenness and congruence of  *)
(* segments as:                                                              *)
(*                                                                           *)
(*      B x y z  <=> pbetween y (x,z)                                        *)
(*      ab == pq <=> pdist(a,b) = pdist(p,q)                                 *)
(*                                                                           *)
(* Collectively, these two results show that the Euclidean axiom is          *)
(* independent of the others. For more references regarding Tarski's axioms  *)
(* for geometry see "http://en.wikipedia.org/wiki/Tarski's_axioms".          *)
(* ========================================================================= *)

needs "Multivariate/cauchy.ml";;
needs "Multivariate/tarski.ml";;

(* ------------------------------------------------------------------------- *)
(* The semimetric we will use, directly on real^N first. Choose a sensible   *)
(* default outside unit ball so some handy theorems become unconditional.    *)
(* ------------------------------------------------------------------------- *)

let ddist = new_definition
 `ddist(x:real^N,y:real^N) =
    if norm(x) < &1 /\ norm(y) < &1 then
     (&1 - x dot y) pow 2 / ((&1 - norm(x) pow 2) * (&1 - norm(y) pow 2)) - &1
    else dist(x,y)`;;

let DDIST_INCREASES_ONLINE = prove
 (`!a b x:real^N.
      norm a < &1 /\ norm b < &1 /\ norm x < &1 /\ between x (a,b) /\ ~(x = b)
      ==> ddist(a,x) < ddist(a,b)`,
  REPEAT STRIP_TAC THEN ASM_CASES_TAC `b:real^N = a` THENL
   [ASM_MESON_TAC[BETWEEN_REFL_EQ]; ALL_TAC] THEN
  ASM_SIMP_TAC[ddist; real_div; REAL_INV_MUL] THEN
  SUBGOAL_THEN
   `norm(a:real^N) pow 2 < &1 /\ norm(b:real^N) pow 2 < &1 /\
    norm(x:real^N) pow 2 < &1`
  MP_TAC THENL [ASM_SIMP_TAC[ABS_SQUARE_LT_1; REAL_ABS_NORM]; ALL_TAC] THEN
  REWRITE_TAC[REAL_ARITH `a * inv x * inv b - &1 < c * inv x * d - &1 <=>
                          (a / b) / x < (c * d) / x`] THEN
  SIMP_TAC[REAL_LT_DIV2_EQ; REAL_LT_LDIV_EQ; REAL_SUB_LT] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `(a * inv b) * c:real = (a * c) / b`] THEN
  SIMP_TAC[REAL_LT_RDIV_EQ; REAL_SUB_LT] THEN
  SUBGOAL_THEN `(a:real^N) dot b < &1 /\ (a:real^N) dot x < &1` MP_TAC THENL
   [CONJ_TAC THEN MATCH_MP_TAC(MESON[REAL_LET_TRANS; NORM_CAUCHY_SCHWARZ]
     `norm(x) * norm(y) < &1 ==> (x:real^N) dot y < &1`) THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_REWRITE_TAC[NORM_POS_LE];
    ALL_TAC] THEN
  FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BETWEEN_IN_SEGMENT]) THEN
  REWRITE_TAC[IN_SEGMENT; LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `u:real` THEN
  ASM_CASES_TAC `u = &1` THEN
  ASM_SIMP_TAC[VECTOR_ARITH `(&1 - &1) % a + &1 % b:real^N = b`] THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  SIMP_TAC[VECTOR_ARITH `(&1 - u) % a + u % b:real^N = a + u % (b - a)`] THEN
  ABBREV_TAC `c:real^N = b - a` THEN
  SUBGOAL_THEN `b:real^N = a + c` SUBST_ALL_TAC THENL
   [EXPAND_TAC "c" THEN VECTOR_ARITH_TAC; ALL_TAC] THEN
  RULE_ASSUM_TAC(SIMP_RULE[VECTOR_ARITH `a + c:real^N = a <=> c = vec 0`]) THEN
  REWRITE_TAC[NORM_POW_2; VECTOR_ARITH
    `(a + b:real^N) dot (a + b) = a dot a + &2 * a dot b + b dot b`] THEN
  REWRITE_TAC[DOT_RADD; DOT_RMUL] THEN REWRITE_TAC[DOT_LMUL] THEN
  REPEAT STRIP_TAC THEN REWRITE_TAC[REAL_ARITH
   `(&1 - (a + x * b)) pow 2 * (&1 - (a + &2 * b + c)) <
    (&1 - (a + b)) pow 2 * (&1 - (a + &2 * x * b + x * x * c)) <=>
    &0 < (&1 - a - b * x) * ((&1 - a) * c + b pow 2) * (&1 - x) +
         (&1 - a - b) * ((&1 - a) * c + b pow 2) * (&1 - x) * x`] THEN
  MATCH_MP_TAC REAL_LTE_ADD THEN CONJ_TAC THENL
   [REPEAT(MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC);
    REPEAT(MATCH_MP_TAC REAL_LE_MUL THEN CONJ_TAC)] THEN
  TRY ASM_REAL_ARITH_TAC THEN TRY(MATCH_MP_TAC REAL_LT_IMP_LE) THEN
  MATCH_MP_TAC REAL_LTE_ADD THEN REWRITE_TAC[REAL_LE_POW_2] THEN
  MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[DOT_POS_LT; REAL_SUB_LT]);;

let DDIST_REFL = prove
 (`!x:real^N. ddist(x,x) = &0`,
  GEN_TAC THEN REWRITE_TAC[ddist; DIST_REFL; NORM_POW_2; NORM_LT_SQUARE] THEN
  CONV_TAC REAL_FIELD);;

let DDIST_SYM = prove
 (`!x y:real^N. ddist(x,y) = ddist(y,x)`,
  REWRITE_TAC[ddist; CONJ_ACI; REAL_MUL_AC; DIST_SYM; DOT_SYM]);;

let DDIST_POS_LT = prove
 (`!x y:real^N. ~(x = y) ==> &0 < ddist(x,y)`,
  REPEAT STRIP_TAC THEN
  ASM_CASES_TAC `norm(x:real^N) < &1 /\ norm(y:real^N) < &1` THENL
   [ASM_MESON_TAC[DDIST_INCREASES_ONLINE; DDIST_REFL; BETWEEN_REFL];
    ASM_SIMP_TAC[ddist; DIST_POS_LT]]);;

let DDIST_POS_LE = prove
 (`!x y:real^N. &0 <= ddist(x,y)`,
  REPEAT GEN_TAC THEN ASM_CASES_TAC `x:real^N = y` THEN
  ASM_SIMP_TAC[DDIST_REFL; DDIST_POS_LT; REAL_LE_LT]);;

let DDIST_EQ_0 = prove
 (`!x y:real^N. ddist(x,y) = &0 <=> x = y`,
  MESON_TAC[DDIST_REFL; DDIST_POS_LT; REAL_LT_REFL]);;

let BETWEEN_COLLINEAR_DDIST_EQ = prove
 (`!a b x:real^N.
        norm(a) < &1 /\ norm(b) < &1 /\ norm(x) < &1
        ==> (between x (a,b) <=>
             collinear {a, x, b} /\
             ddist(x,a) <= ddist (a,b) /\ ddist(x,b) <= ddist(a,b))`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN EQ_TAC THENL
   [SIMP_TAC[BETWEEN_IMP_COLLINEAR];
    REWRITE_TAC[COLLINEAR_BETWEEN_CASES]] THEN
  ASM_MESON_TAC[DDIST_INCREASES_ONLINE; DDIST_SYM; REAL_LT_IMP_LE;
                REAL_LE_REFL; BETWEEN_SYM; REAL_NOT_LE; BETWEEN_REFL]);;

