Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 22,314 Bytes
4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
(* ========================================================================= *)
(* Formalization of Alain Connes's paper "A new proof of Morley's theorem". *)
(* ========================================================================= *)
needs "Library/iter.ml";;
needs "Multivariate/geom.ml";;
(* ------------------------------------------------------------------------- *)
(* Reflection about the line[0,e^{i t}] *)
(* ------------------------------------------------------------------------- *)
let reflect2d = new_definition
`reflect2d t = rotate2d t o cnj o rotate2d(--t)`;;
let REFLECT2D_COMPOSE = prove
(`!s t. reflect2d s o reflect2d t = rotate2d (&2 * (s - t))`,
REWRITE_TAC[FUN_EQ_THM; o_THM; reflect2d] THEN REPEAT GEN_TAC THEN
REWRITE_TAC[ROTATE2D_COMPLEX; CNJ_CEXP; CNJ_MUL; CNJ_CNJ] THEN
REWRITE_TAC[CNJ_II; CNJ_CX; CNJ_NEG; COMPLEX_MUL_ASSOC] THEN
AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[GSYM CEXP_ADD] THEN
REWRITE_TAC[CX_NEG; COMPLEX_MUL_LNEG; COMPLEX_MUL_RNEG; CX_MUL] THEN
AP_TERM_TAC THEN SIMPLE_COMPLEX_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* Rotation about point "a" by angle "t". *)
(* ------------------------------------------------------------------------- *)
let rotate_about = new_definition
`rotate_about a t x = a + rotate2d t (x - a)`;;
(* ------------------------------------------------------------------------- *)
(* Reflection across line (a,b). *)
(* ------------------------------------------------------------------------- *)
let reflect_across = new_definition
`reflect_across (a,b) x = a + reflect2d (Arg(b - a)) (x - a)`;;
let REFLECT_ACROSS_COMPOSE = prove
(`!a b c.
~(b = a) /\ ~(c = a)
==> reflect_across(a,b) o reflect_across(a,c) =
rotate_about a (&2 * Arg((b - a) / (c - a)))`,
REPEAT STRIP_TAC THEN
REWRITE_TAC[reflect_across; FUN_EQ_THM; o_THM; rotate_about] THEN
REWRITE_TAC[VECTOR_ARITH `(a + x) - a:real^N = x`] THEN
REWRITE_TAC[REWRITE_RULE[FUN_EQ_THM; o_THM] REFLECT2D_COMPOSE] THEN
X_GEN_TAC `x:complex` THEN AP_TERM_TAC THEN
REWRITE_TAC[REAL_MUL_2; ROTATE2D_ADD] THEN
ASM_SIMP_TAC[ROTATE2D_SUB_ARG; COMPLEX_SUB_0]);;
let REFLECT_ACROSS_COMPOSE_ANGLE = prove
(`!a b c.
~(b = a) /\ ~(c = a) /\ &0 <= Im((c - a) / (b - a))
==> reflect_across(a,c) o reflect_across(a,b) =
rotate_about a (&2 * angle(c,a,b))`,
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[ANGLE_SYM] THEN
ASM_SIMP_TAC[REFLECT_ACROSS_COMPOSE] THEN
ASM_SIMP_TAC[angle; VECTOR_ANGLE_ARG; COMPLEX_SUB_0;
REAL_SUB_ARG; ARG_LE_PI]);;
let REFLECT_ACROSS_COMPOSE_INVOLUTION = prove
(`!a b. ~(a = b) ==> reflect_across(a,b) o reflect_across(a,b) = I`,
SIMP_TAC[REFLECT_ACROSS_COMPOSE; COMPLEX_DIV_REFL; COMPLEX_SUB_0] THEN
