Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 22,314 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
(* ========================================================================= *)
(* Formalization of Alain Connes's paper "A new proof of Morley's theorem".  *)
(* ========================================================================= *)

needs "Library/iter.ml";;
needs "Multivariate/geom.ml";;

(* ------------------------------------------------------------------------- *)
(* Reflection about the line[0,e^{i t}]                                      *)
(* ------------------------------------------------------------------------- *)

let reflect2d = new_definition
 `reflect2d t = rotate2d t o cnj o rotate2d(--t)`;;

let REFLECT2D_COMPOSE = prove
 (`!s t. reflect2d s o reflect2d t = rotate2d (&2 * (s - t))`,
  REWRITE_TAC[FUN_EQ_THM; o_THM; reflect2d] THEN REPEAT GEN_TAC THEN
  REWRITE_TAC[ROTATE2D_COMPLEX; CNJ_CEXP; CNJ_MUL; CNJ_CNJ] THEN
  REWRITE_TAC[CNJ_II; CNJ_CX; CNJ_NEG; COMPLEX_MUL_ASSOC] THEN
  AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM CEXP_ADD] THEN
  REWRITE_TAC[CX_NEG; COMPLEX_MUL_LNEG; COMPLEX_MUL_RNEG; CX_MUL] THEN
  AP_TERM_TAC THEN SIMPLE_COMPLEX_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* Rotation about point "a" by angle "t".                                    *)
(* ------------------------------------------------------------------------- *)

let rotate_about = new_definition
 `rotate_about a t x = a + rotate2d t (x - a)`;;

(* ------------------------------------------------------------------------- *)
(* Reflection across line (a,b).                                             *)
(* ------------------------------------------------------------------------- *)

let reflect_across = new_definition
 `reflect_across (a,b) x = a + reflect2d (Arg(b - a)) (x - a)`;;

let REFLECT_ACROSS_COMPOSE = prove
 (`!a b c.
        ~(b = a) /\ ~(c = a)
        ==> reflect_across(a,b) o reflect_across(a,c) =
            rotate_about a (&2 * Arg((b - a) / (c - a)))`,
  REPEAT STRIP_TAC THEN
  REWRITE_TAC[reflect_across; FUN_EQ_THM; o_THM; rotate_about] THEN
  REWRITE_TAC[VECTOR_ARITH `(a + x) - a:real^N = x`] THEN
  REWRITE_TAC[REWRITE_RULE[FUN_EQ_THM; o_THM] REFLECT2D_COMPOSE] THEN
  X_GEN_TAC `x:complex` THEN AP_TERM_TAC THEN
  REWRITE_TAC[REAL_MUL_2; ROTATE2D_ADD] THEN
  ASM_SIMP_TAC[ROTATE2D_SUB_ARG; COMPLEX_SUB_0]);;

let REFLECT_ACROSS_COMPOSE_ANGLE = prove
 (`!a b c.
        ~(b = a) /\ ~(c = a) /\ &0 <= Im((c - a) / (b - a))
        ==> reflect_across(a,c) o reflect_across(a,b) =
            rotate_about a (&2 * angle(c,a,b))`,
  REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[ANGLE_SYM] THEN
  ASM_SIMP_TAC[REFLECT_ACROSS_COMPOSE] THEN
  ASM_SIMP_TAC[angle; VECTOR_ANGLE_ARG; COMPLEX_SUB_0;
               REAL_SUB_ARG; ARG_LE_PI]);;

let REFLECT_ACROSS_COMPOSE_INVOLUTION = prove
 (`!a b. ~(a = b) ==> reflect_across(a,b) o reflect_across(a,b) = I`,
  SIMP_TAC[REFLECT_ACROSS_COMPOSE; COMPLEX_DIV_REFL; COMPLEX_SUB_0] THEN
  REWRITE_TAC[ARG_NUM; REAL_MUL_RZERO; rotate_about; FUN_EQ_THM] THEN
  REWRITE_TAC[ROTATE2D_ZERO; I_THM] THEN
  REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;