let CONTINUOUS_AT_LIFT_DDIST = prove
 (`!a x:real^N.
      norm(a) < &1 /\ norm(x) < &1 ==> (\x. lift(ddist(a,x))) continuous at x`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC CONTINUOUS_TRANSFORM_AT THEN EXISTS_TAC
   `\x:real^N. lift((&1 - a dot x) pow 2 /
                    ((&1 - norm a pow 2) * (&1 - norm x pow 2)) - &1)` THEN
  EXISTS_TAC `&1 - norm(x:real^N)` THEN ASM_REWRITE_TAC[REAL_SUB_LT] THEN
  CONJ_TAC THENL
   [X_GEN_TAC `y:real^N` THEN DISCH_THEN(MP_TAC o MATCH_MP (NORM_ARITH
    `dist(y,x) < &1 - norm x ==> norm y < &1`)) THEN ASM_SIMP_TAC[ddist];
    REWRITE_TAC[LIFT_SUB; real_div; LIFT_CMUL; REAL_INV_MUL] THEN
    MATCH_MP_TAC CONTINUOUS_SUB THEN SIMP_TAC[CONTINUOUS_CONST] THEN
    REPEAT(MATCH_MP_TAC CONTINUOUS_MUL THEN CONJ_TAC) THEN
    SIMP_TAC[CONTINUOUS_CONST; o_DEF; REAL_POW_2; LIFT_CMUL] THENL
     [MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_MUL);
      MATCH_MP_TAC(REWRITE_RULE[o_DEF] CONTINUOUS_AT_INV)] THEN
    ASM_SIMP_TAC[REAL_ARITH `x < &1 * &1 ==> ~(&1 - x = &0)`; REAL_LT_MUL2;
                 NORM_POS_LE; LIFT_SUB] THEN
    SIMP_TAC[GSYM REAL_POW_2; NORM_POW_2; CONTINUOUS_CONST; CONTINUOUS_AT_ID;
             CONTINUOUS_SUB; CONTINUOUS_LIFT_DOT2]]);;

let HYPERBOLIC_MIDPOINT = prove
 (`!a b:real^N.
        norm a < &1 /\ norm b < &1
        ==> ?x. between x (a,b) /\ ddist(x,a) = ddist(x,b)`,
  REPEAT STRIP_TAC THEN MP_TAC(ISPECL
   [`\x:real^N. lift(ddist(x,a) - ddist(x,b))`; `segment[a:real^N,b]`]
     CONNECTED_CONTINUOUS_IMAGE) THEN
  ANTS_TAC THENL
   [REWRITE_TAC[CONNECTED_SEGMENT; LIFT_SUB] THEN
    MATCH_MP_TAC CONTINUOUS_AT_IMP_CONTINUOUS_ON THEN REPEAT STRIP_TAC THEN
    MATCH_MP_TAC CONTINUOUS_SUB THEN ONCE_REWRITE_TAC[DDIST_SYM] THEN
    CONJ_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_LIFT_DDIST THEN
    ASM_MESON_TAC[BETWEEN_NORM_LT; BETWEEN_IN_SEGMENT];
    REWRITE_TAC[GSYM IS_INTERVAL_CONNECTED_1; IS_INTERVAL_1] THEN
    REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
    REWRITE_TAC[IMP_IMP; RIGHT_IMP_FORALL_THM; LIFT_DROP] THEN
    DISCH_THEN(MP_TAC o SPECL [`a:real^N`; `b:real^N`; `lift(&0)`]) THEN
    ASM_SIMP_TAC[DDIST_REFL; LIFT_DROP; ENDS_IN_SEGMENT; IN_IMAGE] THEN
    REWRITE_TAC[REAL_SUB_RZERO; REAL_ARITH `&0 - x <= &0 <=> &0 <= x`] THEN
    ASM_SIMP_TAC[DDIST_POS_LE; LIFT_EQ; BETWEEN_IN_SEGMENT] THEN
    ASM_MESON_TAC[REAL_SUB_0; DDIST_SYM]]);;

let DDIST_EQ_ORIGIN = prove
 (`!x:real^N y:real^N.
        norm x < &1 /\ norm y < &1
        ==> (ddist(vec 0,x) = ddist(vec 0,y) <=> norm x = norm y)`,
  REPEAT STRIP_TAC THEN ASM_SIMP_TAC[ddist; NORM_0; REAL_LT_01] THEN
  REWRITE_TAC[DOT_LZERO] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
  REWRITE_TAC[real_div; REAL_MUL_LID; REAL_EQ_INV2;
              REAL_ARITH `x - &1 = y - &1 <=> x = y`] THEN
  REWRITE_TAC[REAL_ARITH `&1 - x = &1 - y <=> x = y`;
              GSYM REAL_EQ_SQUARE_ABS; REAL_ABS_NORM]);;

let DDIST_CONGRUENT_TRIPLES_0 = prove
 (`!a b:real^N a' b':real^N.
        norm a < &1 /\ norm b < &1 /\ norm a' < &1 /\ norm b' < &1
        ==> (ddist(vec 0,a) = ddist(vec 0,a') /\ ddist(a,b) = ddist(a',b') /\
             ddist(b,vec 0) = ddist(b',vec 0) <=>
             dist(vec 0,a) = dist(vec 0,a') /\ dist(a,b) = dist(a',b') /\
             dist(b,vec 0) = dist(b',vec 0))`,
  REPEAT STRIP_TAC THEN
  ASM_SIMP_TAC[DDIST_EQ_ORIGIN; REWRITE_RULE[DDIST_SYM] DDIST_EQ_ORIGIN] THEN
  REWRITE_TAC[DIST_0; NORM_0; REAL_LT_01] THEN MATCH_MP_TAC(TAUT
   `(a /\ b ==> (x <=> y)) ==> (a /\ x /\ b <=> a /\ y /\ b)`) THEN
  STRIP_TAC THEN ASM_SIMP_TAC[ddist; DIST_EQ; real_div; REAL_INV_MUL; REAL_RING
   `x * a * b - &1 = y * a * b - &1 <=> x = y \/ a = &0 \/ b = &0`] THEN
  REWRITE_TAC[dist; NORM_POW_2; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN
  REWRITE_TAC[GSYM REAL_EQ_SQUARE_ABS; NORM_POW_2] THEN
  ASM_SIMP_TAC[REAL_INV_EQ_0; real_abs; REAL_SUB_LE; REAL_SUB_0] THEN
  ASM_SIMP_TAC[ABS_SQUARE_LT_1; REAL_ABS_NORM; REAL_LT_IMP_NE; REAL_LT_IMP_LE;
               MESON[NORM_CAUCHY_SCHWARZ; REAL_LET_TRANS; NORM_POS_LE;
                     REAL_LT_MUL2; REAL_MUL_RID; REAL_LT_IMP_LE]
                `norm x < &1 /\ norm y < &1 ==> x dot y < &1`] THEN
  RULE_ASSUM_TAC(REWRITE_RULE[NORM_EQ]) THEN ASM_REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Deduce existence of hyperbolic translations via the Poincare disc model.  *)
(* Use orthogonal projection onto a hemisphere touching the unit disc,       *)
(* then stereographic projection back from the other pole of the sphere plus *)
(* scaling. See Greenberg's "Euclidean & Non-Euclidean Geometries" fig 7.13. *)
(* ------------------------------------------------------------------------- *)

let kleinify = new_definition
 `kleinify z = Cx(&2 / (&1 + norm(z) pow 2)) * z`;;

