Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 16,286 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
(* ========================================================================= *)
(* Minkowski's convex body theorem. *)
(* ========================================================================= *)
needs "Multivariate/measure.ml";;
(* ------------------------------------------------------------------------- *)
(* An ad hoc lemma. *)
(* ------------------------------------------------------------------------- *)
let LEMMA = prove
(`!f:real^N->bool t s:real^N->bool.
FINITE { u | u IN f /\ ~(t u = {})} /\
measurable s /\ &1 < measure s /\
(!u. u IN f ==> measurable(t u)) /\
s SUBSET UNIONS (IMAGE t f) /\
(!u v. u IN f /\ v IN f /\ ~(u = v) ==> DISJOINT (t u) (t v)) /\
(!u. u IN f ==> (IMAGE (\x. x - u) (t u)) SUBSET interval[vec 0,vec 1])
==> ?u v. u IN f /\ v IN f /\ ~(u = v) /\
~(DISJOINT (IMAGE (\x. x - u) (t u))
(IMAGE (\x. x - v) (t v)))`,
REPEAT STRIP_TAC THEN GEN_REWRITE_TAC I [TAUT `p <=> ~ ~p`] THEN
PURE_REWRITE_TAC[NOT_EXISTS_THM] THEN
REWRITE_TAC[TAUT `~(a /\ b /\ ~c /\ ~d) <=> a /\ b /\ ~c ==> d`] THEN
DISCH_TAC THEN
MP_TAC(ISPECL [`\u:real^N. IMAGE (\x:real^N. x - u) (t u)`;
`f:real^N->bool`]
HAS_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG) THEN
ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; NOT_IMP] THEN CONJ_TAC THENL
[REWRITE_TAC[VECTOR_ARITH `x - u:real^N = --u + x`] THEN
ASM_REWRITE_TAC[MEASURABLE_TRANSLATION_EQ];
ALL_TAC] THEN
MP_TAC(ISPECL [`vec 0:real^N`; `vec 1:real^N`] (CONJUNCT1
HAS_MEASURE_INTERVAL)) THEN
REWRITE_TAC[CONTENT_UNIT] THEN
MATCH_MP_TAC(TAUT `(b /\ a ==> F) ==> a ==> ~b`) THEN
DISCH_THEN(MP_TAC o MATCH_MP (ONCE_REWRITE_RULE
[TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] HAS_MEASURE_SUBSET)) THEN
ASM_REWRITE_TAC[UNIONS_SUBSET; FORALL_IN_IMAGE; REAL_NOT_LE] THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`&1 < a ==> a <= b ==> &1 < b`)) THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `measure(UNIONS (IMAGE (t:real^N->real^N->bool) f))` THEN
CONJ_TAC THENL
[MATCH_MP_TAC MEASURE_SUBSET THEN ASM_REWRITE_TAC[] THEN
SUBGOAL_THEN
`UNIONS (IMAGE (t:real^N->real^N->bool) f) =
UNIONS (IMAGE t {u | u IN f /\ ~(t u = {})})`
SUBST1_TAC THENL
[GEN_REWRITE_TAC I [EXTENSION] THEN
REWRITE_TAC[IN_UNIONS; IN_IMAGE; IN_ELIM_THM] THEN
MESON_TAC[NOT_IN_EMPTY];
ALL_TAC] THEN
MATCH_MP_TAC MEASURABLE_UNIONS THEN
ASM_REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
ASM_SIMP_TAC[FINITE_IMAGE; IN_ELIM_THM] THEN ASM_MESON_TAC[];
ALL_TAC] THEN
MP_TAC(ISPECL [`t:real^N->real^N->bool`; `f:real^N->bool`]
HAS_MEASURE_DISJOINT_UNIONS_IMAGE_STRONG) THEN
ASM_REWRITE_TAC[IMAGE_EQ_EMPTY; NOT_IMP] THEN
DISCH_THEN(SUBST1_TAC o MATCH_MP MEASURE_UNIQUE) THEN
REWRITE_TAC[VECTOR_ARITH `x - u:real^N = --u + x`] THEN
ASM_SIMP_TAC[MEASURE_TRANSLATION; REAL_LE_REFL]);;
(* ------------------------------------------------------------------------- *)
(* This is also interesting, and Minkowski follows easily from it. *)
(* ------------------------------------------------------------------------- *)
let BLICHFELDT = prove
(`!s:real^N->bool.
measurable s /\ &1 < measure s
==> ?x y. x IN s /\ y IN s /\ ~(x = y) /\
!i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i - y$i)`,
SUBGOAL_THEN
`!s:real^N->bool.
