Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 16,286 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
(* ========================================================================= *)
(* Minkowski's convex body theorem.                                          *)
(* ========================================================================= *)

needs "Multivariate/measure.ml";;

(* ------------------------------------------------------------------------- *)
(* An ad hoc lemma.                                                          *)
(* ------------------------------------------------------------------------- *)

let LEMMA = prove
 (`!f:real^N->bool t s:real^N->bool.
        FINITE { u | u IN f /\ ~(t u = {})} /\
        measurable s /\ &1 < measure s /\
        (!u. u IN f ==> measurable(t u)) /\
        s SUBSET UNIONS (IMAGE t f) /\
        (!u v. u IN f /\ v IN f /\ ~(u = v) ==> DISJOINT (t u) (t v)) /\
        (!u. u IN f ==> (IMAGE (\x. x - u) (t u)) SUBSET interval[vec 0,vec 1])
        ==> ?u v. u IN f /\ v IN f /\ ~(u = v) /\
                  ~(DISJOINT (IMAGE (\x. x - u) (t u))
                             (IMAGE (\x. x - v) (t v)))`,
  REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~ ~p`] THEN
  PURE_REWRITE_TAC[NOT_EXISTS_THM] THEN
  REWRITE_TAC[TAUT `~(a /\ b /\ ~c /\ ~d) <=> a /\ b /\ ~c ==> d`] THEN
  DISCH_TAC THEN
  MP_TAC(ISPECL [`\u:real^N. IMAGE (\x:real^N. x - u) (t u)`;
                 `f:real^N->bool`]
                HAS_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG) THEN
  ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; NOT_IMP] THEN CONJ_TAC THENL
   [REWRITE_TAC[VECTOR_ARITH `x - u:real^N = --u + x`] THEN
    ASM_REWRITE_TAC[MEASURABLE_TRANSLATION_EQ];
    ALL_TAC] THEN
  MP_TAC(ISPECL [`vec 0:real^N`; `vec 1:real^N`] (CONJUNCT1
                HAS_MEASURE_INTERVAL)) THEN
  REWRITE_TAC[CONTENT_UNIT] THEN
  MATCH_MP_TAC(TAUT `(b /\ a ==> F) ==> a ==> ~b`) THEN
  DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE
   [TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] HAS_MEASURE_SUBSET)) THEN
  ASM_REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_IMAGE; REAL_NOT_LE] THEN
  FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
   `&1 < a ==> a <= b ==> &1 < b`)) THEN
  MATCH_MP_TAC REAL_LE_TRANS THEN
  EXISTS_TAC `measure(UNIONS (IMAGE (t:real^N->real^N->bool) f))` THEN
  CONJ_TAC THENL
   [MATCH_MP_TAC MEASURE_SUBSET THEN ASM_REWRITE_TAC[] THEN
    SUBGOAL_THEN
     `UNIONS (IMAGE (t:real^N->real^N->bool) f) =
      UNIONS (IMAGE t {u | u IN f /\ ~(t u = {})})`
    SUBST1_TAC THENL
     [GEN_REWRITE_TAC I [EXTENSION] THEN
      REWRITE_TAC[IN_UNIONS; IN_IMAGE; IN_ELIM_THM] THEN
      MESON_TAC[NOT_IN_EMPTY];
      ALL_TAC] THEN
    MATCH_MP_TAC MEASURABLE_UNIONS THEN
    ASM_REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
    ASM_SIMP_TAC[FINITE_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[];
    ALL_TAC] THEN
  MP_TAC(ISPECL [`t:real^N->real^N->bool`; `f:real^N->bool`]
                HAS_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG) THEN
  ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; NOT_IMP] THEN
  DISCH_THEN(SUBST1_TAC o MATCH_MP MEASURE_UNIQUE) THEN
  REWRITE_TAC[VECTOR_ARITH `x - u:real^N = --u + x`] THEN
  ASM_SIMP_TAC[MEASURE_TRANSLATION; REAL_LE_REFL]);;

(* ------------------------------------------------------------------------- *)
(* This is also interesting, and Minkowski follows easily from it.           *)
(* ------------------------------------------------------------------------- *)