let poincarify = new_definition
 `poincarify x = Cx((&1 - sqrt(&1 - norm(x) pow 2)) / norm(x) pow 2) * x`;;

let KLEINIFY_0,POINCARIFY_0 = (CONJ_PAIR o prove)
 (`kleinify (Cx(&0)) = Cx(&0) /\ poincarify (Cx(&0)) = Cx(&0)`,
  REWRITE_TAC[kleinify; poincarify; COMPLEX_MUL_RZERO]);;

let NORM_KLEINIFY = prove
 (`!z. norm(kleinify z) = (&2 * norm(z)) / (&1 + norm(z) pow 2)`,
  REWRITE_TAC[kleinify; COMPLEX_NORM_MUL; COMPLEX_NORM_CX; REAL_ABS_DIV] THEN
  SIMP_TAC[REAL_LE_POW_2; REAL_ARITH `&0 <= x ==> abs(&1 + x) = &1 + x`] THEN
  REAL_ARITH_TAC);;

let NORM_KLEINIFY_LT = prove
 (`!z. norm(kleinify z) < &1 <=> ~(norm z = &1)`,
  ASM_SIMP_TAC[NORM_KLEINIFY; REAL_LE_POW_2; REAL_LT_LDIV_EQ; REAL_MUL_LID;
                REAL_ARITH `&0 <= x ==> &0 < &1 + x`] THEN
  SIMP_TAC[REAL_ARITH `&2 * z < (&1 + z pow 2) <=> &0 < (z - &1) pow 2`] THEN
  REWRITE_TAC[REAL_POW_2; REAL_LT_SQUARE] THEN REAL_ARITH_TAC);;

let NORM_POINCARIFY_LT = prove
 (`!x. norm(x) < &1 ==> norm(poincarify x) < &1`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[poincarify; COMPLEX_NORM_MUL] THEN
  MATCH_MP_TAC(REAL_ARITH `x * y <= &1 * y /\ y < &1 ==> x * y < &1`) THEN
  ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_LE_RMUL THEN
  REWRITE_TAC[NORM_POS_LE; COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
  REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_NORM; REAL_ABS_POW] THEN
  ASM_CASES_TAC `x:real^2 = vec 0` THEN
  ASM_SIMP_TAC[REAL_LE_LDIV_EQ; NORM_POS_LT; REAL_POW_LT; NORM_0] THENL
   [REAL_ARITH_TAC; REWRITE_TAC[REAL_MUL_LID]] THEN
  MATCH_MP_TAC(REAL_ARITH `s <= &1 /\ &1 - x <= s ==> abs(&1 - s) <= x`) THEN
  CONJ_TAC THENL [MATCH_MP_TAC REAL_LE_LSQRT; MATCH_MP_TAC REAL_LE_RSQRT] THEN
  REWRITE_TAC[REAL_SUB_LE; REAL_POS; REAL_MUL_LID; REAL_POW_ONE] THEN
  ASM_SIMP_TAC[REAL_ARITH `(&1 - x) pow 2 <= &1 - x <=> &0 <= x * (&1 - x)`;
   REAL_ARITH `&1 - x <= &1 <=> &0 <= x`; REAL_LE_MUL; REAL_POW_LE;
   REAL_SUB_LE; ABS_SQUARE_LE_1; REAL_LT_IMP_LE; REAL_ABS_NORM; NORM_POS_LE]);;

let KLEINIFY_POINCARIFY = prove
 (`!x. norm(x) < &1 ==> kleinify(poincarify x) = x`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[kleinify; poincarify] THEN MATCH_MP_TAC
    (COMPLEX_RING `(~(x = Cx(&0)) ==> w * z = Cx(&1)) ==> w * z * x = x`) THEN
  DISCH_TAC THEN REWRITE_TAC[GSYM CX_MUL; CX_INJ; COMPLEX_NORM_MUL] THEN
  REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_DIV; REAL_ABS_NORM; REAL_ABS_POW] THEN
  ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
   `~(y = &0)
    ==> (&1 + (a / y pow 2 * y) pow 2) = (y pow 2 + a pow 2) / y pow 2`] THEN
  REWRITE_TAC[REAL_POW2_ABS; real_div; REAL_INV_MUL; REAL_INV_INV] THEN
  ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
   `~(y = &0) ==> (&2 * x * y pow 2) * z * inv(y pow 2) = &2 * x * z`] THEN
  MATCH_MP_TAC(REAL_FIELD `&0 < y /\ &2 * y = x ==> &2 * inv(x) * y = &1`) THEN
  CONJ_TAC THENL
   [REWRITE_TAC[REAL_SUB_LT] THEN MATCH_MP_TAC REAL_LT_LSQRT THEN
    REWRITE_TAC[REAL_POS; REAL_ARITH `&1 - x < &1 pow 2 <=> &0 < x`] THEN
    ASM_SIMP_TAC[REAL_POW_LT; COMPLEX_NORM_NZ];
    SUBGOAL_THEN `sqrt(&1 - norm(x:real^2) pow 2) pow 2 = &1 - norm x pow 2`
    MP_TAC THENL [MATCH_MP_TAC SQRT_POW_2; CONV_TAC REAL_FIELD]] THEN
  ASM_SIMP_TAC[REAL_SUB_LE; ABS_SQUARE_LE_1; REAL_ABS_NORM; REAL_LT_IMP_LE]);;

let POINCARIFY_KLEINIFY = prove
 (`!x. norm(x) < &1 ==> poincarify(kleinify x) = x`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[kleinify; poincarify] THEN
  MATCH_MP_TAC(COMPLEX_RING
   `(~(x = Cx(&0)) ==> w * z = Cx(&1)) ==> w * z * x = x`) THEN
  DISCH_TAC THEN REWRITE_TAC[GSYM CX_MUL; CX_INJ] THEN
  REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
  REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_NORM; REAL_ABS_POW; REAL_ABS_NUM] THEN
  REWRITE_TAC[real_div; REAL_INV_MUL; REAL_INV_INV; GSYM REAL_MUL_ASSOC;
              REAL_INV_POW; REAL_POW_MUL] THEN
  MATCH_MP_TAC(REAL_FIELD
   `~(c = &0) /\ abs d < &1 /\ a * b = &2 * c pow 2 * (&1 + d)
    ==> a * inv(&2) pow 2 * b * inv(c) pow 2 * &2 * inv(&1 + d) = &1`) THEN
  ASM_REWRITE_TAC[REAL_ABS_POW; COMPLEX_NORM_ZERO; ABS_SQUARE_LT_1] THEN
  ASM_SIMP_TAC[REAL_ABS_NORM; REAL_POW_LE; NORM_POS_LE; REAL_ARITH
   `&0 <= x ==> abs(&1 + x) = &1 + x`] THEN
  MATCH_MP_TAC(REAL_FIELD
   `~(x = &0) /\ abs x < &1 /\ a = &2 * x / (&1 + x)
    ==> a * (&1 + x) pow 2 = &2 * x * (&1 + x)`) THEN
  ASM_REWRITE_TAC[REAL_ABS_NORM; COMPLEX_NORM_ZERO; REAL_ABS_POW;
                  ABS_SQUARE_LT_1; REAL_POW_EQ_0] THEN
  MATCH_MP_TAC(REAL_ARITH `x = &1 - y ==> &1 - x = y`) THEN
  MATCH_MP_TAC SQRT_UNIQUE THEN
  REWRITE_TAC[REAL_ARITH `&0 <= &1 - &2 * x / y <=> (&2 * x) / y <= &1`] THEN
  SIMP_TAC[REAL_LE_LDIV_EQ; REAL_POW_LE; NORM_POS_LE; REAL_ARITH
   `&0 <= x ==> &0 < &1 + x`] THEN
  REWRITE_TAC[REAL_ARITH `&2 * x <= &1 * (&1 + x) <=> x <= &1`] THEN
  ASM_SIMP_TAC[ABS_SQUARE_LE_1; REAL_ABS_NORM; REAL_LT_IMP_LE] THEN
  SUBGOAL_THEN `~(&1 + norm(x:complex) pow 2 = &0)` MP_TAC THENL
   [ALL_TAC; CONV_TAC REAL_FIELD] THEN
  MATCH_MP_TAC(REAL_ARITH `abs(x) < &1 ==> ~(&1 + x = &0)`) THEN
  ASM_REWRITE_TAC[REAL_ABS_POW; REAL_ABS_NORM; ABS_SQUARE_LT_1]);;