let REFLECT_ACROSS_SYM = prove
 (`!a b. reflect_across(a,b) = reflect_across(b,a)`,
  REPEAT GEN_TAC THEN
  ASM_CASES_TAC `a:complex = b` THEN ASM_REWRITE_TAC[] THEN
  REWRITE_TAC[FUN_EQ_THM; reflect_across; reflect2d; o_THM] THEN
  REWRITE_TAC[ROTATE2D_COMPLEX; CNJ_CEXP; CNJ_MUL; CNJ_CX; CNJ_II] THEN
  REWRITE_TAC[CX_NEG; COMPLEX_RING `--ii * --z = ii * z`] THEN
  SUBGOAL_THEN `cexp(ii * Cx(Arg(b - a))) = (b - a) / Cx(norm(b - a)) /\
                cexp(ii * Cx(Arg(a - b))) = (a - b) / Cx(norm(a - b))`
  (CONJUNCTS_THEN SUBST1_TAC) THENL
   [CONJ_TAC THEN MATCH_MP_TAC(COMPLEX_FIELD
     `~(a = Cx(&0)) /\ a * b = c ==> b = c / a`) THEN
    ASM_REWRITE_TAC[GSYM ARG; CX_INJ; NORM_EQ_0; VECTOR_SUB_EQ];
    REWRITE_TAC[COMPLEX_RING `a * a * cnj b = a pow 2 * cnj b`] THEN
    SUBST1_TAC(ISPECL [`a:complex`; `b:complex`] NORM_SUB) THEN
    X_GEN_TAC `z:complex` THEN REWRITE_TAC[complex_div] THEN
    MATCH_MP_TAC(COMPLEX_RING
     `b - a = ((b - a) * n) pow 2 * (cnj za - cnj zb)
      ==> a + ((b - a) * n) pow 2 * cnj za =
          b + ((a - b) * n) pow 2 * cnj zb`) THEN
    REWRITE_TAC[CNJ_SUB; COMPLEX_RING `(z - a) - (z - b):complex = b - a`] THEN
    MATCH_MP_TAC(COMPLEX_FIELD
     `(b' - a') * (b - a) = n pow 2 /\ ~(n = Cx(&0))
      ==> b - a = ((b - a) * inv n) pow 2 * (b' - a')`) THEN
    REWRITE_TAC[GSYM CNJ_SUB; COMPLEX_MUL_CNJ; CX_INJ] THEN
    ASM_REWRITE_TAC[COMPLEX_NORM_ZERO; COMPLEX_SUB_0]]);;

(* ------------------------------------------------------------------------- *)
(* Some additional lemmas.                                                   *)
(* ------------------------------------------------------------------------- *)

let ITER_ROTATE_ABOUT = prove
 (`!n a t. ITER n (rotate_about a t) = rotate_about a (&n * t)`,
  REWRITE_TAC[FUN_EQ_THM; rotate_about] THEN
  REWRITE_TAC[VECTOR_ARITH `a + b:real^N = a + c <=> b = c`] THEN
  INDUCT_TAC THEN REWRITE_TAC[ITER_ALT; REAL_MUL_LZERO; ROTATE2D_ZERO] THEN
  REWRITE_TAC[VECTOR_ARITH `a + x - a:real^N = x`; GSYM REAL_OF_NUM_SUC] THEN
  ASM_REWRITE_TAC[REAL_ADD_RDISTRIB; ROTATE2D_ADD] THEN
  REPEAT GEN_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[rotate_about; REAL_MUL_LID] THEN VECTOR_ARITH_TAC);;

let REAL_LE_IM_DIV_CYCLIC = prove
 (`!a b c. &0 <= Im ((c - a) / (b - a)) <=> &0 <= Im((a - b) / (c - b))`,
  REWRITE_TAC[IM_COMPLEX_DIV_GE_0] THEN
  REWRITE_TAC[complex_mul; IM; IM_SUB; RE_SUB; IM_CNJ; CNJ_SUB; RE_CNJ] THEN
  REAL_ARITH_TAC);;

let ROTATE_ABOUT_INVERT = prove
 (`rotate_about a t w = z <=> w = rotate_about a (--t) z`,
  MATCH_MP_TAC(MESON[]
   `(!x. f(g x) = x) /\ (!y. g(f y) = y)
    ==> (f x = y <=> x = g y)`) THEN
  REWRITE_TAC[rotate_about; VECTOR_ADD_SUB; GSYM ROTATE2D_ADD] THEN
  REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_RINV] THEN
  REWRITE_TAC[ROTATE2D_ZERO] THEN VECTOR_ARITH_TAC);;