let BLICHFELDT = prove
 (`!s:real^N->bool.
        measurable s /\ &1 < measure s
        ==> ?x y. x IN s /\ y IN s /\ ~(x = y) /\
                  !i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i - y$i)`,
  SUBGOAL_THEN
   `!s:real^N->bool.
        bounded s /\ measurable s /\ &1 < measure s
        ==> ?x y. x IN s /\ y IN s /\ ~(x = y) /\
                  !i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i - y$i)`
  ASSUME_TAC THENL
   [ALL_TAC;
    REPEAT STRIP_TAC THEN
    FIRST_ASSUM(MP_TAC o SPEC `measure(s:real^N->bool) - &1` o
      MATCH_MP (REWRITE_RULE[IMP_CONJ] MEASURABLE_INNER_COMPACT)) THEN
    ASM_REWRITE_TAC[REAL_SUB_LT; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `c:real^N->bool` THEN STRIP_TAC THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `c:real^N->bool`) THEN
    ASM_SIMP_TAC[COMPACT_IMP_BOUNDED] THEN
    ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ASM SET_TAC[]]] THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL [`{ u:real^N | !i. 1 <= i /\ i <= dimindex(:N)
                                   ==> integer(u$i) }`;
                 `\u. {x | (x:real^N) IN s /\
                           !i. 1 <= i /\ i <= dimindex(:N)
                               ==> (u:real^N)$i <= x$i /\ x$i < u$i + &1 }`;
                 `s:real^N->bool`]
                LEMMA) THEN
  ASM_REWRITE_TAC[IN_ELIM_THM] THEN ANTS_TAC THENL
   [ALL_TAC;
    REWRITE_TAC[DISJOINT; GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN
    REWRITE_TAC[EXISTS_IN_IMAGE; IN_INTER] THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN
    REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN
    REWRITE_TAC[VECTOR_ARITH `x - u:real^N = y - v <=> x + (v - u) = y`] THEN
    REWRITE_TAC[UNWIND_THM1] THEN STRIP_TAC THEN
    EXISTS_TAC `x + (v - u):real^N` THEN
    ASM_REWRITE_TAC[VECTOR_ARITH `x = x + (v - u) <=> v:real^N = u`] THEN
    ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_ADD_COMPONENT] THEN
    ASM_SIMP_TAC[REAL_ARITH `x - (x + v - u):real = u - v`;
                 INTEGER_CLOSED]] THEN
  REPEAT CONJ_TAC THENL
   [SUBGOAL_THEN
     `?N. !x:real^N i. x IN s /\ 1 <= i /\ i <= dimindex(:N) ==> abs(x$i) < &N`
    STRIP_ASSUME_TAC THENL
     [FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN
      DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN
      MP_TAC(SPEC `B:real` (MATCH_MP REAL_ARCH REAL_LT_01)) THEN
      MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[REAL_MUL_RID] THEN
      X_GEN_TAC `N:num` THEN
      REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN
      SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_LT_POW2] THEN
      ASM_MESON_TAC[COMPONENT_LE_NORM; REAL_LE_TRANS; REAL_LET_TRANS];
      ALL_TAC] THEN
    MATCH_MP_TAC FINITE_SUBSET THEN
    EXISTS_TAC
     `{u:real^N | !i. 1 <= i /\ i <= dimindex(:N)
                      ==> integer (u$i) /\ abs(u$i) <= &N}` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC FINITE_CART THEN
      REWRITE_TAC[GSYM REAL_BOUNDS_LE; FINITE_INTSEG];
      ALL_TAC] THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `u:real^N` THEN
    STRIP_TAC THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN
    MATCH_MP_TAC REAL_LE_REVERSE_INTEGERS THEN
    ASM_SIMP_TAC[INTEGER_CLOSED] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
    REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
    X_GEN_TAC `y:real^N` THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k:num`)) THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`y:real^N`; `k:num`]) THEN
    ASM_SIMP_TAC[] THEN REAL_ARITH_TAC;
    X_GEN_TAC `u:real^N` THEN DISCH_TAC THEN
    MATCH_MP_TAC MEASURABLE_ALMOST THEN
    EXISTS_TAC `s INTER interval[u:real^N,u + vec 1]` THEN
    ASM_SIMP_TAC[MEASURABLE_INTER_INTERVAL] THEN
    EXISTS_TAC `interval[u:real^N,u + vec 1] DIFF interval(u,u + vec 1)` THEN
    REWRITE_TAC[NEGLIGIBLE_FRONTIER_INTERVAL] THEN
    MATCH_MP_TAC(SET_RULE
     `s' SUBSET i /\ j INTER s' = j INTER s
      ==> (s INTER i) UNION (i DIFF j) = s' UNION (i DIFF j)`) THEN
    REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INTERVAL; IN_INTER; EXTENSION;
                IN_ELIM_THM] THEN
    CONJ_TAC THEN X_GEN_TAC `x:real^N` THEN
    ASM_CASES_TAC `(x:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN TRY EQ_TAC THEN
    REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
    REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`] THEN
    GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
    ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VEC_COMPONENT] THEN REAL_ARITH_TAC;
    REWRITE_TAC[SUBSET; IN_UNIONS; EXISTS_IN_IMAGE; IN_ELIM_THM] THEN
    X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
    EXISTS_TAC `(lambda i. floor((x:real^N)$i)):real^N` THEN
    ASM_SIMP_TAC[LAMBDA_BETA; FLOOR];
    MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
    ASM_SIMP_TAC[CART_EQ; REAL_EQ_INTEGERS] THEN
    REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM; NOT_IMP; REAL_NOT_LT] THEN
    X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[DISJOINT] THEN
    REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY; IN_ELIM_THM] THEN
    REPEAT STRIP_TAC THEN
    REPEAT(FIRST_X_ASSUM (MP_TAC o SPEC `k:num`)) THEN
    ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC;
    X_GEN_TAC `u:real^N` THEN DISCH_THEN(K ALL_TAC) THEN
    REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_INTERVAL] THEN
    GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
    SIMP_TAC[VECTOR_SUB_COMPONENT; VEC_COMPONENT] THEN
    MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN REAL_ARITH_TAC]);;