let DDIST_KLEINIFY = prove
 (`!w z. ~(norm w = &1) /\ ~(norm z = &1)
         ==> ddist(kleinify w,kleinify z) =
             &4 * (&1 / &2 + norm(w - z) pow 2 /
                             ((&1 - norm w pow 2) * (&1 - norm z pow 2))) pow 2
             - &1`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC
   `(&4 * norm(w - z:real^2) pow 2 *
     ((&1 - norm w pow 2) * (&1 - norm z pow 2) + norm(w - z) pow 2)) /
    ((&1 - norm w pow 2) pow 2 * (&1 - norm z pow 2) pow 2)` THEN
  CONJ_TAC THENL
   [ASM_SIMP_TAC[ddist; NORM_KLEINIFY_LT] THEN MATCH_MP_TAC(REAL_FIELD
     `~(y = &0) /\ z = (w + &1) * y ==> z / y - &1 = w`) THEN
    CONJ_TAC THENL
     [REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM] THEN CONJ_TAC THEN
      MATCH_MP_TAC (REAL_ARITH `x < &1 ==> ~(&1 - x = &0)`) THEN
      ASM_SIMP_TAC[REAL_POW_1_LT; NORM_KLEINIFY_LT; NORM_POS_LE; ARITH];
      REWRITE_TAC[kleinify; COMPLEX_NORM_MUL; COMPLEX_NORM_CX] THEN
      REWRITE_TAC[GSYM COMPLEX_CMUL; DOT_LMUL] THEN REWRITE_TAC[DOT_RMUL] THEN
      SIMP_TAC[REAL_ABS_DIV; REAL_ABS_NUM; REAL_POW_LE; NORM_POS_LE;
               REAL_ARITH `&0 <= x ==> abs(&1 + x) = &1 + x`] THEN
      MATCH_MP_TAC(REAL_FIELD
       `(~(y' = &0) /\ ~(y = &0)) /\
        (y * y' - &4 * d) pow 2 =
        b * (y pow 2 - &4 * x pow 2) * (y' pow 2 - &4 * x' pow 2)
        ==> (&1 - &2 / y * &2 / y' * d) pow 2 =
            b * (&1 - (&2 / y * x) pow 2) * (&1 - (&2 / y' * x') pow 2)`) THEN
      CONJ_TAC THENL
       [CONJ_TAC THEN
        MATCH_MP_TAC(REAL_ARITH `~(abs x = &1) ==> ~(&1 + x = &0)`) THEN
        ASM_SIMP_TAC[REAL_ABS_POW; REAL_POW_EQ_1; REAL_ABS_NORM] THEN ARITH_TAC;
        REWRITE_TAC[REAL_RING `(&1 + x) pow 2 - &4 * x = (&1 - x) pow 2`] THEN
        MATCH_MP_TAC(REAL_FIELD
         `(~(y = &0) /\ ~(y' = &0)) /\ a - y * y' = b
          ==> a = (b / (y * y') + &1) * y * y'`) THEN
        CONJ_TAC THENL
         [ASM_REWRITE_TAC[REAL_POW_EQ_0; REAL_POW_EQ_1; REAL_ABS_NORM; ARITH;
                          REAL_ARITH `&1 - x = &0 <=> x = &1`];
          REWRITE_TAC[NORM_POW_2; DOT_LSUB; DOT_RSUB; DOT_SYM] THEN
          REAL_ARITH_TAC]]];
    REPEAT(POP_ASSUM MP_TAC) THEN
    REWRITE_TAC[NORM_EQ_SQUARE; GSYM NORM_POW_2] THEN CONV_TAC REAL_FIELD]);;

let DDIST_KLEINIFY_EQ = prove
 (`!w z w' z'.
      ~(norm w = &1) /\ ~(norm z = &1) /\ ~(norm w' = &1) /\ ~(norm z' = &1) /\
      norm(w - z) pow 2 * (&1 - norm w' pow 2) * (&1 - norm z' pow 2) =
      norm(w' - z') pow 2 * (&1 - norm w pow 2) * (&1 - norm z pow 2)
      ==> ddist(kleinify w,kleinify z) = ddist(kleinify w',kleinify z')`,
  SIMP_TAC[DDIST_KLEINIFY; NORM_EQ_SQUARE; GSYM NORM_POW_2; REAL_POS] THEN
  CONV_TAC REAL_FIELD);;

let NORM_KLEINIFY_MOEBIUS_LT = prove
 (`!w x. norm w < &1 /\ norm x < &1
         ==> norm(kleinify(moebius_function (&0) w x)) < &1`,
  SIMP_TAC[MOEBIUS_FUNCTION_NORM_LT_1; NORM_KLEINIFY_LT; REAL_LT_IMP_NE]);;

let DDIST_KLEINIFY_MOEBIUS = prove
 (`!w x y. norm w < &1 /\ norm x < &1 /\ norm y < &1
           ==> ddist(kleinify(moebius_function (&0) w x),
                     kleinify(moebius_function (&0) w y)) =
               ddist(kleinify x,kleinify y)`,
  REPEAT STRIP_TAC THEN MATCH_MP_TAC DDIST_KLEINIFY_EQ THEN
  ASM_SIMP_TAC[MOEBIUS_FUNCTION_NORM_LT_1; REAL_LT_IMP_NE] THEN
  REWRITE_TAC[MOEBIUS_FUNCTION_SIMPLE] THEN
  SUBGOAL_THEN
   `~(Cx(&1) - cnj w * x = Cx(&0)) /\ ~(Cx(&1) - cnj w * y = Cx(&0))`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[COMPLEX_SUB_0] THEN CONJ_TAC THEN
    MATCH_MP_TAC(MESON[REAL_LT_REFL] `norm(x) < norm(y) ==> ~(y = x)`) THEN
    REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM; COMPLEX_NORM_MUL] THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN
    MATCH_MP_TAC REAL_LT_MUL2 THEN REWRITE_TAC[NORM_POS_LE] THEN
    ASM_REWRITE_TAC[COMPLEX_NORM_CNJ];
    ASM_SIMP_TAC[COMPLEX_FIELD
     `~(Cx(&1) - cnj w * x = Cx(&0)) /\ ~(Cx(&1) - cnj w * y = Cx(&0))
      ==> (x - w) / (Cx (&1) - cnj w * x) - (y - w) / (Cx (&1) - cnj w * y) =
          ((Cx(&1) - w * cnj w) * (x - y)) /
          ((Cx (&1) - cnj w * x) * (Cx (&1) - cnj w * y))`] THEN
    REWRITE_TAC[COMPLEX_NORM_DIV; COMPLEX_NORM_POW] THEN
    ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
     `~(y = &0) /\ ~(y' = &0)
      ==> (&1 - (x / y) pow 2) * (&1 - (x' / y') pow 2) =
          ((y pow 2 - x pow 2) * (y' pow 2 - x' pow 2)) / (y * y') pow 2`] THEN
    REWRITE_TAC[REAL_POW_DIV; COMPLEX_NORM_MUL] THEN REWRITE_TAC[real_div] THEN
    MATCH_MP_TAC(REAL_RING
     `x * y:real = w * z ==> (x * i) * y = w * z * i`) THEN
    REWRITE_TAC[GSYM COMPLEX_NORM_MUL] THEN REWRITE_TAC[NORM_POW_2; DOT_2] THEN
    REWRITE_TAC[GSYM RE_DEF; GSYM IM_DEF; complex_sub; complex_mul; CX_DEF;
                complex_add; RE; IM; cnj; complex_neg] THEN REAL_ARITH_TAC]);;