let ROTATE_EQ_REFLECT_LEMMA = prove
 (`!a b z t.
        ~(b = a) /\ &2 * Arg((b - a) / (z - a)) = t
        ==> rotate_about a t z = reflect_across (a,b) z`,
  REPEAT STRIP_TAC THEN REWRITE_TAC[rotate_about; reflect_across] THEN
  AP_TERM_TAC THEN REWRITE_TAC[ROTATE2D_COMPLEX; reflect2d; o_THM] THEN
  REWRITE_TAC[CNJ_MUL; COMPLEX_MUL_ASSOC; CNJ_CEXP; CNJ_II] THEN
  REWRITE_TAC[CNJ_CX; COMPLEX_MUL_LNEG; COMPLEX_MUL_RNEG; COMPLEX_NEG_NEG;
              GSYM CEXP_ADD; CX_NEG] THEN
  REWRITE_TAC[COMPLEX_RING `ii * a + ii * a = ii * Cx(&2) * a`] THEN
  ASM_CASES_TAC `z:complex = a` THEN
  ASM_REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; COMPLEX_SUB_REFL] THEN
  FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (COMPLEX_RING
   `~(z = a)
    ==> c * (z - a) pow 2 = b * cnj (z - a) * (z - a)
        ==> c * (z - a) = b * cnj(z - a)`)) THEN
  REWRITE_TAC[COMPLEX_MUL_CNJ] THEN
  GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [ARG] THEN
  MATCH_MP_TAC(COMPLEX_RING
   `(e1:complex) * e2 pow 2 = e3 ==> e1 * (n * e2) pow 2 = e3 * n pow 2`) THEN
  REWRITE_TAC[GSYM CEXP_ADD; GSYM CEXP_N; CEXP_EQ] THEN
  REWRITE_TAC[COMPLEX_RING
   `ii * t + Cx(&2) * ii * z = ii * u + v * ii <=>
    t + Cx(&2) * z - u = v`] THEN
  REWRITE_TAC[GSYM CX_MUL; GSYM CX_SUB; GSYM CX_ADD; CX_INJ] THEN
  EXPAND_TAC "t" THEN
  REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_ADD_LDISTRIB] THEN
  REWRITE_TAC[REAL_ARITH `&2 * a = &2 * b <=> a = b`] THEN
  ONCE_REWRITE_TAC[REAL_ARITH `a + (b - c):real = a - (c - b)`] THEN
  ASM_SIMP_TAC[REAL_SUB_ARG; COMPLEX_SUB_0] THEN COND_CASES_TAC THENL
   [EXISTS_TAC `&0`; EXISTS_TAC `&2`] THEN
  SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;

let ROTATE_EQ_REFLECT_PI_LEMMA = prove
 (`!a b z t.
        ~(b = a) /\ &2 * Arg((b - a) / (z - a)) = &4 * pi + t
        ==> rotate_about a t z = reflect_across (a,b) z`,
  REWRITE_TAC[REAL_ARITH `a = &4 * pi + t <=> t = a + --(&4 * pi)`] THEN
  REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
  MATCH_MP_TAC EQ_TRANS THEN
  EXISTS_TAC `rotate_about a (&2 * Arg((b - a) / (z - a))) z` THEN
  CONJ_TAC THENL
   [ALL_TAC; MATCH_MP_TAC ROTATE_EQ_REFLECT_LEMMA THEN ASM_REWRITE_TAC[]] THEN
  REWRITE_TAC[rotate_about; ROTATE2D_ADD] THEN
  AP_TERM_TAC THEN AP_TERM_TAC THEN
  REWRITE_TAC[ROTATE2D_COMPLEX] THEN
  REWRITE_TAC[EULER; RE_MUL_II; IM_MUL_II; RE_CX; IM_CX; COS_NEG; SIN_NEG] THEN
  REWRITE_TAC[SIN_NPI; COS_NPI; REAL_EXP_NEG; REAL_EXP_0; CX_NEG] THEN
  REWRITE_TAC[COMPLEX_NEG_0; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
  CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[COMPLEX_MUL_LID]);;