REWRITE_TAC[ARG_NUM; REAL_MUL_RZERO; rotate_about; FUN_EQ_THM] THEN
REWRITE_TAC[ROTATE2D_ZERO; I_THM] THEN
REPEAT STRIP_TAC THEN VECTOR_ARITH_TAC);;
let REFLECT_ACROSS_SYM = prove
(`!a b. reflect_across(a,b) = reflect_across(b,a)`,
REPEAT GEN_TAC THEN
ASM_CASES_TAC `a:complex = b` THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[FUN_EQ_THM; reflect_across; reflect2d; o_THM] THEN
REWRITE_TAC[ROTATE2D_COMPLEX; CNJ_CEXP; CNJ_MUL; CNJ_CX; CNJ_II] THEN
REWRITE_TAC[CX_NEG; COMPLEX_RING `--ii * --z = ii * z`] THEN
SUBGOAL_THEN `cexp(ii * Cx(Arg(b - a))) = (b - a) / Cx(norm(b - a)) /\
cexp(ii * Cx(Arg(a - b))) = (a - b) / Cx(norm(a - b))`
(CONJUNCTS_THEN SUBST1_TAC) THENL
[CONJ_TAC THEN MATCH_MP_TAC(COMPLEX_FIELD
`~(a = Cx(&0)) /\ a * b = c ==> b = c / a`) THEN
ASM_REWRITE_TAC[GSYM ARG; CX_INJ; NORM_EQ_0; VECTOR_SUB_EQ];
REWRITE_TAC[COMPLEX_RING `a * a * cnj b = a pow 2 * cnj b`] THEN
SUBST1_TAC(ISPECL [`a:complex`; `b:complex`] NORM_SUB) THEN
X_GEN_TAC `z:complex` THEN REWRITE_TAC[complex_div] THEN
MATCH_MP_TAC(COMPLEX_RING
`b - a = ((b - a) * n) pow 2 * (cnj za - cnj zb)
==> a + ((b - a) * n) pow 2 * cnj za =
b + ((a - b) * n) pow 2 * cnj zb`) THEN
REWRITE_TAC[CNJ_SUB; COMPLEX_RING `(z - a) - (z - b):complex = b - a`] THEN
MATCH_MP_TAC(COMPLEX_FIELD
`(b' - a') * (b - a) = n pow 2 /\ ~(n = Cx(&0))
==> b - a = ((b - a) * inv n) pow 2 * (b' - a')`) THEN
REWRITE_TAC[GSYM CNJ_SUB; COMPLEX_MUL_CNJ; CX_INJ] THEN
ASM_REWRITE_TAC[COMPLEX_NORM_ZERO; COMPLEX_SUB_0]]);;
(* ------------------------------------------------------------------------- *)
(* Some additional lemmas. *)
(* ------------------------------------------------------------------------- *)
let ITER_ROTATE_ABOUT = prove
(`!n a t. ITER n (rotate_about a t) = rotate_about a (&n * t)`,
REWRITE_TAC[FUN_EQ_THM; rotate_about] THEN
REWRITE_TAC[VECTOR_ARITH `a + b:real^N = a + c <=> b = c`] THEN
INDUCT_TAC THEN REWRITE_TAC[ITER_ALT; REAL_MUL_LZERO; ROTATE2D_ZERO] THEN
REWRITE_TAC[VECTOR_ARITH `a + x - a:real^N = x`; GSYM REAL_OF_NUM_SUC] THEN
ASM_REWRITE_TAC[REAL_ADD_RDISTRIB; ROTATE2D_ADD] THEN
REPEAT GEN_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[rotate_about; REAL_MUL_LID] THEN VECTOR_ARITH_TAC);;
let REAL_LE_IM_DIV_CYCLIC = prove
(`!a b c. &0 <= Im ((c - a) / (b - a)) <=> &0 <= Im((a - b) / (c - b))`,
REWRITE_TAC[IM_COMPLEX_DIV_GE_0] THEN
REWRITE_TAC[complex_mul; IM; IM_SUB; RE_SUB; IM_CNJ; CNJ_SUB; RE_CNJ] THEN
REAL_ARITH_TAC);;
let ROTATE_ABOUT_INVERT = prove
(`rotate_about a t w = z <=> w = rotate_about a (--t) z`,
MATCH_MP_TAC(MESON[]
`(!x. f(g x) = x) /\ (!y. g(f y) = y)
==> (f x = y <=> x = g y)`) THEN
REWRITE_TAC[rotate_about; VECTOR_ADD_SUB; GSYM ROTATE2D_ADD] THEN
REWRITE_TAC[REAL_ADD_LINV; REAL_ADD_RINV] THEN
REWRITE_TAC[ROTATE2D_ZERO] THEN VECTOR_ARITH_TAC);;
let ROTATE_EQ_REFLECT_LEMMA = prove
(`!a b z t.