let COLLINEAR_KLEINIFY_MOEBIUS = prove
 (`!w x y z. norm w < &1 /\ norm x < &1 /\ norm y < &1 /\ norm z < &1
             ==> (collinear {kleinify(moebius_function (&0) w x),
                             kleinify(moebius_function (&0) w y),
                             kleinify(moebius_function (&0) w z)} <=>
                  collinear {kleinify x,kleinify y,kleinify z})`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[COLLINEAR_3_2D; kleinify; GSYM RE_DEF; GSYM IM_DEF] THEN
  REWRITE_TAC[RE_MUL_CX; IM_MUL_CX] THEN
  SIMP_TAC[NORM_POS_LE; REAL_POW_LE; REAL_ARITH `&0 <= x ==> ~(&1 + x = &0)`;
     REAL_FIELD
     `~(nx = &0) /\ ~(ny = &0) /\ ~(nz = &0)
      ==> ((&2 / nz * rz - &2 / nx * rx) * (&2 / ny * iy - &2 / nx * ix) =
           (&2 / ny * ry - &2 / nx * rx) * (&2 / nz * iz - &2 / nx * ix) <=>
           (nx * rz - nz * rx) * (nx * iy - ny * ix) =
           (nx * ry - ny * rx) * (nx * iz - nz * ix))`] THEN
  REWRITE_TAC[COMPLEX_NORM_DIV; MOEBIUS_FUNCTION_SIMPLE] THEN
  ONCE_REWRITE_TAC[COMPLEX_DIV_CNJ] THEN
  REWRITE_TAC[RE_DIV_CX; GSYM CX_POW; IM_DIV_CX] THEN
  SUBGOAL_THEN
   `~(Cx (&1) - cnj w * x = Cx(&0)) /\ ~(Cx (&1) - cnj w * y = Cx(&0)) /\
    ~(Cx (&1) - cnj w * z = Cx(&0))`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[COMPLEX_SUB_0] THEN REPEAT CONJ_TAC THEN
    MATCH_MP_TAC(MESON[REAL_LT_REFL] `norm x < norm y ==> ~(y = x)`) THEN
    REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_CNJ; COMPLEX_NORM_CX] THEN
    ONCE_REWRITE_TAC[REAL_ARITH `abs(&1) = &1 * &1`] THEN
    MATCH_MP_TAC REAL_LT_MUL2 THEN ASM_REWRITE_TAC[NORM_POS_LE];
    ALL_TAC] THEN
  ASM_SIMP_TAC[COMPLEX_NORM_ZERO; REAL_FIELD
   `~(nx = &0) /\ ~(ny = &0) /\ ~(nz = &0)
    ==>(((&1 + (nxw / nx) pow 2) * rz / nz pow 2 -
         (&1 + (nzw / nz) pow 2) * rx / nx pow 2) *
        ((&1 + (nxw / nx) pow 2) * iy / ny pow 2 -
         (&1 + (nyw / ny) pow 2) * ix / nx pow 2) =
        ((&1 + (nxw / nx) pow 2) * ry / ny pow 2 -
         (&1 + (nyw / ny) pow 2) * rx / nx pow 2) *
        ((&1 + (nxw / nx) pow 2) * iz / nz pow 2 -
         (&1 + (nzw / nz) pow 2) * ix / nx pow 2) <=>
        ((nx pow 2 + nxw pow 2) * rz - (nz pow 2 + nzw pow 2) * rx) *
        ((nx pow 2 + nxw pow 2) * iy - (ny pow 2 + nyw pow 2) * ix) =
        ((nx pow 2 + nxw pow 2) * ry - (ny pow 2 + nyw pow 2) * rx) *
        ((nx pow 2 + nxw pow 2) * iz - (nz pow 2 + nzw pow 2) * ix))`] THEN
  REWRITE_TAC[COMPLEX_SQNORM; complex_sub; complex_mul; complex_add;
              complex_neg; cnj; CX_DEF; RE; IM] THEN
  ONCE_REWRITE_TAC[GSYM REAL_SUB_0] THEN MATCH_MP_TAC(REAL_RING
   `!a b. a * lhs = b * rhs /\ ~(a = &0) /\ ~(b = &0)
          ==> (lhs = &0 <=> rhs = &0)`) THEN
  EXISTS_TAC `Re x pow 2 + Im x pow 2 + &1` THEN
  EXISTS_TAC `--(Re w pow 2 + Im w pow 2 - &1) pow 3 *
              ((&1 - Re(x) pow 2 - Im(x) pow 2) *
               (&1 - Re(w) pow 2 - Im(w) pow 2) +
               &2 * (Re w - Re x) pow 2 + &2 * (Im w - Im x) pow 2)` THEN
  REWRITE_TAC[REAL_ENTIRE; DE_MORGAN_THM; REAL_POW_EQ_0; ARITH_EQ] THEN
  REPEAT CONJ_TAC THENL
   [REAL_ARITH_TAC;
    MATCH_MP_TAC(REAL_ARITH `&0 <= x + y ==> ~(x + y + &1 = &0)`) THEN
    ASM_SIMP_TAC[GSYM COMPLEX_SQNORM; REAL_LE_POW_2];
    MATCH_MP_TAC(REAL_ARITH `x + y < &1 ==> ~(--(x + y - &1) = &0)`) THEN
    ASM_SIMP_TAC[GSYM COMPLEX_SQNORM; REAL_POW_1_LT; NORM_POS_LE; ARITH];
    MATCH_MP_TAC(REAL_ARITH `&0 < x /\ &0 <= y ==> ~(x + y = &0)`) THEN
    SIMP_TAC[REAL_LE_ADD; REAL_LE_MUL; REAL_POS; REAL_LE_POW_2] THEN
    MATCH_MP_TAC REAL_LT_MUL THEN
    ASM_REWRITE_TAC[REAL_ARITH `&0 < &1 - x - y <=> x + y < &1`] THEN
    ASM_SIMP_TAC[GSYM COMPLEX_SQNORM; REAL_POW_1_LT; NORM_POS_LE; ARITH]]);;

let BETWEEN_KLEINIFY_MOEBIUS = prove
 (`!w x y z. norm w < &1 /\ norm x < &1 /\ norm y < &1 /\ norm z < &1
             ==> (between (kleinify(moebius_function (&0) w x))
                          (kleinify(moebius_function (&0) w y),
                           kleinify(moebius_function (&0) w z)) <=>
                  between (kleinify x) (kleinify y,kleinify z))`,
  SIMP_TAC[BETWEEN_COLLINEAR_DDIST_EQ; NORM_KLEINIFY_MOEBIUS_LT;
           NORM_KLEINIFY_LT; REAL_LT_IMP_NE;
           COLLINEAR_KLEINIFY_MOEBIUS; DDIST_KLEINIFY_MOEBIUS]);;