bounded s /\ measurable s /\ &1 < measure s
==> ?x y. x IN s /\ y IN s /\ ~(x = y) /\
!i. 1 <= i /\ i <= dimindex(:N) ==> integer(x$i - y$i)`
ASSUME_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `measure(s:real^N->bool) - &1` o
MATCH_MP (REWRITE_RULE[IMP_CONJ] MEASURABLE_INNER_COMPACT)) THEN
ASM_REWRITE_TAC[REAL_SUB_LT; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `c:real^N->bool` THEN STRIP_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `c:real^N->bool`) THEN
ASM_SIMP_TAC[COMPACT_IMP_BOUNDED] THEN
ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ASM SET_TAC[]]] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`{ u:real^N | !i. 1 <= i /\ i <= dimindex(:N)
==> integer(u$i) }`;
`\u. {x | (x:real^N) IN s /\
!i. 1 <= i /\ i <= dimindex(:N)
==> (u:real^N)$i <= x$i /\ x$i < u$i + &1 }`;
`s:real^N->bool`]
LEMMA) THEN
ASM_REWRITE_TAC[IN_ELIM_THM] THEN ANTS_TAC THENL
[ALL_TAC;
REWRITE_TAC[DISJOINT; GSYM MEMBER_NOT_EMPTY; LEFT_IMP_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; IN_INTER] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `x:real^N` THEN
REWRITE_TAC[IN_IMAGE; IN_ELIM_THM] THEN
REWRITE_TAC[VECTOR_ARITH `x - u:real^N = y - v <=> x + (v - u) = y`] THEN
REWRITE_TAC[UNWIND_THM1] THEN STRIP_TAC THEN
EXISTS_TAC `x + (v - u):real^N` THEN
ASM_REWRITE_TAC[VECTOR_ARITH `x = x + (v - u) <=> v:real^N = u`] THEN
ASM_SIMP_TAC[VECTOR_SUB_COMPONENT; VECTOR_ADD_COMPONENT] THEN
ASM_SIMP_TAC[REAL_ARITH `x - (x + v - u):real = u - v`;
INTEGER_CLOSED]] THEN
REPEAT CONJ_TAC THENL
[SUBGOAL_THEN
`?N. !x:real^N i. x IN s /\ 1 <= i /\ i <= dimindex(:N) ==> abs(x$i) < &N`
STRIP_ASSUME_TAC THENL
[FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN
DISCH_THEN(X_CHOOSE_TAC `B:real`) THEN
MP_TAC(SPEC `B:real` (MATCH_MP REAL_ARCH REAL_LT_01)) THEN
MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[REAL_MUL_RID] THEN
X_GEN_TAC `N:num` THEN
REWRITE_TAC[REAL_ABS_MUL; REAL_ABS_POW; REAL_ABS_NUM] THEN
SIMP_TAC[GSYM REAL_LT_RDIV_EQ; REAL_LT_POW2] THEN
ASM_MESON_TAC[COMPONENT_LE_NORM; REAL_LE_TRANS; REAL_LET_TRANS];
ALL_TAC] THEN
MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC
`{u:real^N | !i. 1 <= i /\ i <= dimindex(:N)
==> integer (u$i) /\ abs(u$i) <= &N}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_CART THEN
REWRITE_TAC[GSYM REAL_BOUNDS_LE; FINITE_INTSEG];
ALL_TAC] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM] THEN X_GEN_TAC `u:real^N` THEN
STRIP_TAC THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN ASM_SIMP_TAC[] THEN
MATCH_MP_TAC REAL_LE_REVERSE_INTEGERS THEN
ASM_SIMP_TAC[INTEGER_CLOSED] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
REWRITE_TAC[IN_ELIM_THM; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `y:real^N` THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (MP_TAC o SPEC `k:num`)) THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`y:real^N`; `k:num`]) THEN