~(b = a) /\ &2 * Arg((b - a) / (z - a)) = t
==> rotate_about a t z = reflect_across (a,b) z`,
REPEAT STRIP_TAC THEN REWRITE_TAC[rotate_about; reflect_across] THEN
AP_TERM_TAC THEN REWRITE_TAC[ROTATE2D_COMPLEX; reflect2d; o_THM] THEN
REWRITE_TAC[CNJ_MUL; COMPLEX_MUL_ASSOC; CNJ_CEXP; CNJ_II] THEN
REWRITE_TAC[CNJ_CX; COMPLEX_MUL_LNEG; COMPLEX_MUL_RNEG; COMPLEX_NEG_NEG;
GSYM CEXP_ADD; CX_NEG] THEN
REWRITE_TAC[COMPLEX_RING `ii * a + ii * a = ii * Cx(&2) * a`] THEN
ASM_CASES_TAC `z:complex = a` THEN
ASM_REWRITE_TAC[CNJ_CX; COMPLEX_MUL_RZERO; COMPLEX_SUB_REFL] THEN
FIRST_ASSUM(MATCH_MP_TAC o MATCH_MP (COMPLEX_RING
`~(z = a)
==> c * (z - a) pow 2 = b * cnj (z - a) * (z - a)
==> c * (z - a) = b * cnj(z - a)`)) THEN
REWRITE_TAC[COMPLEX_MUL_CNJ] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV o LAND_CONV) [ARG] THEN
MATCH_MP_TAC(COMPLEX_RING
`(e1:complex) * e2 pow 2 = e3 ==> e1 * (n * e2) pow 2 = e3 * n pow 2`) THEN
REWRITE_TAC[GSYM CEXP_ADD; GSYM CEXP_N; CEXP_EQ] THEN
REWRITE_TAC[COMPLEX_RING
`ii * t + Cx(&2) * ii * z = ii * u + v * ii <=>
t + Cx(&2) * z - u = v`] THEN
REWRITE_TAC[GSYM CX_MUL; GSYM CX_SUB; GSYM CX_ADD; CX_INJ] THEN
EXPAND_TAC "t" THEN
REWRITE_TAC[GSYM REAL_SUB_LDISTRIB; GSYM REAL_ADD_LDISTRIB] THEN
REWRITE_TAC[REAL_ARITH `&2 * a = &2 * b <=> a = b`] THEN
ONCE_REWRITE_TAC[REAL_ARITH `a + (b - c):real = a - (c - b)`] THEN
ASM_SIMP_TAC[REAL_SUB_ARG; COMPLEX_SUB_0] THEN COND_CASES_TAC THENL
[EXISTS_TAC `&0`; EXISTS_TAC `&2`] THEN
SIMP_TAC[INTEGER_CLOSED] THEN REAL_ARITH_TAC);;
let ROTATE_EQ_REFLECT_PI_LEMMA = prove
(`!a b z t.
~(b = a) /\ &2 * Arg((b - a) / (z - a)) = &4 * pi + t
==> rotate_about a t z = reflect_across (a,b) z`,
REWRITE_TAC[REAL_ARITH `a = &4 * pi + t <=> t = a + --(&4 * pi)`] THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC EQ_TRANS THEN
EXISTS_TAC `rotate_about a (&2 * Arg((b - a) / (z - a))) z` THEN
CONJ_TAC THENL
[ALL_TAC; MATCH_MP_TAC ROTATE_EQ_REFLECT_LEMMA THEN ASM_REWRITE_TAC[]] THEN
REWRITE_TAC[rotate_about; ROTATE2D_ADD] THEN
AP_TERM_TAC THEN AP_TERM_TAC THEN
REWRITE_TAC[ROTATE2D_COMPLEX] THEN
REWRITE_TAC[EULER; RE_MUL_II; IM_MUL_II; RE_CX; IM_CX; COS_NEG; SIN_NEG] THEN
REWRITE_TAC[SIN_NPI; COS_NPI; REAL_EXP_NEG; REAL_EXP_0; CX_NEG] THEN
REWRITE_TAC[COMPLEX_NEG_0; COMPLEX_MUL_RZERO; COMPLEX_ADD_RID] THEN
CONV_TAC REAL_RAT_REDUCE_CONV THEN REWRITE_TAC[COMPLEX_MUL_LID]);;
(* ------------------------------------------------------------------------- *)
(* Algebraic characterization of equilateral triangle. *)
(* ------------------------------------------------------------------------- *)
let EQUILATERAL_TRIANGLE_ALGEBRAIC = prove
(`!A B C j.