(* ------------------------------------------------------------------------- *)
(* Algebraic characterization of equilateral triangle.                       *)
(* ------------------------------------------------------------------------- *)

let EQUILATERAL_TRIANGLE_ALGEBRAIC = prove
 (`!A B C j.
        j pow 3 = Cx(&1) /\ ~(j = Cx(&1)) /\
        A + j * B + j pow 2 * C = Cx(&0)
        ==> dist(A,B) = dist(B,C) /\ dist(C,A) = dist(B,C)`,
  REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[dist] THEN
  SUBGOAL_THEN `C - A:complex = j * (B - C) /\ A - B = j pow 2 * (B - C)`
  (CONJUNCTS_THEN SUBST1_TAC) THENL
   [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_RING;
    ALL_TAC] THEN
  SUBGOAL_THEN `norm(j pow 3) = &1` MP_TAC THENL
   [ASM_REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM];
    REWRITE_TAC[COMPLEX_NORM_POW; REAL_POW_EQ_1; ARITH; REAL_ABS_NORM] THEN
    DISCH_THEN(ASSUME_TAC o CONJUNCT1)] THEN
  ASM_REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_POW] THEN
  REAL_ARITH_TAC);;

(* ------------------------------------------------------------------------- *)
(* The main algebraic lemma.                                                 *)
(* ------------------------------------------------------------------------- *)

let AFFINE_GROUP_ITER_3 = prove
 (`ITER 3 (\z. a * z + b) = (\z. a pow 3 * z + b * (Cx(&1) + a + a pow 2))`,
  REWRITE_TAC[TOP_DEPTH_CONV num_CONV `3`] THEN
  REWRITE_TAC[ITER; FUN_EQ_THM] THEN CONV_TAC NUM_REDUCE_CONV THEN
  CONV_TAC COMPLEX_RING);;

let AFFINE_GROUP_COMPOSE = prove
 (`(\z. a1 * z + b1) o (\z. a2 * z + b2) =
   (\z. (a1 * a2) * z + (b1 + a1 * b2))`,
  REWRITE_TAC[o_THM; FUN_EQ_THM] THEN CONV_TAC COMPLEX_RING);;

let AFFINE_GROUP_I = prove
 (`I = (\z. Cx(&1) * z + Cx(&0))`,
  REWRITE_TAC[I_THM; FUN_EQ_THM] THEN CONV_TAC COMPLEX_RING);;

let AFFINE_GROUP_EQ = prove
 (`!a b a' b. (\z. a * z + b) = (\z. a' * z + b') <=> a = a' /\ b = b'`,
  REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[FUN_EQ_THM] THEN DISCH_TAC THEN
  FIRST_ASSUM(MP_TAC o SPEC `Cx(&0)`) THEN
  FIRST_X_ASSUM(MP_TAC o SPEC `Cx(&1)`) THEN
  CONV_TAC COMPLEX_RING);;

let AFFINE_GROUP_ROTATE_ABOUT = prove
 (`!a t. rotate_about a t =
         (\z. cexp(ii * Cx(t)) * z + (Cx(&1) - cexp(ii * Cx(t))) * a)`,
  REWRITE_TAC[rotate_about; FUN_EQ_THM; ROTATE2D_COMPLEX] THEN
  CONV_TAC COMPLEX_RING);;