ASM_SIMP_TAC[] THEN REAL_ARITH_TAC;
X_GEN_TAC `u:real^N` THEN DISCH_TAC THEN
MATCH_MP_TAC MEASURABLE_ALMOST THEN
EXISTS_TAC `s INTER interval[u:real^N,u + vec 1]` THEN
ASM_SIMP_TAC[MEASURABLE_INTER_INTERVAL] THEN
EXISTS_TAC `interval[u:real^N,u + vec 1] DIFF interval(u,u + vec 1)` THEN
REWRITE_TAC[NEGLIGIBLE_FRONTIER_INTERVAL] THEN
MATCH_MP_TAC(SET_RULE
`s' SUBSET i /\ j INTER s' = j INTER s
==> (s INTER i) UNION (i DIFF j) = s' UNION (i DIFF j)`) THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; IN_INTERVAL; IN_INTER; EXTENSION;
IN_ELIM_THM] THEN
CONJ_TAC THEN X_GEN_TAC `x:real^N` THEN
ASM_CASES_TAC `(x:real^N) IN s` THEN ASM_REWRITE_TAC[] THEN TRY EQ_TAC THEN
REWRITE_TAC[AND_FORALL_THM] THEN MATCH_MP_TAC MONO_FORALL THEN
REWRITE_TAC[TAUT `(a ==> b) /\ (a ==> c) <=> a ==> b /\ c`] THEN
GEN_TAC THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN
ASM_SIMP_TAC[VECTOR_ADD_COMPONENT; VEC_COMPONENT] THEN REAL_ARITH_TAC;
REWRITE_TAC[SUBSET; IN_UNIONS; EXISTS_IN_IMAGE; IN_ELIM_THM] THEN
X_GEN_TAC `x:real^N` THEN DISCH_TAC THEN
EXISTS_TAC `(lambda i. floor((x:real^N)$i)):real^N` THEN
ASM_SIMP_TAC[LAMBDA_BETA; FLOOR];
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC)) THEN
ASM_SIMP_TAC[CART_EQ; REAL_EQ_INTEGERS] THEN
REWRITE_TAC[NOT_FORALL_THM; LEFT_IMP_EXISTS_THM; NOT_IMP; REAL_NOT_LT] THEN
X_GEN_TAC `k:num` THEN STRIP_TAC THEN REWRITE_TAC[DISJOINT] THEN
REWRITE_TAC[EXTENSION; IN_INTER; NOT_IN_EMPTY; IN_ELIM_THM] THEN
REPEAT STRIP_TAC THEN
REPEAT(FIRST_X_ASSUM (MP_TAC o SPEC `k:num`)) THEN
ASM_REWRITE_TAC[] THEN ASM_REAL_ARITH_TAC;
X_GEN_TAC `u:real^N` THEN DISCH_THEN(K ALL_TAC) THEN
REWRITE_TAC[SUBSET; FORALL_IN_IMAGE; IN_ELIM_THM; IN_INTERVAL] THEN
GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN
SIMP_TAC[VECTOR_SUB_COMPONENT; VEC_COMPONENT] THEN
MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN REAL_ARITH_TAC]);;
(* ------------------------------------------------------------------------- *)
(* The usual form of the theorem. *)
(* ------------------------------------------------------------------------- *)
let MINKOWSKI = prove
(`!s:real^N->bool.
convex s /\
(!x. x IN s ==> (--x) IN s) /\
&2 pow dimindex(:N) < measure s
==> ?u. ~(u = vec 0) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)) /\
u IN s`,
SUBGOAL_THEN
`!s:real^N->bool.
convex s /\
bounded s /\
(!x. x IN s ==> (--x) IN s) /\
&2 pow dimindex(:N) < measure s
==> ?u. ~(u = vec 0) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)) /\
u IN s`
ASSUME_TAC THENL
[ALL_TAC;
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL [`s:real^N->bool`; `&2 pow dimindex(:N)`]
CHOOSE_LARGE_COMPACT_SUBSET_ALT) THEN
ASM_SIMP_TAC[LEBESGUE_MEASURABLE_CONVEX] THEN
DISCH_THEN(X_CHOOSE_THEN `c:real^N->bool` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN
DISCH_THEN(X_CHOOSE_THEN `r:real` STRIP_ASSUME_TAC o SPEC `vec 0:real^N` o