j pow 3 = Cx(&1) /\ ~(j = Cx(&1)) /\
A + j * B + j pow 2 * C = Cx(&0)
==> dist(A,B) = dist(B,C) /\ dist(C,A) = dist(B,C)`,
REPEAT GEN_TAC THEN STRIP_TAC THEN REWRITE_TAC[dist] THEN
SUBGOAL_THEN `C - A:complex = j * (B - C) /\ A - B = j pow 2 * (B - C)`
(CONJUNCTS_THEN SUBST1_TAC) THENL
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_RING;
ALL_TAC] THEN
SUBGOAL_THEN `norm(j pow 3) = &1` MP_TAC THENL
[ASM_REWRITE_TAC[COMPLEX_NORM_CX; REAL_ABS_NUM];
REWRITE_TAC[COMPLEX_NORM_POW; REAL_POW_EQ_1; ARITH; REAL_ABS_NORM] THEN
DISCH_THEN(ASSUME_TAC o CONJUNCT1)] THEN
ASM_REWRITE_TAC[COMPLEX_NORM_MUL; COMPLEX_NORM_POW] THEN
REAL_ARITH_TAC);;
(* ------------------------------------------------------------------------- *)
(* The main algebraic lemma. *)
(* ------------------------------------------------------------------------- *)
let AFFINE_GROUP_ITER_3 = prove
(`ITER 3 (\z. a * z + b) = (\z. a pow 3 * z + b * (Cx(&1) + a + a pow 2))`,
REWRITE_TAC[TOP_DEPTH_CONV num_CONV `3`] THEN
REWRITE_TAC[ITER; FUN_EQ_THM] THEN CONV_TAC NUM_REDUCE_CONV THEN
CONV_TAC COMPLEX_RING);;
let AFFINE_GROUP_COMPOSE = prove
(`(\z. a1 * z + b1) o (\z. a2 * z + b2) =
(\z. (a1 * a2) * z + (b1 + a1 * b2))`,
REWRITE_TAC[o_THM; FUN_EQ_THM] THEN CONV_TAC COMPLEX_RING);;
let AFFINE_GROUP_I = prove
(`I = (\z. Cx(&1) * z + Cx(&0))`,
REWRITE_TAC[I_THM; FUN_EQ_THM] THEN CONV_TAC COMPLEX_RING);;
let AFFINE_GROUP_EQ = prove
(`!a b a' b. (\z. a * z + b) = (\z. a' * z + b') <=> a = a' /\ b = b'`,
REPEAT GEN_TAC THEN EQ_TAC THEN SIMP_TAC[FUN_EQ_THM] THEN DISCH_TAC THEN
FIRST_ASSUM(MP_TAC o SPEC `Cx(&0)`) THEN
FIRST_X_ASSUM(MP_TAC o SPEC `Cx(&1)`) THEN
CONV_TAC COMPLEX_RING);;
let AFFINE_GROUP_ROTATE_ABOUT = prove
(`!a t. rotate_about a t =
(\z. cexp(ii * Cx(t)) * z + (Cx(&1) - cexp(ii * Cx(t))) * a)`,
REWRITE_TAC[rotate_about; FUN_EQ_THM; ROTATE2D_COMPLEX] THEN
CONV_TAC COMPLEX_RING);;
let ALGEBRAIC_LEMMA = prove
(`!a1 a2 a3 b1 b2 b3 A B C.