let ALGEBRAIC_LEMMA = prove
 (`!a1 a2 a3 b1 b2 b3 A B C.
        (\z. a3 * z + b3) ((\z. a1 * z + b1) B) = B /\
        (\z. a1 * z + b1) ((\z. a2 * z + b2) C) = C /\
        (\z. a2 * z + b2) ((\z. a3 * z + b3) A) = A /\
        ITER 3 (\z. a1 * z + b1) o ITER 3 (\z. a2 * z + b2) o
        ITER 3 (\z. a3 * z + b3) = I /\
        ~(a1 * a2 * a3 = Cx(&1)) /\
        ~(a1 * a2 = Cx(&1)) /\
        ~(a2 * a3 = Cx(&1)) /\
        ~(a3 * a1 = Cx(&1))
        ==> (a1 * a2 * a3) pow 3 = Cx (&1) /\
            ~(a1 * a2 * a3 = Cx (&1)) /\
            C + (a1 * a2 * a3) * A + (a1 * a2 * a3) pow 2 * B = Cx(&0)`,
  REWRITE_TAC[AFFINE_GROUP_ITER_3; AFFINE_GROUP_COMPOSE; AFFINE_GROUP_I;
              AFFINE_GROUP_EQ] THEN
  REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
   [REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_RING; ALL_TAC] THEN
  SUBGOAL_THEN
   `(a1 * a2 * a3) * a1 pow 2 * a2 *
    (a1 - a1 * a2 * a3) * (a2 - a1 * a2 * a3) * (a3 - a1 * a2 * a3) *
    (C + (a1 * a2 * a3) * A + (a1 * a2 * a3) pow 2 * B) = Cx(&0)`
  MP_TAC THENL
   [REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (COMPLEX_FIELD
     `a3 * (a1 * B + b1) + b3 = B
      ==> ~(a1 * a3 = Cx(&1))
          ==> B = (a3 * b1 + b3) / (Cx(&1) - a1 * a3)`))) THEN
    REPEAT(ANTS_TAC THENL
     [ASM_MESON_TAC[COMPLEX_MUL_SYM]; DISCH_THEN SUBST1_TAC]) THEN
    FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (COMPLEX_RING
     `s = Cx(&0) ==> s + t = Cx(&0) ==> t = Cx(&0)`));
    REWRITE_TAC[COMPLEX_ENTIRE]] THEN
  REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD);;

(* ------------------------------------------------------------------------- *)
(* A tactic to avoid some duplication over cyclic permutations.              *)
(* ------------------------------------------------------------------------- *)

let CYCLIC_PERM_SUBGOAL_THEN =
  let lemma = MESON[]
   `(!A B C P Q R a b c g1 g2 g3.
       Ant A B C P Q R a b c g1 g2 g3 ==> Cns A B C P Q R a b c g1 g2 g3)
    ==> (!A B C P Q R a b c g1 g2 g3.
           Ant A B C P Q R a b c g1 g2 g3
           ==> Ant B C A Q R P b c a g2 g3 g1)
        ==> (!A B C P Q R a b c g1 g2 g3.
                   Ant A B C P Q R a b c g1 g2 g3
                   ==> Cns A B C P Q R a b c g1 g2 g3 /\
                       Cns B C A Q R P b c a g2 g3 g1 /\
                       Cns C A B R P Q c a b g3 g1 g2)`
  and vars =
   [`A:complex`; `B:complex`; `C:complex`;
    `P:complex`; `Q:complex`; `R:complex`;
    `a:real`; `b:real`; `c:real`;
    `g1:complex->complex`; `g2:complex->complex`; `g3:complex->complex`] in
  fun t ttac (asl,w) ->
      let asm = list_mk_conj (map (concl o snd) (rev asl)) in
      let gnw = list_mk_forall(vars,mk_imp(asm,t)) in
      let th1 = MATCH_MP lemma (ASSUME gnw) in
      let tm1 = fst(dest_imp(concl th1)) in
      let th2 = REWRITE_CONV[INSERT_AC; CONJ_ACI; ANGLE_SYM; EQ_SYM_EQ] tm1 in
      let th3 = DISCH_ALL(MP th1 (EQT_ELIM th2)) in
      (MP_TAC th3 THEN ANTS_TAC THENL
        [POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT GEN_TAC THEN STRIP_TAC;
         DISCH_THEN(MP_TAC o SPEC_ALL) THEN ANTS_TAC THENL
          [REPEAT CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
           DISCH_THEN(CONJUNCTS_THEN2 ttac MP_TAC) THEN
           DISCH_THEN(CONJUNCTS_THEN ttac)]]) (asl,w);;