MATCH_MP BOUNDED_SUBSET_BALL) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `s INTER ball(vec 0:real^N,r)`) THEN
ANTS_TAC THENL [ALL_TAC; ASM SET_TAC[]] THEN
SIMP_TAC[BOUNDED_INTER; BOUNDED_BALL] THEN
ASM_SIMP_TAC[CONVEX_INTER; CONVEX_BALL; IN_INTER] THEN
SIMP_TAC[IN_BALL_0; NORM_NEG] THEN
TRANS_TAC REAL_LTE_TRANS `measure(c:real^N->bool)` THEN
ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MEASURE_SUBSET THEN
ASM_SIMP_TAC[MEASURABLE_COMPACT; SUBSET_INTER] THEN
MATCH_MP_TAC MEASURABLE_CONVEX THEN
SIMP_TAC[BOUNDED_INTER; BOUNDED_BALL] THEN
ASM_SIMP_TAC[CONVEX_INTER; CONVEX_BALL]] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPEC `IMAGE (\x:real^N. (&1 / &2) % x) s` BLICHFELDT) THEN
ASM_SIMP_TAC[MEASURABLE_SCALING; MEASURE_SCALING; MEASURABLE_CONVEX;
BOUNDED_SCALING] THEN
REWRITE_TAC[real_div; REAL_MUL_LID; REAL_ABS_INV; REAL_ABS_NUM] THEN
ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN
REWRITE_TAC[GSYM real_div; REAL_POW_INV] THEN
ASM_SIMP_TAC[REAL_LT_RDIV_EQ; REAL_LT_POW2; REAL_MUL_LID] THEN
REWRITE_TAC[RIGHT_EXISTS_AND_THM; EXISTS_IN_IMAGE] THEN
REWRITE_TAC[VECTOR_ARITH `inv(&2) % x:real^N = inv(&2) % y <=> x = y`] THEN
REWRITE_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM] THEN
SIMP_TAC[VECTOR_MUL_COMPONENT; GSYM REAL_SUB_LDISTRIB] THEN
MAP_EVERY X_GEN_TAC [`u:real^N`; `v:real^N`] THEN STRIP_TAC THEN
EXISTS_TAC `inv(&2) % (u - v):real^N` THEN
ASM_SIMP_TAC[VECTOR_ARITH `inv(&2) % (u - v):real^N = vec 0 <=> u = v`] THEN
ASM_SIMP_TAC[VECTOR_MUL_COMPONENT; VECTOR_SUB_COMPONENT] THEN
REWRITE_TAC[VECTOR_SUB; VECTOR_ADD_LDISTRIB] THEN
FIRST_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN
ASM_SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV);;
(* ------------------------------------------------------------------------- *)
(* A slightly sharper variant for use when the set is also closed. *)
(* ------------------------------------------------------------------------- *)
let MINKOWSKI_COMPACT = prove
(`!s:real^N->bool.
convex s /\ compact s /\
(!x. x IN s ==> (--x) IN s) /\
&2 pow dimindex(:N) <= measure s
==> ?u. ~(u = vec 0) /\
(!i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)) /\
u IN s`,
GEN_TAC THEN ASM_CASES_TAC `s:real^N->bool = {}` THENL
[ASM_REWRITE_TAC[GSYM REAL_NOT_LT; MEASURE_EMPTY; REAL_LT_POW2];
ALL_TAC] THEN
STRIP_TAC THEN
SUBGOAL_THEN `(vec 0:real^N) IN s` ASSUME_TAC THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM MEMBER_NOT_EMPTY]) THEN
DISCH_THEN(X_CHOOSE_TAC `a:real^N`) THEN
SUBST1_TAC(VECTOR_ARITH `vec 0:real^N = inv(&2) % a + inv(&2) % --a`) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o GEN_REWRITE_RULE I [convex]) THEN
ASM_SIMP_TAC[] THEN CONV_TAC REAL_RAT_REDUCE_CONV;
ALL_TAC] THEN
REPEAT STRIP_TAC THEN
MP_TAC(ISPECL
[`s:real^N->bool`;
`{u | !i. 1 <= i /\ i <= dimindex(:N) ==> integer(u$i)}
DELETE (vec 0:real^N)`]
SEPARATE_COMPACT_CLOSED) THEN
REWRITE_TAC[EXTENSION; IN_DELETE; IN_ELIM_THM; IN_INTER; NOT_IN_EMPTY] THEN