let hyperbolic_isometry = new_definition
 `hyperbolic_isometry (f:real^2->real^2) <=>
    (!x. norm x < &1 ==> norm(f x) < &1) /\
    (!x y. norm x < &1 /\ norm y < &1 ==> ddist(f x,f y) = ddist(x,y)) /\
    (!x y z. norm x < &1 /\ norm y < &1 /\ norm z < &1
             ==> (between (f x) (f y,f z) <=> between x (y,z)))`;;

let HYPERBOLIC_TRANSLATION = prove
 (`!w. norm w < &1
       ==> ?f:real^2->real^2 g:real^2->real^2.
                hyperbolic_isometry f /\ hyperbolic_isometry g /\
                f(w) = vec 0 /\ g(vec 0) = w /\
                (!x. norm x < &1 ==> f(g x) = x) /\
                (!x. norm x < &1 ==> g(f x) = x)`,
  REPEAT STRIP_TAC THEN SIMP_TAC[hyperbolic_isometry] THEN MAP_EVERY EXISTS_TAC
   [`\x. kleinify(moebius_function(&0) (poincarify w) (poincarify x))`;
   `\x. kleinify(moebius_function(&0) (--(poincarify w)) (poincarify x))`] THEN
  ASM_SIMP_TAC[NORM_KLEINIFY_MOEBIUS_LT; NORM_POINCARIFY_LT;
               DDIST_KLEINIFY_MOEBIUS; KLEINIFY_POINCARIFY; VECTOR_NEG_NEG;
               BETWEEN_KLEINIFY_MOEBIUS; NORM_NEG; MOEBIUS_FUNCTION_COMPOSE;
               POINCARIFY_KLEINIFY; MOEBIUS_FUNCTION_NORM_LT_1] THEN
  ASM_SIMP_TAC[MOEBIUS_FUNCTION_SIMPLE; COMPLEX_SUB_REFL; complex_div;
               COMPLEX_VEC_0; KLEINIFY_0; POINCARIFY_0; COMPLEX_MUL_LZERO;
               COMPLEX_MUL_RZERO; COMPLEX_SUB_LZERO; COMPLEX_NEG_NEG;
               COMPLEX_SUB_RZERO; COMPLEX_INV_1; COMPLEX_MUL_RID;
               KLEINIFY_POINCARIFY]);;

(* ------------------------------------------------------------------------- *)
(* Our model.                                                                *)
(* ------------------------------------------------------------------------- *)

let plane_tybij =
  let th = prove
   (`?x:real^2. norm x < &1`,
    EXISTS_TAC `vec 0:real^2` THEN NORM_ARITH_TAC) in
  new_type_definition "plane" ("mk_plane","dest_plane") th;;

let pbetween = new_definition
 `pbetween y (x,z) <=> between (dest_plane y) (dest_plane x,dest_plane z)`;;

let pdist = new_definition
 `pdist(x,y) = ddist(dest_plane x,dest_plane y)`;;

let DEST_PLANE_NORM_LT = prove
 (`!x. norm(dest_plane x) < &1`,
  MESON_TAC[plane_tybij]);;

let DEST_PLANE_EQ = prove
 (`!x y. dest_plane x = dest_plane y <=> x = y`,
  MESON_TAC[plane_tybij]);;

let FORALL_DEST_PLANE = prove
 (`!P. (!x. P(dest_plane x)) <=> (!x. norm x < &1 ==> P x)`,
  MESON_TAC[plane_tybij]);;

let EXISTS_DEST_PLANE = prove
 (`!P. (?x. P(dest_plane x)) <=> (?x. norm x < &1 /\ P x)`,
  MESON_TAC[plane_tybij]);;

(* ------------------------------------------------------------------------- *)
(* Axiom 1 (reflexivity for equidistance).                                   *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_1_NONEUCLIDEAN = prove
 (`!a b. pdist(a,b) = pdist(b,a)`,
  REWRITE_TAC[pdist; DDIST_SYM]);;

(* ------------------------------------------------------------------------- *)
(* Axiom 2 (transitivity for equidistance).                                  *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_2_NONEUCLIDEAN = prove
 (`!a b p q r s.
        pdist(a,b) = pdist(p,q) /\ pdist(a,b) = pdist(r,s)
        ==> pdist(p,q) = pdist(r,s)`,
  REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Axiom 3 (identity for equidistance).                                      *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_3_NONEUCLIDEAN = prove
 (`!a b c. pdist(a,b) = pdist(c,c) ==> a = b`,
  SIMP_TAC[FORALL_DEST_PLANE; pdist; DDIST_REFL; DDIST_EQ_0; DEST_PLANE_EQ]);;

(* ------------------------------------------------------------------------- *)
(* Axiom 4 (segment construction).                                           *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_4_NONEUCLIDEAN = prove
 (`!a q b c. ?x. pbetween a (q,x) /\ pdist(a,x) = pdist(b,c)`,
  REWRITE_TAC[pbetween; pdist; FORALL_DEST_PLANE; EXISTS_DEST_PLANE] THEN
  REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN
  SUBGOAL_THEN `?d:real^2. norm d < &1 /\ ddist(b:real^2,c) = ddist(vec 0,d)`
  STRIP_ASSUME_TAC THENL
   [MP_TAC(SPEC `b:real^2` HYPERBOLIC_TRANSLATION) THEN
    ASM_REWRITE_TAC[hyperbolic_isometry] THEN ASM_MESON_TAC[];
    ASM_REWRITE_TAC[]] THEN
  SUBGOAL_THEN
   `norm(a:real^2) < &1 /\ norm(q:real^2) < &1 /\ norm(d:real^2) < &1`
   MP_TAC THENL [ASM_REWRITE_TAC[]; REPEAT(POP_ASSUM(K ALL_TAC))] THEN
  MAP_EVERY (fun t -> SPEC_TAC(t,t)) [`d:real^2`; `q:real^2`; `a:real^2`] THEN
  MATCH_MP_TAC(MESON[] `P(vec 0) /\ (P(vec 0) ==> !x. P x) ==> !x. P x`) THEN
  REWRITE_TAC[NORM_0; REAL_LT_01] THEN CONJ_TAC THENL
   [MP_TAC(ISPEC `vec 0:real^2` TARSKI_AXIOM_4_EUCLIDEAN) THEN
    MESON_TAC[DIST_0; DDIST_EQ_ORIGIN];
    DISCH_THEN(LABEL_TAC "*") THEN REPEAT STRIP_TAC THEN
    MP_TAC(ISPEC `a:real^2` HYPERBOLIC_TRANSLATION) THEN
    ASM_REWRITE_TAC[hyperbolic_isometry; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`f:real^2->real^2`; `g:real^2->real^2`] THEN
    STRIP_TAC THEN
    REMOVE_THEN "*" (MP_TAC o SPECL [`(f:real^2->real^2) q`; `d:real^2`]) THEN
    ASM_SIMP_TAC[] THEN
    DISCH_THEN(X_CHOOSE_THEN `x:real^2` STRIP_ASSUME_TAC) THEN
    EXISTS_TAC `(g:real^2->real^2) x` THEN ASM_MESON_TAC[]]);;