(\z. a3 * z + b3) ((\z. a1 * z + b1) B) = B /\
(\z. a1 * z + b1) ((\z. a2 * z + b2) C) = C /\
(\z. a2 * z + b2) ((\z. a3 * z + b3) A) = A /\
ITER 3 (\z. a1 * z + b1) o ITER 3 (\z. a2 * z + b2) o
ITER 3 (\z. a3 * z + b3) = I /\
~(a1 * a2 * a3 = Cx(&1)) /\
~(a1 * a2 = Cx(&1)) /\
~(a2 * a3 = Cx(&1)) /\
~(a3 * a1 = Cx(&1))
==> (a1 * a2 * a3) pow 3 = Cx (&1) /\
~(a1 * a2 * a3 = Cx (&1)) /\
C + (a1 * a2 * a3) * A + (a1 * a2 * a3) pow 2 * B = Cx(&0)`,
REWRITE_TAC[AFFINE_GROUP_ITER_3; AFFINE_GROUP_COMPOSE; AFFINE_GROUP_I;
AFFINE_GROUP_EQ] THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_RING; ALL_TAC] THEN
SUBGOAL_THEN
`(a1 * a2 * a3) * a1 pow 2 * a2 *
(a1 - a1 * a2 * a3) * (a2 - a1 * a2 * a3) * (a3 - a1 * a2 * a3) *
(C + (a1 * a2 * a3) * A + (a1 * a2 * a3) pow 2 * B) = Cx(&0)`
MP_TAC THENL
[REPEAT(FIRST_X_ASSUM(MP_TAC o MATCH_MP (COMPLEX_FIELD
`a3 * (a1 * B + b1) + b3 = B
==> ~(a1 * a3 = Cx(&1))
==> B = (a3 * b1 + b3) / (Cx(&1) - a1 * a3)`))) THEN
REPEAT(ANTS_TAC THENL
[ASM_MESON_TAC[COMPLEX_MUL_SYM]; DISCH_THEN SUBST1_TAC]) THEN
FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (COMPLEX_RING
`s = Cx(&0) ==> s + t = Cx(&0) ==> t = Cx(&0)`));
REWRITE_TAC[COMPLEX_ENTIRE]] THEN
REPEAT(POP_ASSUM MP_TAC) THEN CONV_TAC COMPLEX_FIELD);;
(* ------------------------------------------------------------------------- *)
(* A tactic to avoid some duplication over cyclic permutations. *)
(* ------------------------------------------------------------------------- *)
let CYCLIC_PERM_SUBGOAL_THEN =
let lemma = MESON[]
`(!A B C P Q R a b c g1 g2 g3.
Ant A B C P Q R a b c g1 g2 g3 ==> Cns A B C P Q R a b c g1 g2 g3)
==> (!A B C P Q R a b c g1 g2 g3.
Ant A B C P Q R a b c g1 g2 g3
==> Ant B C A Q R P b c a g2 g3 g1)
==> (!A B C P Q R a b c g1 g2 g3.
Ant A B C P Q R a b c g1 g2 g3
==> Cns A B C P Q R a b c g1 g2 g3 /\
Cns B C A Q R P b c a g2 g3 g1 /\
Cns C A B R P Q c a b g3 g1 g2)`
and vars =
[`A:complex`; `B:complex`; `C:complex`;
`P:complex`; `Q:complex`; `R:complex`;
`a:real`; `b:real`; `c:real`;
`g1:complex->complex`; `g2:complex->complex`; `g3:complex->complex`] in
fun t ttac (asl,w) ->
let asm = list_mk_conj (map (concl o snd) (rev asl)) in
let gnw = list_mk_forall(vars,mk_imp(asm,t)) in
let th1 = MATCH_MP lemma (ASSUME gnw) in
let tm1 = fst(dest_imp(concl th1)) in
let th2 = REWRITE_CONV[INSERT_AC; CONJ_ACI; ANGLE_SYM; EQ_SYM_EQ] tm1 in
let th3 = DISCH_ALL(MP th1 (EQT_ELIM th2)) in
(MP_TAC th3 THEN ANTS_TAC THENL
[POP_ASSUM_LIST(K ALL_TAC) THEN REPEAT GEN_TAC THEN STRIP_TAC;
DISCH_THEN(MP_TAC o SPEC_ALL) THEN ANTS_TAC THENL
[REPEAT CONJ_TAC THEN FIRST_ASSUM ACCEPT_TAC;
DISCH_THEN(CONJUNCTS_THEN2 ttac MP_TAC) THEN
DISCH_THEN(CONJUNCTS_THEN ttac)]]) (asl,w);;
(* ------------------------------------------------------------------------- *)
(* Morley's theorem a la Connes. *)
(* ------------------------------------------------------------------------- *)
let MORLEY = prove
(`!A B C:real^2 P Q R.