MATCH_MP_TAC(TAUT
`(~e ==> c) /\ a /\ b /\ (d ==> e)
==> (a /\ b /\ c ==> d) ==> e`) THEN
CONJ_TAC THENL [MESON_TAC[]; ASM_REWRITE_TAC[]] THEN CONJ_TAC THENL
[MATCH_MP_TAC DISCRETE_IMP_CLOSED THEN
EXISTS_TAC `&1` THEN REWRITE_TAC[REAL_LT_01; IN_DELETE; IN_ELIM_THM] THEN
REPEAT GEN_TAC THEN
REPEAT(DISCH_THEN(CONJUNCTS_THEN2 STRIP_ASSUME_TAC MP_TAC)) THEN
ONCE_REWRITE_TAC[GSYM CONTRAPOS_THM] THEN
REWRITE_TAC[CART_EQ; REAL_NOT_LT; NOT_FORALL_THM; NOT_IMP] THEN
DISCH_THEN(X_CHOOSE_THEN `k:num` STRIP_ASSUME_TAC) THEN
MATCH_MP_TAC REAL_LE_TRANS THEN
EXISTS_TAC `abs((y - x:real^N)$k)` THEN
ASM_SIMP_TAC[COMPONENT_LE_NORM; VECTOR_SUB_COMPONENT] THEN
ASM_MESON_TAC[REAL_EQ_INTEGERS; REAL_NOT_LE];
ALL_TAC] THEN
SIMP_TAC[dist] THEN DISCH_THEN(X_CHOOSE_THEN `d:real` STRIP_ASSUME_TAC) THEN
FIRST_ASSUM(MP_TAC o MATCH_MP COMPACT_IMP_BOUNDED) THEN
REWRITE_TAC[BOUNDED_POS; LEFT_IMP_EXISTS_THM] THEN
X_GEN_TAC `B:real` THEN STRIP_TAC THEN
MP_TAC(ISPEC `IMAGE (\x:real^N. (&1 + d / &2 / B) % x) s` MINKOWSKI) THEN
ANTS_TAC THENL
[ASM_SIMP_TAC[CONVEX_SCALING; BOUNDED_SCALING; COMPACT_IMP_BOUNDED] THEN
ASM_SIMP_TAC[MEASURABLE_COMPACT; MEASURE_SCALING] THEN CONJ_TAC THENL
[REWRITE_TAC[FORALL_IN_IMAGE; IN_IMAGE] THEN
REWRITE_TAC[VECTOR_MUL_EQ_0; VECTOR_ARITH
`--(a % x):real^N = a % y <=> a % (x + y) = vec 0`] THEN
ASM_MESON_TAC[VECTOR_ADD_RINV];
ALL_TAC] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH
`d <= m ==> m < n ==> d < n`)) THEN
REWRITE_TAC[REAL_ARITH `m < a * m <=> &0 < m * (a - &1)`] THEN
MATCH_MP_TAC REAL_LT_MUL THEN CONJ_TAC THENL
[ASM_SIMP_TAC[MEASURABLE_COMPACT; MEASURABLE_MEASURE_POS_LT] THEN
REWRITE_TAC[GSYM HAS_MEASURE_0] THEN
DISCH_THEN(SUBST_ALL_TAC o MATCH_MP MEASURE_UNIQUE) THEN
ASM_MESON_TAC[REAL_NOT_LT; REAL_LT_POW2];
ALL_TAC] THEN
REWRITE_TAC[REAL_SUB_LT] THEN MATCH_MP_TAC REAL_POW_LT_1 THEN
REWRITE_TAC[DIMINDEX_NONZERO] THEN
MATCH_MP_TAC(REAL_ARITH `&0 < x ==> &1 < abs(&1 + x)`) THEN
ASM_SIMP_TAC[REAL_LT_DIV; REAL_OF_NUM_LT; ARITH];
ALL_TAC] THEN
ONCE_REWRITE_TAC[TAUT `a /\ b /\ c <=> c /\ b /\ a`] THEN
REWRITE_TAC[EXISTS_IN_IMAGE; VECTOR_MUL_EQ_0; DE_MORGAN_THM] THEN
MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `u:real^N` THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
FIRST_X_ASSUM(MP_TAC o SPECL
[`u:real^N`; `(&1 + d / &2 / B) % u:real^N`]) THEN
ASM_REWRITE_TAC[VECTOR_MUL_EQ_0] THEN
REWRITE_TAC[VECTOR_ARITH `u - (&1 + e) % u:real^N = --(e % u)`] THEN
REWRITE_TAC[NORM_NEG; NORM_MUL] THEN
MATCH_MP_TAC(TAUT `~p ==> p ==> q`) THEN REWRITE_TAC[REAL_NOT_LE] THEN
MATCH_MP_TAC REAL_LET_TRANS THEN EXISTS_TAC `abs(d / &2 / B) * B` THEN
ASM_SIMP_TAC[REAL_LE_LMUL; REAL_ABS_POS] THEN
ASM_REWRITE_TAC[REAL_ABS_DIV; REAL_ABS_NUM] THEN
ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> abs x = x`] THEN
ASM_SIMP_TAC[REAL_DIV_RMUL; REAL_LT_IMP_NZ] THEN
UNDISCH_TAC `&0 < d` THEN REAL_ARITH_TAC);;
|