(* ------------------------------------------------------------------------- *)
(* The usual form of the theorem.                                            *)
(* ------------------------------------------------------------------------- *)

let MINKOWSKI = prove
 (`!s:real^N->bool.
        convex s /\
        (!x. x IN s ==> (--x) IN s) /\
        &2 pow dimindex(:N) < measure s
        ==> ?u. ~(u = vec 0) /\
                (!i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)) /\
                u IN s`,
  SUBGOAL_THEN
   `!s:real^N->bool.
        convex s /\
        bounded s /\
        (!x. x IN s ==> (--x) IN s) /\
        &2 pow dimindex(:N) < measure s
        ==> ?u. ~(u = vec 0) /\
                (!i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)) /\
                u IN s`
  ASSUME_TAC THENL
   [ALL_TAC;
    REPEAT STRIP_TAC THEN
    MP_TAC(ISPECL [`s:real^N->bool`; `&2 pow dimindex(:N)`]
        CHOOSE_LARGE_COMPACT_SUBSET_ALT) THEN
    ASM_SIMP_TAC[LEBESGUE_MEASURABLE_CONVEX] THEN
    DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) THEN
    FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN
    DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC o SPEC `vec 0:real^N` o
      MATCH_MP BOUNDED_SUBSET_BALL) THEN
    FIRST_X_ASSUM(MP_TAC o SPEC `s INTER ball(vec 0:real^N,r)`) THEN
    ANTS_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
    SIMP_TAC[BOUNDED_INTER; BOUNDED_BALL] THEN
    ASM_SIMP_TAC[CONVEX_INTER; CONVEX_BALL; IN_INTER] THEN
    SIMP_TAC[IN_BALL_0; NORM_NEG] THEN
    TRANS_TAC REAL_LTE_TRANS `measure(c:real^N->bool)` THEN
    ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MEASURE_SUBSET THEN
    ASM_SIMP_TAC[MEASURABLE_COMPACT; SUBSET_INTER] THEN
    MATCH_MP_TAC MEASURABLE_CONVEX THEN
     SIMP_TAC[BOUNDED_INTER; BOUNDED_BALL] THEN
    ASM_SIMP_TAC[CONVEX_INTER; CONVEX_BALL]] THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPEC `IMAGE (\x:real^N. (&1 / &2) % x) s` BLICHFELDT) THEN
  ASM_SIMP_TAC[MEASURABLE_SCALING; MEASURE_SCALING; MEASURABLE_CONVEX;
               BOUNDED_SCALING] THEN
  REWRITE_TAC[real_div; REAL_MUL_LID; REAL_ABS_INV; REAL_ABS_NUM] THEN
  ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
  REWRITE_TAC[GSYM real_div; REAL_POW_INV] THEN
  ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LT_POW2; REAL_MUL_LID] THEN
  REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_IN_IMAGE] THEN
  REWRITE_TAC[VECTOR_ARITH `inv(&2) % x:real^N = inv(&2) % y <=> x = y`] THEN
  REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
  SIMP_TAC[VECTOR_MUL_COMPONENT; GSYM REAL_SUB_LDISTRIB] THEN
  MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN
  EXISTS_TAC `inv(&2) % (u - v):real^N` THEN
  ASM_SIMP_TAC[VECTOR_ARITH `inv(&2) % (u - v):real^N = vec 0 <=> u = v`] THEN
  ASM_SIMP_TAC[VECTOR_MUL_COMPONENT; VECTOR_SUB_COMPONENT] THEN
  REWRITE_TAC[VECTOR_SUB; VECTOR_ADD_LDISTRIB] THEN
  FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN
  ASM_SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;