~collinear{A,B,C} /\ {P,Q,R} SUBSET convex hull {A,B,C} /\
angle(A,B,R) = angle(A,B,C) / &3 /\
angle(B,A,R) = angle(B,A,C) / &3 /\
angle(B,C,P) = angle(B,C,A) / &3 /\
angle(C,B,P) = angle(C,B,A) / &3 /\
angle(C,A,Q) = angle(C,A,B) / &3 /\
angle(A,C,Q) = angle(A,C,B) / &3
==> dist(R,P) = dist(P,Q) /\ dist(Q,R) = dist(P,Q)`,
MATCH_MP_TAC(MESON[]
`(!A B C. &0 <= Im((C - A) / (B - A)) \/
&0 <= Im((B - A) / (C - A))) /\
(!A B C. Property A B C ==> Property A C B) /\
(!A B C. &0 <= Im((C - A) / (B - A)) ==> Property A B C)
==> !A B C. Property A B C`) THEN
REPEAT CONJ_TAC THENL
[REPEAT GEN_TAC THEN
GEN_REWRITE_TAC RAND_CONV [GSYM IM_COMPLEX_INV_LE_0] THEN
REWRITE_TAC[COMPLEX_INV_DIV] THEN REAL_ARITH_TAC;
REPEAT GEN_TAC THEN DISCH_TAC THEN
MAP_EVERY X_GEN_TAC [`P:real^2`; `Q:real^2`; `R:real^2`] THEN
REWRITE_TAC[ANGLE_SYM; DIST_SYM; INSERT_AC] THEN
FIRST_X_ASSUM(MP_TAC o SPECL [`P:real^2`; `R:real^2`; `Q:real^2`]) THEN
REWRITE_TAC[ANGLE_SYM; DIST_SYM; INSERT_AC] THEN MESON_TAC[];
ALL_TAC] THEN
REPEAT GEN_TAC THEN DISCH_TAC THEN REPEAT GEN_TAC THEN
MAP_EVERY (fun t ->
ASM_CASES_TAC t THENL [ASM_REWRITE_TAC[COLLINEAR_2; INSERT_AC]; ALL_TAC])
[`A:real^2 = B`; `A:real^2 = C`; `B:real^2 = C`] THEN
STRIP_TAC THEN
FIRST_ASSUM(fun th ->
let th' = GEN_REWRITE_RULE I [REAL_LE_IM_DIV_CYCLIC] th in
let th'' = GEN_REWRITE_RULE I [REAL_LE_IM_DIV_CYCLIC] th' in
ASSUME_TAC th' THEN ASSUME_TAC th'') THEN
ABBREV_TAC `a = angle(C:real^2,A,B) / &3` THEN
ABBREV_TAC `b = angle(A:real^2,B,C) / &3` THEN
ABBREV_TAC `c = angle(B:real^2,C,A) / &3` THEN
ABBREV_TAC `g1 = rotate_about A (&2 * a)` THEN
ABBREV_TAC `g2 = rotate_about B (&2 * b)` THEN
ABBREV_TAC `g3 = rotate_about C (&2 * c)` THEN
CYCLIC_PERM_SUBGOAL_THEN
`ITER 3 g1 o ITER 3 g2 o ITER 3 g3 = (I:real^2->real^2)`
ASSUME_TAC THENL
[MAP_EVERY EXPAND_TAC ["g1"; "g2"; "g3"] THEN
REWRITE_TAC[ITER_ROTATE_ABOUT] THEN
MAP_EVERY EXPAND_TAC ["a"; "b"; "c"] THEN
REWRITE_TAC[REAL_ARITH `&3 * &2 * a / &3 = &2 * a`] THEN
ASM_SIMP_TAC[GSYM REFLECT_ACROSS_COMPOSE_ANGLE] THEN
REWRITE_TAC[FUN_EQ_THM; o_THM; I_THM; REFLECT_ACROSS_SYM] THEN
ASM_SIMP_TAC[REWRITE_RULE[FUN_EQ_THM; I_THM; o_THM]
REFLECT_ACROSS_COMPOSE_INVOLUTION];
ALL_TAC] THEN
CYCLIC_PERM_SUBGOAL_THEN `&0 <= Im((P - B) / (C - B))`
STRIP_ASSUME_TAC THENL
[FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INSERT_SUBSET]) THEN
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN
REWRITE_TAC[CONVEX_HULL_3; IN_ELIM_THM] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[VECTOR_ARITH `(u % A + v % B + w % C) - B:real^N =
u % (A - B) + w % (C - B) + ((u + v + w) - &1) % B`] THEN
ASM_REWRITE_TAC[REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN
REWRITE_TAC[complex_div; COMPLEX_ADD_RDISTRIB; IM_ADD; COMPLEX_CMUL] THEN
REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC] THEN REWRITE_TAC[GSYM complex_div] THEN
ASM_SIMP_TAC[IM_MUL_CX; COMPLEX_DIV_REFL; COMPLEX_SUB_0; IM_CX] THEN
SIMP_TAC[REAL_MUL_RZERO; REAL_ADD_RID] THEN MATCH_MP_TAC REAL_LE_MUL THEN
ASM_REAL_ARITH_TAC;
ALL_TAC] THEN
CYCLIC_PERM_SUBGOAL_THEN `&0 <= Im((B - C) / (P - C))`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[GSYM IM_COMPLEX_INV_LE_0; COMPLEX_INV_DIV] THEN
FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [INSERT_SUBSET]) THEN
REWRITE_TAC[INSERT_SUBSET; EMPTY_SUBSET] THEN
REPEAT(MATCH_MP_TAC MONO_AND THEN CONJ_TAC) THEN
REWRITE_TAC[CONVEX_HULL_3; IN_ELIM_THM] THEN
STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
SIMP_TAC[VECTOR_ARITH `(u % A + v % B + w % C) - C:real^N =
v % (B - C) + u % (A - C) + ((u + v + w) - &1) % C`] THEN
ASM_REWRITE_TAC[REAL_SUB_REFL; VECTOR_MUL_LZERO; VECTOR_ADD_RID] THEN
REWRITE_TAC[complex_div; COMPLEX_ADD_RDISTRIB; IM_ADD; COMPLEX_CMUL] THEN
REWRITE_TAC[GSYM COMPLEX_MUL_ASSOC] THEN REWRITE_TAC[GSYM complex_div] THEN
ASM_SIMP_TAC[IM_MUL_CX; COMPLEX_DIV_REFL; COMPLEX_SUB_0; IM_CX] THEN
SIMP_TAC[REAL_MUL_RZERO; REAL_ADD_LID] THEN
MATCH_MP_TAC(REAL_ARITH `&0 <= u * --a ==> u * a <= &0`) THEN
MATCH_MP_TAC REAL_LE_MUL THEN ASM_REWRITE_TAC[] THEN
REWRITE_TAC[REAL_ARITH `&0 <= --x <=> x <= &0`] THEN
ASM_REWRITE_TAC[GSYM IM_COMPLEX_INV_GE_0; COMPLEX_INV_DIV];
ALL_TAC] THEN
CYCLIC_PERM_SUBGOAL_THEN
`~(P:real^2 = B) /\ ~(P = C)`
STRIP_ASSUME_TAC THENL
[SUBGOAL_THEN `!x y z. ~(angle(x:real^2,y,z) / &3 = pi / &2)`
(fun th -> ASM_MESON_TAC[th; ANGLE_REFL]) THEN
REPEAT GEN_TAC THEN
MATCH_MP_TAC(REAL_ARITH
`a <= pi /\ &0 < pi ==> ~(a / &3 = pi / &2)`) THEN
REWRITE_TAC[ANGLE_RANGE; PI_POS];
ALL_TAC] THEN
CYCLIC_PERM_SUBGOAL_THEN
`(g3:complex->complex)(g1(Q)) = Q`
ASSUME_TAC THENL
[MAP_EVERY EXPAND_TAC ["g1"; "g3"] THEN
ONCE_REWRITE_TAC[ROTATE_ABOUT_INVERT] THEN
MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `reflect_across(A,C) Q` THEN
CONJ_TAC THENL
[MATCH_MP_TAC ROTATE_EQ_REFLECT_LEMMA THEN
ASM_REWRITE_TAC[] THEN AP_TERM_TAC THEN
GEN_REWRITE_TAC RAND_CONV [SYM(ASSUME `angle(C:real^2,A,Q) = a`)] THEN
REWRITE_TAC[angle] THEN ONCE_REWRITE_TAC[VECTOR_ANGLE_SYM] THEN