(* ------------------------------------------------------------------------- *)
(* Morley's theorem a la Connes.                                             *)
(* ------------------------------------------------------------------------- *)

let MORLEY = prove
 (`!A B C:real^2 P Q R.
     ~collinear{A,B,C} /\ {P,Q,R} SUBSET convex hull {A,B,C} /\
     angle(A,B,R) = angle(A,B,C) / &3 /\
     angle(B,A,R) = angle(B,A,C) / &3 /\
     angle(B,C,P) = angle(B,C,A) / &3 /\
     angle(C,B,P) = angle(C,B,A) / &3 /\
     angle(C,A,Q) = angle(C,A,B) / &3 /\
     angle(A,C,Q) = angle(A,C,B) / &3
     ==> dist(R,P) = dist(P,Q) /\ dist(Q,R) = dist(P,Q)`,
  MATCH_MP_TAC(MESON[]
    `(!A B C. &0 <= Im((C - A) / (B - A)) \/
              &0 <= Im((B - A) / (C - A))) /\
     (!A B C. Property A B C ==> Property A C B) /\
     (!A B C. &0 <= Im((C - A) / (B - A)) ==> Property A B C)
     ==> !A B C. Property A B C`) THEN
  REPEAT CONJ_TAC THENL
   [REPEAT GEN_TAC THEN
    GEN_REWRITE_TAC RAND_CONV [GSYM IM_COMPLEX_INV_LE_0] THEN
    REWRITE_TAC[COMPLEX_INV_DIV] THEN REAL_ARITH_TAC;
    REPEAT GEN_TAC THEN DISCH_TAC THEN
    MAP_EVERY X_GEN_TAC [`P:real^2`; `Q:real^2`; `R:real^2`] THEN
    REWRITE_TAC[ANGLE_SYM; DIST_SYM; INSERT_AC] THEN
    FIRST_X_ASSUM(MP_TAC o SPECL [`P:real^2`; `R:real^2`; `Q:real^2`]) THEN
    REWRITE_TAC[ANGLE_SYM; DIST_SYM; INSERT_AC] THEN MESON_TAC[];
    ALL_TAC] THEN
  REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
  MAP_EVERY (fun t ->
    ASM_CASES_TAC t THENL [ASM_REWRITE_TAC[COLLINEAR_2; INSERT_AC]; ALL_TAC])
   [`A:real^2 = B`; `A:real^2 = C`; `B:real^2 = C`] THEN
  STRIP_TAC THEN
  FIRST_ASSUM(fun th ->
       let th' = GEN_REWRITE_RULE I [REAL_LE_IM_DIV_CYCLIC] th in
       let th'' = GEN_REWRITE_RULE I [REAL_LE_IM_DIV_CYCLIC] th' in
       ASSUME_TAC th' THEN ASSUME_TAC th'') THEN
  ABBREV_TAC `a = angle(C:real^2,A,B) / &3` THEN
  ABBREV_TAC `b = angle(A:real^2,B,C) / &3` THEN
  ABBREV_TAC `c = angle(B:real^2,C,A) / &3` THEN
  ABBREV_TAC `g1 = rotate_about A (&2 * a)` THEN
  ABBREV_TAC `g2 = rotate_about B (&2 * b)` THEN
  ABBREV_TAC `g3 = rotate_about C (&2 * c)` THEN
  CYCLIC_PERM_SUBGOAL_THEN
    `ITER 3 g1 o ITER 3 g2 o ITER 3 g3 = (I:real^2->real^2)`
  ASSUME_TAC THENL
   [MAP_EVERY EXPAND_TAC ["g1"; "g2"; "g3"] THEN
    REWRITE_TAC[ITER_ROTATE_ABOUT] THEN
    MAP_EVERY EXPAND_TAC ["a"; "b"; "c"] THEN
    REWRITE_TAC[REAL_ARITH `&3 * &2 * a / &3 = &2 * a`] THEN
    ASM_SIMP_TAC[GSYM REFLECT_ACROSS_COMPOSE_ANGLE] THEN
    REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM; REFLECT_ACROSS_SYM] THEN
    ASM_SIMP_TAC[REWRITE_RULE[FUN_EQ_THM; I_THM; o_THM]
                 REFLECT_ACROSS_COMPOSE_INVOLUTION];
    ALL_TAC] THEN
  CYCLIC_PERM_SUBGOAL_THEN `&0 <= Im((P - B) / (C - B))`
  STRIP_ASSUME_TAC THENL
   [FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INSERT_SUBSET]) THEN
    REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
    REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN
    REWRITE_TAC[CONVEX_HULL_3; IN_ELIM_THM] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    SIMP_TAC[VECTOR_ARITH `(u % A + v % B + w % C) - B:real^N =
                 u % (A - B) + w % (C - B) + ((u + v + w) - &1) % B`] THEN
    ASM_REWRITE_TAC[REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN
    REWRITE_TAC[complex_div; COMPLEX_ADD_RDISTRIB; IM_ADD; COMPLEX_CMUL] THEN
    REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC] THEN REWRITE_TAC[GSYM complex_div] THEN
    ASM_SIMP_TAC[IM_MUL_CX; COMPLEX_DIV_REFL; COMPLEX_SUB_0; IM_CX] THEN
    SIMP_TAC[REAL_MUL_RZERO; REAL_ADD_RID] THEN MATCH_MP_TAC REAL_LE_MUL THEN
    ASM_REAL_ARITH_TAC;
    ALL_TAC] THEN
  CYCLIC_PERM_SUBGOAL_THEN `&0 <= Im((B - C) / (P - C))`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[GSYM IM_COMPLEX_INV_LE_0; COMPLEX_INV_DIV] THEN
    FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INSERT_SUBSET]) THEN
    REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
    REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN
    REWRITE_TAC[CONVEX_HULL_3; IN_ELIM_THM] THEN
    STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
    SIMP_TAC[VECTOR_ARITH `(u % A + v % B + w % C) - C:real^N =
                   v % (B - C) + u % (A - C) + ((u + v + w) - &1) % C`] THEN
    ASM_REWRITE_TAC[REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN
    REWRITE_TAC[complex_div; COMPLEX_ADD_RDISTRIB; IM_ADD; COMPLEX_CMUL] THEN
    REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC] THEN REWRITE_TAC[GSYM complex_div] THEN
    ASM_SIMP_TAC[IM_MUL_CX; COMPLEX_DIV_REFL; COMPLEX_SUB_0; IM_CX] THEN
    SIMP_TAC[REAL_MUL_RZERO; REAL_ADD_LID] THEN
    MATCH_MP_TAC(REAL_ARITH `&0 <= u * --a ==> u * a <= &0`) THEN
    MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN
    REWRITE_TAC[REAL_ARITH `&0 <= --x <=> x <= &0`] THEN
    ASM_REWRITE_TAC[GSYM IM_COMPLEX_INV_GE_0; COMPLEX_INV_DIV];
    ALL_TAC] THEN
  CYCLIC_PERM_SUBGOAL_THEN
   `~(P:real^2 = B) /\ ~(P = C)`
  STRIP_ASSUME_TAC THENL
   [SUBGOAL_THEN `!x y z. ~(angle(x:real^2,y,z) / &3 = pi / &2)`
     (fun th -> ASM_MESON_TAC[th; ANGLE_REFL]) THEN
    REPEAT GEN_TAC THEN
    MATCH_MP_TAC(REAL_ARITH
     `a <= pi /\ &0 < pi ==> ~(a / &3 = pi / &2)`) THEN
    REWRITE_TAC[ANGLE_RANGE; PI_POS];
    ALL_TAC] THEN
  CYCLIC_PERM_SUBGOAL_THEN
   `(g3:complex->complex)(g1(Q)) = Q`
  ASSUME_TAC THENL
   [MAP_EVERY EXPAND_TAC ["g1"; "g3"] THEN
    ONCE_REWRITE_TAC[ROTATE_ABOUT_INVERT] THEN
    MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `reflect_across(A,C) Q` THEN
    CONJ_TAC THENL
     [MATCH_MP_TAC ROTATE_EQ_REFLECT_LEMMA THEN
      ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN
      GEN_REWRITE_TAC RAND_CONV [SYM(ASSUME `angle(C:real^2,A,Q) = a`)] THEN