(* ------------------------------------------------------------------------- *)
(* Axiom 5 (five-segments axiom).                                            *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_5_NONEUCLIDEAN = prove
 (`!a b c x a' b' c' x'.
        ~(a = b) /\
        pdist(a,b) = pdist(a',b') /\
        pdist(a,c) = pdist(a',c') /\
        pdist(b,c) = pdist(b',c') /\
        pbetween b (a,x) /\ pbetween b' (a',x') /\ pdist(b,x) = pdist(b',x')
        ==> pdist(c,x) = pdist(c',x')`,
  REWRITE_TAC[FORALL_DEST_PLANE; pdist; pbetween; GSYM DEST_PLANE_EQ] THEN
  REPEAT STRIP_TAC THEN MP_TAC(ISPEC `b':real^2` HYPERBOLIC_TRANSLATION) THEN
  MP_TAC(ISPEC `b:real^2` HYPERBOLIC_TRANSLATION) THEN
  ASM_REWRITE_TAC[RIGHT_IMP_FORALL_THM; LEFT_IMP_EXISTS_THM] THEN
  REWRITE_TAC[hyperbolic_isometry] THEN MAP_EVERY X_GEN_TAC
   [`f:real^2->real^2`; `f':real^2->real^2`; `g:real^2->real^2`;
    `g':real^2->real^2`] THEN REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`(f:real^2->real^2) x`; `(f:real^2->real^2) c`;
                `(g:real^2->real^2) x'`; `(g:real^2->real^2) c'`]
        DDIST_CONGRUENT_TRIPLES_0) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `(p ==> r) /\ q ==> (p <=> q) ==> r`) THEN
  CONJ_TAC THENL [ASM_MESON_TAC[DDIST_SYM]; ALL_TAC] THEN
  MP_TAC(ISPECL [`(f:real^2->real^2) a`; `(f:real^2->real^2) c`;
                `(g:real^2->real^2) a'`; `(g:real^2->real^2) c'`]
        DDIST_CONGRUENT_TRIPLES_0) THEN
  ANTS_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  MATCH_MP_TAC(TAUT `p /\ (q ==> r) ==> (p <=> q) ==> r`) THEN CONJ_TAC THENL
   [ASM_SIMP_TAC[GSYM DDIST_CONGRUENT_TRIPLES_0] THEN  CONJ_TAC THEN
    GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV)
     [SYM(ASSUME `(f:complex->complex) b = vec 0`)] THEN
    GEN_REWRITE_TAC (RAND_CONV o ONCE_DEPTH_CONV)
     [SYM(ASSUME `(g:complex->complex) b' = vec 0`)] THEN
    ASM_SIMP_TAC[] THEN ASM_MESON_TAC[DDIST_SYM];
    STRIP_TAC THEN MP_TAC(ISPECL
     [`(f:real^2->real^2) a`; `(f:real^2->real^2) b`; `(f:real^2->real^2) c`;
      `(f:real^2->real^2) x`;`(g:real^2->real^2) a'`; `(g:real^2->real^2) b'`;
      `(g:real^2->real^2) c'`; `(g:real^2->real^2) x'`]
     TARSKI_AXIOM_5_EUCLIDEAN) THEN
    SUBGOAL_THEN
     `ddist((f:real^2->real^2) b,f x) = ddist((g:real^2->real^2) b',g x')`
    MP_TAC THENL
     [ASM_SIMP_TAC[];
      ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[DDIST_EQ_ORIGIN] THEN DISCH_TAC] THEN
    ASM_MESON_TAC[DIST_SYM; DIST_0]]);;

(* ------------------------------------------------------------------------- *)
(* Axiom 6 (identity for between-ness).                                      *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_6_NONEUCLIDEAN = prove
 (`!a b. pbetween b (a,a) ==> a = b`,
  REWRITE_TAC[pbetween; FORALL_DEST_PLANE; GSYM DEST_PLANE_EQ] THEN
  MESON_TAC[TARSKI_AXIOM_6_EUCLIDEAN]);;

(* ------------------------------------------------------------------------- *)
(* Axiom 7 (Pasch's axiom).                                                  *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_7_NONEUCLIDEAN = prove
 (`!a b c p q.
    pbetween p (a,c) /\ pbetween q (b,c)
    ==> ?x. pbetween x (p,b) /\ pbetween x (q,a)`,
  REWRITE_TAC[pbetween; FORALL_DEST_PLANE; EXISTS_DEST_PLANE] THEN
  MESON_TAC[BETWEEN_NORM_LT; TARSKI_AXIOM_7_EUCLIDEAN]);;

(* ------------------------------------------------------------------------- *)
(* Axiom 8 (lower 2-dimensional axiom).                                      *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_8_NONEUCLIDEAN = prove
 (`?a b c. ~pbetween b (a,c) /\ ~pbetween c (b,a) /\ ~pbetween a (c,b)`,
  REWRITE_TAC[pbetween; EXISTS_DEST_PLANE; NORM_LT_SQUARE; NORM_POW_2] THEN
  MAP_EVERY (fun t -> EXISTS_TAC t THEN
    SIMP_TAC[DOT_LMUL; DOT_RMUL; DOT_BASIS_BASIS; DIMINDEX_2; ARITH] THEN
    REWRITE_TAC[DOT_LZERO] THEN CONV_TAC REAL_RAT_REDUCE_CONV)
   [`vec 0:real^2`; `(&1 / &2) % basis 1:real^2`;
    `(&1 / &2) % basis 2:real^2`] THEN
  REPEAT CONJ_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP BETWEEN_IMP_COLLINEAR) THEN
  SIMP_TAC[COLLINEAR_3_2D; VECTOR_MUL_COMPONENT; VEC_COMPONENT; ARITH;
           BASIS_COMPONENT; DIMINDEX_2] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;

(* ------------------------------------------------------------------------- *)
(* Axiom 9 (upper 2-dimensional axiom).                                      *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_9_NONEUCLIDEAN = prove
 (`!p q a b c.
        ~(p = q) /\
        pdist(a,p) = pdist(a,q) /\ pdist(b,p) = pdist(b,q) /\
        pdist(c,p) = pdist(c,q)
        ==> pbetween b (a,c) \/ pbetween c (b,a) \/ pbetween a (c,b)`,
  REWRITE_TAC[pdist; pbetween; FORALL_DEST_PLANE; GSYM DEST_PLANE_EQ] THEN
  REWRITE_TAC[RIGHT_IMP_FORALL_THM; IMP_IMP; GSYM CONJ_ASSOC] THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`p:real^2`; `q:real^2`] HYPERBOLIC_MIDPOINT) THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN X_GEN_TAC `x:real^2` THEN
  STRIP_TAC THEN MP_TAC(ISPEC `x:real^2` HYPERBOLIC_TRANSLATION) THEN
  SUBGOAL_THEN `norm(x:real^2) < &1` ASSUME_TAC THENL
   [ASM_MESON_TAC[BETWEEN_NORM_LT]; ONCE_REWRITE_TAC[BETWEEN_SYM]] THEN
  ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; hyperbolic_isometry] THEN
  REWRITE_TAC[GSYM COLLINEAR_BETWEEN_CASES] THEN REPEAT STRIP_TAC THEN
  SUBGOAL_THEN `collinear{(f:real^2->real^2) b,f c,f a}` MP_TAC THENL
   [ALL_TAC; ASM_SIMP_TAC[COLLINEAR_BETWEEN_CASES]] THEN
  SUBGOAL_THEN `ddist(f a,f p) = ddist(f a,f q) /\
                ddist(f b,f p) = ddist(f b,f q) /\
                ddist(f c,f p) = ddist(f c,f q) /\
                ~((f:real^2->real^2) q = f p)`
  MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
  SUBGOAL_THEN `(f:real^2->real^2) q = --(f p)` SUBST1_TAC THENL
   [SUBGOAL_THEN `between ((f:real^2->real^2) x) (f p,f q) /\
                  ddist(f x,f p) = ddist(f x,f q)`
    MP_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
    ASM_REWRITE_TAC[] THEN ASM_SIMP_TAC[DDIST_EQ_ORIGIN] THEN
    REWRITE_TAC[GSYM MIDPOINT_BETWEEN; midpoint; NORM_ARITH
     `norm(a:real^N) = norm b <=> dist(a,vec 0) = dist(vec 0,b)`] THEN
    VECTOR_ARITH_TAC;
    REWRITE_TAC[ddist] THEN ASM_SIMP_TAC[NORM_NEG; real_div; REAL_INV_MUL] THEN
    ASM_SIMP_TAC[REAL_SUB_LT; ABS_SQUARE_LT_1; REAL_ABS_NORM; REAL_FIELD
     `&0 < x /\ &0 < y
      ==> (a * inv x * inv y - &1 = b * inv x * inv y - &1 <=> a = b)`] THEN
    ONCE_REWRITE_TAC[VECTOR_ARITH `--x:real^N = x <=> x = vec 0`] THEN
    REWRITE_TAC[COLLINEAR_3_2D; VECTOR_SUB_COMPONENT; DOT_2; GSYM DOT_EQ_0;
                  VECTOR_NEG_COMPONENT] THEN CONV_TAC REAL_RING]);;