ASM_SIMP_TAC[VECTOR_ANGLE_ARG; COMPLEX_SUB_0];
ALL_TAC] THEN
CONV_TAC SYM_CONV THEN ONCE_REWRITE_TAC[REFLECT_ACROSS_SYM] THEN
MATCH_MP_TAC ROTATE_EQ_REFLECT_PI_LEMMA THEN
ASM_REWRITE_TAC[GSYM REAL_MUL_RNEG] THEN
REWRITE_TAC[REAL_ARITH `&2 * a = &4 * pi + &2 * --c <=>
a = &2 * pi - c`] THEN
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV)
[SYM(ASSUME `angle(B:real^2,C,A) / &3 = c`)] THEN
ONCE_REWRITE_TAC[ANGLE_SYM] THEN FIRST_ASSUM(fun th ->
GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [SYM th]) THEN
REWRITE_TAC[angle] THEN
ASM_SIMP_TAC[VECTOR_ANGLE_ARG; COMPLEX_SUB_0] THEN
GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM COMPLEX_INV_DIV] THEN
MATCH_MP_TAC ARG_INV THEN REWRITE_TAC[GSYM ARG_EQ_0] THEN
DISCH_TAC THEN
SUBGOAL_THEN `angle(A:real^2,C,Q) = &0` MP_TAC THENL
[REWRITE_TAC[angle] THEN ASM_SIMP_TAC[VECTOR_ANGLE_ARG; COMPLEX_SUB_0];
ASM_REWRITE_TAC[REAL_ARITH `a / &3 = &0 <=> a = &0`]] THEN
ASM_MESON_TAC[COLLINEAR_ANGLE; ANGLE_SYM; INSERT_AC];
ALL_TAC] THEN
REPEAT(FIRST_X_ASSUM(MP_TAC o
GEN_REWRITE_RULE LAND_CONV [AFFINE_GROUP_ROTATE_ABOUT])) THEN
CYCLIC_PERM_SUBGOAL_THEN
`~(cexp(ii * Cx(&2 * a)) * cexp(ii * Cx(&2 * b)) = Cx(&1)) /\
~(cexp(ii * Cx(&2 * a)) * cexp(ii * Cx(&2 * b)) *
cexp(ii * Cx(&2 * c)) = Cx(&1))`
STRIP_ASSUME_TAC THENL
[REWRITE_TAC[GSYM CEXP_ADD; GSYM COMPLEX_ADD_LDISTRIB; GSYM CX_ADD] THEN
MP_TAC(REAL_ARITH
`&0 <= a /\ &0 <= b /\ &0 <= c /\ &0 < pi /\
&3 * a + &3 * b + &3 * c = pi /\ ~(&3 * c = pi)
==> (&0 < &2 * a + &2 * b /\ &2 * a + &2 * b < &2 * pi) /\
(&0 < &2 * a + &2 * b + &2 * c /\
&2 * a + &2 * b + &2 * c < &2 * pi)`) THEN
ANTS_TAC THENL
[MAP_EVERY EXPAND_TAC ["a"; "b"; "c"] THEN
REWRITE_TAC[REAL_ARITH `&3 * x / &3 = x`; PI_POS] THEN
SIMP_TAC[ANGLE_RANGE; REAL_LE_DIV; REAL_POS] THEN CONJ_TAC THENL
[ASM_MESON_TAC[TRIANGLE_ANGLE_SUM; ADD_AC; ANGLE_SYM];
ASM_MESON_TAC[COLLINEAR_ANGLE; ANGLE_SYM; INSERT_AC]];
MATCH_MP_TAC MONO_AND THEN CONJ_TAC THEN
REWRITE_TAC[CEXP_II_NE_1; GSYM CX_ADD]];
ALL_TAC] THEN
MAP_EVERY ABBREV_TAC
[`a1 = cexp(ii * Cx(&2 * a))`;
`a2 = cexp(ii * Cx(&2 * b))`;
`a3 = cexp(ii * Cx(&2 * c))`;
`b1 = (Cx (&1) - a1) * A`;
`b2 = (Cx (&1) - a2) * B`;
`b3 = (Cx (&1) - a3) * C`] THEN
REPEAT DISCH_TAC THEN MATCH_MP_TAC EQUILATERAL_TRIANGLE_ALGEBRAIC THEN
EXISTS_TAC `a1 * a2 * a3:complex` THEN
MATCH_MP_TAC ALGEBRAIC_LEMMA THEN
MAP_EVERY EXISTS_TAC [`b1:complex`; `b2:complex`; `b3:complex`] THEN
PURE_ASM_REWRITE_TAC[] THEN REWRITE_TAC[]);;
|