      REWRITE_TAC[angle] THEN ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN
      ASM_SIMP_TAC[VECTOR_ANGLE_ARG; COMPLEX_SUB_0];
      ALL_TAC] THEN
    CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[REFLECT_ACROSS_SYM] THEN
    MATCH_MP_TAC ROTATE_EQ_REFLECT_PI_LEMMA THEN
    ASM_REWRITE_TAC[GSYM REAL_MUL_RNEG] THEN
    REWRITE_TAC[REAL_ARITH `&2 * a = &4 * pi + &2 * --c <=>
                            a = &2 * pi - c`] THEN
    GEN_REWRITE_TAC (RAND_CONV o RAND_CONV)
     [SYM(ASSUME `angle(B:real^2,C,A) / &3 = c`)] THEN
    ONCE_REWRITE_TAC[ANGLE_SYM] THEN FIRST_ASSUM(fun th ->
     GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [SYM th]) THEN
    REWRITE_TAC[angle] THEN
    ASM_SIMP_TAC[VECTOR_ANGLE_ARG; COMPLEX_SUB_0] THEN
    GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM COMPLEX_INV_DIV] THEN
    MATCH_MP_TAC ARG_INV THEN REWRITE_TAC[GSYM ARG_EQ_0] THEN
    DISCH_TAC THEN
    SUBGOAL_THEN `angle(A:real^2,C,Q) = &0` MP_TAC THENL
     [REWRITE_TAC[angle] THEN ASM_SIMP_TAC[VECTOR_ANGLE_ARG; COMPLEX_SUB_0];
      ASM_REWRITE_TAC[REAL_ARITH `a / &3 = &0 <=> a = &0`]] THEN
    ASM_MESON_TAC[COLLINEAR_ANGLE; ANGLE_SYM; INSERT_AC];
    ALL_TAC] THEN
  REPEAT(FIRST_X_ASSUM(MP_TAC o
    GEN_REWRITE_RULE LAND_CONV [AFFINE_GROUP_ROTATE_ABOUT])) THEN
  CYCLIC_PERM_SUBGOAL_THEN
   `~(cexp(ii * Cx(&2 * a)) * cexp(ii * Cx(&2 * b)) = Cx(&1)) /\
    ~(cexp(ii * Cx(&2 * a)) * cexp(ii * Cx(&2 * b)) *
      cexp(ii * Cx(&2 * c)) = Cx(&1))`
  STRIP_ASSUME_TAC THENL
   [REWRITE_TAC[GSYM CEXP_ADD; GSYM COMPLEX_ADD_LDISTRIB; GSYM CX_ADD] THEN
    MP_TAC(REAL_ARITH
     `&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 < pi /\
      &3 * a + &3 * b + &3 * c = pi /\ ~(&3 * c = pi)
      ==> (&0 < &2 * a + &2 * b /\ &2 * a + &2 * b < &2 * pi) /\
          (&0 < &2 * a + &2 * b + &2 * c /\
           &2 * a + &2 * b + &2 * c < &2 * pi)`) THEN
    ANTS_TAC THENL
     [MAP_EVERY EXPAND_TAC ["a"; "b"; "c"] THEN
      REWRITE_TAC[REAL_ARITH `&3 * x / &3 = x`; PI_POS] THEN
      SIMP_TAC[ANGLE_RANGE; REAL_LE_DIV; REAL_POS] THEN CONJ_TAC THENL
       [ASM_MESON_TAC[TRIANGLE_ANGLE_SUM; ADD_AC; ANGLE_SYM];
        ASM_MESON_TAC[COLLINEAR_ANGLE; ANGLE_SYM; INSERT_AC]];
      MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN
      REWRITE_TAC[CEXP_II_NE_1; GSYM CX_ADD]];
    ALL_TAC] THEN
  MAP_EVERY ABBREV_TAC
   [`a1 = cexp(ii * Cx(&2 * a))`;
    `a2 = cexp(ii * Cx(&2 * b))`;
    `a3 = cexp(ii * Cx(&2 * c))`;
    `b1 = (Cx (&1) - a1) * A`;
    `b2 = (Cx (&1) - a2) * B`;
    `b3 = (Cx (&1) - a3) * C`] THEN
  REPEAT DISCH_TAC THEN MATCH_MP_TAC EQUILATERAL_TRIANGLE_ALGEBRAIC THEN
  EXISTS_TAC `a1 * a2 * a3:complex` THEN
  MATCH_MP_TAC ALGEBRAIC_LEMMA THEN
  MAP_EVERY EXISTS_TAC [`b1:complex`; `b2:complex`; `b3:complex`] THEN
  PURE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[]);;