(* ------------------------------------------------------------------------- *)
(* Axiom 10 (Euclidean axiom).                                               *)
(* ------------------------------------------------------------------------- *)

let NOT_TARSKI_AXIOM_10_NONEUCLIDEAN = prove
 (`~(!a b c d t.
      pbetween d (a,t) /\ pbetween d (b,c) /\ ~(a = d)
      ==> ?x y. pbetween b (a,x) /\ pbetween c (a,y) /\ pbetween t (x,y))`,
  REWRITE_TAC[pbetween; FORALL_DEST_PLANE; EXISTS_DEST_PLANE;
              GSYM DEST_PLANE_EQ; RIGHT_IMP_FORALL_THM; IMP_IMP] THEN
  DISCH_THEN(MP_TAC o SPECL
   [`vec 0:real^2`; `&1 / &2 % basis 1:real^2`; `&1 / &2 % basis 2:real^2`;
    `&1 / &4 % basis 1 + &1 / &4 % basis 2:real^2`;
    `&3 / &5 % basis 1 + &3 / &5 % basis 2:real^2`]) THEN
  REWRITE_TAC[NOT_IMP; CONJ_ASSOC] THEN CONJ_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[NOT_EXISTS_THM; TAUT `~(p /\ q) <=> p ==> ~q`] THEN
    REWRITE_TAC[IMP_CONJ] THEN REPEAT(GEN_TAC THEN DISCH_TAC) THEN
    REWRITE_TAC[IMP_IMP] THEN
    DISCH_THEN(CONJUNCTS_THEN (MP_TAC o MATCH_MP BETWEEN_IMP_COLLINEAR)) THEN
    SIMP_TAC[COLLINEAR_3_2D; BASIS_COMPONENT; DIMINDEX_2; ARITH; VEC_COMPONENT;
             VECTOR_MUL_COMPONENT] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
    REWRITE_TAC[REAL_SUB_LZERO; REAL_MUL_LZERO; REAL_MUL_RZERO; REAL_SUB_RZERO;
                REAL_ARITH `&0 = &1 / &2 * x <=> x = &0`] THEN
    REWRITE_TAC[REAL_ENTIRE] THEN CONV_TAC REAL_RAT_REDUCE_CONV THEN
    MP_TAC(ISPECL [`x:real^2`; `1`] COMPONENT_LE_NORM) THEN
    MP_TAC(ISPECL [`y:real^2`; `2`] COMPONENT_LE_NORM) THEN
    SIMP_TAC[DIMINDEX_2; ARITH; BETWEEN_IN_SEGMENT; IN_SEGMENT] THEN
    REPEAT STRIP_TAC THEN SUBGOAL_THEN
     `norm(&3 / &5 % basis 1 + &3 / &5 % basis 2:real^2) pow 2 <= &1 / &2`
    MP_TAC THENL
     [SUBGOAL_THEN `(&3 / &5 % basis 1 + &3 / &5 % basis 2:real^2)$2 =
                    (&3 / &5 % basis 1 + &3 / &5 % basis 2:real^2)$1`
      MP_TAC THENL
       [SIMP_TAC[CART_EQ; DIMINDEX_2; FORALL_2; ARITH; BASIS_COMPONENT;
                VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VEC_COMPONENT] THEN
        REAL_ARITH_TAC;
        ASM_REWRITE_TAC[]] THEN
      REWRITE_TAC[NORM_POW_2; DOT_LADD; DOT_RADD; DOT_LMUL; DOT_RMUL] THEN
      ASM_SIMP_TAC[DIMINDEX_2; FORALL_2; DOT_2; VECTOR_ADD_COMPONENT; ARITH;
                   VECTOR_MUL_COMPONENT; BASIS_COMPONENT; DIMINDEX_2] THEN
      DISCH_THEN(MP_TAC o MATCH_MP (REAL_ARITH
        `a * &0 + y = x + b * &0 ==> abs x + abs y <= (&1 - u) * &1 + u * &1
         ==> abs x <= abs(&1 / &2) /\ abs y <= abs(&1 / &2)`)) THEN
      ANTS_TAC THENL
       [REWRITE_TAC[REAL_ABS_MUL] THEN MATCH_MP_TAC REAL_LE_ADD2 THEN
        CONJ_TAC THEN MATCH_MP_TAC REAL_LE_MUL2 THEN ASM_REAL_ARITH_TAC;
        REWRITE_TAC[REAL_LE_SQUARE_ABS] THEN REAL_ARITH_TAC];
      ALL_TAC]] THEN
  SIMP_TAC[NORM_LT_SQUARE; NORM_POW_2; DOT_LADD; DOT_RADD; DOT_LZERO;
           DOT_LMUL; DOT_RMUL; DOT_BASIS_BASIS; DIMINDEX_2; ARITH] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN
  REWRITE_TAC[BETWEEN_IN_SEGMENT; IN_SEGMENT] THEN REPEAT CONJ_TAC THENL
   [EXISTS_TAC `&5 / &12`; EXISTS_TAC `&1 / &2`; ALL_TAC] THEN
  SIMP_TAC[CART_EQ; DIMINDEX_2; FORALL_2; ARITH; BASIS_COMPONENT;
           VECTOR_ADD_COMPONENT; VECTOR_MUL_COMPONENT; VEC_COMPONENT] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV);;

(* ------------------------------------------------------------------------- *)
(* Axiom 11 (Continuity).                                                    *)
(* ------------------------------------------------------------------------- *)

let TARSKI_AXIOM_11_NONEUCLIDEAN = prove
 (`!X Y. (?a. !x y. x IN X /\ y IN Y ==> pbetween x (a,y))
         ==> (?b. !x y. x IN X /\ y IN Y ==> pbetween b (x,y))`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `X:plane->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
  ASM_CASES_TAC `Y:plane->bool = {}` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY] THEN
  REWRITE_TAC[pbetween; EXISTS_DEST_PLANE] THEN
  DISCH_THEN(X_CHOOSE_THEN `a:real^2` STRIP_ASSUME_TAC) THEN
  MP_TAC(ISPECL [`IMAGE dest_plane X`; `IMAGE dest_plane Y`]
        TARSKI_AXIOM_11_EUCLIDEAN) THEN REWRITE_TAC[IN_IMAGE] THEN
  ANTS_TAC THENL [ASM SET_TAC[]; MATCH_MP_TAC MONO_EXISTS] THEN
  ASM_MESON_TAC[MEMBER_NOT_EMPTY; DEST_PLANE_NORM_LT; BETWEEN_NORM_LT]);;