(* ------------------------------------------------------------------------- *)
(* A slightly sharper variant for use when the set is also closed.           *)
(* ------------------------------------------------------------------------- *)

let MINKOWSKI_COMPACT = prove
 (`!s:real^N->bool.
        convex s /\ compact s /\
        (!x. x IN s ==> (--x) IN s) /\
        &2 pow dimindex(:N) <= measure s
        ==> ?u. ~(u = vec 0) /\
                (!i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)) /\
                u IN s`,
  GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL
   [ASM_REWRITE_TAC[GSYM REAL_NOT_LT; MEASURE_EMPTY; REAL_LT_POW2];
    ALL_TAC] THEN
  STRIP_TAC THEN
  SUBGOAL_THEN `(vec 0:real^N) IN s` ASSUME_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
    DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN
    SUBST1_TAC(VECTOR_ARITH `vec 0:real^N = inv(&2) % a + inv(&2) % --a`) THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN
    ASM_SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV;
    ALL_TAC] THEN
  REPEAT STRIP_TAC THEN
  MP_TAC(ISPECL
    [`s:real^N->bool`;
     `{u | !i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)}
      DELETE (vec 0:real^N)`]
    SEPARATE_COMPACT_CLOSED) THEN
  REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM; IN_INTER; NOT_IN_EMPTY] THEN
  MATCH_MP_TAC(TAUT
   `(~e ==> c) /\ a /\ b /\ (d ==> e)
        ==> (a /\ b /\ c ==> d) ==> e`) THEN
  CONJ_TAC THENL [MESON_TAC[]; ASM_REWRITE_TAC[]] THEN CONJ_TAC THENL
   [MATCH_MP_TAC DISCRETE_IMP_CLOSED THEN
    EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01; IN_DELETE; IN_ELIM_THM] THEN
    REPEAT GEN_TAC THEN
    REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
    ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
    REWRITE_TAC[CART_EQ; REAL_NOT_LT; NOT_FORALL_THM; NOT_IMP] THEN
    DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
    MATCH_MP_TAC REAL_LE_TRANS THEN
    EXISTS_TAC `abs((y - x:real^N)$k)` THEN
    ASM_SIMP_TAC[COMPONENT_LE_NORM; VECTOR_SUB_COMPONENT] THEN
    ASM_MESON_TAC[REAL_EQ_INTEGERS; REAL_NOT_LE];
    ALL_TAC] THEN
  SIMP_TAC[dist] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
  FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN
  REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN
  X_GEN_TAC `B:real` THEN STRIP_TAC THEN
  MP_TAC(ISPEC `IMAGE (\x:real^N. (&1 + d / &2 / B) % x) s` MINKOWSKI) THEN
  ANTS_TAC THENL
   [ASM_SIMP_TAC[CONVEX_SCALING; BOUNDED_SCALING; COMPACT_IMP_BOUNDED] THEN
    ASM_SIMP_TAC[MEASURABLE_COMPACT; MEASURE_SCALING] THEN CONJ_TAC THENL
     [REWRITE_TAC[FORALL_IN_IMAGE; IN_IMAGE] THEN
      REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_ARITH
       `--(a % x):real^N = a % y <=> a % (x + y) = vec 0`] THEN
      ASM_MESON_TAC[VECTOR_ADD_RINV];
      ALL_TAC] THEN
    FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
     `d <= m ==> m < n ==> d < n`)) THEN
    REWRITE_TAC[REAL_ARITH `m < a * m <=> &0 < m * (a - &1)`] THEN
    MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC THENL
     [ASM_SIMP_TAC[MEASURABLE_COMPACT; MEASURABLE_MEASURE_POS_LT] THEN
      REWRITE_TAC[GSYM HAS_MEASURE_0] THEN
      DISCH_THEN(SUBST_ALL_TAC o MATCH_MP MEASURE_UNIQUE) THEN
      ASM_MESON_TAC[REAL_NOT_LT; REAL_LT_POW2];
      ALL_TAC] THEN
    REWRITE_TAC[REAL_SUB_LT] THEN MATCH_MP_TAC REAL_POW_LT_1 THEN
    REWRITE_TAC[DIMINDEX_NONZERO] THEN
    MATCH_MP_TAC(REAL_ARITH `&0 < x ==> &1 < abs(&1 + x)`) THEN
    ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH];
    ALL_TAC] THEN
  ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> c /\ b /\ a`] THEN
  REWRITE_TAC[EXISTS_IN_IMAGE; VECTOR_MUL_EQ_0; DE_MORGAN_THM] THEN
  MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:real^N` THEN
  STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  FIRST_X_ASSUM(MP_TAC o SPECL
   [`u:real^N`; `(&1 + d / &2 / B) % u:real^N`]) THEN
  ASM_REWRITE_TAC[VECTOR_MUL_EQ_0] THEN
  REWRITE_TAC[VECTOR_ARITH `u - (&1 + e) % u:real^N = --(e % u)`] THEN
  REWRITE_TAC[NORM_NEG; NORM_MUL] THEN
  MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN REWRITE_TAC[REAL_NOT_LE] THEN
  MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(d / &2 / B) * B` THEN
  ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ABS_POS] THEN
  ASM_REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_NUM] THEN
  ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> abs x = x`] THEN
  ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_LT_IMP_NZ] THEN
  UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC);;